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Abstract

The constraint release (CR) effect in entangled branched polymers is generally de-

scribed by the widely accepted Dynamic Tube Dilation (DTD) theory based on the

tube model, which predicts the stress relaxation function reasonably well, but not the

dielectric or arm end-to-end vector relaxation. The microscopic picture of entanglement

dynamics even in the simple case of star polymers is still not fully resolved. In this

work, we first perform molecular dynamics simulations of symmetric star polymer melts

using the Kremer-Grest bead-spring model. The entanglement events are analysed mi-

croscopically using the persistent close-contacts between mean paths of neighboring

polymer strands. The resulted survival probability function of these entanglements

or close-contacts show reasonably good agreement with the stress relaxation function,

which provides qualitative evidence for the binary picture of entanglements. Based on

this understanding we further investigate the star arm retraction and CR effects us-

ing the coarse-grained single-chain slip-spring model originally developed by Likhtman

and also a simplified single-chain stochastic model. Our simulations revealed that, for
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entanglements sitting on a target star arm, only those destroyed by the arm free end

dominate the arm end-to-end vector relaxation, while the constraint release events pro-

duce an accelerated drift of the mean positions of these specific entanglements towards

the arm-end, which is an essential mechanism for understanding the relaxation of star

polymers in concentrated solutions or melts. Our findings call for an examination of

the microscopic foundation of conventional DTD picture and inspire the development

of quantitative theories with consideration of more microscopic details.

1. Introduction

The dynamics of entangled polymers has been predominantly described by the tube model

for several decades.1–6 In this model the topological constraints on a polymer chain are

represented by a mean-field potential that confines the chain to a tube-like region. The

stress relaxation in a system of entangled linear chains proceeds via three main mechanisms,

namely reptation, contour length fluctuation (CLF) and constraint release (CR). Both linear

and nonlinear viscoelastic behavior of monodisperse linear polymers with high molecular

weights have been successfully described by tube-based theories.3,5–9

For branched polymers, such as star, H-, comb and Cayley-tree polymers, reptation dy-

namics is strongly suppressed by the effectively localized branch points. These polymers thus

relax in a hierarchical way, starting from the retraction of the outermost branch arms and

proceeding to inner layers till the core of the molecules. The retraction of isolated star arms

in a fixed network was first modeled by Pearson and Helfand as the one-dimensional (1D)

diffusion of a single particle subject to an effective potential whose magnitude grows expo-

nentially, following the relation of U(s) = 3Zs2/2 where Z is the number of entanglements

and s is the relaxed fraction of the arm.10 In concentrated solutions or melts of star polymers,

constraint release softens the arm retraction potential. Ball and McLeish11 treated the CR

effects in a self-consistent manner by assuming the relaxed arm segments as a solvent for the

unrelaxed materials, which effectively reduces the number of entanglements in the system by
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a factor of 1− s and so results in a gradual dilation of the confining tube. The hypothesized

relaxation mechanism is generally termed as “Dynamic Tube Dilation”(DTD).11,12 Based on

this picture, Milner and McLeish13,14 developed a theory for predicting the mean first passage

(FP) time of arm retraction by solving the Kramers’ problem of one bead linked to the ori-

gin through a harmonic spring.15 After properly including the contributions from early time

fluctuations of the arm free end, this theory predicts the loss modulus G′′(ω) of symmetric

star polymer melts in good agreement with experiments for the whole range of frequencies.

Computational models based on a similar tube-theory framework have also been developed

for predicting the linear rheology of general mixtures of branched polymers.16–20 Recently we

have shown by simulations and theoretical calculations that if the star arm is represented by

a Rouse chain with more beads, the mean FP time of the chain extension or retraction gets

faster than that predicted by the single-bead models.21 More accurate description of arm

retraction dynamics should be achieved by solving a multi-dimensional Kramer’s problem

even for the cases without CR.

Concerning the constraint release effects, the DTD model has been shown to describe

the viscoelastic behaviors of monodisperse linear and symmetric star polymer melts reason-

ably well,13,14 but encountered difficulty in providing a good description of the dielectric

relaxation and terminal stress relaxation of star polymers.3,22–24 One reason lies in that this

model predicts a tube dilation process faster than the transverse Rouse motion of the arm

when the free end retracts close to the branch point. To explain the deviations from the

dynamic dilution predictions, Shanbhag et al.25 proposed a multi-chain “slip-link” model by

assuming entanglements as topological constraints arising from pairs of neighboring chains.

Their simulation results suggest that the relaxation in the terminal regime is controlled by

the rare events that new entanglements created in between the branch points and deepest

entanglements push the original deep entanglements toward the arm ends and so allow them

to be deleted by relatively shallow arm retractions. Following this qualitative elucidation of

the deviation from the DTD theory, several questions could be raised: 1) can one verify the
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mechanism revealed by the simplified slip-link model in a more realistic model of entangled

polymers? 2) if this mechanism exists, does it only contribute to the dynamics of the deep-

est entanglements? We will tackle these questions in the current work using a multi-scale

simulation approach.

The aim of this paper is to provide a microscopic picture of how CR affects the en-

tanglement dynamics in star polymer melts. First we carry out molecular dynamics (MD)

simulations of melts of symmetric star polymers represented by the flexible Kremer-Grest

model26 and perform contact map analysis in which entanglements are defined by persistent

binary contacts between neighboring arms.27 We find that the stress relaxation function

G(t) can be reasonably well reproduced by the survival probability function of these entan-

glements or persistent close-contacts. Based on this binary picture of entanglements, the

single-chain slip-spring model developed by Likhtman28 is confidently used as a computa-

tionally efficient way to study the dynamics of entanglements (slip-links) to much larger

time and length scales. The slip-spring model also allows the control of CR effects. We

find that the dielectric or end-to-end vector relaxation function of star arms is determined

by the slip-links destroyed from the arm-ends and CR facilitates a drift of the mean posi-

tions of these specific slip-links towards the corresponding arm-ends. In order to find out

the essential physical origins of the observed drifting behavior of entanglements we propose

a more coarse-grained single-chain stochastic model for separating different elements that

affect the motion of entanglements along the arms. In the end, discussion and conclusion

sections follow.

2. Determining entanglements in MD simulations

To examine the existing theories as well as resolve some long-standing puzzles, molecular

dynamics simulation has been introduced as a suitable methodology to study the dynamics

of entangled polymers in melts, since we can visualize the conformations and trajectories of
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individual polymers and their neighbors.26,27,29–44 Because of the slow relaxation of branched

polymers and limited computational power, the number of entanglement strands per star

arm studied in MD simulations are typically smaller than those used in experiments. But

MD simulations can provide us the details about what exactly happens at microscopic length

and time scales, which are generally inaccessible to experiments. They can thus be treated as

computational experiments, offering more information for the development of more coarse-

grained models and theories for illustrating entanglement dynamics.

2.1. Kremer-Grest Model

In this work, monodisperse 3-arm symmetric star polymer melts are simulated using the

flexible Kremer-Grest (KG) bead-spring model.26 The excluded volume interaction between

monomers is represented by a purely repulsive Lennard-Jones(LJ) potential with the po-

tential parameter ε = kBT and a cutoff distance rc = 21/6σ where σ is the diameter of the

monomers. The time unit is given by τLJ = (mσ2/ε)1/2 with m the monomer mass. Finitely

extensible nonlinear elastic(FENE) potential is introduced between bonded neighbours with

the spring constant k = 30ε/σ2 and the maximum of bond length Rmax = 1.5σ. All simula-

tions are performed in the canonical ensemble with temperature T = 1 and monomer number

density ρ = 0.85σ−3. In the simulation box there are Nc = 70 star molecules with the number

of beads per arm N = 255. Every single run of the simulations has reached approximately

100τd where τd ≈ 2 × 106τLJ is the terminal stress relaxation time of the stars. Therefore

the samples are well equilibrated and the trajectories are long enough for carrying out the

binary close-contact analysis.27 The entanglement molecular weight Ne in such flexible KG

chain systems was found to be NPP
e ≈ 65 from primitive path analysis45 and NMSD

e ≈ 50 from

the monomer mean square displacements (MSD),31 respectively. The Rouse relaxation time

of an entanglement strand τe was estimated to be around 3000τLJ by using the crossover

between the MSD data in the Rouse and entangled regimes.31 All the time correlation func-

tions, including the stress and dielectric relaxation functions, are calculated on the fly using
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the multiple-tau correlator method to ensure good statistics.46

2.2. Constructing primitive paths of star polymers

To examine the tube picture in MD simulations, the first challenge we face is how to define

the tubes or primitive paths. One approach is the primitive-path analysis method developed

by Everaers et al.,45,47 in which the primitive paths of entangled chains are procured by fixing

the chain ends in space, switching off the intra-chain excluded-volume interactions and then

minimizing the energy. Since the interchain interactions are still preserved, the shrunk

chains cannot cross each other and so have to take piecewise linear conformations between

binary entanglement points. Similar chain-shrinking methods have also been developed by

Kröger48 and Theodorou et al.49,50 who used geometric algorithms to straighten chain paths

and hence abridge chain contour lengths without allowing chains to cross. Zhou and Larson

have examined both the total energy minimization and the length minimization methods

in MD simulations of the KG chains.51 Clearly, the chain-shrinking process destroys the

local structure of the melts such that the details of the tube cannot be observed. Later

two different approaches without destroying the local structures were proposed, which are

the isoconfigurational ensemble (ICE)36 and the mean path (MP)52 methods. In the ICE

method, multiple short MD simulations are performed starting with the same initial chain

conformations but different monomer initial velocities. The primitive paths of the chains are

obtained by averaging over different trajectories and over a short averaging time. In the MP

method, the primitive paths consist of the mean position of each bead over some averaging

time τav during a single long MD run. Both methods can produce smooth primitive paths,

because fast fluctuations and small length scale wiggles are eliminated by the averaging

procedure. Considering the computational convenience and efficiency, we employ the MP

method for entanglement analysis of the star polymers studied in this work.
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Figure 1: Instantaneous conformation (red) and the mean path calculated with an averaging
time τav = 12000τLJ(light blue) of a symmetric 3-arm star polymer studied in the MD system.

The mean position of the i-th monomer in a given polymer chain is defined as

r̂i(t) =
1

τav
∫

t

t−τav
Ri(t′)dt′ (1)

where Ri(t′) is the instantaneous position of this monomer at time t′. The mean path of

the corresponding chain thus consists of the mean positions of all its constituent monomers.

The exact shape of the mean path depends on the choice of the averaging time τav. With

increasing τav, the path becomes smoother, as fluctuation modes with characteristic times

shorter than τav are averaged out. On the other hand, it is also desirable to keep the mean

path as local as possible both in space and time. Therefore, the value of τav is typically

taken to be of the order of the entanglement time τe. This is the timescale needed for

a chain segment to explore the confining tube transversely. More detailed discussions of

mean path analysis can be found in Refs.52 and.27 Fig.1 shows the MP of a symmetric 3-

arm star (light blue) calculated with τav = 12000τLJ ≈ 3τe, together with its instantaneous

configuration (red).
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2.3. Persistent close contacts between mean paths

The entanglements can be defined by persistent close-contacts between mean paths of pairs

of neighboring chains as originally described in Ref.27 Here, we briefly summarize the ap-

proach. A contact map is created for each pair of chains (j1, j2) in the system to quantify

entanglements over time. If the mean position of monomer i1 of chain j1 is within a certain

distance dcut from the mean position of monomer i2 of chain j2 at time t, a point (i1, i2, t) will

be appended to the three-dimensional (3D) contact map. Furthermore, if two contacts are

less than icut monomers away from each other along a given chain and are in the same or the

adjacent time frames, they are grouped into one cluster. We choose icut = 30 ≈ Ne/2 which by

observation is the maximum number of monomers a chain can slide between adjacent time

frames. Each independent cluster is called an entanglement. Note that each cluster contains

more than one contact. An algorithm was developed to process each cluster of contacts in

order to return one monomer pair i1(t) and i2(t) for each frame, indicating which monomers

are involved in an entanglement at a particular time. In the end, a smooth trajectory of

{i1(t), i2(t), t} can be obtained for each entanglement in the system, see Fig.2 below or Fig.4

in Ref.27 The mean path averaging time τav and the cutoff distance dcut are the two main

parameters for the contact map algorithm, which are set to be 12000τLJ and 3σ in this work,

respectively.

In the original version of the contact map algorithm,27 the close-contact is required to

exist at every moment for determining the lifetime of the corresponding entanglement. As a

result, the contact trajectories are always continuous in time. However, as we know, for some

less strongly interacting primitive paths, thermal fluctuations of tension could be sufficient to

engage and disengage their close-contacts, depending on whether the distances between them

are within the cut-off threshold or not.39 Indeed, any persistent close-contact defined through

a distance threshold suffers from this problem. For the purpose of illustration, Fig.2 shows

one example of two smooth contact trajectories between a pair of star arms as determined

using the original algorithm. As marked by the dashed circle, there is no contact detected in
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t

i1

i2

Figure 2: Trajectories of persistent close-contacts between a pair of star arms in the MD
system as determined using the original contact map algorithm. The blue and green axes
indicate the monomer indices on the two different arms involved in the contacts.

one particular time frame, because the distance between the two mean paths exceeds dcut.

This is probably due to the involvement of a third arm which temporarily pushes the two

arms away from each other. But in the next time frame the two arms get into contact again

in the proximity of the previous contact point. The two separated contact trajectories should

actually be linked together to represent one entanglement. In order to diminish the defect in

the distance threshold criterion, we update the contact map algorithm by deliberating that

if a close-contact disappears in a time frame where neither of the involved segments is at the

corresponding chain end and then reappears in the contact map after a short time τgap near

the location where it was destructed, its trajectory will be treated as continuous over that

period of time and so represents one single entanglement.

2.4. Properties of persistent close contacts (entanglements)

At time scales much smaller than the Rouse time (t << τR), the arm free end experiences

fast fluctuations under the action of many Rouse modes.5,13 Theoretical models based on the

solutions of Kramer’s problems are not applicable for describing such shallow arm retraction,

because the effective energy barrier is lower than kBT . In this work we will mainly focus on
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the deep or late-time arm retractions which determine the terminal relaxations. Therefore

only the persistent close-contacts that live longer than 10τav ≈ 30τe ≈ τR are collected for

entanglement analysis. The long MD simulations runs (up to 100τd) ensure us to have

sufficient number of close-contact samples even for entanglement lifetimes beyond the stress

relaxation terminal time τd.

t-aexpH-têtcutL
a=2.29±0.03

tcut=H7.86±0.53L¥106

1¥105 5¥1051¥106 5¥1061¥107
10-9

10-7

10-5

0.001

0.1

têt

P
HtL

LJ

Figure 3: Probability density Π(t) that a randomly selected entanglement has a lifetime
t(symbols) and the best fitting function with the expression t−α exp(−t/tcut)(line).

The probability density Π(t) of a randomly chosen entanglement having a lifetime t is

shown in Fig.3, which can be reasonably well described by a function of a power-law decay

with an exponential cutoff,

Π(t) ∼ t−α exp(− t

tcut
) (2)

where α ≈ 2.29 and tcut ≈ 7.86 × 106τLJ . The data in Fig.3 have been properly normalized

such that the integral of Π(t) over the entire time range is equal to 1. We note that Π(t)

basically represents the spectrum of CR events, which could be potentially used for devel-

oping quantitative theories or single-chain simulation models for entangled star polymers.

This function decays fast with time, indicating that the majority of CR events take place at

relatively short time scales. On the other hand, for predicting the dynamic and rheological

properties, such as the stress, birefringence or dielectric relaxations, which are typically time
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correlation functions, the more relevant quantity is the survival probability Pent(t) that an

entanglement picked randomly at a given time will still exist after certain elapsed time t.2,53

Linear Chain
N=512
Nc=150

1000 104 105 106 107
10-5

10-4

0.001

0.01

0.1
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G
HtL
&
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HtL

Star
N=255
Nc=70

1000 104 105 106 107
10-6
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HtL
&
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HtL

(a)

(b)

a

/⌧LJ

/⌧LJ

Figure 4: (a) Comparison between stress relaxation function G(t) (symbols) and entangle-
ment survival probabilities Pent(t) for symmetric stars of arm-length N = 255 (dashed line:
original close-contact algorithm in ref.,27 solid line: updated algorithm introduced in this
work). (b) Same comparison as in (a) but for linear chain melt system with chain length
N = 512.

There is a simple relationship between Pent(t) and Π(t),

Pent(t) = ∫
+∞
t (τ − t)Π(τ)dτ
∫
+∞
0 τΠ(τ)dτ

. (3)

The Pent(t) results obtained using the updated contact map algorithm are shown in Fig.4(a)

by the blue solid line, while those generated with the original algorithm in ref.27 are shown

by the red dashed line. The former set of data show much better agreement with the stress

relaxation function G(t) of the system. It should be noted that in the calculation of Pent(t)
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all entanglements have been taken into account, which consequently includes contributions

from both arm-retraction and constraint release. We also find the shapes of Pent(t) depend

imperceptibly on the frame gap τgap if τgap ≥ 2τav ≈ 6τe. Therefore, τgap used in the updated

contact map method is set to 2τav. For completeness, the close-contact analysis using the

updated version is also carried out in a linear chain melt system with N = 512 and Pent(t) is

again in a reasonable agreement with G(t) as shown in Fig.4(b). These results indicate that

the binary contact picture can be applied to describe the entanglement dynamics in both

linear and star polymer melts.

Furthermore we have monitored the relative ordering of the entanglements along the

same arm. The crossover rate between neighboring entanglements is found to be less than

3% per entanglement per time frame (3τe). In other words, a given entanglement only

swaps with its neighbors once every 100τe. Considering that this swapping rate has also

counted in the reverse crossing events between neighboring entanglements, the long-term

or permanent changes of entanglement ordering along the arm are very rare. Therefore in

the single-chain slip-spring model used in the following section, effective excluded volume

interactions between slip-links are introduced to prevent them from passing over each other

or occupy the same monomer. The influence of the non-zero swapping rate on the dynamics

of entanglements is discussed in Sec. 5.3.

3. CR effect studied using single-chain slip-spring model

Based on the binary picture of entanglements explored in our MD simulations and previous

works27,38,45 and the fact that G(t) can be reproduced reasonably well by the survival prob-

ability of the so-obtained entanglements, the coarse-grained single-chain slip-spring model

developed by Likhtman and coworkers for linear polymers28,31,54,55 is extended to the simula-

tion of entangled star polymers for accessing time and length scales beyond MD simulations.

In this model, the star arms are represented by Rouse chains in 3D space, each consisting
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of N beads with one end bead (i = N) connected to the branch point and the other end

(i = 1) free to move. The bead friction coefficient is taken to be ξ = 1 and the average spring

length is b = 1. The topological constraints due to entanglements are modeled by a set of

virtual springs of N ss
s beads each. One end of each virtual spring is connected to a Rouse

monomer by a slip-link, while the other end (anchor point) fixed in space. On average there

is one slip-link per chain segment of N ss
e monomers. The slip-links move along the arms

discretely by hopping from one bead to one of its nearest neighbors with the acceptance rate

controlled by a Metropolis Monte-Carlo scheme. Furthermore, each slip-link is paired with

another slip-link sitting on an arm of another star. There are thus no self- or intra-arm en-

tanglements considered. To properly incorporate the self-entanglement effects, information

on the probability for the polymer arms or chains to be self-entangled would be needed from

more detailed simulations such as the Kremer-Grest model via contact map analysis. This

will be left for future study. For the arm lengths studied in this work, the contributions from

self-entanglements should be relatively small. The exclusion of such effect will not change

the results qualitatively.

In our model the creation or destruction of a slip-link always involves at least one arm

free end. If a slip-link is deleted from the free end of one arm, its associated partner is also

deleted regardless of its location. A new pair of coupled slip-links will be created immedi-

ately with one at the end of a randomly chosen arm and the other attached to a monomer

on any other arm with equal probability. The total number of slip-links in the system re-

mains constant. The slip-links on the same arm are not allowed to pass over each other or

cohabit the same monomer. This effective exclude volume interaction between slip-links is

qualitatively consistent with the low swapping rate between neigbhoring entanglements as

found in the close-contact analysis in MD simulations. In the current work, the slip-spring

model parameters are set to be N ss
e =4 and N ss

s =0.5 as have been used in several previous

works.31,54,56,57 To map the slip-spring simulation data on linear polymer melts obtained

using these parameters to the tube model predictions requires the use of Ne ≈ 5.7 beads
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per entanglement.56 When mapping the chain middle monomer mean square displacement

data generated by this slip-spring model to the MD results obtained using the Kremer-Grest

model, a time scaling factor of 3370 was needed.31

Each arm is capped at the branch point such that the slip-links cannot slide through

to any other arms in the same star. The branch points are fixed in space instead of fluc-

tuating around. Masubuchi et al. have shown in primitive chain network simulations that

for asymmetric star polymers the simulations without branch point fluctuations predicted

much slower stress relaxation than those with fluctuations.58 We have observed a similar but

probably less significant effect for symmetric star polymers, as reflected in the comparison

between the stress relaxation functions G(t) obtained in the slip-spring and MD simulations

in Fig. 5. Different from the MD case where both the intra- and inter-chain contributions

are automatically included in the stress calculation, the G(t) results in the single-chain slip-

spring model simulations are obtained from the single-chain auto-correlation functions to

avoid the complication of finding direct physical link between the cross-correlation contri-

butions in the two different models.59,60 It has been found in previous simulations that in

both models the stress and orientation auto-correlation functions are proportional to the

total stress relaxation function at large time scales, especially when close to the terminal

time.30,59 We can thus use either the single-chain stress or orientation auto-correlation func-

tion to represent the G(t) data, with all three functions simply subject to a vertical shift.

Apart from the vertical shift, Fig. 5 shows that the slip-spring timescales need to be multi-

plied by a factor of 1000 for matching the MD time. This time rescaling factor is apparently

smaller than that (3370) used in linear polymer cases,31 and so reflects the slow dynamics

predicted by fixing the branch points. On the other hand, the qualitative agreement between

the slip-spring and MD data indicates that at least for the arm lengths studied in the current

work, the option of allowing the branch point to fluctuate or not in the slip-spring model will

not alter the results qualitatively. Therefore we choose to fix the branch points in space for

the convenience of analyzing the slip-link motion along the arms and also being consistent
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with previous slip-link model simulations,25 but bearing in mind that the quantitative results

might be different by allowing them to fluctuate.

SS model:N=24
KG model:N=255 HZº4L

Time shift factor for SS model is 1000

100 1000 104 105 106 107 10810-6

10-5

10-4

0.001

0.01

0.1

1

t
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HtL

Figure 5: Comparison of stress relaxation functions G(t) obtained in the slip-spring model
and MD simulations. The slip-spring data have been shifted both vertically and horizontally,
see main text. The number of entanglements per arm is around 4 in both cases.

3.1. Mean first passage time of tube segment destructions

In the slip-spring model, constraint relase effect can be easily switched off by decoupling the

association between paired slip-links as well as constructing and destructing of slip-links only

at arm-ends. Thus, the release of all slip-links on a given arm only relies on arm-retraction,

which is analogous to isolated star polymers confined in a permanent network.10,21,61 In such

a non-CR system, consider a slip-link which sits on monomer i of an arm and so is a fractional

distance s= i/N away from the arm-end at a certain time t. If this slip-link is deleted from

the system at a later time t′ when it reaches the free end, the first passage time for the

arm-end to reach the given slip-link can be simply calculated as τncr(s) = t′−t.

In the systems with CR, the collection of the FP times τcr(s) needs more careful consid-

eration, because each entanglement corresponds to a pair of coupled slip-links sitting on two

different arms. An entanglement is deleted from the system when one of the two slip-links is

reached by the free end of the arm it sits on. We label the slip-link reached by its correspond-

ing arm-end as sret and the other one as sref . Fig.6(a) shows the schematic conformation of a
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Figure 6: (a) Schematic conformation of a target arm at initial time. Slip-links colored red
are the ones that will be destructed by free end of the given arm, while the gray ones will be
destructed due to the deletion of their coupled partners elsewhere. (b) Mean first passage
times τncr(s) (open, without CR) and τcr(s) (filled, with CR) obtained in slip-spring model
simulations with arm-length Na=36 (red squares) and 24 (black disks), respectively.
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target arm at initial time t, in which the open square and black disk indicate the branch point

and the arm-end, respectively. The slip-links on this arm are classified into two categories,

depending on their fates. The ones destroyed by the end of the given arm (sret) are colored

red, while those removed due to the deletion of their coupled partners on some other arms

(sref ) are colored gray. Considering that the arm is confined in a tube constructed by the

slip-springs, the conformation of the tube segment associated with a slip-link marked as sret

will be completely forgotten after its destruction at t′. The arm-end can poke out towards

any directions from this point. But the tube segment associated with a slip-link marked as

sref (e. g., slip-link 6 in Fig.6(a)) will only experience a CR event when it is removed. Since

the nearest neighboring slip-links of sref on the same arm are still present (e. g., slip-links

5 and 7 in relevance to 6), the orientation of the original tube segment (i. e., the vector be-

tween slip-links 5 and 7) is not relaxed at all. Therefore, for determining the arm end-to-end

vector (not stress) relaxation, we can reasonably infer that the tube segment survival times

are only associated with the FP times that the arm free end reaches the red or sret slip-links.

These slip-links are thus termed as “Tube Representative”(TR) slip-links. Note that the TR

slip-links on the same arm are released sequentially during the arm retraction process. As

will be discussed latter, the CR events contribute to the arm end-to-end vector relaxation

by speeding up the release of the TR slip-links from the arm free ends.

Fig.6(b) shows the mean first passage times of TR slip-links in the systems both with and

without CR. As we expected, CR speeds up the destruction of the slip-links dramatically.

For example, the FP times of the deepest slip-links, or equivalently the terminal relaxation

times, in the two systems with arm length N = 36 or number of entanglements Z ≈ 6 differ

by 3 orders of magnitude. As shown below, our single-chain slip-spring model provides a

convenient way for examining the suggestion of Shanbhag et al. on explaining the release of

the originally deepest entanglements.25
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3.2. Dynamics of “Tube Representative” slip-links

Before presenting any measurements in the slip-spring simulations, we first sketch a quali-

tative picture about the release of a target TR slip-link which sits next to the branch point

of a given arm and will finally be deleted from the arm free end. With CR switched on,

new slip-links with lifetimes extracted from a broad distribution (see, e.g., Fig. 3) are inces-

santly created on the arm at certain rate. These new slip-links have equal probability to be

inserted at any locations along the arm. Obviously, the probability to create a new slip-link

with lifetime longer than the remaining lifetime of the target TR slip-link on the segment

between the branch point and the target one is non-zero during any period of time. After

one such insertion, the target TR slip-link feels the new slip-link “permanently” until itself

being deleted from the free end. With the simulation going on, more and more such new

relatively long-lived slip-links could be inserted in between the branch point and the target

slip-link such that the mean position of the target one is gradually pushed away from the

branch point. As the target slip-link moves closer to the arm free end, its remaining lifetime

is getting shorter and the time threshold for newly inserted slip-links to be considered as

“long-lived” with respect to the target slip-link is reduced. The combined effects will lead

to a drifting behavior of the target TR slip-link towards the arm-end under an “acceleration

field”. We note that the term of “long-lived” slip-links used in the current work only refers

to the slip-links that live beyond the remaining lifetime of a target slip-link. This definition

does not depend on the actual lifetimes and the eventual fates of these slip-links (either

deleted by the arm end or by CR events) as long as they are removed from the system after

the destruction of the target TR slip-link. According to this definition, any TR slip-link is

a “long-lived” one for all other slip-links between itself and the arm-end.

To illustrate the hypothesized picture, Fig.7 shows the trajectory of a target (originally

deepest) TR slip-link along a star arm with Na = 36 as obtained in the slip-spring model

simulation. During the lifetime of the target slip-link, all other slip-links sharing the same

arm are tracked. For studying the motion of the slip-links along the arm, their locations are
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Figure 7: Trajectory of a target (originally deepest) TR slip-link (large red disk) along a
star arm with Na = 36 studied as in the slip-spring model simulation. The “long-lived” and
“short-lived” slip-links with regard to the remaining lifetime of the target TR slip-link are
represented by the small red and gray disks, respectively. The arrow points from the branch
point to the arm-end.

measured by the indices of the monomers that they are attached to, instead of their 3D real

space coordinates. Slip-links other than the target one are classified as “long-lived” (red) and

“short-lived” (gray) in relation to the remaining lifetime of the target slip-link. Fig.7 shows

the propagation of the location (monomer index) of the target TR slip-link along the arm,

while the real physical location of the slip-link is always around its anchor point which is

fixed in space. Apparently all other slip-links are “short-lived” at the initial time, because the

target slip-link is the originally deepest one and will eventually be deleted from the arm-end.

As the simulation running, slip-links are continuously created on or deleted from the arm. At

later time, some “long-lived” slip-links are created in between the target one and the branch

point such that the target slip-link will never be any closer to the branch point as at initial.

In the melts of symmetric star polymers with arm length Na = 36, the ensemble-averaged

number of “long-lived” slip-links that are added before the final destruction of the target

slip-link is found to be around 3.

Fig.8(a) shows the evolution of the number of slip-links Nent between the branch point

and the target (originally deepest) TR slip-link. Since the lifetime t∗ of the target slip-link

varies from one simulation sample to another, we have normalized the simulation time by
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Figure 8: (a) Time-dependent average number of entanglements (slip-links), Nent (black
squares), on the arm segment between the branch point and originally deepest target TR
entanglement and average number N ll

ent (red circles) of the “long-lived” ones among them
that survive beyond the remaining lifetime of the target one, as obtained in slip-spring model
simulations. (b) Same measurements as in (a), but obtained in the contact map analysis of
MD simulations using the Kremer-Grest model. The time scale has been normalized by the
individual lifetime t∗ of the target TR entanglement in each case.
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the individual t∗ value in each case so as to obtain the ensemble average over a dimensionless

time period starting from the initial time t/t∗ = 0 to the terminal time of the system t/t∗ = 1.

We can see that Nent increases monotonically with time, which demonstrates that new slip-

links are continuously created on the segment between the branch point and the target TR

slip-link. Among the Nent slip-links, there are N ll
ent “long-lived” ones with regard to the

remaining lifetime of the target slip-link. N ll
ent first shows a slower increase with time than

Nent, but eventually reaches the same value as the latter, because upon the destruction of

the target TR slip-link, all remaining slip-links on the given arm are “long-lived”.

Moreover, we carry out the same measurements in the MD simulations using the per-

sistent close-contact analysis discussed in the previous section. As shown in Fig.8(b), the

MD results are in qualitatively good agreement with those obtained in the slip-spring model

simulations. It should be noted that the average number of close-contacts (entanglements)

on each arm is around 6 for the arm-length of N = 255. At the moment when the originally

deepest entanglement is destructed from the arm free end, there are around 2 − 3 entangle-

ments left on the arm. This is consistent with the observation of Shanbhag et al.25 that the

initially deepest slip-link is pushed about 1/3 of the primitive path towards the arm-ends and

so deleted by relatively shallow arm-retractions. To our knowledge, it is the first convincing

evidence in the microscopic MD simulations to support the relaxation picture proposed by

Shanbhag et al.

We can further investigate the CR effect on the propagation of entanglements along the

primitive paths by comparing the temporal variation of the locations of TR slip-links in

the systems with and without constraint release. Note that in the systems without CR, all

slip-links are considered to be TR ones, since their creation and destruction only happen at

the arm free ends. In order to eliminate the direct influences from the reflecting boundary at

the branch point and the absorbing boundary at the arm-end, we only choose to study the

TR slip-links that sit exactly on the middle monomers (i=N/2) at the initial time t = 0. The

variation of the locations of these slip-links along the arms, as measured by the monomer
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Figure 9: Probability distributions of the locations, as measured by monomer indices, of
certain TR slip-links after a delay time tdelay from their initial states of sitting on the middle
monomers of the arms i =N/2 at t = 0. The simulation results are obtained in both the
systems with (red circles) and without (black disks) constraint release. The means and
variances of these distributions are also provided for reference.
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indices, are then tracked as a function of time. Fig. 9 shows the probability distributions

of the locations of the sampled TR slip-links after a carefully chosen delay time tdelayduring

which nearly all of the sampled slip-links (> 97%) are able to move along the arms without

directly touching the two boundaries. The means and variances of the distribution functions

are also provided in the plots. They provide quantitative measurements of the CR effects

in two aspects. On the one hand, the continuous creation and destruction of entanglements

along the arms lead to large magnitude of fluctuations of the sampled TR slip-links, as

reflected in the larger variance of the distributions in the systems with CR than those in

systems without CR. On the other hand, the CR effect is also found to induce a stronger

shift of the mean position of the TR slip-links towards the arm ends in comparison with

the systems without CR, which would lead to a faster stress relaxation in the star polymer

melts. We believe that this CR-induced drifting behavior of entanglements towards arm

ends should be taken into account in developing quantitative theories for dynamics of star,

or more generally branched, polymers, and so will discuss its physical origin in more details.

4. Investigating physical origin of the drifting behavior of

TR slip-links

In the single-chain slip-spring model, the entanglements are treated as binary contacts be-

tween two different arms such that the CR spectrum is included in a self-consistent manner.

This is consistent with the current tube theories which are generally developed on a single

molecule basis with self-consistent treatment of contour length fluctuations or arm retraction

and constraint release.5,13,16 In this section, we propose a simplified single-chain stochastic

model which inherits the main features of the single-chain slip-spring model, but is at a

more coarse-grained level. It is used to identify the essential physical elements contributing

to the drifting behavior of TR entanglements along the primitive paths and so provide useful

information for developing quantitative theories of branched polymers. For convenience of
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discussion, we still call entanglements as slip-links in this section.

4.1. Single-chain stochastic model

The simplified single-chain stochastic model is constructed using the following protocol.

1) A one-dimensional linear chain is introduced for representing the primitive path of a

star arm. This chain is sufficiently long such that during the time window we are interested

in, the studied entanglements or slip-links will not be reached by the retracting arm end. The

creation and destruction of the slip-links only result from constraint release. This effectively

separates the CR effects from the arm retraction dynamics.

2) The length unit of the primitive path is set to be the tube segment length a so that

the number density of slip-links along the path is 1. The slip-links are initially placed at

positions ri = i where i ∈ N. The microstate of a slip-link is defined by its sequential index

counting from the origin along the primitive path.

3) The origin of the primitive path is treated as the reflecting boundary representing the

branch point. The repulsive interaction between the slip-links and the reflecting boundary

is given by a harmonic potential,

Uw(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

kw
2
(r − rw)2, for r < rw

0, for r ≥ rw

where rw and kw are the cut-off distance and the spring constant of the repulsive wall

potential, respectively.

4) The neighboring slip-links are subject to excluded volume interactions to prevent them

from crossing each other. The interaction potential takes a harmonic repulsive form,

Uex(ri, ri+1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k

2
(ri+1 − ri − rc)2, for 0<ri+1−ri<rc

0, otherwise
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where rc is the cut-off distance of the potential and k is the spring constant. The value of k

is chosen to be large enough such that ri+1 is always larger than ri during the simulation run,

i. e., no swapping of neighboring slip-links. As will be discussed in Sec. 5.3, the introduction

of a low swapping rate between neighboring slip-links will only have small quantitative effect

on the simulation results.

5) The motion of the slip-links along the primitive path is controlled by the standard

stochastic differential equation (SDE)

ξ
dri
dt

= −∇U(ri) +Wi(t)

where ξ is the friction coefficient of the slip-link and the stochastic force W is a Gaussian

white noise

⟨Wi(t)Wj(t′)⟩ = 2kBTξδijδ(t − t′)

with δij being the Kronecker delta function and δ(t) the Dirac delta function, respectively.

6) At the creation of each slip-link, it is assigned a lifetime extracted from a given

distribution function. Once its remaining lifetime drops to zero, the slip-link is deleted from

the system. Since we simulate the systems in equilibrium, the creation and destruction of

slip-links in the system satisfy the detailed balance condition throughout the simulation run.

7) The target TR slip-links are introduced by taking an equilibrium configuration of the

system and assigning “very long” lifetimes to a number of selected slip-links such that they

will not be deleted from the middle of the primitive path during the time period we are

interested in. Due to this biased choice of lifetimes, the TR slip-links themselves do not

satisfy the detailed balance condition in the time window we studied, although the whole

system is always in equilibrium.

8) In order to keep the number density of slip-links nearly constant, the outer-most Z-th

slip-link is always subject to a harmonic attractive force from an anchor point at r=Z, which

effectively restricts its mean position at r=Z. In general, we have over a hundred slip-links
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in the system so that the fluctuation of the outer-most slip-link will not affect the dynamics

of the slip-links near the branch point over the time of interest.

In the current work, the cut-off distances rw and rc of the repulsive potentials are both

set to be 0.5, and the two spring constants k and kw are set to be 100. The friction coefficient

of the slip-links is ξ = 0.5 and the time-step size used to integrate the SDEs is ∆t = 0.005.

The values of k, kw and ∆t should be determined carefully for preventing the slip-links from

crossing each other. Other than that, the use of a different set of parameters will only affect

the results quantitatively but not qualitatively.

4.2. Dynamics in the system with a single TR slip-link

It is known that in a 1D system consisting of freely diffusing particles the reflecting boundary

alone can lead to the shift of the mean positions of the particles away from it. Suppose that

there is only a single slip-link along the primitive path. The mean position of this slip-link

does not change from its initial location r until it meets the reflecting boundary at a time

scale of t ∼ r2/D0 with the Brownian diffusion coefficient D0 = kBT /ξ. After that its mean

position will drift away from r towards the arm end. More detailed analytical treatment of

such a problem can be found in Ref.62 The reflecting boundary effect exists in both systems

with CR and without CR. In this work we use the simplified single-chain stochastic model

to highlight the CR effect that speeds up the drifting of TR slip-links away from the branch

point.

In entangled star polymer melts, the relaxation time scales and correspondingly the

constraint release events have very broad spectra. We start our study with the simplest case

that all slip-links have only one single characteristic relaxation time τc. Initially 100 slip-links

are placed at xi = i, i∈{1,2,⋯,100} along the primitive path with their lifetimes extracted

from an exponential distribution 1
τc

exp(−t/τc). At each time step, the probability to insert

one slip-link at any location on the segment between (i− 1)-th and i-th slip-links is equal to

∆t/τc such that the detailed balance condition is satisfied. One of the slip-links is chosen as

26



0 10 20 30 40 50
0

5

10

15

20

25

t

IHtL

0.516±0.002

1 2 5 10 20 50
1.0

10.0

5.0

2.0

3.0

1.5

7.0

t

st
dH
IHtL

L

(a)

(b)

Figure 10: (a) Propagation of the mean sequential index (black circles) and the corresponding
standard deviation (vertical bars) of a TR slip-link initially sitting at r=10. All other slip-
links have a single characteristic time τc =10. (b) Log-log plot of the standard deviation in
(a).
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the target TR slip-link and assigned a long lifetime (marked as +∞ for convenience) such

that it will not be deleted during the time period that we are interested in.

In the following analysis, we track the relative positions of the slip-link along the primitive

path by their sequential index counting from 1 for the one closest to the branch point.

Fig.10(a) shows the propagation of the mean sequential index of a TR slip-link initially

sitting at i(0) = 10 (and also r(0) = 10) in the system with τc = 10, together with the

standard deviation of its position distribution. It can be seen that the mean position of

the TR slip-link increases linearly over time, corresponding to a constant drifting velocity.

The standard deviation of the position distribution measures the fluctuation amplitude of

the TR slip-link over time, which scales as t1/2, as shown in Fig.10(b) by the log-log plot.

Due to the continuous destruction and creation of other slip-links, the position fluctuation

of the TR slip-link is apparently of much larger amplitude than that in a system without

CR where all slip-links are TR ones and each of them is effectively caged by two nearest

neighbors before being deleted from the arm end. In the system studied in Fig. 10, there is

no other “long-lived” slip-links in regard to the target TR one, the linear drifting behavior

of the target slip-link away from the branch point results from the combined effect of the

reflecting boundary condition and the excluded volume interactions between the slip-links.

We also found that the slope of the time-dependent mean position line, i(t), or the drifting

velocity of the TR slip-link, depends on the characteristic time τc of other slip-links. The

smaller τc leads to higher CR rates and so larger drifting velocity. The high frequency of CR

events effectively reduces the friction experienced by the TR slip-link when diffusing along

the primitive path and so increases its diffusion coefficient and drifting velocity.

In an equilibrium system the detailed balance condition requires that the numbers of

successful moves of the system into and out of any microstate must be equal. In other

words, each elementary process should be equilibrated by its reverse process such that no

net flux between two microstates. As mentioned above the microstate Si of a slip-link on a

given arm is defined by its sequential index i counting from the branch point. If the slip-
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link is deleted from the arm, its microstate is denoted as S∞. Since the whole system is

in equilibrium, there is a stationary probability πi for finding the slip-link in a microstate

Si. The detailed balance condition implies that πiWi,j = πjWj,i where Wi,j is the transition

probability from microstate Si to Sj.

After each time step from t to t +∆t, a slip-link at microstate Si(t) will take one of the

four possible moves: moving into one of the two nearest neighboring states Si−1 and Si+1,

remaining in the original state Si, or being deleted from the arm S∞ by CR. There are thus

only four non-zero transition probabilities which are Wi,i−1, Wi,i+1, Wi,i and Wi,∞. It follows

from the detailed balance condition that

πiWi,i+1 = πi+1Wi+1,i (4)

πiWi,i−1 = πi−1Wi−1,i (5)

πiWi,i = πiWi,i (6)

πiWi,∞ = π∞W∞,i (7)

where W∞,i and Wi,∞ are the probabilities of a slip-link to be added to and deleted from the

microstate Si, respectively. However, the situation is different for the target TR slip-links.

Eqs.4, 5 and 6 are still satisfied, but not Eq.7. Since the TR slip-links can not be deleted

from the middle segments of the arm by CR, Wi,∞ is zero, while W∞,i has a positive value.

The detailed balance is thus not satisfied for the TR slip-links, although the whole system

is in equilibrium. This is the origin of the drifting behavior of these slip-links towards the

arm-end, as illustrated in Fig.10(a).

To see how the detailed balance is satisfied in the whole system, we can refer to the more

realistic Kremer-Grest bead-spring model and single-chain slip-spring model systems. If a

process in which one originally deepest entanglement or slip-link is deleted from the free end

of one star arm is observed, there is an equal probability to find a reverse process that a slip-

link is added to the free end of the same or any other arm, moves inward towards the branch
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point and is eventually deleted from the arm near the branch point by CR. For calculating

the terminal relaxation times of the star polymers, one only considers the previous process

where the originally deepest entanglement or tube segment is released by the arm free end.

It is for this reason that the drifting behavior of the entanglements or slip-links becomes

important and should be taken into account for making quantitative predictions.

4.3. Dynamics in the system with multiple TR slip-links

According to the binary picture of entanglements, most of the CR events involve at least one

arm free end whose retraction releases the corresponding entanglement. This is especially

the case in the single-chain slip-spring model where each slip-link on one arm is coupled

with another slip-link on a different arm and the slip-link can be destructed from either one

of the two arm ends. Therefore for a given arm, there are on average about half of the

entanglements or slip-links destructed from its own free end and so counted as TR slip-links.

The dynamics of a target TR slip-link on this arm will surely be affected by the presence

of other TR slip-links, particularly the ones in between itself and the branch point. We

investigate this effect by using a single-chain system similar to that studied in Sec. 4.2,

apart from assigning infinite lifetimes to both the 3rd and 10th (target) slip-links to make

them TR ones.

The propagation of the mean sequential index i(t) of the target slip-link is shown in

Fig.11 as squares. In comparison with the system with a single TR slip-link (circles), the

i(t) results also demonstrate a linear drifting behavior, but with a slope about twice of that

in the previous case. The existence of the “long-lived” slip-links in between the branch point

and the target one thus enhances the drifting behavior of the target TR slip-link. We also

found that the drifting velocity of the target slip-link is independent of the initial location

of the inner TR slip-link (anywhere from 1 to 9). The dynamics of the inner TR slip-link

is similar to that of the single TR slip-link studied in Fig.10. Its mean position drifts away

from the branch point due to the reflecting boundary effect. Since the target TR slip-link can
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not get any closer to the branch point than the inner TR slip-link due to excluded volume

interactions, it effectively feels a continuously shifting reflecting boundary imposed by the

drifting inner TR slip-link. The higher drifting velocity of the target TR slip-link can thus

be understood as a collective effect of the continuously shifting reflecting boundary towards

the arm end and the resulted drifting of the slip-link mean position. This collective effect

will become even stronger if there are more TR slip-links in between the branch point and

the target one, as shown below.
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Figure 11: Propagation of the mean sequential index of a target TR slip-link that initially sat
at i(0) = 10 in three different single-chain systems: 1) the system with a single TR slip-link
(circles, same results as in Fig.10(a)); 2) the system with an extra TR slip-link in between
the branch point and the target one (squares); 3) the system with bimodal CR spectrum
(triangles)

4.4. Effect of broad CR spectrum

The broad CR spectrum in star polymer melts implies that new entanglements or slip-links

are continuously created in between the branch points and the target TR entanglements,

see Fig. 8. Some of them will live longer than the remaining lifetimes of the target TR

ones. For a given TR slip-link, the number of “long-lived” slip-links in between it and the

branch point increases with time, as demonstrated in Fig.7. To incorporate this effect into

the single-chain stochastic model, we take a bimodal representation of the CR spectrum in

which two well-separated characteristic relaxation times of the slip-links are assumed. In
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this work, the lifetimes of 90% newly created slip-links are extracted from an exponential

distribution with the characteristic time τc1 = 10, while the other 10% extracted from that

with τc2 = 107. The value of τc2 is chosen such that the corresponding lifetimes of the slip-

links are long enough for them to be treated as “long-lived” ones for the target TR slip-links

during the time period we are interested in.

The initial setup of the single-chain system is again similar to that studied in Sec. 4.2

with the target TR slip-link sitting at i(0) = 10. The lifetimes of newly created slip-links

are now assigned according to the bimodal distributions. Fig.11 shows the propagation of

the mean sequential index of the target TR slip-link by triangles. We can see that the slope

of the i(t) curve or the drifting velocity of the target TR slip-link is no longer constant,

but increases with time. The accelerated motion of the target slip-link towards the arm

end clearly results from the continuously increasing number of “long-lived” slip-links created

by CR on the segment between the branch point and the target one. The dynamics of

TR entanglements in real entangled star polymer melts should follow the same qualitative

behavior, although the CR spectrum there is much broader and more complicated.

Our simulation results thus reveal a relaxation mechanism in which the TR entanglements

or slip-links in entangled star polymers experience an accelerated drifting process over time

towards the arm free end, which originates from the collective effect of the reflecting boundary

(branch point), excluded volume interactions of entanglements and broad CR spectrum in

the system. Such relaxation process will surely contribute to the faster relaxation of the

star polymers in the systems with CR than those in systems without CR. To the best of our

knowledge, this relaxation mechanism has not been addressed in previous published works.
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Figure 12: Comparison between the stress relaxation function G(t) (red circles) and survival
probability function of slip-links Pent(t) (blue curves) obtained in the slip-spring model
simulations of star polymers with two different arm-lengths: (a) N = 36 and (b) N = 42. The
Pent(t) curves have been shifted vertically.
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5. Further discussions

5.1. Reproducing dynamic observables in single-chain slip-spring

model

We have shown in Sec. 2.4 that the stress relaxation function G(t) in the star polymers

represented by the Kremer-Grest bead-spring model can be reproduced reasonably well by

calculating the survival probability Pent(t) of all persistent close-contacts between the mean

paths of the star arms, see Fig.4. The same type of analysis can be carried out for the

single-chain slip-spring model simulations. Since we have saved the trajectory of each slip-

link during its lifetime, it is straightforward to calculate Pent(t) of the slip-links using Eq.3

and compare the results with the stress relaxation function of the system. As mentioned in

Sec. 3, the G(t) data in the slip-spring model are obtained from the single-chain stress auto-

correlation functions. It has been shown that the cross-correlation contribution can count to

30−50% of the total stress modulus, depending on the simulation model used.30,59,60 But since

the stress auto-correlation function is proportional to the total stress relaxation function at

large time scales, the comparison between G(t) and Pent(t) is not affected by the use of the

singe-chain auto-correlation function. Fig.12 shows that a very good agreement has been

achieved between the G(t) (red circles) and vertically shifted Pent(t) (blue curves) data for

two different arm lengths. This further verifies the observation in Fig.4 that the terminal

stress relaxation of entangled polymers can be well described by the survival probability of

all entanglements or slip-links in the system.

According to the Doi-Edwards theory for polymers in a fixed network,2 the tube survival

probability function µ(t) is proportional to the correlation function of the chain end-to-end

vector Re as

ϕ(t) = ⟨Re(t) ⋅Re(0)⟩/⟨R2
e(0)⟩.

On the other hand, since entangled star polymer melts exhibit broad spectrum of relaxation
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Figure 13: Comparison between the tube survival probability function µ(t) calculated using
Eq.8 (disks) and arm end-to-end vector correlation function ϕ(t) (open squares) obtained
in the slip-spring simulations of star polymers with arm lengths N = 24(blue), 36(red) and
48(green), respectively.

time scales, µ(t) can be conveniently estimated using the mean first passage time τcr(s) as

follows,

µ(t) =∫
1

0
ds∫

+∞

t
f(s, t′)dt′ = ∫

1

0
exp ( − t

τcr(s)
)ds, (8)

supposing that the FP time distribution f(s, t′) of tube segment s has an exponential form

exp(− t′

τcr(s))/τcr(s) for every s value.3,15 In the single-chain slip-spring model simulations

we found that f(s, t′) actually deviates from the exponential distribution due to constraint

release. More detailed discussion about this deviation will be left for a future publication.63

In the current work we use Eq.8 as an empirical approach for calculating the tube survival

probability function from the mean FP times of slip-links. The µ(t) results calculated using

only contributions from the TR slip-links are presented in Fig.13 for three different arm

lengths. The good agreement between µ(t) and ϕ(t)in all three cases at least provides

semi-quantitative support for the idea that the dielectric relaxation function, or arm end-to-

end vector correlation function, in star polymers is determined by the relaxation of the TR

entanglements or slip-links which are deleted from the free end of the arm they sat on.
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5.2. Possible theoretical model for describing dynamics in entangled

star polymers

Considering the limitation of the DTD model, one may seek to develop a more detailed

single-molecule model that can simultaneously predict the interested dynamic properties,

such as the first passage times of TR entanglements and the dielectric and stress relaxation

functions, of star and other branched polymers. Based on the findings of this work, it

is possible to construct a single-arm model which contains a set of stochastic differential

equations for describing the dynamics of the arm free end and TR entanglements. The

first SDE describes the arm retraction process where the arm free end fluctuates under an

effective potential similar to that given by the Pearson-Helfand model.10 The other SDEs

are equations of motion of the TR entanglements which experience a prescribed velocity

field and so drift towards the arm end as represented by biased fluctuations. Once one

TR entanglement meets the arm-end, its FP time is recorded and will later be used for

predicting other dynamic properties. The treatment of the velocity field should incorporate

the collective contributions from the reflecting boundary at branch point, excluded volume

interactions between entanglements and constraint release effect. The exact expression of

this field is still unknown. At least in the single-chain slip-spring model, the velocity of the

TR slip-link drift is found to increase with time in an exponential form when approaching

the arm-end,63 which can also be seen in the simulation results of the simplified single-chain

model with bimodal CR spectrum (triangles) in Fig. 11.

5.3. Examining dynamics of entanglements in other simulation mod-

els

In our single-chain slip-spring and simplified single-chain stochastic models, the entangle-

ments or slip-links are not allowed to pass over each other or occupy the same monomer,

which effectively introduces excluded volume interactions between entanglements. A similar
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approach has been used by Shanbhag et al. in their dual slip-link model where the slip-links

do not change their relative ordering along the primitive paths.25 This assumption is partly

supported by the low swapping rate between neighboring entanglements as found in the per-

sistent close-contact analysis of star polymers represented by the Kremer-Grest bead-spring

model (see Sec.2.4.).

In order to examine the effect of entanglement swapping or reordering along the primitive

path, we modify the simplified single-chain stochastic model by allowing the slip-links to

cross each other with a probability comparable to that found in MD simulations using the

Kremer-Grest model. According to the parameters used in the simplified single-chain model,

the unit time scale is the time required for a slip-link to explore a distance of one tube

segment (one unit length) along the primitive path, which is about the Rouse relaxation

time of an entanglement strand τe. Thus the probability for each slip-link (including the TR

ones) to swap with its nearest neighbor in a unit time is set to be 1% in consistence with

the swapping rate of once per 100τe found in the Kremer-Grest model. Fig.14 shows the

propagation of the mean sequential index of the target TR slip-link (filled triangles), together

with the results obtained without swapping (open triangles), for the systems with bimodal

CR spectrum. It can be seen that the dynamics of the target TR slip-link is insensitive to

the swapping of the slip-links, at least not at the rate we studied. Very similar results have

been observed in the simulations of other simplified single-chain stochastic model systems.

In principle, we can also introduce the slip-link swapping mechanism into the single-chain

slip-spring model. But this will involve very delicate calibration of system parameters, which

is beyond the scope of the current work and will be left for later study.

In recent years a number of single- and multi-chain slip-link or slip-spring models have

been developed for studying the dynamics of entangled polymers.60,64–71 Among them several

multi-chain slip-spring models have allowed the slip-links to cross over each other.60,67–69 In

order to maintain the homogeneous distributions of slip-links in space, additional short-

range repulsions among all beads of the Rouse chains have been introduced.60,67 It would
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Figure 14: Propagation of the mean sequential index of a target TR slip-link initially sitting
at i(0)=10 in the simplified single-chain stochastic model systems with bimodal CR spectrum
where the slip-links are either allowed to swap with their nearest neighbors at a rate of 1%
per unit time (filled triangles) or not allowed to cross each other (open triangles, same results
as in Fig.10(a)).

be interesting to examine the motion or change of relative ordering of slip-links along the

primitive paths in such models, especially for the star polymers. Since it is entropically

unfavorable to have several slip-links to sit on the same bead or be closely packed to form a

cluster in space, the insertion of a long-lived new entanglement in the middle of an arm or

chain will cause the local re-arrangement of the neighboring slip-links in order to re-establish

a homogenous distribution of entanglements along the primitive path. This redistribution

process of slip-links is entropically driven, regardless whether they can pass over each other

or not. As a consequence, the existing slip-links will be effectively pushed towards the free

chain ends. The CR-induced drifting behavior of entanglements is thus also expected in

these multi-chain slip-spring models. The key issue is that the friction coefficient of the

slip-links should be relatively large so that the diffusion of the slip-links along the chain

is not overtaking the equilibration process of their local distribution. The magnitude of

the drifting effect would depend on the detailed set-up of individual models. It has been

noticed that the dynamical constraints imposed by the slip-springs in some of the multi-

chain slip-spring models60,67 are softer than that in the single-chain slip-spring model we

used. Another interesting topic would be what is the exact physical meaning of the slip-
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slinks in relation to entanglements in real polymer systems, namely are they supposed to

represent the topological constraints on polymer dynamics in the general or tube-like sense

or to directly mimic the binary entanglements or persistent close contacts between polymer

chains as found in the more detailed Kremer-Grest model?

6. Conclusions

We presented a multi-scale simulation study of the microscopic picture of constraint release

effects in entangled symmetric star polymer melts. In molecular dynamics simulations using

the Kremer-Grest bead-spring model, entanglement dynamics was investigated by analyz-

ing the persistent close contacts between pairs of primitive paths of neighboring polymer

strands. The original contact map algorithm developed by Likhtman and Ponmurugan27

was updated by taking into account the contributions from temporarily disappeared close-

contacts involving middle segments of both strands. For both linear and symmetric star

polymers, the resulting survival probabilities of these determined close-contacts were found

to be in reasonably good agreement with the stress relaxation functions of these systems,

indicating that entanglements can be reasonably described by the binary contact picture.

It thus allows us to investigate the entanglement dynamics at larger time and length scales

by using the single-chain slip-spring model, in which entanglements are treated as paired

slip-links between two different chains or arms. In both MD and slip-spring model simu-

lations, we verified the mechanism proposed by Shanbhag et al.25 that new entanglements

inserted between the branch points and originally deepest entanglements push the deepest

entanglements outwards such that they are destructed by relatively shallow arm-retractions.

Furthermore, we found that only entanglements destroyed from arm-ends, termed as Tube

Representative (TR) entanglements, contribute to the dielectric or arm end-to-end vector

relaxation functions, while for stress relaxation all entanglements contribute. Once the TR

entanglements are selected as investigated objects, the combined effects from the reflecting
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boundary at the branch points, the excluded volume interactions between entanglements

and the broad CR spectrum produce an acceleration field to drive the mean positions of the

entanglements move towards the arm free ends, which speed up the relaxation of the system

in comparison with that in systems without CR. A simplified single-chain stochastic model

has been developed to clearly demonstrate this combined effect. This microscopic mechanism

of CR effects in the relaxation of star polymers has not been addressed before, and should

be taken into account for developing quantitative theories for describing the dynamics of

entangled branched polymers.
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