Application of chemical transport model CMAQ to policy decisions regarding PM2.5 in the UK

Article
Accepted Version
Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.
Published version at: http://www.sciencedirect.com/science/article/pii/S1352231013007541
To link to this article DOI: http://dx.doi.org/10.1016/j.atmosenv.2013.10.001

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
Application of chemical transport model CMAQ to policy decisions regarding PM2.5 in the UK

C. Chemel (1, 2), B.E.A. Fisher¹ (3), X. Kong (2), X.V. Francis (2), R.S. Sokhi (2), N. Good (2), W.J. Collins (4), G.A. Folberth (4)

(1) National Centre for Atmospheric Science, Centre for Atmospheric & Instrumentation Research, University of Hertfordshire, Hatfield, UK
(2) Centre for Atmospheric & Instrumentation Research, University of Hertfordshire, Hatfield, UK
(3) Environment Agency, Reading, UK
(4) Met Office, Hadley Centre, Exeter, UK

Summary

This paper shows how the advanced chemical transport model CMAQ can be used to estimate future levels of PM$_{2.5}$ in the UK, the key air pollutant in terms of human health effects, but one which is largely made up from the formation of secondary particulate in the atmosphere. By adding the primary particulate contribution from typical urban roads and including a margin for error, it is concluded that the current indicative limit value for PM$_{2.5}$ will largely be met in 2020 assuming 2006 meteorological conditions. Contributions to annual average regional PM$_{2.5}$ concentration from wild fires in Europe in 2006 and from climate change between 2006 and 2020 are shown to be small compared with the change in PM$_{2.5}$ concentration arising from changes in emissions between 2006 and 2020. The contribution from emissions from major industrial sources regulated in the UK is estimated from additional CMAQ calculations. The potential source strength of these emissions is a useful indicator of the linearity of the response of the atmosphere to changes in emissions. Uncertainties in the modelling of regional and local sources are taken into account based on previous evaluations of the models. Future actual trends in emissions mean that exceedences of limit values may arise, and these and further research into PM$_{2.5}$ health effects will need to be part of the future strategy to manage PM$_{2.5}$ concentrations.

1 Introduction

This paper describes an application of the complex air quality model CMAQ to assess when the UK is likely to meet air quality limit values for PM$_{2.5}$. The Ambient Air Quality Directive (OUJ, 2008) contains a limit value for PM$_{2.5}$ of 25 μg m$^{-3}$. Although PM$_{2.5}$ (defined as particulate matter that passes through a size-selective inlet with a 50% efficiency cut-off at 2.5 μm) is thought to be the species of greatest concern to human health, this is not the strictest air quality standard in the Directive. If we assume that the requirement to meet a daily average concentration for PM$_{10}$ of 50 μg m$^{-3}$, for no more than 35 days in the year, is equivalent to a long-term average of 31.5 μg m$^{-3}$ for PM$_{10}$, the PM$_{10}$ limit value is equivalent to a PM$_{2.5}$ concentration of about 20 μg m$^{-3}$. PM$_{2.5}$ as an annual average. The purpose of this paper is to determine when such a standard might be reached, given current legislation regarding emission controls. The paper draws on evaluation studies (Fisher, 2013, Fisher et al., 2013, Hayman et al. 2013a, b, c and d) which concluded that there was no formal procedure for evaluating a model and then approving its use. Instead the conclusion was that one should use as good a model as was currently available. The CMAQ model (Chemel et al., 2011) is one of the most up to date and sophisticated chemical transport models and is used here. A simple

¹ Permanent address: Little Beeches, Headley Road, Leatherhead KT22 8PT, UK
local correction is applied to account for sources within grid squares not treated explicitly within
the model. There are other, wider subjective judgments to be made when deciding which
model to use, such as whether to employ the same team to do assessments as performed the
evaluation studies. The possibility of mistakes being made may then be reduced. However with
complex models such considerations cannot be rigorously applied.

Other recent studies have addressed issues relating to the contribution from various source
sectors to PM$_{2.5}$. Yim and Barrett (2012) suggest that about 1/6 of the PM$_{2.5}$ concentration is
attributable to industrial sources for the year 2005 based on similar CMAQ modelling and
suggest that 40% of the PM$_{2.5}$ originates from outside the UK. The authors did not extend their
calculations to a future year, nor can one be sure that the modelling was done in exactly the
same way as in this paper. The SNIFFER (2010) report references a study by Derwent et al.
(2009) who examined the modelled concentrations resulting from a 30% reduction in emissions
of SO$_2$, NO$_x$, NH$_3$, VOC and CO. It was concluded that PM$_{2.5}$ concentrations in rural southern
UK are likely to be influenced strongly by reductions in SO$_2$, NO$_x$ and NH$_3$ emissions in a
complex and interlinked manner. The largest reduction in PM$_{2.5}$ was derived from a reduction in
NH$_3$ but such a large decrease is unlikely to occur

The present study examines realistic changes in national emissions between 2006 and 2020
and is therefore directly relevant to policy. The SNIFFER report (2010) suggests that local
sources tend to contribute less than half of the total predicted PM$_{2.5}$ concentration, and often
less than 10%, even at roadside receptors. Urban sources give rise to an annual average
urban background enhancement of around 3 to 6 μg m$^{-3}$ and secondary PM$_{2.5}$ contributes
around 4 to 6 μg m$^{-3}$. SNIFFER recommended that modelling studies are carried out to
establish the contributions of UK and other EU emissions of precursor gases to annual mean
PM$_{2.5}$ concentrations, and to determine how these contributions will respond to changes in
emissions, in order to guide the development of the most cost-effective control programme.
This study is a step to fulfilling this need. The SNIFFER report discusses the ‘average
exposure indicator’, which requires reductions in the annual average PM$_{2.5}$ concentration of
about 1.5 to 2 μg m$^{-3}$ between 2010 and 2020\(^3\).

AQEG (2012) determines the appropriate equivalent PM$_{2.5}$ limit value in the following way. The
24-hour limit value for PM$_{10}$ of no more than 35 days $>$50 μg m$^{-3}$ is taken to be equivalent to an
annual mean PM$_{10}$ concentration of 31.5 μg m$^{-3}$. The PM$_{2.5}$/PM$_{10}$ ratio shown in AQEG (2012)
is about 0.7 at urban background sites. Given the ratios of PM$_{2.5}$ to PM$_{10}$ identified for different

\(^2\) The parties to the UNECE Air Pollution Convention agreed on 4 May 2012 to a new emission reduction
commitment for the main air pollutants in Europe (revision of the Gothenburg Protocol). The revised Protocol
requires an overall emissions reduction in the EU of 59% for SO$_2$, 42% for NO$_x$, 6% for NH$_3$ and 28% for NMVOC
between 2005 and 2020, and for the first time a limit on primary PM$_{2.5}$ emissions involving a reduction of 22%
between 2005 and 2020. For the UK the reductions are 59% for SO$_2$, 55% for NO$_x$, 8% for NH$_3$, 32% for NMVOC
and 30% for PM$_{2.5}$. The reductions in emissions from the large stationary sources which the Environment Agency
regulate are approximately similar fractions, and are broadly based on the assumption that all processes will
operate with new technology. The revision of the Gothenburg Protocol is implemented in practice by regulations
on sources, through the Integrated Pollution Prevention and Control Directive undergoing replacement by the
Industrial Emissions Directive (OJEU, 2010) and Euro standards on motor vehicles. Other Directives, such as the
Large Combustion Plant Directive (OJEU, 2001), require emissions standards consistent with the revised
Protocol. These are expected to be achieved through the gradual introduction of new technology standards,
unless there is an unexpected increase in emissions from small unregulated sources, through wood burning, or a
failure in the application of new technology on road vehicles.

\(^3\) The ‘average exposure indicator’ representing the 3 year average exposure at urban background monitoring
sites is related to the population weighted annual mean PM$_{2.5}$ concentration in urban areas of the UK. The UK
target is for a 15% reduction between 2010 and 2020, while the EU target is either 10% or 15%.
parts of the UK, the indicative PM$_{10}$ annual mean limit value can be equated to an annual mean PM$_{2.5}$ value which ranges from 17 µg m$^{-3}$ in Scotland to 24 µg m$^{-3}$ in south east England and about 20 µg m$^{-3}$ in the rest of the country (AQEG, 2012). This paper does not consider other particle metrics, such as the concentration of black carbon particles. The EU limit value for PM$_{2.5}$ is 25 µg m$^{-3}$ by 2015, with a stage 2 indicative value of 20 µg m$^{-3}$ by 2020. The annual National Ambient Air Quality Standard in the USA for PM$_{2.5}$ is 15 µg m$^{-3}$ (Hogrefe et al., 2011). These authors used CMAQ to investigate differences depending on the biogenic emissions in the PM$_{2.5}$ concentrations under a NOx emission control scenario in eastern North America.

There is evidence (Jannsen et al., 2011) that black carbon particles could be the important indicator of the health risk of particles. This would be significant in situations where particulate concentrations are dominated by primary road traffic sources, whereas the calculations presented in this paper refer to regional PM$_{2.5}$ with a large secondary component. It is assumed that the levels in the Ambient Air Quality Directive determine the health benefit of emission reductions, and therefore it would not be appropriate to evaluate calculated regional concentrations using another metric. However one should correct the calculated regional concentrations by estimating roadside concentrations of PM$_{2.5}$.

2 The CMAQ Model Setup

The Community Multiscale Air Quality (CMAQ) modelling system is a comprehensive modelling system developed by the US Environmental Protection Agency (USEPA). CMAQ is a Eulerian photochemical air quality model in which complex interactions between atmospheric pollutants on urban, regional and hemispheric scales are treated in a consistent framework. It is designed for assessing the impact of multiple pollutants including tropospheric ozone and other oxidants, aerosols and acid deposition.

In this application of CMAQ an outer domain over Europe with a grid resolution 18km was used, with an inner domain over the UK with a grid resolution of 6km. So over the UK primary roadside and urban emissions within about 3 km of a monitoring site will not be included. The inner domain covers the British Isles. The outer domain stretches from about 33 degrees north 20 degrees west to about 70 degrees north 32 degrees east.

The European emission inventory for 2006 is based on the TNO (http://www.tno.nl/) inventory, which consists of anthropogenic emissions from ten Selected Nomenclature for Air Pollution (SNAP) source sectors and international shipping. Biogenic gas emissions were included in the CMAQ model from the Model of Emissions of Gases and Aerosols from Nature (MEGAN) system at the same resolution as the anthropogenic emissions. Biomass burning emissions from wild fires for 2006 were based on daily fire estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power product (Sofiev et al., 2009).

A 2020 European emissions scenario was considered based on the MEGAPOLI (Baklanov et al., 2010) project results (Theloke et al. 2010), which make use of the:

1. Integrated MARKAL-EFOM System (TIMES) Pan-European (TIMES PanEU) energy system model for the energy related sectors;
2. Greenhouse gas – Air pollution Interactions and Synergies (GAINS) model and other assumptions for the non-energy related sectors; and
3. a reduction of the greenhouse gas emissions by 30% by 2020 compared to 1990.

Major industrial sources are defined as those with annual emissions of SO$_2$ greater than 500t yr$^{-1}$ and/or annual emissions of NO$_x$ greater than 500t yr$^{-1}$ and/or annual emissions of PM$_{10}$
greater than 200t yr\(^{-1}\). 2006 is the base line year for the calculations. All major industrial
emissions regulated in the UK in 2006 were adjusted to enable 2020 concentrations to be
modelled. Information on likely trends in regulation between 2006 and 2020 is available, but
the activity of each industrial sector cannot be reliably forecast. A site by site 2020 emissions
estimate was therefore not feasible. Two industrial estimates for 2020 are available in the
public domain from the AEA Atmospheric Emissions team (Wagner et al., 2009) from which the
mean was adopted.

The ratio of the emissions of SO\(_2\), NO\(_x\), PM\(_{10}\) and NMVOC between 2006 and 2020 are
estimated for major industrial releases and for the national total emissions. These are shown in
Table 1.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Ratio 2020:2006 major industry emissions</th>
<th>Ratio 2020:2006 national total UK emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_2)</td>
<td>0.37</td>
<td>0.47</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>0.45</td>
<td>0.52</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>0.42</td>
<td>0.72</td>
</tr>
<tr>
<td>PM(_{2.5})</td>
<td>0.65</td>
<td>0.68</td>
</tr>
<tr>
<td>NMVOC</td>
<td>0.87</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Table 1 Estimated ratio of the major industrial emissions and national total emissions of SO\(_2\),
NO\(_x\), PM\(_{10}\) and NMVOC between 2006 and 2020

These ratios were used to scale UK major industrial emissions to obtain representative
emissions for 2020. The influence of changes of order 30% or more in the main air pollution
emissions are assessed in the model. Ammonia is a special case and no correction is made.
Since the ratio SO\(_2\):NH\(_3\) should be lower in 2020 than 2006, the rate of production of PM\(_{2.5}\) for
a given fixed source could be greater in 2020 compared to 2006. Based on results of the
EMEP chemical transport model, a comparison (Fisher, 2012) of the radial footprints of annual
average PM\(_{2.5}\) concentration for different past years and different individual countries, UK and
Germany with different source strengths, does not indicate strong differences in behaviour as a
function of distance from the centre of the country. The tentative conclusion is that chemical
transport models have not demonstrated that the annual average PM\(_{2.5}\) concentration has a
very strong non-linear dependence on the change in emissions. However further studies
investigating greater changes in background atmospheric composition are needed to
understand the relationship more fully.

The estimated ratios in emissions between 2006 and 2020 in Table 1 are in reasonable
agreement with previous projections by Vincent and Abbott (2008). There are some differences
with the MEGAPOLI projections for the UK energy related sectors, but when differences arise
the most pessimistic case is adopted.

The CMAQ system setup involves the Weather Research and Forecasting (WRF) meso-scale
model, embedded within the ECMWF regional model for the meteorological fields. The initial
and lateral meteorological boundary conditions of the outer domain were derived from the
European Centre for Medium-range Weather Forecasts (ECMWF) gridded analyses available
every 6 h with a horizontal resolution of 0.5 degrees on operational pressure levels up to 50
hPa for vertically distributed data, and at surface and soil levels for surface and deep-soil data.
A grid nudging technique was employed for the outer domain every 6 h in order to constrain
the model towards the analyses. The Met Office have run their global HADGEM2_ES model
(Collins et al., 2011) and obtained regional meteorological fields for 2020 applying the RCP8.5
emissions scenario, which may be regarded as a pessimistic scenario. The Met Office 2020 meteorological fields used to develop an alternative 2020 PM$_{2.5}$ climate change projection are thought to be representative of the decade. The difference between the 2006 and 2020 meteorological fields are one of many possibilities which could occur, but the approach illustrates a straightforward methodology which further large-scale computing could develop further.

The CMAQ modelling system requires hourly emissions data of primary pollutants. SMOKE has been developed for this purpose and can be adapted to process annual emissions data (from point, line and area sources) into temporally-resolved, spatially-distributed and speciated emissions files ready for the chemical transport model.

For CMAQ version 4.7, adopted in this study, the CB05 chemical mechanism was used. The CB05 mechanism treats the formation of secondary organic aerosols. The tri-modal approach to aerosol size distribution was used in order to model particulate matter. The species modelled include sulphate (SO$_4^{2-}$), nitrate (NO$_3^-$), ammonium (NH$_4^+$), sodium (Na$^+$), chloride (Cl$^-$), water (H$_2$O) and organics from precursors of anthropogenic and biogenic origin but only the total PM$_{10}$ and PM$_{2.5}$ concentrations are considered in this paper. Each mode (Aitken, accumulation and coarse) is subject to both wet and dry deposition. Documentation on CMAQ is available from the official CMAQ website (http://www.cmaq-model.org) [accessed 21 May 2013]. Chemical boundary conditions were obtained from runs of the global model Geos-Chem.

3 Model Evaluation and Uncertainty

The Defra Model Evaluation Protocol (Derwent et al. 2010) sets the following criteria for the acceptance of a model. The predictions of the model should be accepted if the percentage of model predictions within a factor of two (FAC2) of the observations is greater than 50 per cent and the magnitude of the normalised mean bias (NMB) is less than 0.2.

The normalised mean bias (NMB) is defined as:

$$NMB = \frac{\sum_{i=1}^{N} M_i - O_i}{\sum_{i=1}^{N} O_i}$$

(1)

where N is the number of observations, M_i are the calculated values, O_i are the observed values. NMB should satisfy $-0.2 \leq NMB \leq 0.2$.

A limited evaluation of CMAQ predictions of PM$_{2.5}$ over the UK for the year 2005 was undertaken by Yim and Barrett (2012). Only three AURN monitoring sites, where PM$_{2.5}$ was measured, were operating in 2005: Harwell (rural), Stoke (rural), Bloomsbury (urban background) and a fourth roadside site at Marylebone. The NMB was -0.23 at Harwell -0.09 at Stoke and -0.27 at Bloomsbury.

The multi-model AQMEII study (Solazzo et al. 2012) compared PM$_{2.5}$ at many sites in North America and Europe in 2006 and included some CMAQ calculations for Europe by the authors of this paper. These generally showed significant under-prediction with a NMB of about -0.4. However the CMAQ predictions reported in this paper of individual components of particulate matter at Harwell for the year 2006, such as inorganic species (SO$_4$, NO$_3$ and NH$_4$), and elemental carbon and organic carbon, do not show the same systematic under-prediction. The
implication is that the model does not include all components and sources of PM\textsubscript{2.5}. One would anticipate better model performance for industrial sources for which the primary and secondary particulate species source terms are better known.4 The evaluations undertaken in previous studies of CMAQ (see Table 2) are taken as the justification for CMAQ's use in this paper.

<table>
<thead>
<tr>
<th>Model metric PM\textsubscript{10} for 2003</th>
<th>CMAQ v4.6</th>
<th>CMAQ v4.7</th>
<th>TRACK-ADMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAC2 (%)</td>
<td>88.2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(r) (correlation coefficient)</td>
<td>0.09</td>
<td>0.0</td>
<td>0.45</td>
</tr>
<tr>
<td>NMB</td>
<td>-0.33</td>
<td>-0.09</td>
<td>-0.20</td>
</tr>
<tr>
<td>Single power station contribution (%)</td>
<td>0.34</td>
<td>0.28</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 2 Comparison of performance in predicting annual average PM\textsubscript{10} concentration in 2003 at 40 urban background and rural background sites in the AURN network in the UK for two versions of the advanced model CMAQ (Chemel et al. 2011) and a simpler, semi-empirical model TRACK-ADMS.

Rather than set an uncertainty bound on predictions it was assumed that the CMAQ model under-predicts at regional background sites, because the contribution from local sources, within the 6km long grid squares containing monitoring sites, is not included. It was assumed that the regional estimate was approximately a 20% under-prediction of the regional concentration, based on previous regional model evaluations, and therefore a margin of safety of 20% was assumed, in order to be confident that total concentrations met the indicative limit value concentration of about 20 μg m-3. A precautionary estimate of the regional annual average PM\textsubscript{2.5} concentration in 2006 (see Fig. 1) varies between 7 (=6x6/5) μg m-3 in the north of the UK to 12 (=6x10/5) μg m-3 in south-east England. The SNIFFER (2010) estimate of the rural background concentration in southern England was about 10 μg m-3, in 2010, and the additional urban background in central London was estimated to be about 5 μg m-3. Later in this paper the road contribution is included as a separate item in the PM\textsubscript{2.5} budget. Other sources within grid squares, which make a local contribution, arise from small stationary sources, but are not included in the calculation. They are not as widely distributed as traffic sources, affect fewer grid squares and should be subject to local air quality management control.

4 Annual average PM\textsubscript{2.5} concentrations over the UK in past and future years

2006 was a year when forest fires were prevalent in parts of Europe. Runs of CMAQ including and not including the forest fire contribution suggested that the impact of forest fires on annual average PM\textsubscript{2.5} concentration over the UK was small, of order 3% or less. The contribution of wild fires can therefore be discounted.

4 In 2011 there were 67 AURN (Automatic and Rural Monitoring Network) sites at which PM\textsubscript{2.5} was measured but most would not be regarded as rural and therefore of limited value in evaluating the performance of CMAQ (http://uk-air.defra.gov.uk/data/exceedence [accessed 21 May 2013]). These sites mainly used equipment giving the total concentration of particulate matter, not its components.
Fig. 1 Annual average regional PM$_{2.5}$ concentrations (μg m$^{-3}$) in 2006 from all sources excluding local contributions.

The regional contribution to annual average PM$_{2.5}$ concentrations in 2006 from the CMAQ model is well below the indicative limit value of 20 μg m$^{-3}$. It is clearly below the equivalent AQEG (2012) limit values of 15 μg m$^{-3}$, in northern Britain, and 20 μg m$^{-3}$ in the south east. In some other parts of Europe the regional concentration in 2006 is higher, approaching but not exceeding the indicative limit value of 20 μg m$^{-3}$. The local road (and small stationary source) contribution are not included in these estimates.

The observed annual average PM$_{2.5}$ concentration consists of contributions from a mixture of primary and secondary sources over very short and very long travel distances from their point of emission. In order to further understanding, the contribution from major stationary sources was estimated by rerunning the full model but excluding all emissions from all major industrial sources regulated in the UK. This then gives the regional footprint of the PM$_{2.5}$, over distances exceeding 6km, arising from major industrial sources regulated in the UK.
The highest concentrations of PM$_{2.5}$ lie close to the cluster of major industrial sources in the Midlands. The concentration declines with distance from the Midlands mainly as a consequence of the spread in air mass trajectories (Fisher et al., 2011). The highest concentrations amount to 1 to 2 μg m$^{-3}$ in the Midlands. As a percentage, the major industrial sources regulated in the UK make up between 10 and 20% of the regional PM$_{2.5}$ over England in 2006. Using the simpler semi-empirical TRACK-ADMS model, Vincent and Abbott (2008) estimated that the contribution of major regulated sources was 10% of the average PM$_{10}$ concentrations in the UK in 2005.
Fig. 3 Annual average regional PM$_{2.5}$ concentrations (μg m$^{-3}$) in 2020 from all sources using 2006 meteorology

Fig. 3 shows the annual average regional PM$_{2.5}$ concentrations (in μg m$^{-3}$) from all sources in the 2020 emissions projection, excluding local contributions and using 2006 meteorology. This shows a significant reduction in the regional contribution compared with 2006 with levels less than 6 μg m$^{-3}$ in most of the country and only reach 6 μg m$^{-3}$ in the south east of the country. This is a reduction of about 40%. Concentrations are a mixture of contributions from sources at various distances subject to a variety of processes. From this single calculation, the sectors with the main reductions e.g. possibly Europe, UK road transport or UK industrial emissions, cannot be identified.

A further calculation was made to determine the contribution of emissions from major industrial sources regulated in the UK in 2020 using 2006 meteorology, the so-called industrial footprint in 2020 (see Fig. 4). The maximum concentration from major sources regulated in the UK amounts to 0.5 to 1 μg m$^{-3}$ in the Midlands, near to the main cluster of major industrial sources. As a fraction of the total annual average PM$_{2.5}$ concentration, the industrial footprint makes up 5-15 % of PM$_{2.5}$ concentrations across most of the UK in 2020. This constitutes a reduction of about 50% in the major industrial source contribution in the region close to the main cluster of major industrial sources. The main source contributing to the industrial footprint is production of secondary particulate matter from emissions of SO$_2$, NOx and PM. In 2006 the total source from major regulated stationary sources in the UK amounted to about 453 kt yr$^{-1}$ SO$_2$, 441 kt yr$^{-1}$ NOx, 17 kt yr$^{-1}$ PM$_{10}$, 6 kt yr$^{-1}$ PM$_{2.5}$ giving a total of about 900 kt per annum of 'potential' PM$_{2.5}$ emissions (SO$_2$+NOx+PM$_{2.5}$) if all these primary emissions were converted to PM$_{2.5}$. The equivalent industrial footprint source strength in 2020 is 168 kt yr$^{-1}$ SO$_2$, 197 kt yr$^{-1}$ NOx, 7 kt yr$^{-1}$ PM$_{10}$, 5 kt yr$^{-1}$ PM$_{2.5}$ giving an indicative 'potential' PM$_{2.5}$ annual emission (SO$_2$+NOx+PM$_{2.5}$)
of about 370kt. Thus the total primary emission from regulated major industry expressed as the total of the \(\text{SO}_2 + \text{NOx} + \text{PM}_{2.5} \) emissions would have reduced by 2020 to about 40% of its 2006 level. The reduction in \(\text{PM}_{2.5} \) concentrations of about 50% in the region of the sources is approximately of the same order. Thus ‘potential source strength’ is a useful indicator of the possible response of the atmosphere to changes in emissions.

The change in the total \(\text{PM}_{2.5} \) concentration between 2006 and 2020 is not a useful indicator because the change comes about from a mixture of contributions to \(\text{PM}_{2.5} \) concentration over the UK. The response will be variable, depending on whether the response is from distant primary emissions in Europe, mainly from sources in the south east, or from regional industrial UK sources, centred in the Midlands, or from urban UK emissions, spread around the country. No single indicator is representative of all these different responses, which depend on different geographical distribution changes between 2006 and 2020.

Chemical transport models are designed to inform on the possible non-linear relationship between the change in emissions and the resulting change in concentration of \(\text{PM}_{2.5} \). One could imagine that if the atmosphere became relatively more reactive, secondary \(\text{PM}_{2.5} \) could be formed more quickly near to locations where it was emitted. Lifetimes can be estimated from the footprints of a specified source at a single location (Fisher et al., 2011). This is not possible here because the major industrial sources are distributed around the country. However the change in the primary emissions of major industrial sources is roughly in proportion to the change in the \(\text{PM}_{2.5} \) concentration, near the cluster of major industrial sources suggesting no evidence of very large non-linearity. The change in emissions between 2006 and 2020 may not be large enough to provide evidence of non-linearity and more testing of responses to changes in emission should be undertaken.
Fig. 4 Annual average regional PM$_{2.5}$ concentrations (μg m$^{-3}$) from emissions from major industrial sources regulated in the UK in 2020 using 2006 meteorology, the ‘industrial footprint’ in 2020

5 Climate change and population exposure

Because of the availability of an alternative meteorological scenario in 2020 from results of the Met Office’s HadGEM model, an estimate can be made of the change in 2020 as a possible consequence of climate change. It turns out that the effect of the chosen climate change scenario is to reduce annual average PM$_{2.5}$ concentrations in 2020 by of order 10% over the country, representing reductions of 0.2 to 0.5 μg m$^{-3}$ in England as a result of a different climate. This is much less than the reduction in regional concentration from emission changes between 2006 and 2020. The treatment of climate change did not include interactions between climate and pollution, such as the effect particle concentrations arising from emissions changes might have on radiation and cloud formation, cloud duration and thickness. The version of CMAQ used, v4.7, is not a fully coupled model calculation. As the climate effect appears small, this is a preliminary indication that it may not be worthwhile running the CMAQ model for a range of alternative 2020 PM$_{2.5}$ climate change projections.

An alternative way of estimating the benefit of emission reductions between 2006 and 2020 is to determine the population weighted mean. The reduction in the population weighted mean is about 40% because of emission reductions between 2006 and 2020. The additional fractional contribution of climate change in 2020 is estimated to be about 5%. Some slight non-proportional differences between 2006 and 2020 may occur because of changes in population. An estimate the health benefit of removing all major industrial emissions regulated in the UK, if such a policy were possible, can also be made. The fractional contribution of major industrial sources to the population weighted annual mean PM$_{2.5}$ concentration in 2006 is about 14%.

The percentage change in population weighted concentrations between 2006 and 2020 can be compared with the EU Directive ‘average exposure indicator’ target value. For a 15% reduction in average exposure indicator, SNIFFER (2010) estimated that a reduction in the annual mean PM$_{2.5}$ of 1.5 μg m$^{-3}$ over England, and a 2 μg m$^{-3}$ over inner London between 2010 and 2020, is required. The SNIFFER estimate of PM$_{2.5}$ concentrations in 2010, based on urban background observations, is not equivalent to the CMAQ estimate of regional background concentrations in 2006. However the reduction from the CMAQ estimate of a nearly 40% reduction between 2006 and 2020 appears large enough to satisfy the ‘average exposure indicator’ reduction target, given that emission reductions will progressively have an effect throughout the period 2006 to 2020.

6 The local contribution to PM$_{2.5}$

The CMAQ estimate of the population weighted PM$_{2.5}$ concentration reduction does not include the roadside contribution to PM$_{2.5}$ concentrations. This is likely to be a small fraction of the population exposure as the concentrations decline rapidly with distance from the road. However it is valuable to know the possible local contributions from sources within a grid square to check whether the indicative annual average limit value of 20 μg m$^{-3}$ is likely to be exceeded at specific locations in major urban areas, such as London.
We have estimated the local concentration of primary PM$_{2.5}$ near to roads using the GRAM model (Fisher and Sokhi, 2000). This requires future road vehicle emission factors5 (see table 2). The persistent negative bias (underestimate) in the CMAQ calculations also provides a rough estimate of the local contribution.

<table>
<thead>
<tr>
<th>Year</th>
<th>LDV</th>
<th></th>
<th></th>
<th></th>
<th>HDV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
<td>Motorway</td>
<td>Urban</td>
<td>Rural</td>
<td>Motorway</td>
</tr>
<tr>
<td>2010</td>
<td>0.38</td>
<td>0.37</td>
<td>0.47</td>
<td>5.02</td>
<td>4.71</td>
<td>5.23</td>
</tr>
<tr>
<td>2020</td>
<td>0.28</td>
<td>0.21</td>
<td>0.42</td>
<td>1.47</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>2030</td>
<td>0.14</td>
<td>0.15</td>
<td>0.23</td>
<td>0.45</td>
<td>0.45</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table 2 Emission factors (g PM$_{2.5}$/km) of light duty vehicles and heavy duty vehicles in current and future years

Assuming representative flows of 25,000, 50,000 and 100,000 vehicles per day for typical urban and rural roads and a motorway, and a margin of error of +20%, the road concentrations at distances of 5 to 100m from the road centre line have been calculated using the model GRAM. The typical urban road is likely to be a street canyon.

The urban background concentration in central London is taken to be 12 μg m$^{-3}$, 7.2 μg m$^{-3}$ and 7.2 μg m$^{-3}$ in 2010, 2020 and 2030, from the 2005 and 2020 CMAQ results in this paper, including a 20% margin of error. Estimates of the local primary PM$_{2.5}$ concentration at a typical roadside location in London, 5m from an urban road with the traffic flow of 25,000 in a street canyon are 5.3 μg m$^{-3}$, 4.6 μg m$^{-3}$ and 4.4 μg m$^{-3}$ in 2010, 2020 and 2030. The small extra improvement beyond 2020 arises partly because road emissions are dominated by non-exhaust emissions. Future Euro standards will have little effect on these emissions. In addition in urban areas, where most people start their journeys, emissions during cold starts are an important factor. The future trends in emission are subject to uncertainty and policy should be flexible to adjust for the actual future trends in emission when they occur. The total PM$_{2.5}$ roadside concentrations in 2006, 2020 and 2030 are estimated to be 17.3 μg m$^{-3}$, 11.8 μg m$^{-3}$ and 11.6 μg m$^{-3}$ near a typical road, suggesting widespread compliance with the target limit value. This does not definitely confirm that PM$_{2.5}$ will not be an issue at some locations, but it appears not to be a general issue accepting approved standards. At hot spots where traffic flows are higher than at typical roads, or near small stationary sources where building

5 The road traffic Emissions Factors Toolkit released by the LAQM Support Helpdesk http://laqm.defra.gov.uk/review-and-assessment/tools/emissions.html#eft [accessed 21 May 2013] utilises revised NOx emissions factors and vehicle fleet information. NOx emissions factors previously based on DFTTRL https://www.gov.uk/government/publications/road-vehicle-emission-factors-2009 [accessed 3 May 2013] functions have been replaced by factors from COPERT 4 v8.1. This reference gives standard emission factors under urban, rural and motorway conditions for various types of vehicles according to Euro category. These emission factors were published in May 2011 by the European Environment Agency and are widely used for the purpose of calculating emissions from road traffic in Europe. The COPERT model is available to download from http://www.emisia.com/copert/ [accessed 21 May 2013]. Fleet weighted road transport emission factors based on the COPERT model are also available from the National Atmospheric Emission Inventory web site http://naei.defra.gov.uk/data/ef-transport [accessed 21 May 2013] and include emission from cold starts, brake, tyre and road abrasion for recent years. Fleet projections giving vehicle type according to Euro class in future years, as well as primary NO2 emissions, are also provided according to type of road (urban, rural and motorway). The simple addition of the roadside concentration to the regional concentrations from the CMAQ model would not be appropriate for calculating roadside NO2 because of the non-linear chemistry involving ozone and primary NO2 emissions, but for PM$_{2.5}$ for which roadside concentrations are mainly primary emissions, either from exhaust (cold starts) and non-exhaust emissions (tyre and brake wear road abrasion), such an approach is acceptable.
downwash may occur, local air quality management should be considered the tool for addressing exceedences.

This practical estimate of future PM$_{2.5}$ concentrations over the UK combines a simple assessment of road traffic emissions with the regional contribution from a complex model. The estimate does not contain estimates near to every kind of road. Exceptional cases, such as an urban road with very heavy traffic, could lead to higher concentrations but these cases should be treated using local air quality management action plans. The local air quality management system can also be used as the process for checking that future emissions follow expected trends. Actual trends may not follow the expected trend because (1) technological measures addressing vehicle emissions do not perform as expected, (2) trends in other types of emissions do not occur as forecast6, or (3) unanticipated future trends in the way mobility, power and heating services are provided.

7 Conclusions

From calculations using the CMAQ model it was concluded that in 2006 wild fires make a minor contribution to annual mean PM$_{2.5}$ concentrations in the UK. The contribution of emissions from major industrial sources regulated in the UK, in 2006, amounts to 1 to 2 μg m$^{-3}$ in the Midlands. This makes up 10 to 20% of the regional annual average PM$_{2.5}$ concentration across most of the UK.

The impact of 2020 emission, using 2006 meteorology, is a reduction of 2 to 3 μg m$^{-3}$ in the regional annual average PM$_{2.5}$ concentrations over England, a reduction of 20 to 40% across most of the UK. The reduction in the population weighted mean because of emission reductions between 2006 and 2020 is estimated to be 40%.

The contribution of emissions from major industrial sources regulated in the UK to regional annual average PM$_{2.5}$ concentrations in 2020, using 2006 meteorology, amounts to 0.5 to 1 μg m$^{-3}$ in the Midlands of the country where there is the main cluster of industrial emissions. This contribution makes up 5 to 15 % of the regional annual average PM$_{2.5}$ concentrations across most of the UK. The potential source strength of regulated major industrial emissions expressed as the total of SO$_2$ + NOx + PM$_{2.5}$ emissions would have reduced to about 40% of their 2006 level in 2020. The reduction in PM$_{2.5}$ concentrations of about 50% in the Midlands is approximately of the same order. Thus ‘potential source strength’ is a possible, useful indicator of the response of the atmosphere to changes in emissions.

Applying meteorological conditions in 2020 representing a possible climate change scenario, with a 2020 emissions scenario, suggests reductions of 0.2 to 0.5 μg m$^{-3}$ in the regional annual average PM$_{2.5}$ concentrations over England, equivalent to a reduction of 2 to 5 % across most of the UK compared to PM$_{2.5}$ concentrations under 2006 meteorological conditions and a 2020 emissions scenario. The ‘climate change scenario’ reduction appears therefore between 5 to 10 times smaller than the reduction brought about by emissions changes between 2006 and 2020.

Estimates of the local primary PM$_{2.5}$ concentration at a typical roadside location in London have been added to the regional PM$_{2.5}$ concentration to test whether compliance with the indicative PM$_{2.5}$ limit value of 20 μg m$^{-3}$ in 2020 will be achieved. The total PM$_{2.5}$ concentrations in 2006, 2020 and 2030, including a margin of error, are 17.3 μg m$^{-3}$, 11.8 μg m$^{-3}$ and 11.6 μg

6 Biomass burning in small installations in urban areas has been promoted in recent years as a way of addressing greenhouse gas emissions, but this has the disadvantage of increasing primary particulate emissions,
m^{-3} suggesting widespread compliance with the target limit value. This does not confirm that PM\(_{2.5}\) will not be an issue at some locations, but it appears not to be a general issue accepting current air quality standards and likely trends in emissions. At hot spots, where traffic flows are higher than at a typical urban road, local air quality management should be considered the tool for addressing PM\(_{2.5}\) exceedences. The introduction of new emission technology standards is the tool for addressing air quality considerations on a national basis.

There is uncertainty associated with the air quality standard used in this paper. We have adopted the approach, implicit in the Ambient Air Quality Directive, that all components of PM\(_{2.5}\) have the same health disbenefit and the aim should be to reach and maintain the strictest standard implied by the values stated in the Directive. If further research suggests that certain components of PM\(_{2.5}\) are the active components causing harm and PM\(_{2.5}\) acts as the surrogate for these components in the underlying epidemiological studies, then the conclusions may be different. If, for example, one or other of the primary particulate components was the most harmful species or particle number was the appropriate health metric, then the local primary contribution would be more important than the regional contribution and the emphasis on modelling regional transport using CMAQ would be less important. In contrast if secondary organics are found to be the most harmful species, then a full treatment of the atmospheric chemistry within a chemical transport model would be the appropriate assessment tool. An air quality standard also depends on the choice of year by which a specified concentration should be achieved. Understanding the observed trends in annual average concentrations is a necessary step to ensure compliance, and modelling can only suggest a strategy towards ensuring future compliance. Unexpected changes in emissions and unexplained observational trends compared with model predictions may still arise.

Acknowledgements

This work was contracted by the Environment Agency under the “Estimates using the CMAQ modelling system of PM\(_{2.5}\) reductions and future regulation scenarios” R&D project No. 26137. Results of this work may not necessarily reflect the views of the Environment Agency and no official endorsement should be inferred.

8 References

Air Quality Expert Group (AQEG), 2012. Fine Particulate Matter (PM\(_{2.5}\)) in the United Kingdom. Report prepared for the Department for Environment, Food and Rural Affairs; Scottish Executive; Welsh Government; and Department of the Environment in Northern Ireland.

Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T.,
Hughes, J., Jones, C.D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C.,
Derwent, R., Witham, C., Redington, A., Jenkins, M., Stedman, J., Yardley, R. and
sensitivities to precursor emissions. Atmospheric Environment 43, 689-696.
performance of air quality models. Report prepared for the UK Department for Environment,
Fisher, B. and Sokhi, R.S., 2000. Investigation of roadside concentrations in busy streets using
the model GRAM - Conditions leading to high short-term concentrations. Int. J. of Environment
and Pollution 14, 488-495.
and simple atmospheric chemical transport models by considering single source impacts in the
UK. Air Pollution Modeling and its Application XXI, edited by D. G. Steyn and S. Trini Castelli,
Fisher B.E.A., 2013. Comparison of simple and advanced regional models (CREMO):
Hayman, G., Sokhi, R., Chemel, C., Griffiths, S., Vincent, K., Dore, A.J., Sutton, P. and Wright,
R., 2013a. Comparison of simple and advanced regional models (CREMO): Model evaluation
Hayman, G., Sokhi, R., Chemel, C., Griffiths, S., Vincent, K., Dore, A.J., Sutton, P. and Wright,
D.R., 2013b. Comparison of simple and advanced regional models (CREMO): Model

