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ABSTRACT 
This paper analyses the impact of the variability and periodicity of rainfall on the reliability 

of water supply systems in Scotland. A conceptual rainfall-runoff model was used to simulate 

catchment runoff and the reliability of 29 notional and six actual reservoirs was calculated 

using a simple storage model. The relationship between water resource reliability and the 

variability of rainfall was then investigated using different measures of variability. A strong 

correlation was found between reservoir reliability and measures representing the distribution 

of rainfall between the winter and summer seasons, as well as the cumulative sum (CUSUM) 

of annual precipitation, quantifying the variability of rainfall between years. In contrast, the 

intra-annual CUSUM range and the variance of monthly precipitation influenced the most the 

reliability of river-intake schemes. The presence of periodic patterns in rainfall anomalies was 

found to be more prevalent in West Scotland where reservoir reliability is on average lower 

than in the East. A sensitivity analysis revealed the small influence of evapotranspiration on 

reservoir reliability in comparison to rainfall variability. The findings indicate the measures of 

variability affecting the most the reliability of surface water supplies in Scotland and could 

therefore help with their management in the context of future climate change.  
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ABBREVIATIONS 

AMO  Atlantic Multidecadal Oscillation 

BADC  British Atmospheric Data Centre 

CEH   Centre for Ecology and Hydrology 

CUSUM  Cumulative summation 

MIDAS  Met Office Integrated Data Archive System 

MORECS  Met Office Rainfall and Evaporation Calculation System  

NAO   North Atlantic Oscillation  

NSE   Nash-Sutcliffe Efficiency  

R-R  Rainfall-runoff  

SEPA   Scottish Environmental Protection Agency 

SST  Sea Surface Temperature 

WMO  World Meteorological Organisation 

w/s   winter to summer ratio 
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INTRODUCTION 

Scotland receives approximately 1400 mm of precipitation per year averaged over the period 

1914-2004 (Barnett et al., 2006). Given this abundance of precipitation and that it has 

increased in recent decades (Werritty and Sugden, 2012), particularly since the 1970s (Afzal 

et al., 2015) one would expect the reliability of water supplies not to be of concern. However, 

the increasing trend in annual precipitation is possibly the result of an increase in high 

intensity rainfall events (Fisher and Rubio, 1997, Osborn and Hulme, 2002), which have 

increased over the UK since the 1950s (Alexander et al., 2005). Since this increase in 

precipitation has taken place in winter when reservoirs are full (Osborn and Hulme, 2002), it 

often does not contribute to reservoir recharge (Anderson, 1997).  

 

Moreover, there are regional variations in precipitation, resulting in an uneven distribution of 

water supplies across the country (Wright, 1995). Although the overall yield of developed 

water resources in Scotland was 32% greater than total demand in 2005/2006 (Scottish Water, 

personal communication, June 2007), the majority of Scotland’s population lives in the lowland 

belt where the yield to demand surplus is low (Adeloye and Low, 1996), and with the demand 

exceeding the available yield in some localised areas (Scottish Water, personal communication, 

June 2007). Furthermore, in the drier areas of eastern Scotland, irrigation is more common, 

creating further strains on water resources with rivers occasionally drying up (Adeloye and 

Low, 1996). An East-West asymmetry in water resources is even widening with the West 

becoming wetter and the East drier (Mayes, 2000).  

 

In addition to the regional variations in precipitation and demand levels there is evidence of 

an increase in rainfall variability, as expected with intensification of the hydrological cycle in 

a warming climate (Fisher and Rubio, 1997). For example, the winter to summer (w/s) ratio 
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and the intra-annual variance of precipitation have increased in Scotland during the period 

1961-2000 (Afzal et al., 2015); the former is the result of winters becoming wetter and 

summers drier (Barnett et al., 2006). This increase in rainfall variability could outweigh the 

precipitation trends, potentially impacting negatively on the reliability of water resources, 

especially if evapotranspiration increases in a warmer climate.  

 

Evapotranspiration is another key component of the hydrological cycle influencing catchment 

runoff and consequently reservoir recharge. With a warming of the atmosphere, an increase 

in evaporation is expected (Fisher and Rubio, 1997). Using the UK Met Office Rainfall and 

Evaporation Calculation System (MORECS), Kay et al. (2013) reported an increase in 

evapotranspiration during the period 1961-2012 across the UK, including Scotland, but noted 

that spatial and seasonal variations remain to be analysed. Nonetheless, climate models 

project an increase in evaporation in the summer under climate change (Wade et al., 2013). 

This increase in evaporation combined with greater variations in rainfall between seasons and 

from year to year as well as changes in extremes will inevitably influence catchment runoff 

and consequently have implications for water resource systems.  

 

Although groundwater provides about 35% of public water supplies in England and Wales, in 

Scotland, approximately 93% of water resources originate from surface sources (Wright, 

1995). The relatively low groundwater use in Scotland is because of its limited availability 

for geological reasons (Anderson, 1997), with highly productive aquifers restricted to the 

Southwest and Fife (MacDonald et al., 2005) where they contribute significantly to water 

supply. For example, in the Dumfries and Galloway region of south-western Scotland, 

groundwater contributes up to 20% of the total available yield (Wright, 1995). In terms of 

surface water supplies there are large differences in the size of the developed resources, 
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ranging from Loch Lomond with a yield of 455 ML per day (Jowitt and Hay-Smith, 2002), to 

more than 100 operational sources each with a yield of less than 0.01 ML per day. 

Furthermore, more than 50% of these operational sources are from river-intake schemes that 

extract water directly from rivers and burns, with no storage capacity other than the 

catchment itself (i.e., soil moisture). Such schemes are particularly prevalent in the North of 

Scotland (i.e., Highland and Grampian regions) (Wright, 1995).  

 

Climate variability plays an important role in determining the availability of water resources 

(Brown and Ward, 2013). The North Atlantic Oscillation (NAO) is a major source of inter-

annual climate variability in Europe, especially during the boreal winter. It refers to the 

difference in atmospheric pressure at sea level between the Icelandic low and the Azores high 

(Hurrell, 1995).  Higher than normal pressure for the Azores high compared with lower than 

average pressure for the Icelandic low is called a positive NAO state. During such a state, the 

meridional pressure gradient is enhanced, thereby leading to a predominance of westerly 

winds and storm tracks passing over northern Europe (Hurrell et al., 2003), including Britain 

(Werritty and Foster, 1998). Therefore the climate over the UK is typically wetter in a 

positive NAO state in comparison to a negative NAO state when it is southern Europe that 

experiences a wetter than average winter (Trigo et al., 2004).  

 

Another mode of climate variability affecting the UK is the Atlantic Multidecadal Oscillation 

(AMO), which is an oscillation of sea surface temperatures (SST) in the North Atlantic 

Ocean. A positive phase of the AMO is associated with a decrease in mean sea level pressure 

over the North Atlantic and higher than average precipitation over the UK, particularly during 

the summer and autumn months. An opposite climatic signal to that of north-western Europe 

is observed in North America during a positive phase of the AMO (Knight et al., 2006), and 
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Enfield et al. (2001) showed that the climatic impacts of the AMO influence the variability of 

reservoir inflows in the United States. An understanding of climate variability is thus 

essential to water infrastructure planning (Mason, 2010). The assessment of climatic risks to 

water supply systems is typically based on information gathered from historical records with 

the assumption that the climate is stationary (Milly et al., 2008), an approach which is 

unlikely to be justified under climate change. Fowler et al. (2003) suggest that the potential 

increase in climate variability under climate change is of greater concern to water resources 

than changes in mean climate.  

 

The main inspiration behind this study is the perception that climate change is likely to 

increase the variability of the hydrological cycle, thus increasing uncertainty about the 

availability of water resources in the future. Even though Scotland is dependent on surface 

water supplies to meet demand, little attention has been given to date on the effect of rainfall 

variability on water resource systems in the country. Hence, this paper aims to improve our 

understanding of the role of climate variability on the reliability of water supply systems in 

Scotland. The objectives are (1) to examine the temporal and spatial distribution in reservoir 

reliability across Scotland, (2) to investigate the relationships between the reliability of water 

supply systems, including reservoirs and river-intake schemes, and the variability and 

periodicity of rainfall, and (3) to assess the contribution of variations in climatic variables 

other than precipitation on the reliability of water resources. 

 

METHODS 

Sources of data 

Climatic data (i.e., rainfall, maximum and minimum temperatures, sunshine duration, and 

wind speed) were used as input variables to a Rainfall-Runoff (R-R) model. Daily 
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precipitation and maximum and minimum temperature data for 40 weather stations across 

Scotland were obtained from the Met Office Integrated Data Archive System (MIDAS) 

through the British Atmospheric Data Centre (BADC) (UK Meteorological Office, 2006). 

Figure 1 depicts the location of the 40 weather stations with further information about those 

weather stations provided in Table 1. Also shown are the three climatological regions of 

Scotland as defined by Barnett et al. (2006), i.e., North, West, and East Scotland. As noted in 

previous research (e.g. Sweeney and O’Hare (1992)), the network of precipitation gauges is 

highest in southern and central Scotland where the majority of the population resides and 

sparse in North Scotland. Daily wind speed data were also obtained from MIDAS but from 

only five of the above weather stations (Figure 2). Daily sunshine duration data interpolated 

on a 5 km x 5 km grid were obtained from the baseline (1961-1990) dataset of the UK 

Climate Impacts Programme for the 21 grid cells corresponding to the location of the weather 

stations analysed in Afzal et al. (2015), which is a subset of the stations shown in Figure 1.   

 

Figure 2 depicts the location of the river catchments, the river-intake schemes, and the case 

study reservoirs with their storage volume. The selection of the eight catchments whose data 

were used to calibrate the R-R model was based on the availability of river flow data for a 

minimum continuous period of 10 years and the quality of the climatic data at a weather 

station located in close proximity to a gauged catchment. Small catchments were preferred 

for the model calibration given the dependence of Scotland on water supplies from small 

rivers (Smith, 1977). This is because the majority of reservoirs in the UK are in upland areas 

and are therefore fed by rivers with small catchments (Orr et al., 2008). It was also aimed to 

have a reasonable spread of catchments across Scotland. The Scottish Environmental 

Protection Agency (SEPA) and the Centre for Ecology and Hydrology (CEH) provided the 

daily river flow data for the eight catchments (Table 2).  
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Scottish Water provided daily water abstraction data for two river-intake schemes for the 

period 2009-2012 as well as data on the mean annual inflow, the mean annual demand, and 

the storage capacity of six case study reservoirs. The selection of the reservoirs was based on 

their storage volume in comparison to mean annual inflow, i.e., the storage ratio, and the 

average daily demand in relation to mean annual inflow, i.e., the demand ratio. The selection 

process aimed at choosing a number of reservoirs that would cover a wide range of storage 

and demand ratios, as shown in figure 3, as well as different parts of Scotland.  

 

The selected reservoirs were provided from a list of reservoirs referred to as drought 

reservoirs (Scottish Water, personal communication, July 2011). Hence, these reservoirs are 

not representative of all reservoirs across Scotland but represent reservoirs at greater risk of 

failure because they are relatively small and/or independent. Small and independent 

reservoirs are more sensitive to changes in climate variability than large reservoirs (Marsh 

and Turton, 1996). Had only large reservoirs been selected, e.g. Loch Lomond, the number of 

failures would have been limited, making it difficult to examine the relationships between 

reservoir reliability with different measures of rainfall variability.  

 

The conceptual R-R model  

A conceptual R-R model was used to generate catchment runoff, which then served as input 

into a reservoir model. Model generated runoff was used so that the effect of various patterns 

of rainfall could be investigated and because long records of reservoir inflow are scarce in 

Scotland and even unavailable for many reservoirs (Jowitt and Hay-Smith, 2002). In order to 

investigate the effect of reservoir characteristics on reliability, the concept of notional 

reservoirs was used. A notional reservoir was considered to be a hypothetical reservoir that is 

not connected to other sources and which has arbitrary storage and demand characteristics.  
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The R-R model was based on the probability distribution model described in Moore (2007, 

1985), which is widely used in the UK (Christierson et al., 2012). It determines the change in 

soil moisture storage using a simple water balance approach, i.e., the storage volume 

increases due to precipitation and decreases due to evapotranspiration. Potential 

evapotranspiration was estimated using the modified Penman-Monteith equation outlined in 

Allen et al. (1998).  

  

The R-R model has five parameters that require having values assigned by calibration with 

respect to observed flow data. The calibration and validation was carried out using a 

minimum period of five years each. A number of statistical indices exist to compare 

simulated and observed data. This study used the Nash-Sutcliffe efficiency (NSE) coefficient, 

as it is one of the most widely used techniques to assess the performance of hydrological 

models (Singh et al., 2010). The values of the NSE coefficient can range from −∞ to 1 with a 

value of one indicating a perfect match, and a value of zero indicating that the model 

predictions are as accurate as the average of the observed data, that is, making a perpetual 

forecast of average conditions (Nash and Sutcliffe, 1970).  

 

Krause et al. (2005) indicated that extreme values in a time series can result in a poor NSE 

coefficient because hydrological models tend to underestimate river flow during peak flows. 

For this reason, they suggested calculating the NSE coefficient with logarithmic values:   

ln 𝑁𝑆𝐸  = 1 −  
∑ (𝑙𝑛 𝑂𝑖 − 𝑙𝑛 𝑆𝑖

𝑛
𝑖=1 )2

∑ (𝑙𝑛 𝑂𝑖 − 𝑙𝑛 Ōn
i=1 )2

                                                                                                (1) 

where Oi and Si  refer to the observed and simulated river flow data, respectively, and Ō is the 

mean of the observed data. By applying the logarithmic values, the peak flows tend to be 

flattened while low values remain unchanged; consequently, the influence of low flow values 

increases and that of very high flow values decreases (Krause et al., 2005).  
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The river flow time series were divided into two with the first half used to calibrate the model 

and the second half to validate it. The calibration procedure consisted of adjusting manually 

the five tuneable parameters to achieve the best model fit.  

 

Reservoir model and reliability analysis 

The operation of the reservoirs was modelled using a simple tank model with the storage 

volume of a reservoir; S, at time step t+1 calculated using the following equation: 

𝑆𝑡+1 =  𝑆𝑡 +  𝑄𝑡 − 𝐷𝑡    (𝑖𝑓 𝑆𝑡 < 𝑆𝑚𝑎𝑥)                                                                                             (2) 

𝑆𝑡+1 = 𝑆𝑚𝑎𝑥   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where Qt and Dt are the inflow and outflow into and out of the reservoir, respectively. For 

simplicity, it is assumed that the net precipitation (precipitation – evaporation) on the 

reservoir surface as well as seepage into groundwater is negligible. 

 

For every year, the time-based reliability, R, of the reservoirs was calculated as: 

𝑅 = ( 1 −
𝑁𝑓

365
) ∗ 100                                                                                                                          (3) 

where Nf is the number of failure days. A ‘failure’ was arbitrarily defined to have occurred 

when the reservoir volume fell below 30% capacity, as supply restrictions are often initiated 

when this threshold volume is reached (Kiem and Franks, 2003). For the two river-intake 

schemes a ‘failure’ was recorded when the river flow after abstraction was less than the Q95 

(i.e., the flow exceeded 95% of the time and in this case calculated over four years), with 

abstraction assumed to be constant between years and calculated using data for the period 

2009-2012. The Q95 is widely used to guide abstraction and consent policies in the UK 

(Scottish Environment Protection Agency, 1997), and is a good proxy measure of “drought” 

runoff, as used in the UK Climate Change Risk Assessment (Arnell et al., 2014).  
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Three important characteristics of a reservoir are its storage volume, annual inflow, and 

annual demand. The storage volume and annual demand can be expressed as non-

dimensional ratios by dividing them by the mean annual inflow. Hence, the storage factor 

was defined by: 

𝑆𝑓 =
𝑆

𝑄𝑎𝑣 ×  365
                                                                                                                                    (4) 

where S is the storage volume of the reservoir and Qav is the average daily inflow. This 

storage ratio is a good indicator of the resilience of a water supply system to climate 

variability with systems having a large volume of storage in comparison to their inflow more 

likely to be able to withstand a prolonged drought (Smith and Bennett, 1994). The demand 

ratio was defined by: 

𝐷𝑓 =
𝑄𝑑 

𝑄𝑎𝑣
                                                                                                                                                 (5) 

where Qd is the average daily demand. The storage and demand ratios of all case study 

reservoirs remained between 0 and 1 (Figure 3).  

 

To examine the temporal variability in the reliability of the notional reservoirs, the 

precipitation time series at each of the 40 weather stations was divided into three time-periods 

of 15 years each, i.e., 1961-1975, 1976-1990, and 1991-2005. Then, the reliability of 29 

notional reservoirs consisting of different combinations of storage and demand ratios (i.e., 

one for each combination of storage and demand ratio varying from 0 to 1.0 with an interval 

of 0.2) was calculated using the above rainfall datasets. The mean characteristics of the eight 

calibrated R-R models were used to simulate the inflow into the notional reservoirs. At each 

weather station the mean reliability value was computed for each of the three time-periods. 
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The mean reliability for each combination of storage and demand ratio is shown as a contour 

plot in Figure 3, together with the reliability of the six actual reservoirs. The Knockquhassen, 

Loch Calder, and Dhu Loch reservoirs have, on average, over 80% reliability, whereas the 

Glendevon reservoir, located in a drier part of Scotland, has the lowest reliability of the six 

actual reservoirs due to its low storage ratio and high demand ratio. This study assumed a 

constant storage and demand ratio; however, these could vary between years. This is because 

both the storage and demand ratios are a function of reservoir inflow and the demand ratio is 

also calculated using the average daily demand.  

 

Measures of variability  

The following nine measures of rainfall variability were computed: 

Variability within a year: intra-annual variance, intra-annual cumulative summation 

(CUSUM) range, w/s ratio, and ratios of winter and summer precipitation to total annual 

precipitation.  

Variability from year to year: coefficient of variation, CUSUM of annual precipitation, 

annual number of dry days, and average length of a dry spell per year. A dry day was defined 

when precipitation was less than 0.2 mm (Afzal et al., 2015) or when the effective rainfall 

was equal to zero. 

 

The intra-annual variance of precipitation was calculated using monthly precipitation totals, 

as daily data include days without any precipitation, which would result in a distorted 

variance value. The CUSUM refers to the cumulative sum of differences between the values 

of a time series and its average. For example, let X1, X2, …, X365 represent the daily values of 

an annual precipitation time series and C the mean of that time series. From this, the 

cumulative sums, S, are calculated using the following equation: 
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Si = Si-1 + Ci - C( )
                                                                                                                  (6) 

for i = 1, 2, …, 365. The cumulative sum begins with S0 = 0 and because the average is 

subtracted from each value, the cumulative sum also ends at zero (S365=0). For each year, the 

annual CUSUM range was calculated by subtracting the maximum CUSUM value from the 

minimum CUSUM value. Thus, the intra-annual CUSUM range is a measure of the temporal 

distribution of rainfall within a year with a small value meaning that rainfall is more 

uniformly distributed throughout the year (Afzal et al., 2015). Both the intra-annual variance 

and the intra-annual CUSUM range were normalised by dividing by the square of the mean 

and the mean, respectively.  

 

Seasonal changes in precipitation were calculated using the w/s ratio of precipitation, which 

in this study is defined as the ratio of average precipitation from December through February 

to average precipitation during the June-August season.  

 

The CUSUM of annual precipitation was also computed using equation 6 but with Xi and C

representing individual values in a total annual precipitation time series and average annual 

precipitation over a 20-year period, respectively. Hence the CUSUM of annual precipitation 

shows how individual values compare to the 20-year average. During periods when total 

annual precipitation is below average, the CUSUM will decrease, while it will increase when 

annual precipitation values are above the 20-year average.  

 

Periodicity of rainfall 

The above measures of rainfall variability represent semi-random variations within a year and 

from year to year and have limited use in describing periodic variations. Where there is a 

periodic variation in rainfall the amount of storage required is a function of both the 
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amplitude and the period of variation. The reliability of reservoirs can therefore be expected 

to be proportional to both the period and amplitude of such variations. This is represented in 

Figure 4, which illustrates the decrease in reliability for a simple cosine input of different 

periods for different storage ratios. 

 

The presence of regular periodic variations in the precipitation time series was therefore 

investigated using autocorrelation and Fourier analysis at 21 of the 40 weather stations for the 

period 1961-2000. The latter represents the amplitude of variations in terms of the spectral 

energy and periods by the predominant frequency peaks. The precipitation data were 

expressed as standardised residuals from a linear trend line calculated using the least squares 

approach. The removal of a linear trend prior to plotting the autocorrelation function and the 

periodogram was necessary in order to meet the stationarity requirements of the two 

techniques, while the use of anomalies ensured that the annual cycle did not dominate the 

spectral signal. In the periodogram, the peak periodicity in each of the three ranges of 

frequency depicted in Figure 5 was identified.  

 

Relationship between reliability of water supply systems and the variability and 

periodicity of rainfall  

To investigate the relationship between rainfall variability and reservoir reliability, the 

rainfall time series of each of the 40 weather stations were divided into time-periods of 20 to 

30 years (depending on the length of data records available), creating a total of 87 rainfall 

datasets. The reliability of a notional reservoir having the mean storage and demand ratio of 

the six case study reservoirs was calculated for each rainfall dataset (and as above using the 

mean characteristics of the eight calibrated R-R models to simulate reservoir inflow). The 
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reliability datasets were then correlated with nine measures of variability, which were 

constructed using the rainfall datasets, for the same time-periods.  

 

A visual inspection was performed to determine whether there is any association between 

reservoir reliability and the peak periodicities calculated over the same time-period in terms of 

both the amplitude and period of the variation. In addition, the reliability of the two river-

intake schemes was calculated at the annual time-scale during the periods 1976-2005 and 

1963-2005 for the Strontian and Killicrankie rivers, respectively, and was then compared 

with the variability of rainfall at the nearest weather station.  

 

Re-sequencing of the rainfall time series 

In order to investigate further the relationship between extreme rainfall patterns and the 

reliability of both storage reservoirs and river-intake schemes, a number of semi-artificial 

rainfall patterns were created by re-arranging the rainfall data. This was done to examine the 

influence of droughts over periods longer than seen during the study period on reliability. The 

re-sequencing was performed on effective rainfall data; consequently, other meteorological 

data such as sunshine duration, and maximum and minimum temperatures, which were used 

to estimate evapotranspiration, did not have to be re-sequenced separately. The method 

consisted of increasing the concentration of rainfall into two, three, four, and five rainy 

periods in each year by breaking the daily rainfall data over a year into equal continuous 

periods of rains separated by dry periods of the same length. As an example, Figure 6 

illustrates the re-sequenced effective rainfall time series at Balmoral.  

 

The effect of evapotranspiration on the reliability of water supply systems  
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Evapotranspiration was estimated from maximum and minimum temperature and sunshine 

duration data obtained from 21 weather stations across Scotland, in addition to wind speed, 

which was assumed to be constant at 2.5 ms-1. This subset of the 40 weather stations was 

selected because the climatic variables used to calculate evapotranspiration were only 

available at those weather stations. The analysis was performed over the period 1961-1990 

given the availability of the sunshine duration data during that period only.  

 

In the first instance, a sensitivity analysis was performed to assess the influence of each 

climatic variable on the estimate of evapotranspiration. Then, to determine the effect of 

changes in evapotranspiration on reservoir reliability, evapotranspiration was arbitrarily 

increased by 5% and the resulting change in reliability was calculated. Kay et al. (2013) 

calculated that evaporation has increased in Scotland by approximately 0.6 mm/year during 

the period 1961-2012. This corresponds to about 0.13%/year, meaning that a 5% increase in 

evaporation would be expected to be reached in three to four decades if the trend were to 

continue at the same rate. Nonetheless, other factors affect changes in evapotranspiration 

such as land use and vegetation type, and urbanisation.  

 

RESULTS AND DISCUSSION 

Calibration and validation of the R-R model and sensitivity to the tuneable parameters 

A summary of the results of the calibration and validation of the R-R model is shown in 

Table 2. It can be seen that the calibration of the R-R model resulted in positive values of the 

NSE coefficient for all eight catchments. Figure 7a shows that the simulated flow of the River 

Black Cart compares very well with the observed flow for a single year while Figure 7b 

shows the general relationship for a longer period with a higher correlation seen for the very 

low flows and very high flows. The model performance was considered satisfactory given 
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that it is modelling the effect of a variety of catchment characteristics such as topography and 

the conductivity, porosity, and storage capacity of the soil, the vegetation, and land use 

(Mansell, 2003), all of which affect the partitioning between evapotranspiration, infiltration, 

and soil moisture storage (Brown and Ward, 2013).  

 

The sensitivity of the model to the changes in the values of the five calibrated parameters 

showed that the model is most sensitive to changes in the value of the translation diffusion 

coefficient, λ, with a 5% increase in the value of that variable resulting in a change in runoff 

greater than 2%. The percentage change in runoff resulting from a 5% change in the value of 

each of the four other tuneable parameters resulted in an increase/decrease in runoff of 0.5% 

or less (Figure 8). 

 

Spatial and temporal patterns in the reliability of notional reservoirs 

A clear East-West pattern is seen in the average reliability of the notional reservoirs during 

the period 1976-1990 with higher reliability values observed in the East than in the West 

(Figure 1). This spatial pattern in reservoir reliability reflects the spatial distribution of 

rainfall variability across the country with reliability being lower in the West where rainfall is 

on average more variable than in the East (Afzal et al., 2015). In addition, reservoir reliability 

has decreased slightly over time from an average of 79% during the period 1961-1975 for 

Scotland as a whole to 77% during the period 1976-1990, and further decreased to 76% 

during the period 1991-2005 (Figure 9). The highest decrease was observed in the West, 

although 1976-1990 and 1991-2005 have almost identical means. An examination of the 

temporal changes at three locations with longer data records showed that reservoir reliability 

has decreased overall during the period 1931-2005, showing that the decrease in reliability 
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seen in recent decades is a continuation of a trend that started a few decades earlier (Figure 

10).  

 

Relationship between reliability of water supply systems and rainfall variability 

 In view of the range of variables measuring different aspects of rainfall variability, it is 

useful to investigate which variables are most closely connected with reservoir performance. 

Eight out of the nine measures of rainfall variability showed a statistically significant 

correlation with the average reliability of the six case study reservoirs. The strongest 

correlation is seen for the w/s ratio of precipitation (Figure 11a). It was found that both an 

increase in summer rainfall as a proportion of total annual precipitation and a decrease in 

winter precipitation as a proportion of total annual precipitation increase reservoir reliability 

(Figure 11b), which reflects the fact that water supply systems are more likely to fail during 

the summers months in the UK when precipitation is less and the demand higher. The 

combined effect on reservoir reliability of precipitation during all seasons as observed using 

the normalised CUSUM of annual precipitation was slightly weaker, although still 

statistically significant (Figure 11c). A relationship of similar magnitude was seen between 

the normalised intra-annual variance of precipitation and reservoir reliability (Figure 11d).  

 

A statistically significant correlation was also observed between reservoir reliability and 

measures representing the variability of rainfall between years. A strong relationship was 

noted with the normalised CUSUM of annual precipitation range (Figure 11e), although it is 

weaker than for the w/s ratio, while the coefficient of variation showed a weak correlation 

with reservoir reliability (Figure 11f). The annual number of dry days was unexpectedly 

found to be positively correlated with reservoir reliability (Figure 11g), although the 

relationship is weak. This could be due to the sequences of dry days within a year, which can 
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be made up of many short dry periods, which have little impact on reservoir reliability. There 

is also a possibility that this could be the impact of more precipitation but coming from fewer 

wet days. Figure 11h, which includes re-sequenced rainfall data, shows that there is no 

significant relationship between reservoir reliability and the average length of a dry spell in a 

year.  

 

The above analysis demonstrated that the measures related to the distribution of rainfall 

within the year were seen to be the best indicators of rainfall variability with regards to the 

reliability of storage reservoirs in Scotland. These included the w/s ratio of precipitation and 

the proportion of summer rainfall to total annual precipitation. Some measures related to the 

variability of rainfall from year to year were also found to influence significantly reservoir 

reliability, in particular, the CUSUM of annual precipitation, suggesting the potential 

influence of rainfall periodicities on reservoir reliability.  

 

The w/s precipitation ratio was not seen to influence significantly the reliability of the river-

intake schemes (Figure 12a), nor did the ratios of winter or summer precipitation to total 

annual precipitation (Figures 12b,c). The normalised intra-annual CUSUM range and the 

intra-annual variance showed the strongest correlation with the reliability of both river-intake 

schemes (Figures 12d,e). This indicates that the distribution of rainfall during the year and its 

variability between months are the most important variables influencing the reliability of the 

river-intake schemes in Scotland. No statistically significant correlation was seen with either 

the number of dry days per year or the average dry spell length.  

 

Relationship between reliability of water supply systems and the periodicity of rainfall  
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Figure 13 shows that many weather stations exhibit statistically significant autocorrelation 

coefficients at different lags in the monthly precipitation anomaly time series. Repeating 

patterns in rainfall anomalies appear to be particularly dominant in West Scotland and many 

weather stations experience positive autocorrelation at lags between eight and 14 months and 

between 18 and 20 months (see Figure 1 for the depiction of the three regions of Scotland). A 

similar spatial pattern is seen in the spectral analyses, which show that weather stations with 

greater spectral energy prevail in West Scotland (Figure 14), where reservoir reliability is, on 

average, lower than in the East (Figure 1).  

 

The peak energy level of the longer-term periodicities appear to be stronger than the shorter 

term periodicities (Figure 14), which is also shown by the limited number of weather stations 

having significant autocorrelation at lags of less than eight months (without considering lag-

one). Figure 14 also shows that the East-West asymmetry in the amplitude of the 

periodicities, as represented by the energy spectrum, is similar for the three categories of 

periods of variations, i.e., less than six months, between six and 12 months, and longer than 

12 months.  

 

One would expect reservoir reliability to decrease as a result of an increase in the amplitude 

of the inflow and/or an increase in the period of variation. This analysis has demonstrated that 

the lower reservoir reliability seen in the West is associated with the presence of significant 

periodicities in rainfall anomalies as shown by autocorrelation and spectral analyses. In the 

East the autocorrelation coefficients were not as statistically significant and the amplitude of 

the periodicities, as represented by the peak energy spectrum, was found to be much weaker 

than in the West.  
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Relationship between reliability of water supply systems and evapotranspiration 

The sensitivity analysis of the components of evapotranspiration model revealed that 

sunshine duration is the climatic variable which has the greatest influence on 

evapotranspiration, but temperature is also significant (Table 3), which is consistent with the 

work of Gao et al. (2006) in China. Due to the limited availability of wind speed data at many 

weather stations, a constant wind speed value was used; nonetheless, wind speed was found 

to influence the estimate of evapotranspiration, but less significantly than the other climatic 

variables.  

 

It was also shown that a 5% increase in evapotranspiration in the R-R model (keeping rainfall 

unchanged) decreased reservoir reliability by less than 1% with the exception of one time-

period at one reservoir (Figure 15). This is because this 5% change in evapotranspiration 

resulted in a decrease in runoff of only 1.4%, whereas the same percentage change in rainfall 

increased runoff by 6.6%. This suggests that the influence of evapotranspiration is weak in 

comparison to that of rainfall, although such a modest percentage change is about the same 

magnitude as the changes in the reliability of storage reservoirs experienced in Scotland 

during the period 1961-2005.  

 

CONCLUSIONS 

The motivation of this study is that a warmer climate under global warming might intensity 

the water cycle through an increase in the occurrence of extreme events such as floods and 

droughts, thereby potentially leading to changes in water resource availability. Trends in 

global precipitation and evapotranspiration suggest that an acceleration of the hydrological 

cycle is already occurring with higher evapotranspiration rates in the summer months leading 

to the drying of soils and vegetation (Huntington, 2006). An increase in rainfall variability, 
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including the presence of periodicities, is of particular concern to Scotland whose water 

supply originates mostly from surface sources. Hence this paper provided an insight of the 

relative importance of climate variability on the reliability of water resource systems in 

Scotland. It was found that the temporal distribution of rainfall within a year and in particular 

the w/s ratio influences significantly reservoir reliability. In addition, reservoir reliability was 

found to be influenced by variations in precipitation from year to year as measured by the 

CUSUM of annual precipitation. However, the w/s ratio was found not to influence 

significantly the reliability of river-intake schemes, which was rather related to variations in 

the intra-annual CUSUM range and the intra-annual variance of precipitation. In addition,  the 

presence of periodic patterns in rainfall anomalies were found to be more prevalent in the 

West and accordingly reservoir reliability is, on average, lower in the West than in other parts 

of Scotland.  

 

However, the results of this study do not foresee an alarming trend in water supply reliability 

across Scotland as the decrease in reliability seen over the last few decades has yet been 

modest in comparison to the percentage of water lost through leakage, for example, the latter 

accounting for 34% of the water abstracted nationally (Scottish Water, personal 

communication, July 2013). Nevertheless climate models predict enhanced seasonality under 

climate change (i.e., wetter winters and drier summers) and bearing in mind the significance 

of the w/s ratio observed in this study, a decrease in the yield to demand ratio might become a 

concern in some localised areas, particularly if climate change also leads to an increase in the 

demand for water (Arnell, 1998). An increase in variability at shorter time-scale, as 

represented by the variance of precipitation between months, under climate change would 

also negatively impact on the supply of water from river-intake schemes, which is the main 

source of water in many parts of the country. Further research is under way to assess how 
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climate variability is projected to change under climate change and its potential impacts on 

the reliability of water supply systems in Scotland.  
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Figure 1 Average reliability of notional reservoirs as calculated at 40 weather stations across 

Scotland for the period 1976-1990. The 21 weather stations with a solid circle were used in 

the investigation of rainfall periodicities during the period 1961-2000. Also shown is the 

division of Scotland into three regions. 
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Figure 3 The reliability of the six case study reservoirs based on their storage and demand 

ratio.  

 

 
 

Figure 4 The relationship between reliability and the period of a cosine input to a reservoir 

for different arbitrary reservoir storage ratios, S, and assuming a demand ratio of 0.9.  
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Figure 5 Periodogram of the de-trended precipitation anomaly time series at Dunside for the 

period 1961-2000. Also shown are the three ranges of periodicities referred to in the text, i.e., 

>12 months, between 6 and 12 months, and <6 months.  

 

 

Figure 6 Original effective rainfall time series at Balmoral (a) and examples of re-sequencing 

of that rainfall time series with two (b), three (c), and five (d) rainy seasons per year.  
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Figure 4 Simulated and observed flow of the Black Cart river flow for the year 1987 (top) and 

the relationship between the simulated and observed flow of the same river during the period 

1968-1987. 
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Figure 8 Sensitivity analyses on the five tuneable parameters of the R-R model observed 

over the Black Cart catchment. The variable µ is the mean translation time, λ is the 

translation diffusion coefficient, kb is the soil drainage coefficient, Cmax is the maximum soil 

moisture storage capacity over the catchment, and Smax is the maximum soil moisture storage 

integrated over the catchment. 
 

 

 

Figure 9 Changes in the reliability of the notional reservoirs during the period 1961-2005.  
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Figure 10 Changes in the reliability of three notional reservoirs during the period 1931-2005. 
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Figure 11 Relationship between the reliability of a notional reservoir having the mean 

characteristics of the six case study reservoirs and various measures of rainfall variability: 

w/s ratio of precipitation (a), ratios of winter (w) and summer (s) precipitation to total annual 

precipitation (b), normalised intra-annual CUSUM range (c), normalised intra-annual 

variance (d), normalised inter-annual CUSUM range (e), coefficient of variation (f), annual 

number of dry days (g), and average dry spell length (h). Synthetic rainfall data were used in 

figure h. Bold R2 values are statistically significant at the 95% confidence level.  
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Figure 12 Relationship between the reliability of two river-intake schemes and various 

measures of rainfall variability: w/s ratio of precipitation (a), ratio of winter precipitation to 

total annual precipitation (b), ratio of summer precipitation to total annual precipitation (c), 

normalised  intra-annual CUSUM range (d), normalised intra-annual variance (e), annual 

number of dry days (f), and average dry spell length (g). Synthetic rainfall data were used in 

figure g. Bold R2 values are statistically significant at the 95% confidence level.    
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Figure 13 Number of weather stations with statistically significant autocorrelation coefficients of 

monthly rainfall anomalies at different lags (95% confident level).  
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                                                            (b) 
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                                                  (c) 

Figure 14 Peak energy level of rainfall periodicities of less than six months (a), six to twelve months 

(b), and longer than twelve months (c) observed at 21 weather stations across Scotland during the 

period 1961-2000. 

 
 

Figure 15 Change in reliability as a result of 5% increase in evapotranspiration.  
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Table 1 The 40 weather stations with mean total annual precipitation  
Weather station Ref. No 

Fig. 1 
WMO station 

number 
Total annual 

precipitationa (mm) 

North of Scotland 

Greenland 1 14368 999.8 

Loch Calder 2 14364 983.7 

Fairburn 3 14560 1034.9 

Craggie  4 14705 682.7 

Cluny Castle 5 14768 1146.0 

Mull: Gruline 6 14152 2120.1 

Aros 7 900 1090.9 

Regional average 953.8 

East of Scotland   
Braemar 8 147 921.3 

Balmoral 9 148 844.2 

Mannofield  10 163 771.2 

Invercannie  11 14964 849.3 

Cameron 12 15393 823.4 

Belliston 13 237 762.5 

Tulliallan  14 15450 854.3 

Tillicoultry 15 15601 1030.7 

Kirkcaldy 16 15439 820.0 

Edinburgh 17 251 715.1 

Samuelston 18 15844 619.1 

Dunglass  19 15876 674.9 

Blyth Bridge 20 274 905.5 

Rosebery 21 15782 894.1 

Bowhill  22 279 909.2 

Rawburn  23 16057 907.0 

Lochton 24 16021 638.4 

Regional average 743.8 
West of Scotland 

Dumfries 25 1017 1086.4 

Blackwood 26 13224 1752.5 

Forest Lodge 27 13290 2042.1 

Drumjohn 28 13281 1807.0 

Gailes 29 13419 1016.7 

Garpel Burn 30 13378 1749.7 

Leadhills 31 983 1742.3 

Glassford 32 13588 1278.1 

Dunside 33 13569 1454.8 

Paisley  34 968 1234.9 

Loch Thom  35 13502 1849.4 

Mugdock 36 13632 1369.6 

Stronachlachar 37 15523 2341.2 

Bute: Rothesay 38 939 1471.8 

Skipness 39 13845 1504.3 

Islay: Eallabus 40 13878 1374.1 

Regional average 1385.1 
a Calculated over the period 1976-1990 
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Table 2 Analysis of the efficiency of the R-R model 

 

Catchments Surface 

area 

(km2) 

Calibration 

time-period 

ln 

NSE* 

Validation 

time-period 

ln 

NSE* 

Strathy at Strathy Bridge 111.8 1991-1997 0.66 1998-2004 0.53 

Strathmore at Allnabad 105.0 1988-1995 0.55 1996-2003 0.57 

Brothock Water at Arbroath 50.0 1989-1995 0.55 1996-2002 0.51 

Craigmill Burn at Craigmill 29.0 1987-1993 0.72 1994-2000 0.64 

Eden at Strathmiglo 26.0 1991-1995 0.64 1996-2000 0.58 

Black Cart Water at Milliken 

Park 
103.1 1968-1987 0.80 1988-2006 0.71 

Carradale at Dippen 58.5 1996-2001 0.75 2002-2007 0.70 

Water of Fleet at Rusko 77.0 1988-1992 0.77 1993-1998 0.66 
 *The Nash-Sutcliffe Efficiency (NSE) coefficient was calculated using daily data 

 
Table 3 Sensitivity analysis examining the change in evapotranspiration resulting from a 15% 

increase in the value of each climatic variable used to estimate it. 

Climate variable 
Change in 
evapotranspiration (%) 

Temperature 9.5 

Sunshine duration 10.6 

Wind speed 5.3 

 

 

 

 

 
 

 


