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Abstract 
Rodent models highlight the key role of µ-opioid receptor (MOR) signaling in palatable food 

consumption. In humans however, the effects of MOR stimulation on eating and food liking 

remain unclear. In a bidirectional psychopharmacological cross-over study, 49 healthy men 

underwent a sweet taste paradigm following double-blind administration of the MOR agonist 

morphine, placebo, and the opioid antagonist nalt rexone. We hypothesized that behaviors 

regulated by the endogenous MOR system would be enhanced by MOR agonism, and decreased 

by antagonism. The strongest drug effects were expected for the sweetest (high-calorie) sucrose 

solution, as reported in rodents. However, very sweet sucrose-water solutions are considered 

sickly and aversive by many people (called sweet dislikers). Since both sweet likers and dislikers 

were tested, we were able to assess whether MOR manipulations affect pleasantness ratings 

differently depending on both subjective and objective value. As hypothesized, MOR stimulation 

with morphine increased pleasantness of the sweetest of five sucrose solutions, without enhancing 

pleasantness of the lower-sucrose solutions. For opioid antagonism, an opposite pattern was 

observed for the sweetest drink only. This bidirectional effect of agonist and antagonist treatment 

is consistent with rodent findings that MOR manipulations most strongly affect the highest-

calorie foods. Importantly, the observed drug effects on pleasantness of the sweetest drink did not 

differ between sweet likers and dislikers. We speculate that the MOR system promotes survival in 

part by increasing concordance between the objective (caloric) and subjective (hedonic) value of 

food stimuli, so that feeding behaviour becomes more focused on the richest food available. 
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Introduction 
Sweet taste is a primary reward, inducing stereotypical, positive facial displays across 

mammals and in newborn humans (Berridge 2000). The µ-opioid receptor (MOR) system 

regulates food preference and intake based on its rewarding properties (hedonic eating) in several 

animal models (Berridge and Kringelbach 2008; Taha et al. 2006). In rodents, endogenous µ-

opioid release is strongly increased by palatable food intake (DiFeliceantonio et al. 2012). 

Similarly, exogenous stimulation of MORs increases intake (DiFeliceantonio et al. 2012; Doyle 

et al. 1993; Evans and Vaccarino 1990), whereas antagonist drugs reduce intake of palatable 

foods (Cleary et al. 1996; Giraudo et al. 1993). However, although opioid antagonism also 

reduces food intake in healthy humans (Arbisi et al. 1999; Bertino et al. 1991; Levine et al. 2003; 

Trenchard and Silverstone 1983; Yeomans and Gray 1997; Yeomans and Wright 1991; 

Ziauddeen et al. 2013, but see Hetherington et al., 1991 & Scinska et al., 2000), the effects of 

MOR stimulation are as yet unknown (Drewnowski et al. 1992; Morley et al. 1985; Yeomans and 

Gray 2002). 

In rodents, the strongest effects of MOR manipulations are observed for the most palatable 

foods such as sucrose water and chocolate pellets (e.g. Doyle et al. 1993; Giraudo et al. 1993). 

Increased sucrose content is usually operationalized as increased reward. However, when humans 

rate the subjective pleasantness of sweet tastes, some report pleasure whereas others find intense 

sweetness sickly and aversive. Hence, humans can be classified as sweet likers or dislikers based 

on whether or not they show increased liking with increased sucrose content (Asao et al. 2015; 

Looy et al. 1992). Thus for sweet dislikers, there is a discrepancy between subjective (hedonic) 

and objective (caloric) reward.  

Here, we assessed how MOR stimulation affects sweet taste perception in healthy humans, 

contrasting the effects of morphine to placebo and the opioid antagonist naltrexone in the same 
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sample. We chose a double-blind bidirectional pharmacological design, reasoning that behaviors 

regulated by the endogenous MOR system would be enhanced by MOR agonism, and decreased 

by antagonism (as measured by the linear contrast morphine > placebo > naltrexone). Forty-nine 

healthy males underwent an in-house version of the commonly used Sweet Taste Test (STT) 

which measures sweet taste liking (pleasantness ratings) and intensity perception of differing 

concentrations of sucrose dissolved in water (see e.g. Kampov-Polevoy et al. 2014; Looy et al. 

1992).  

We hypothesized that compared to placebo MOR stimulation (per oral 10 mg morphine) 

would increase, whereas opioid antagonism (50 mg naltrexone) would decrease, sweet taste 

liking without affecting taste intensity. Sweetness intensity perception and taste thresholds were 

not affected by opioid antagonism in previous reports employing sweet taste paradigms (Bertino 

et al. 1991; Yeomans and Gray 1996). Based on the animal literature showing specific effects of 

MOR on palatable food consumption, we expected the strongest effects of MOR drugs on liking 

of the sweetest drink. Importantly, since the sweetest drink was perceived as pleasant in sweet 

likers and aversive in sweet dislikers, we were able to assess whether MOR manipulation would 

affect pleasantness ratings differently depending on sweet liking phenotype. Participants were 

genotyped with regard to the single nucleotide polymorphism (SNP) A118G (rs1799971) of the 

MOR gene (OPRM1) to account for possible influence of genetic variability on effects of drug 

manipulations. 
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Methods and Materials 
Participants 

Forty-nine participants, recruited in two stages as described below, completed testing with 

morphine, placebo and naltrexone. Only males were included in this repeated-measures study to 

avoid potential drug interaction with circulating levels of estradiols and GnRH pulsability in 

females (Smith et al. 1998). Participants were screened to exclude those with a history of 

depression or other major psychiatric illness, current ongoing psychiatric or medical illness, 

multiple complex allergies, prior drug dependence or addiction, current use of medication (except 

from antihistamines).  Exclusion criteria also included: history of chronic use of opioids, use of 

any strong opioids in the two last years, and use of codeine drugs in the last four months.  All 

participants reported to have normal or corrected-to-normal vision. Participants were requested 

not to consume alcohol on the evening before each test day and asked to refrain from eating and 

using tobacco in the hour before each test session.  They were advised not to drive a vehicle for 6 

hours after drug administration.  

Select relevant items from AUDIT and DUDIT (Alcohol/Drug Use Disorders Identification 

Test) were used to assess drug and alcohol consumption (Berman et al. 2005; Saunders et al. 

1993). Participants reported consuming an average of 7.7 (SD = 5.9) alcoholic units per week 

(range: 0-24 units). Life-time use of illegal drugs: 35 volunteers reported use of cannabinoids, 15 

in the last twelve months. Seven volunteers reported use of amphetamines, nine volunteers 

reported use of cocaine/crack, and nine reported use of hallucinogens (ecstasy, LSD). One 

participant reported life time use of illegal opiates. Thirteen of the volunteers smoked cigarettes 

daily, and 12 smoked occasionally. Six volunteers reported life-time use of prescription morphine 

and 28 participants reported previous use of codeine drugs for acute pain relief. 



6 
 

Data collection was performed in two stages using identical test procedures. Data were first 

collected from 32 male participants. One participant was excluded from the study due to a 

positive opiate urine screening test and another failed to complete all three sessions, yielding 30 

datasets in stage one (5 OPRM1 A118G G-carriers and 25 AA homozygotes). To enable 

comparison of OPRM1 A118G genotype subgroups, in the second data collection stage we 

oversampled G-carriers. From a pre-genotyped group of 136 men, 20 healthy men were recruited 

and 19 completed all three sessions (17 G-carriers and two AA homozygotes). The final sample 

size was thus 49 participants (27 A/A, 22 G-carriers; see Table 1 for participant characteristics). 

 

Genotype stratification. DNA was extracted from saliva or blood by standard DNA isolation 

kits; OrageneDNA / FlexiGene (Qiagen, Hilsen, Germany / DNA Genotech Inc. Kanata, Ontario, 

Canada) according to the manufacturer’s instructions. The participants were genotyped with 

regard to the SNP A118G (rs1799971) in the opioid receptor mu 1 (OPRM1). As previously 

described (Olsen et al. 2012a), SNP genotyping was carried out using predesigned TaqMan SNP 

genotyping assays (Applied Biosystems, Foster City, CA, USA). Approximately 10 ng genomic 

DNA was amplified in a 5 µl reaction mixture in a 384-well plate containing 1x TaqMan 

genotyping master mix (Applied Biosystems) and 1x assay mix, the latter containing the 

Table 1. Sample characteristics 

Participant information Overall AA (n = 27) AG (n =22) 
Mean SD mean SD mean SD 

Age (years) 24.65 3.90 26.60 4.60 22.70 3.20 
Weight (kg) 79.45 10.85 81.70 12.20 77.20 9.50 
Height (meter) 1.82 0.07 1.84 0.06 1.80 0.07 
BMI (weight/heigh2) 23.55 2.90 24.00 2.80 23.10 3.00 
Alcohol units per week 7.70 5.95 6.30 5.30 9.10 6.60 
Binges (per month: > 6 units) 1.55 0.83 1.37 0.70 1.74 0.96 
Data are presented in overall summary and as divided by genotype. Summaries are based on self-
report. One alcoholic unit was described as a small beer (0.33 liter) or a small glass of wine.  
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respective primers and probes. Genotypes were determined using the SDS 2.2 software (Applied 

Biosystems). Approximately 10 % of the samples were re-genotyped and the concordance rate 

was 100 %.  

Procedure 

Experimental procedures were approved by the Regional Ethics Committee (2011/1337/REK 

sør-øst D). Participants gave informed consent and were informed that they could withdraw from 

the study at any time. Each participant was tested after receiving a different drug on three 

different days (double-blind administration, with a minimum wash-out of seven days). Each 

session lasted approximately three hours. After giving written consent, participants were asked to 

submit a urine sample for opiate screening (MOP Opiate300 Test Strip; SureScreen Diagnostics 

Ltd, Derby, UK). If the drug toxicology was negative participants received one of the three drugs 

after completing state-relevant questionnaires. The experimental tasks were completed between 

60 and 150 minutes after drug administration. The sweet taste test was always administered at the 

end of the experimental session after tests of monetary reward, social touch reward and facial 

attractiveness (Chelnokova et al. 2014) as sucrose consumption has been shown to modulate 

endogenous opioid release (DiFeliceantonio et al. 2012). To confirm drug uptake, a blood sample 

was taken at the end of the experiment session.  At the end of the third session, participants were 

debriefed and asked to guess the identity of the drug received in each session. These data showed 

that on average, participants identified the drug received correctly 33% of the time, indicating 

successful blinding. Participants were reimbursed 400-500 NOK (about 60 US dollars) per 

session, partly depending on task performance in a monetary reward task.  

 

Drug administration. Morphine is a selective μ-opioid receptor agonist and the most widely 

chosen analgesic for moderate to severe pain (Vindenes et al. 2006). To minimize subjective drug 
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effects we used 10 mg per oral morphine (Morfin®, Nycomed Pharma, Asker, Norway). The 

bioavailability of oral morphine is on average 30-40%. Morphine has maximal effect (t-max) at 

1-2 hours after oral administration, and a half-life of 2-4 hours (Lugo and Kern 2002). Naltrexone 

is a non-specific competitive opioid antagonist with a high affinity to μ- and κ-opioid receptors. 

Naltrexone blocks the effects of endogenous (e.g. endorphins) and exogenous opioids (e.g. heroin) 

and is used in treatment of drug and alcohol addiction. The maximal plasma concentration of oral 

naltrexone is reached after one hour (Verebey et al. 1976). We used 50 mg per oral naltrexone 

(Adepend, Orpha-Devel, Purkersdorf, Austria), a standard dosage that has been shown to 

efficiently block the majority of opioid receptors in the brain (Lee et al. 1988) with only minor 

side-effects in healthy individuals (Miotto et al. 2002; Yeomans and Gray 2002). Placebo pills 

were cherry-flavored breath mints. A small amount of the flavored placebo pills were added to 

the drug dosages to avoid any recognition of medication taste. The test interval between 60 and 

150 minutes after drug intake was deduced by comparing the time of maximal bioavailability of 

oral morphine and naltrexone.  

 

Subjective state measures. Measurement of mood and subjective state (including happiness, 

anxiety, irritability, feeling good, hunger and nausea) were collected four times during each 

session. Items were rated on electronic visual analogue scales (VAS) prior to drug administration 

(t 0), before the experiment session (t 60), mid-way through experiment session (t 100) and after 

completion of all tasks (t 140). All questionnaires were made in MATLAB (version 7.10.0. 

Natick, Massachusetts: The MathWorks Inc., 2010).  

  

Motor Coordination task. To assess potential drug effects on alertness and motor function, 

participants completed an eye-hand coordination test mid-way through each session 
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(Bradykinesia Akinesia Incoordination task (Giovannoni et al. 1999)). Participants were 

instructed to alternate between pressing two keys on a standard keyboard (15 cm apart) as quickly 

and accurately as possible for 60 seconds using their dominant hand. A general performance 

measure output, the Dysmetria Score (a weighted index of speed and accuracy; Giovannoni et al. 

1999),was used to compare motor function  across drug conditions.  

 

The sweet taste test. To test the effects of opioid agonism and antagonism on sweet taste liking, 

we used a sweet taste test (STT, see Fig. 1) adapted from well-established paradigms for 

assessing sweet taste liking/hedonic response to sweet taste (see e.g. Kampov-Polevoy et al. 1997; 

Looy et al. 1992). Participants used an electronic VAS (MATLAB) to rate sucrose solutions on (i) 

sweetness intensity (“How sweet is the drink?” anchors: not sweet at all – extremely sweet) and 

(ii) pleasantness (“How much do you like the drink?” anchors: dislike strongly – like very much). 

Five different sucrose solutions were used (0.05, 0.10, 0.20, 0.42, and 0.65 molar (M). For 

comparison Coca Cola classic is a 0.33 M solution). Each solution was presented three times in 

each session in a pseudo-randomized order and each drink occurred only once in each of three 

runs. Participants were requested to taste, but not swallow, the solutions, which were presented in 

transparent cups (15 ml). Between each trial, a message on the screen reminded participants to 

rinse their mouth with water before proceeding. The experimenter gave verbal instructions and 

was present during the first trials to ensure that the instructions were clear. The written instruction 

“In this task you will taste different drinks. After each drink you will be asked to evaluate 

different qualities of the drink. Rinse your mouth and spit between tasting each drink” remained 

visible at the top of the screen throughout the test.  
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Fig. 1 a) Illustration of the three events in a trial. Participants rated perceived sweetness of a 

solution, then the pleasantness before rinsing their mouth with water and proceeding to the 

next trial. b) Drinks of five different sucrose solutions were presented on a tray. Participants 

were instructed to expectorate in large opaque disposable cups between trials.  

 

Operationalization of sweet liking phenotypes. Sweet liking phenotype  is considered a stable trait 

(Looy et al., 1992) which has been associated with impulsivity (Weafer et al., 2014) and alcohol 

and cocaine intake (Kampov-Polevoy et al., 2001; Janowsky et al., 2003). On the basis of its 

heritability and association with response to opioid antagonist treatment, sweet liking phenotype 

has even been proposed as a behavioral marker for central MOR sensitivity (Kampov-Polevoy et 

al., 2006). Different methods have been used to operationalize who constitutes a sweet liker or 

sweet disliker. The two most commonly used  practices are (i) Dividing participants into 

subgroups based on whether their pleasantness ratings generally increase or decrease with 

increasing sucrose content (e.g. Looy et al. 1992) and (ii); Categorizing only individuals who 

prefer the very sweetest solution as sweet likers (e.g. Weafer et al. 2014). Here we chose to divide 
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participants into sweet likers and sweet dislikers depending on the (positive or negative) 

correlation between sucrose content and mean pleasantness rating per drink in the placebo session. 

 

Sweet liking phenotype group characteristics. Participants with a positive correlation between 

sucrose content and pleasantness ratings in the placebo condition were classified as sweet likers 

(n = 23, median r = 0.84, SD = 0.28, range (min, max): 0.042, 0.995). Conversely, participants 

with a negative correlation were classified as sweet dislikers (n = 26, median r = -0.91, SD = 0.23, 

range: -0.089, -0.993, see Fig. 2 and Table 3 for means and SD per drink and drug). Eleven of the 

22 G-carriers of the OPRM1 A118G SNP were classified as sweet likers, and 11 of 27 AA 

homozygous participants were sweet likers. A chi square test showed that the difference was not 

significant (X2 = .42, p =.517).  

Mixed effects models of pleasantness and intensity ratings from the placebo sessions only 

were conducted to assess differences between the phenotype groups at baseline. Pairwise 

Contrasts from the intensity ratings showed no significant differences between the two phenotype 

groups on any sucrose level (Fig. 2a, Table 3). Contrasts from the pleasantness analysis 

confirmed that the two phenotype groups differed on pleasantness evaluations of all but the 0.2 M 

concentration (see Figure 2b and Table 3; also see Supplementary Materials for details of the 

analysis and results). 
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Fig. 2 Estimated means for intensity (a) and pleasantness ratings (b) by phenotype group (n = 23 

sweet likers, n = 26 sweet dislikers) for each sucrose solution in the placebo condition. Asterisks 

indicate significant value for between phenotype groups contrast for each level of sucrose 

content. *p < .05 and ***p < .001. Error bars are between-subject SEMs. Linear trend lines are 

added for illustrative purposes  

 

Hedonic capacity state measure. Self-reported hedonic state capacity was measured using a 

modified version of the Snaith-Hamilton Pleasure Scale (SHAPS, Snaith et al. 1995)  

immediately after each of the four mood and subjective state measures. Two items (At this 

moment… “I would be able to enjoy my favorite meal” and “I would enjoy a cup of tea or coffee 

or my favorite drink”) from this questionnaire were of particular relevance for the current study 

and were entered into separate analyses for investigation of MOR system effects on predicted 

taste reward.  
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Consumption of sweet and chocolate chip cookies and salty crackers. To measure 

spontaneous food intake, we included a covert test of cookie consumption. At the end of each 

experiment session participants went through approximately 15 minutes of debriefing with the 

experimenter. Tea or coffee was served and participants were encouraged to help themselves to 

cookies from a plate. The plate contained eight medium sized chocolate chip cookies (10 gram) 

and 16 small salty crackers (Ritz, 4 gram) and was conveniently placed on the table next to the 

participant. Unbeknownst to the participant, the number and type of cookies consumed was 

recorded.  

 

Plasma levels of drugs and their metabolites. Participants provided a blood sample at the end 

of each experiment session. Analyses were performed at The Norwegian Institute of Public 

Health,  Division of Forensic Medicine and Drug Abuse Research, using a high-performance 

liquid chromatography–tandem mass spectrometry method (Karinen et al. 2009) to identify 

plasma levels of morphine and its two major metabolites: morphine-3-glucuronide (M3G) and 

morphine-6-glucuronide (M6G); and naltrexone and its major metabolite, 6-β-naltrexol (6βN). 

 

Behavioral analysis 

Repeated-measures analyses of variance (rmANOVA) were used to assess drug effects on 

control measures (mood, subjective state and motor coordination measures). Ratings from the 

three measurement points were aggregated and baseline corrected. Greenhouse-Geisser correction 

was employed when sphericity assumptions were violated. Any significant drug effects were 

controlled for in the analyses of the main outcome variables.  
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Ratings of intensity, pleasantness and predicted pleasure (SHAPS) scores were analyzed with 

linear mixed models (LMMs) for repeated measures using the nlme package in R (Pinheiro et al.  

2016) and the mixed effect model module (GENLINMIXED) in SPSS (version 22, IBM). Mixed 

effects models include both fixed and random effects and offer superior flexibility compared to 

more traditional repeated-measures analyses as they allow different target distributions and the 

inclusion of all data points without aggregation across multiple trials of one type, can 

accommodate unbalanced designs and are less sensitive to missing data points (e.g. Gueorguieva 

and Krystal 2004). Eighteen intensity ratings (0.8%) and 39 pleasantness ratings (1.8%) were 

missing from the final dataset.   

For intensity and pleasantness LMMs the model selection included combinations of the 

following fixed effects: drug (categorical), sucrose content (as an ordinal ranked variable 1-5), 

drug*sucrose content interaction, drug*session interaction, session number, solution order, age, 

genotype group, hunger and nausea ratings and body mass index (BMI, kg/m2). The same fixed 

effects were included in the predicted pleasure (SHAPS) model selections, with the exception of 

variables pertaining directly to the STT such as solution order and sucrose content. These models 

also included a fixed effect for measurement time (1, 2, 3 baseline corrected). To adjust for the 

dependencies in the data, a random term including intercept for subjects was added to all the 

LMMs. For models including information about the five levels of sucrose solutions, a random 

slope for sucrose content was added to the random term. The effects of group variables, 

phenotype (sweet liker/disliker) and genotype (AA-homozygous/G-carrier) were investigated in 

separate models. To analyze drug effects on the number of cookies consumed, which was 

characterized by a right skewed distribution typical of count data, a loglinear mixed model with a 

poisson distribution and log link was used.  
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Model selection and evaluation. Variables relating to the experiment design and 

counterbalancing (such as drug, session, sucrose solution and drink order) were always kept in 

the LMMs. Aside from these variables we aimed for parsimonious models. The remaining 

covariates such as age, BMI, hunger, nausea and meaningful interactions were removed when 

they did not significantly affect the outcome and/or did not improve model fit. Adding a random 

term for subject intercept improved all LMMs as indicated by lower BICs and significant Wald Z 

statistics. As the correlation between sucrose content and liking scores vary between individuals 

and phenotype groups, all intensity and pleasantness models improved when a random slope on 

sucrose content was added to the random term. The Bayesian Information Criteria (BIC) was 

used to compare models with different fixed and random effects. Models with a smaller BIC by 

more than 2 were preferred. The final models selected for each analysis are described in the result 

section.  

 

Standard Errors. In graphs where groups are compared (i.e. phenotype and genotype) 

between-subject standard error of the mean (SEMs) from the models are provided. For analyses 

where within-subject contrasts are of primary interest (i.e. drug contrasts) within-subject SEMs 

were calculated from the raw scores (Cousineau 2005).  

 

Descriptive data. In addition to the main figures, all mean ratings per drug and condition 

(±SD) from the STT and predicted pleasure (SHAPS questionnaire) calculated from raw scores 

are reported in Table 3 together with number of cookies consumed. Data are presented for the 

whole group and per sweet liking phenotype group.  
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Results 
Control measures 

Subjective and mood effects   

Morphine 10mg and naltrexone 50mg had minimal subjective effects compared to placebo, 

with mean changes from baseline for the two drug conditions differing less than 0.7 points on the 

11 point VAS scale for subjective state measures. There were no significant effects of drug on 

mood (feeling good, happy, irritable and anxious: all F’s < 1.7, all p’s > .2). Drug condition 

significantly affected hunger ratings (Mean (SEM): Morphine = 2.9 (0.33), Placebo = 3.6 (0.28), 

Naltrexone = 1.99 (0.42). F1.7, 80.9= 4.38, p = .021, partial η2 = .084), reflecting lower hunger 

ratings after naltrexone than after placebo treatment. Hunger ratings for the measurement prior to 

the STT were therefore included as a control variable in all analyses including drug and 

phenotype information (but did not significantly impact intensity or pleasantness ratings in any of 

the models).  There was also a main effect of drug on nausea ratings (M = 0.54 (0.17), P = 0.21 

(0.19), N = 1.00 (.32); F1.7, 77.5 = 3.4, p = .048, partial η2 = .066), reflecting significantly higher 

nausea in the naltrexone relative to placebo conditions. Nausea was also entered into all analyses 

including drug and phenotype, but did not significantly affect intensity or pleasantness ratings in 

any of the mixed effects analyses.   

 

Motor coordination. Dysmetria Scores did not significantly differ between drug conditions 

(F2, 92 = .061, p = .940, partial η2 = .001).  

 

Drugs and metabolites in the blood. Data from blood samples drawn at the end of the test 

session (approximately 150 minutes after drug administration) show that all participants had 
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drugs and metabolites present in the blood following administration of morphine and naltrexone 

(see Table 2).  

No effects of MOR manipulations on ratings of sweetness intensity 

The final linear mixed model (LMM) of intensity ratings included the fixed effects: drug (M, P, 

N), sucrose content, drug*sucrose content, genotype group (OPRM1 A118G: AG/AA), drink 

order, session and session*drug interaction. As expected, we found no significant main or 

interaction effects of drug on intensity ratings (F’s < 1.4, all p’s > .245, see Fig. 3a). The effects 

of sucrose content and drink order were significant (F’s > 20.4, p’s < .001). Session number also 

significantly affected intensity ratings (F2, 2136 = 4.23, p = 0.15), but there was no significant 

drug*session interaction (F4, 2137 = 1.09, p = .236). Genotype did not significantly affect intensity 

ratings (F2136 = 0.149, p = .699). BMI, age, and ratings of hunger and nausea did not contribute to 

the fit of the model, and did not significantly affect sweetness perception (All F’s < 2.13, all 

p’s > .135).  

  

Table 2 Descriptive statistics from blood analyses 

Drugs, Metabolites 
Mean SD Range 

(nmol/ML) 
 

Min max 

Morphine 0.01017 0.05235 0.00441 0.02268 

M3G 0.17641 0.01060 0.08513 0.34307 

M6G 0.03528 0.00385 0.01398 0.06474 

Naltrexone 0.01481 0.04671 0.00239 0.04810 

6βN 0.16644 0.00919 0.10000 0.35529 

Levels of morphine, naltrexone and major metabolites after the sweet taste task was completed, 

approximately 150 minutes after oral drug ingestion. M3G & M6G = morphine-3/6-glucronide, 6βN = 

6-beta-naltrexol).  
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Fig. 3 a) No significant effects of drug on intensity ratings at any level of sucrose solution (in 

MOL). All values are estimated means from the model. Error bars represent within-subject SEMs. 

b) Effects of drugs on pleasantness ratings per solution and drug. Asterisks indicate significant 

value for drug contrast for each level of sucrose content. * indicates p < .05, ** p < .01 *** p 

< .001.The primary drug contrast of interest (at 0.65 M) is outlined with a grey box 

 

 

Effects of MOR manipulations on ratings of pleasantness 

The LMM of pleasantness ratings included the fixed effects: sucrose content, drug, session 

drug*sucrose content, drink order and genotype group. A random subject intercept and slope on 

sucrose content were also included. Consistent with the main hypothesis, there was a significant 

interaction between the sucrose content and the drug condition (F8, 2119 = 3.99, p < .001, see 

figure 3b).  Planned pair-wise comparisons showed the expected linear relationship of drugs (M > 

P > N) at the sweetest sucrose solution (M > N: t2119 = 2.8, p = .005; M > P: t2119 = 1.99, p = .046; 

P > N: t2119= 0.82, p = .410). Surprisingly, ratings of the two drinks with the least sucrose were 

higher after naltrexone relative to both placebo and morphine conditions (0.05M solution: N>M:  
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t2119= 3.20, p =.001, N>P: t2119 = 4.19, p <.001; 0.01M solution: N>M: t2119= 2.44, p = .015, N>P: 

t2119 = 3.16, p = .002). The model also revealed significant main effects of drug (F2, 2119 = 4.75, p 

= .009) and sucrose content (F2, 2119 = 2.51, p = .040) as well as a significant effect of the order 

the drinks were presented in (F14, 2119 = 7.02, p < .001). Session order (F2, 2119 = 0.36, p = .701) 

and genotype (F2, 2119 = 0.735, p = .391) did not significantly affect the pleasantness ratings. The 

effect of age, hunger, nausea and BMI did not significantly affect sucrose pleasantness ratings 

(All F’s < 2.76, all p’s > .095) and were not included in the final model.  

 

No interaction between MOR manipulations and sweet liking phenotype  
Sweetness instensity analysis. The final intensity model included the following fixed effects:  

drug (M, P, N), sucrose content, phenotype and all interactions between these variables, together 

with drink order and session. As in the above analysis of intensity ratings from the placebo 

session only, there was no significant main effect of phenotype (F1, 2122 = .26 p = .61). There was 

a trend towards a significant phenotype*sucrose content interaction (F4, 2122 = 2.30 p = .052), but 

no significant three-way interaction of drug*phenotype*sucrose content (F8, 2122 = 1.13, p = .380). 

The model yielded significant main effects of sucrose content (F4, 2122 = 488, p < .001), drink 

order (F4,2122 = 19.9. p < .001) and session (F4,2122 = 4.60, p = .011), but not the session*drug 

interaction (F4, 2122 = 1.82, p = .121) or a main effect of drug (F2, 2122 = 1.36, p = .257). The 

remaining interactions did not significantly affect intensity ratings (all F’s < 1.07, all p’s > .38).  

 Pleasantness analysis. The final pleasantness model including drug and phenotype 

information had the fixed effects drug (excluding placebo data to avoid circularity in the analysis), 

sucrose content, phenotype and all interactions between these, together with drink order, session 

and BMI. The purpose of the analysis was to examine whether morphine and naltrexone affected 

pleasantness ratings differently in sweet likers and dislikers; however we observed similar drug 
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effects in the two phenotype groups (Fig. 4). The three-way interaction (drug*sucrose 

content*phenotype) was not significant (F4, 1365 = 0.614, p = .652) nor was the phenotype*drug 

interaction (F1, 1365 = 0.24, p = .625). As observed in the analysis of pleasantness ratings from the 

placebo condition, the effects of phenotype (F1, 1364 = 16.63, p <.001) and phenotype*sucrose 

content (F4, 1364 = 32.70, p <.001) were significant in this model. Drink order (F14, 1364 = 2.80, p 

= .024), BMI (F1, 1364 = 4.60, p = .032) and drug*sucrose content (F4, 1364 = 5.70, p = .001) were 

also significant. Nausea, hunger and age did not significantly affect pleasantness ratings (all F’s 

<.97, all p’s >.32) and did not significantly improve the model. 

 

 

 

Fig. 4 Estimated means of pleasantness ratings in the morphine and naltrexone conditions 

reveal similar patterns of drug effects (lower correlation following naltrexone treatment than 

after morphine) for the two phenotype groups. A) sweet dislikers n = 26, B) sweet likers n = 23. 

Error bars are within-subject SEMs. Linear trend lines are added for illustrative purposes 
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Effects of MOR manipulations on predicted pleasure of food and drink 

There was no significant effect of drug on the overall SHAPS test score which is based on all 

items (F2, 425 = 1.48, p = .229, see Fig. 5 and Table 3). 

The results from the LMM for the favorite beverage item showed a main effect of drug (F2, 

411 = 6.52, p = .002, see Fig. 5 and Table 3. Planned comparisons of drugs showed a significantly 

higher hedonia rating in the morphine condition compared to naltrexone (t411 = 2.86, p = .005) 

and a trend towards lower ratings following naltrexone compared to placebo (t411 = 1.89, p 

= .059). The contrast between morphine and placebo was not significant (t411 = .93, p = .355). 

The final model for favorite food item ratings also showed a significant main effect of drug 

(F2, 396 = 4.15, p = .012; see Fig. 5 and Table 3 in the main text). Pairwise comparisons showed a 

significant increase in food hedonia rating with morphine over naltrexone (t396 = 2.72, p = .007) 

and placebo over naltrexone (t396= 2.46, p = .014) but not with morphine compared to placebo 

(t396 = .223, p = .824, see Fig. 6). The final fixed effects included in the each of the predicted 

pleasure (SHAPS) analyses and associated p-values are reported in Supplementary Table 1 in the 

SI).  
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Fig. 5 Predicted pleasure (SHAPS) a) Drug effects on ratings of overall predicted pleasure ratings 

(average score). b) Drug effects on predicted pleasure from consuming favorite beverage. c) 

Drug effects on predicted pleasure from consuming favorite food. Bars show estimated means 

from the LMMs. MOR = morphine, PLA = placebo, NTX = naltrexone. Error bars are within-

subject SEMs. Asterisks indicate significant contrasts between drug conditions *p < .05, **p 

< .01 

 

Naltrexone reduced cookie consumption  

Number of cookies eaten was analyzed with a generalized mixed effects model with a poisson 

distribution and log link suited for count data (that often have a distinct right-skewed distribution). 

The final model of cookie data included the fixed effects: drug, type of cookie (salty, sweet), 

session, hunger and drug*hunger interaction. A random subject intercept was also included. The 

model showed a significant effect of drug (F2, 273 = 5.75, p = .004; Fig. 6). Planned comparisons 

showed that consumption of cookies was reduced after naltrexone compared to morphine 

(combined estimated means (SEM) for salty and sweet cookies: M = 4.36 (0.32), P = 4.21(0.31), 

N = 3.84 (0.30); contrasts: M-N: t273 = 2.26, p = .025; P-N: t273 = 1.69, p = .091; M-P: t273 = .49, p 

= .624). Participants on average consumed more salty crackers than chocolate cookies (F2, 273 = 
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24.2, p > .001) but there was no significant cookie type*drug interaction (F2, 255=.032, p = .969). 

Further, the main effect of hunger on cookie consumption was not significant (F2, 273 = 1.86, p 

= .174) but a significant drug*hunger interaction effect (F2, 273 = 3.33, p = .037) reflected a larger 

reduction in cookie consumption after naltrexone treatment when hunger reports were low. 

Session order significantly affected cookie consumption due to higher consumption in the last 

session (F2, 273 = 9.78, p < .001) but the session*drug interaction was not significant (F2, 273 =1.98, 

p = .099). Age, phenotype, genotype, BMI and nausea did not significantly affect number of 

cookies eaten (all F’s < 2.36, p’s > .126).  

 

 
Fig. 6 Naltrexone reduced the number of cookies consumed in the covert cookie test 

administered during debriefing. Bars show combined estimated means for the two types of 

cookies from the mixed model. Asterisks indicate significant contrasts between drug conditions 

* p < .05. Error bars represent within-subject SEMs 
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Table 3. Means (SD) from the STT, SHAPS and cookie test by drug, overall and by phenotype group. 

 
Overall (n = 49) 

 
 Likers (n = 23) 

 
 Dislikers (n = 26) 

Sucrose Content MOR PLA NTX 
 

MOR PLA NTX 
 

MOR PLA NTX 
Pleasantness rating  (-5 to 5) 

0.05 M -0.4 (1.7)  -0.5 (1.6) 0.1 (1.5)  -1.1 (1.7) -1.4 (1.5) -0.7 (1.0)  0.2 (1.3) 0.2 (1.4) 0.9 (1.5) 
0.1 M -0.5 (1.3) -0.6 (1.3) 0.0 (1.0)   -0.6 (1.2) -1.1 (1.3) -0.4 (0.8)  -0.3 (1.0) -0.1 (1.1) 0.3 (1.1) 
0.2 M -0.21 (1.0) -0.3 (1.4) -0.1 (1.1)  0.1 (1.3) 0.1 (1.3) 0.4 (1.1)  -0.7 (1.1) -0.7 (1.4) -0.5 (0.8) 

0.36 M -0.45 (1.1) -0.4 (2.0) -0.6 (2.0)  0.8 (2.1) 1.1 (1.3) 0.8 (1.6)  -1.8 (1.6) -1.9 (1.1) -1.8 (1.4) 
0.65 M -0.61 (1.6) -1.2 (2.8) -1.3 (2.6)  1.3 (2.7) 1.2 (2.1) 0.3(2.5)  -2.6 (2.2)  -3.3 (1.3) -2.9 (1.6) 

Sweetness rating (0 – 10) 
0.05 M 1.5 (1.6) 1.1 (1.3) 1.1 (1.3)  1.6 (1.7) 1.3 (1.5) 1.3 (1.3)  1.5 (1.5) 0.9 (1.1) 1.3 (1.5) 
0.1 M 2.8 (1.8)  2.6(1.6) 2.4 (1.5)  2.6 (1.5) 2.3 (1.6) 2.5 (1.7)  2.9 (2.0) 2.0 (1.4) 2.8 (1.5 
0.2 M 5.0(1.2) 4.7 (1.2) 4.7 (1.5)  4.9 (1.2) 4.7 (1.3) 5.1 (1.6)  4.9 (1.3) 4.7 (1.8) 5.0 (1.4) 

0.36 M 7.1 (1.3) 7.1 (1.0) 7.1 (1.1)  6.8 (1.1) 7.2 (1.0) 7.5 (1.3)  7.3(1.5) 7.1 (1.2) 7.4 (1.3) 
0.65 M 8.4(1.8) 8.9 (0.7) 9.0 (0.7)  8.4 (1.6) 9.0 (0.7) 8.8 (1.1)  8.2(1.9) 8.9 (0.7) 8.9 (0.8) 

SHAPS drug change from baseline, overall score and select items 
SHAPS score -0.01 (0.7) -0.1 (0.8) -0.2 (1.0)  -0.1 (0.8) -0.2 (0.9) -0.2 (0.7)  0.1 (0.8) 0.0 (0.9) -0.3 (0.7) 

Favorite beverage 0.5 (1.5) 0.3 (1.3) -0.1 (1.7)  0.3 (1.4) 0.3 (1.4) -0.1 (1.1)  0.6 (1.4) 0.4 (1.4) -0.2 (1.1) 
Favorite food 1.0 (1.4) 0.8 (1.5) 0.4 (1.9)  1.2 (1.8) 0.5 (1.4) 0.6 (1.8)  0.8 (1.7) 1.2 (1.4) 0.2 (1.8) 

Average cookie consumption  N (SD) 
Chocolate chip 4.5 (2.0) 2.2 (1.7) 1.8 (1.5)  2.4 (2.2) 2.3 (1.7) 1.7 (1.6)  2.1 (1.7) 2.1 (1.6) 1.9 (1.3) 
Salty Crackers 3.4 (4.3) 3.4 (4.3) 2.8 (3.8)  4.7 (5.1) 4.7 (5.1) 3.0 (3.7)  2.2 (3.0) 2.2 (3.0) 2.5 (3.9) 

Overall 7.9 (3.4) 5.7 (3.3) 4.5 (2.9) 
 

7.1 (4.0) 7.0 (3.9) 4.7 (2.9)  4.2 (2.5) 4.2 (2.4) 4.3 (2.9) 
Means per condition/drug/group and standard deviations are calculated from raw data.  
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Discussion 

Stimulation of the µ-opioid receptor in healthy humans with morphine increased reported 

pleasantness of the sweetest of five sucrose-water solutions, without enhancing pleasantness of 

the solutions with less sucrose. For opioid antagonism with naltrexone, an opposite pattern was 

observed for the sweetest drink only. This bidirectional effect of opioid agonist and antagonist 

treatment is consistent with rodent research showing the strongest effects of MOR manipulations 

for the most palatable foods. Importantly, the observed drug effect on liking of the sweetest drink 

did not differ between sweet likers and sweet dislikers. Since dislikers found the high-sucrose 

drink aversive, we interpret this finding as evidence that the endogenous µ-opioid system 

preferentially regulates behaviors associated with high objective (caloric) value.  

Despite extensive rodent evidence that endogenous release and exogenous MOR stimulation 

is associated with increased intake and ‘liking’ of palatable foods such as sucrose (Berridge 2009; 

Evans and Vaccarino 1990; Peciña et al. 2006), the question of whether MOR agonism similarly 

increases sweet taste liking in humans had not been resolved until now. To our knowledge, only 

two previous studies have assessed effects of MOR agonism on sweet taste intake and/or liking in 

humans (Drewnowski et al. 1992; Morley et al. 1985). These studies used butorphanol, which 

acts as both agonist and antagonist at the receptor; interpretation of their (opposing) results is 

further complicated by small sample sizes. Our design allowed a demonstration of morphine-

enhanced pleasantness of the sweetest drink without confounding drug effects on e.g. intensity 

perception, mood or motor coordination. Indeed, subjective drug effects were so minimal that 

participants were unable to distinguish active drug from placebo sessions.  

Our design also enabled us to confirm that MOR agonism and antagonism yielded opposite 

changes in liking, as demonstrated by the linear contrast morphine>placebo>naltrexone (1 0 -1) 

for the sweetest drink. This finding aligns well with an extensive rodent literature demonstrating 
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MOR effects on high calorie foods. For instance, Taha and colleagues (2006) observed that 

systemic naltrexone selectively reduced consumption of the sweetest sucrose solution available. 

Intake of a 4% solution was decreased when the alternative drink was sugar-free, but not when 

the alternative was 20% sucrose. Parallel effects have been shown for other palatable foods and 

even for other types of reinforcing stimuli. MOR stimulation increased preference for chocolate 

and high-value potential sexual partners (i.e. estrous female rats) compared to normal chow and 

non-fertile female rats (Mahler and Berridge 2012). Opioid antagonism has also been shown to 

more potently reduce intake of preferred chocolate chip cookies over normal chow (Giraudo et al. 

1993). In humans, we previously reported an analogous effect in a facial attractiveness task 

(Chelnokova et al. 2014). In a subset of the present study population, morphine and naltrexone 

specifically modulated preference for a human analogue of high-value potential sexual partners, 

i.e. the most attractive female faces.  

A unique feature of the present design is the use of a high objective (caloric) value stimulus 

that is not the preferred stimulus for the majority of the study population (53% were sweet 

dislikers). Thus, we were able to ask whether the human MOR system specifically modulates 

liking of stimuli with the highest subjective or the highest objective value. The similarity of drug 

effects on the sweetest sucrose solution in sweet likers and dislikers (increased pleasantness and 

reduced unpleasantness) suggest that the MOR system most strongly affects liking of 

evolutionarily useful stimuli. Since the pattern of results was apparent even in dislikers who 

found the sweetest drink aversive, the association between the MOR system and hedonic eating 

appears to be independent of initial personal preference. Support for this notion also comes from 

an analogous study of rats bred for high and low sucrose preference (Gosnell et al. 2010). We 

speculate that the MOR system promotes concordance between the subjective and the objective 

value of potential rewards in the environment.  
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Ratings of predicted pleasure of palatable (favorite) foods and drink showed a similar 

bidirectional pattern after MOR manipulations. No significant drug effects were found when all 

food and non-food items of the predicted pleasure scale were included, however. The covert 

cookie consumption test administered at the end of each session revealed that naltrexone 

significantly reduced the number of cookies eaten, consistent with numerous previous reports on 

the effects of acute MOR antagonism (Bertino et al. 1991; Levine et al. 2003; Trenchard and 

Silverstone 1983; Yeomans and Gray 1997; Yeomans and Wright 1991; Ziauddeen et al. 2013). 

The lack of a bidirectional effect on cookie consumption is difficult to interpret, as this test was 

conducted long after morphine was expected to reach peak concentration. Whether different test 

timing or a higher dose of either drug would yield stronger effects remains to be determined.  

Unexpectedly, naltrexone also significantly increased pleasantness ratings of the two lowest 

sucrose solutions. A previous study which administered a similar sweet taste test in healthy 

women reported a main effect such that naltrexone reduced pleasantness ratings across sucrose 

solutions (Arbisi et al. 1999). Since morphine did not oppositely affect pleasantness of the low-

sucrose drinks, we speculate that the increased liking could be driven by non-MOR effects of 

naltrexone, such as antagonism of kappa opioid receptors (McLeod et al. 2001) Note that the 

slight decrease in hunger and increase in nausea scores induced by naltrexone did not affect the 

pattern of results reported in this study. In an effort to avoid potential drug interaction with 

circulating levels of estradiol and GnRH pulsability in females (Smith et al. 1998) only male 

participants were included in the test sample. Existing studies of taste using opioid antagonists 

only have yielded no consistent indications that opioids affect taste evaluations differently in men 

and women (see e.g. Drewnowski et al. 1992; MacIntosh et al. 2001). Since the current 

hypotheses are based on cross-species evidence consistent with an evolutionarily preserved 
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function of MOR, we predict that future studies will reveal similar effects in women as the ones 

presented here for men.  

  

Sweet taste responses are thought to be partly genetically determined (Keskitalo et al. 2007). 

Polymorphisms of the MOR gene OPRM1 contribute to natural variation in central MOR system 

function across individuals and species (Mague and Blendy 2010). Although findings are 

inconsistent, presence of one or more G alleles of the functional single-nucleotide polymorphism 

(SNP) A118G has been associated with increased liking of cocaine (Dlugos et al. 2011) and 

alcohol (Ray and Hutchison 2004), as well as altered pain perception (Olsen et al. 2012b; Peciña 

et al. 2015). The A118G SNP also explained some variability in responses to MOR antagonists 

and agonists (e.g. Anton et al. 2008; Chidambaran et al. 2015). In the current study, we 

oversampled G carriers to examine interactions between this OPRM1 polymorphism and MOR 

drug manipulations on sweet taste perception. We did not however find significant main effects 

or interactions on any measures. This may be a false negative due to low statistical power of our 

candidate gene approach. Although  the A118G SNP has been associated with a range of 

behaviors relevant to opioid receptor functions, several reviews, meta-analyses and original 

articles have failed to replicate published results (e.g. Franke et al. 2001; Mague and Blendy 

2010).  

The prevalence of healthy people showing a strong sweet disliking profile means that on a 

group level, pleasantness ratings of sucrose-water solutions are seldom highly positive (Methven 

et al. 2016; Weafer et al. 2014). Pleasantness evaluations of sucrose-water nevertheless correlate 

closely with ratings of similarly sweet flavored drinks (Looy et al. 1992). The sweet liking 

phenotype appears to be more common in groups with drug addiction or family history of drug 

addiction (e.g. see Janowsky et al. 2003; Kampov-Polevoy et al. 1997; Wronski et al. 2007). 
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Preference for sweet foods has been positively correlated with excess body weight (Berthoud and 

Zheng 2012), while others find no such effect (Bellisle 2010). Obesity and poor eating habits are 

common in patient groups where MOR system function is known to be disrupted, such as in 

chronic pain and drug use disorder (Leknes and Bastian 2014). A recent study demonstrated a 

MOR dysfunction in morbid obesity, which was normalized after bariatric surgery (Karlsson et al. 

2015). Chronic opioid use (both maintenance treatment and abuse) is associated with increased 

craving for and intake of palatable sugary foods and drink (e.g. Mysels and Sullivan 2010; Neale 

et al. 2012; Nolan and Scagnelli 2007).The reduced liking and intake of high-calorie foods 

reported here and elsewhere after acute MOR antagonism may nevertheless have limited 

implications for clinical groups and treatments. For instance, whereas acute treatment with a 

specific MOR antagonist reduced food liking (Nathan et al. 2012), a one-month treatment trial in 

overweight individuals resulted in moderate weight gain in most participants (Ziauddeen et al. 

2013).  

Here, we demonstrate increased liking of the highest-sucrose solution following stimulation 

of the µ-opioid receptor with a non-sedative dose of morphine. Overall, the bidirectional effects 

of MOR agonism and antagonism reported here support the hypothesis that the endogenous MOR 

system encodes liking of high-calorie foods in humans. Our findings align well with an extensive 

rodent literature demonstrating MOR effects on calorie rich foods, and a series of studies 

implicating opioids in feeding behavior across the evolutionary chain – in amoebas, mollusks, 

birds and mammals (Morley 1995). Interestingly, we find no evidence that the effects of MOR 

manipulations differ between sweet likers and dislikers, even though sweet dislikers find the 

sweetest drink aversive. We therefore speculate the µ-opioid receptor system promotes survival 

in part by increasing concordance between the objective (caloric) and subjective (hedonic) value 

of food stimuli, so that feeding behavior becomes more focused on the richest food available.   
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Sweet Liking Phenotype Analyses 

Linear mixed models (LMMs) of intensity and pleasantness ratings from the placebo session 

only were conducted to assess potential differences between phenotype groups on intensity 

perception and overall pleasantness scores. 

The final LMMs for intensity and pleasantness ratings from the placebo condition included 

the fixed effects: sucrose content, phenotype, phenotype*sucrose content, drink order and session. 

As expected, intensity ratings were significantly affected by sucrose content (F1, 705  = 274, p 

< .001). Overall pleasantness ratings were not significantly affected by sucrose content (F4, 693 = 

1.82, p = .122). Importantly, the two phenotype groups did not differ in overall intensity 

perception (F1, 705 = 0.09, p = .768) and the interaction between group and drink was not 

significant (F4, 705 = 1.23, p = .299). In contrast, both the main effect of phenotype and the 

sucrose content*phenotype interaction were significant for pleasantness ratings (F’s > 14.86, p’s 

< .001). On average, sweet likers rated the solutions as significantly more pleasant than did the 

sweet dislikers (means: likers = -0.03, dislikers = -1.07, see Fig. 2 in the main text). Pairwise 

contrasts showed that the phenotype groups differed significantly in their pleasantness ratings of 

all sucrose solutions (all t’s >2.4, all p’s <.04) except for the medium (0.2 M) drink (t691 = 1.20,  

p = .230). Drink order (F’s > 3.8, p’s <.001) significantly affected both types of ratings, but 

session order did not (F’s < 2.54, p’s > .08). ). Hunger, Nausea, BMI and age did not contribute 

to the fit of the model and did not significantly affect ratings (F’s < 2.6, p’s > .10).   
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No effects of MOR gene polymorphism on drug modulation of pleasantness and intensity 

The final LMMs for intensity and pleasantness ratings that assessed effects of genotype 

included the fixed effects: drug, sucrose content, genotype, genotype*drug, sucrose content*drug, 

drug*genotype*sucrose content, drink order, session and age. Genotype did not significantly 

affect sweetness perception (main effect F1, 2125 = 0.36, p = .551, genotype interaction effects, all 

F’s < 1.5, all p’s > .13) or pleasantness ratings (main effect F1, 2060 = 0.01, p = .915, all F’s < 

0.65, all p’s > .45). See Supplementary Figure 1.  

 

 

Supplementary Fig. 1 Estimated marginal means for pleasantness ratings in a) AA 
homozygous participants (n = 27) and b) G-carriers (n = 22) for each drug and sucrose 
solution. In our sample, there was no evidence that G-carriers differ from AA homozygous in 
sweet liking. Error bars are within-subject SEMs.   
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Effects of MOR manipulations on predicted pleasure of food and drink 

Supplementary table 1 contains overview of the final models for the three predicted pleasure 

analyses together with test statistics. For means and standard deviations from raw data see table 3 

in the main text.  

 

Supplementary Table 1: Predicted pleasure (SHAPS) mixed model analysis and results 
 Outcome variable 

Fixed effects 

Overall 
 SHAPS score 
analysis 

Favorite 
beverage Item 
analysis 

Favorite 
food Item 
analysis 

Drug  F = 1.63, p = .196 F = 6.52, p = .002 F = 4.50, p = .012 
Session   F =3.49, p = .031 F = 2.50, p = .083 F = 3.38, p = .039 
Time  F = 1.11, p = .331 F = 1.33, p = .264 F = 10.26, p < .001 
nausea - F = 0.10, p = .755 F = 8.93, p = .003 
hunger - - F = 7.21, p = .008 
drug*session F = 0.92, p = .451 F = 1.23, p = .296 - 
drug*time - - F = 0.64, p = .634 
session*time - - F = 0.67, p = .615 
drug*nausea - F = 3.08, p = .047 - 
drug*session*time - - F = 1.76, p = .052 
df2 421 411 396 

Note: Test statistics and p-values are reported for all variables that contributed to the model fit of the 
predicted pleasure analyses (Overall SHAPS score and the two food related items). Variables that were 
not entered in the final models are marked by a hyphen. All models included a random intercept for the 
subject variable  

 


