
High-performance predictor for critical
unstable generators based on scalable
parallelized neural networks
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open access

Liu, Y., Liu, Y., Liu, J., Li, M., Ma, Z. and Taylor, G. (2016)
High-performance predictor for critical unstable generators
based on scalable parallelized neural networks. Journal of
Modern Power Systems and Clean Energy, 4 (3). pp. 414-426.
ISSN 2196-5420 doi: https://doi.org/10.1007/s40565-016-
0209-4 Available at https://centaur.reading.ac.uk/66653/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.1007/s40565-016-0209-4
To link to this article DOI: http://dx.doi.org/10.1007/s40565-016-0209-4

Publisher: Springer

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

High-performance predictor for critical unstable generators based
on scalable parallelized neural networks

Youbo LIU1, Yang LIU1, Junyong LIU1, Maozhen LI2,

Zhibo MA3, Gareth TAYLOR2

Abstract A high-performance predictor for critical unsta-

ble generators (CUGs) of power systems is presented in this

paper. The predictor is driven by the MapReduce based

parallelized neural networks. Specifically, a group of back

propagation neural networks (BPNNs), fed by massive

response trajectories data, are efficiently organized and

concurrently trained inHadoop to identify dynamic behavior

of individual generator. Rather than simply classifying glo-

bal stability of power systems, the presented approach is able

to distinguish unstable generators accurately with a few

cycles of synchronized trajectories after fault clearing,

enabling more in-depth emergency awareness based on

wide-area implementation. In addition, the technique is of

rich scalability due to Hadoop framework, which can be

deployed in the control centers as a high-performance

computing infrastructure for real-time instability alert.

Numerical examples are studied using NPCC 48-machines

test system and a realistic power system of China.

Keywords Transient stability, Critical unstable generator

(CUG), High-performance computing (HPC), MapReduce

based parallel BPNN, Hadoop

1 Introduction

Transient stability has been widely regarded as one of

the most concerned issues of modern power system. In the

last two decades, a number of large blackouts occurred all

over the world due to the loss of synchronization caused by

cascading failures [1]. Insufficient online implementations

and lack of timely emergency controls, such as load

shedding, generator tripping and proactive islanding, are

said to be the common causes of those accidents [2]. The

increasing renewable energy integration brings dynamic

security deterioration of power systems, which would lead

to the operation risks [3]. However, the deployment of

phasor measurement units (PMUs) provides a promising

way to improve awareness ability of control centers for the

disturbed operation scenarios. PMUs, the infrastructure of

wide-area monitoring system (WAMS) of power system, is

able to measure synchronized phasor data with much

higher sampling frequency compared with supervisory

control and data acquisition (SCADA) [4]. The measure-

ment accuracy is also reported to be sufficiently satisfac-

tory. Since PMUs can grasp the instant response of power

CrossCheck date: 3 June 2016

Received: 30 November 2015 / Accepted: 25 April 2016 / Published

online: 14 July 2016

� The Author(s) 2016. This article is published with open access at

Springerlink.com

& Yang LIU

yang.liu@scu.edu.cn

Youbo LIU

liuyoubo@scu.edu.cn

Junyong LIU

liujy@scu.edu.cn

Maozhen LI

maozhen.li@brunel.ac.uk

Zhibo MA

zhibo.ma@nationalgrid.com

Gareth TAYLOR

Gareth.taylor@brunel.ac.uk

1 School of Electrical Engineering and Information, Sichuan

University, Chengdu 610065, China

2 Electronic and Computer Engineering, Brunel University,

Uxbridge, Middx, London UB8 3PH, UK

3 Senior Power System Engineer, National Grid, Bearwood

road, Wokingham RG6 3DU, UK

123

J. Mod. Power Syst. Clean Energy (2016) 4(3):414–426

DOI 10.1007/s40565-016-0209-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-016-0209-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-016-0209-4&domain=pdf

systems when faults occur, how to utilize the massive

disturbed trajectories has been significantly investigated in

the last decade.

As WAMS are now being deployed in quite a few power

systems, PMU is playing an ever increasingly vital role in

transient stability awareness [5]. A number of researches

have been carried out to evaluate the transient stability by

using PMU data. PMU trajectories based indicators are

considered as the efficient estimators to understand

dynamic features of power systems, especially during

severe disturbances. For example, Alvarez et al proposed

seven trajectory based indices which are suitable for fuzzy

inference on real-time dynamic vulnerability [6]. A phasor

data–based energy function indicator was developed in [7]

aiming at monitoring the dynamic status of power transfer

paths. A real-time transient stability assessment (TSA)

method based on centre-of-inertia estimation from PMU

records was reported in [8]. From voltage stability aspect, a

coupled single-port model was applied to establish WAMS

based assessment indicator [9]. Furthermore, Makarov

et al. [10] presented a review on PMU-based TSA, offering

a clear roadmap for further development.

Machine learning techniques have been widely applied

for TSA. Most of the existing works are focused on the

binary state prediction for global stability using clustering

and classification. For example, support vector machine,

decision tree and artificial neural network (ANN) are

widely used to detect instability of power systems by using

post-fault dynamic data during a few cycles [11–13]. Guo

and Milanović presented a probabilistic framework to

evaluate the accuracy of data mining tools applied for

online prediction of transient stability [14], enabling the

comprehensive analysis of performance of different

implementations.

However, few machine learning techniques have con-

sidered the impact of the critical unstable generators

(CUGs) of power systems. The majority of the researches

have focused on the identification of the global system

status due to the fact that a power system normally has

hundreds of generators which generate massive volumes of

data [15]. As a result, it has become a challenge for stan-

dalone machine learning techniques running on single

computers to deal with stability assessment taking into

account CUGs identification. For example, Passaro et al.

[16] employed adaptive neural network to evaluate stability

for each generator, admitting that standalone neural net-

works can hardly solve the problem in a reasonable time.

For this purpose, applying advanced computing techniques

to enable high-performance training and prediction asso-

ciated with PMU measured data has become a necessity.

It is well known that neural network is highly adapted to

classification tasks [17]. A number of researchers employed

neural network to achieve high accuracy classifications in

both academia and industrial fields. References [18, 19]

figured out that BPNN encounters low efficiency issue due to

large number of sum and sigmoid calculations. Some

researchers focused on speeding up BPNN using cloud

computing techniques. For example, Yuan et al. [20]

implemented parallel BPNN using cloud computing tech-

nique. Ikram et al. [21] also employed cloud computing to

parallelize BPNN in training phase. And also some

researchers focused on solving the issue using MPI [22].

However, their ideas are all based on data separation, which

does not consider the accuracy loss caused by the simple data

separation. Therefore, to improve the efficiency of BPNN

whilst maintains classification accuracy in predicting CUGs,

this paper presents a MapReduce based parallel back prop-

agation neural network(BPNN) algorithm. The algorithm

firstly employs ensemble techniques [23] to complement the

data information loss in data separation. And then the map-

pers in Hadoop clusters start training a number of sub-

BPNNs. Finally, these sub-BPNNs can be employed to

classify instances by fed with a few cycles of post-fault data

and output final prediction results based on majority voting.

2 ANN-based CUGs prediction

2.1 Definition

CUGs are defined as the earliest group of generators

rotor angles of which have a leading or lagging tendency

compared with the rest units after fault clearing. The term

of tendency refers to the given threshold of power angle

difference between any pair of generators. Technically,

CUGs are the most severely disturbed units that may lead

to the ultimate loss of stability [24]. On the other hand, they

are the potential control candidates for emergency tripping

or correction action which is able to quickly diminish

instability risk of power systems. The clustering-based

method of identifying CUGs is detailed in the following

section. Fig. 1 illustrates a few examples of CUGs in terms

of rotor angle trajectories.

The unstable generators is belonged to CUGs, because

their leading (or lagging) rotor angle against other units

must exceed the given threshold which is usually set to be

equal or little smaller than the wide-accepted instability

criterion. For example, Fig. 1a and Fig. 1b illustrate rotor

angle trajectories of CUGs which also contain all the

unstable generators. It is a similar situation in Fig. 1d. In

this situation, all the generators are determined as unsta-

ble ones at the end of observation time window, 150 cycles.

But before that, none of generators reaches the CUG

threshold criterion. Therefore, the strict two-cluster insta-

bility pattern corresponds to the situation that all the gen-

erators are CUGs, such as the case of Fig. 1d. However,

High-performance predictor for critical unstable generators based on scalable parallelized neural… 415

123

unlike Fig. 1a, Fig. 1b and Fig. 1d, Fig. 1c offers the dif-

ferent pattern in which CUGs only are part of unsta-

ble units. Although belongs to the leading cluster, ahead of

other leading generators, the two generators indicated in

Fig. 1c meet CUGs identification criterion at the very

beginning of time windows. These two units are considered

to be the most effective objects for the further control

strategy.

The primary aim of this study is to enable fast CUGs

prediction by means of large-scale parallelized BPNNs

learning method, providing more in-depth information for

situational awareness of power systems transient stability.

2.2 Clusterwise CUGs identification

It is not difficult to distinguish unstable generators from

the rest stable ones through the trajectory plot of rotor

angle in a few seconds, as shown in Fig. 1a, and Fig. 1b.

However, due to the lack of commonly used confirmation

criteria for CUG, a method which is able to identify CUGs

based on k-means clustering algorithm is presented in the

paper. For each fault scenario, CUGs can be confirmed by

means of following procedure.

Step 1: Collect rotor angle trajectory of each generator

in a few seconds.

Step 2: Calculate rotor angle difference of any two

generators i and j cycle by cycle from the very beginning of

post-fault point according to:

DdijðtÞ ¼ diðtÞ � djðtÞ 8i; j ð1Þ

where Ddij(t) is the angle difference between i and j at

cycle point t after fault. If Ddij(t) exceeds the given

threshold, e.g. 170�, where the power system is critically

unstable, then record the time point t. Otherwise, the pro-

cedure is terminated for the next round.

Step 3: Extract a specific power angle trajectory

di(t?Dt) of every individual generator for further analysis.

Here Dt refers to the CUG validation interval. If Dt is

selected to be a relatively large value, like 3 s, it is hardly

possible to distinguish CUGs from subsequently potential

unstable generators. Empirically, Dt is preferably set to be

50 cycles, i.e. 1 s.

Step 4: Classify all the di(t?Dt) trajectories into two

groups by means of widely-used k-means clustering algo-

rithm, followed by calculating center of inertia (COI)

against classified rotors of each individual group A and

B respectively using:

dkCOI ¼
1

Mk
T

XNk

i¼1

Mk
i d

k
i ; Mk

T ¼
XNk

i¼1

Mk
i ; k 2 fA;Bg ð2Þ

where di
k and Mi

k are rotor angle and inertia constant of

generator i which belongs to group k, Nk refers to the

number of generators in group k. It is worth noting that

since the number of clusters is confirmed according to first

swing situation, the replicate k-means, detailed in Appen-

dix A, is employed in order to overcome the drawback of

randomly selecting initial centroids.

2.3 Features selection

According to the previous works, a variety of dynamic

parameters can be selected to compose features vector for

the training procedure of particular machine learning

algorithms. There exist two basic types of feature selection,

i.e. time-series synchronized data such as a few cycles of

voltage trajectory [25] and dynamic performance indices

such as kinetic energy indicator of rotors [11].

In order to avoid information loss, the features in this

study are confirmed to be the straightforward trajectory

data after fault clearing including voltage amplitude, rotor

angle and rotor speed of each individual generator. In

addition, the maximal kinetic energy, a widely-used indi-

cator highly related to disturbance severity of single gen-

erator, is also considered as one of the features. The

features vector of generator n for one sample with time

interval DT is denoted as:

FnðDTÞ ¼ fVðTÞ; dCOIðTÞ; xCOIðTÞ; KEn
COIg ð3Þ

where V(T), dCOI(T) and xCOI(T) represent time-series data

of voltage amplitude, rotor angle and speed during the time

window T, respectively. Let tc denote the exact time when

fault clearing accomplishes, T is acquired from tc to tc?DT.
The symbol KEn

COI refers to the kinetic energy at the instant

of one cycle after fault clearing. It is noted that except

voltage trajectory array, the time-dependent states such as

d and x would be mapped to COI coordinate so as to

consider mechanical effects of generators. The COI

0 50 100 150
-1000

0
1000
2000
3000
4000
5000
6000

0 50 100 150
-600

0
600

1200
1800
2400
3000

0 50 100 150
-150

-100

-50

0

50

100

0 50 100 150
-600

-400

-200

0

200

400

Two CUGs
One CUG

R
ot

or
 a

ng
le

 (°
)

(d)(c)
Cycles Cycles

R
ot

or
 a

ng
le

 (°
)

Cycles
(a) (b)

Cycles

Unstable generator

Unstable generators

Complete CUGs
Two CUGs

Unstable generators

Unstable generator

R
ot

or
 a

ng
le

 (°
)

R
ot

or
 a

ng
le

 (°
)

Fig. 1 Illustration of CUGs

416 Youbo LIU et al.

123

coordinate transformation and kinetic energy calculation

are detailed in [24]. The COI coordinate is a widely

accepted method of considering global pattern of system

stability including the impacts of all the generators. The

COI coordinate is applied in training and prediction stage,

ensuring generalization ability of ANNs for a specific

generator with the inclusion of global impacts of stability

pattern. In addition, it is noted that the shape of transient

voltage recovery which reflects disturbance severity of a

generator closely relates to the stability evaluation of this

generator. The disturbed voltage trajectory is also reported

as a well-performing attribute for machine learning based

transient stability prediction of power systems [25].

Features dimension significantly affects ANN training

performance as well as generalization ability. Large size

dimension is prone to over-fitting while the short one prob-

ably leads to inadvertent information loss. However, it is

difficult to confirm the preferable dimension of feature

candidates before validating fitting performance. In this

regard, the parameters vectors with different dimension are

tested by training a set of parallel ANNs in order to determine

the optimal dimension for the input features. According to

the vector defined by (3), the length of input features, d(DT),
is of linear dependence in terms of DT, shown as:

dðDTÞ ¼ 3� numðDTÞ þ 1 ð4Þ

where the symbol num(DT) refers to the number of cycles

existing during DT interval. The triple means adding the

length of vector containing V(T), dCOI(T) and xCOI(T)

shown in (3). The kinetic energy indicator KEn
COI is

selected as the last feature, adding one more factor into the

final vector of attributes. Taking voltage trajectory of

generator bus as an example, the principle of determining

preferable features dimension is detailed as follows.

As shown in Fig. 2, the time-series voltage amplitude

after fault clearing during DT is taken as a sub-array of

features, i.e. V(T). If DT equals 0.4 s, for example, the

number of cycles during DT is 20 according to PMU data

acquisition frequency. In this case, the total dimension

given by (4) is 61. Aiming to determine the most effective

features dimension for training regarding the trade-off

between accuracy and computing cost, a number of ANNs

fed by diverse dimension features associated with different

DT are trained simultaneously. Specifically, DT is taken

from 0.08 s to 0.56 s with step of 0.04 s, respectively

corresponding to the intervals of 4 to 28 cycles using 2

cycles step-size after fault clearing. That means, for a

single generator n, a set of ANNs denoted as:

ANNn
1 ANNn

2 ANNn
3 . . .ANN

n
13 ð5Þ

are involved in the same training scheme which is chal-

lenged by the extremely computing-intensive machine

learning tasks. However, training ANNs tentatively with all

the potential input dimension is a straightforward way to

ascertain the most generalized structure for the ANN

trained for each generator.

At the output side of ANN, on the other hand, learning

target against each data sample is given to be a binary

variable reflecting status of an individual generator. If a

particular generator is identified to be critically unstable by

clusterwise method, the target status is tagged as 1,

otherwise, it equals to 0.

2.4 Data samples production

A time-domain simulation based program is designed to

automatically produce massive data samples associated

with determined features. Specifically, the data generation

procedure is applied by the following steps.

Step 1: Scale the initial load level of base case through

multiplying active power PLi0 on each bus by a random

stress factor a, while update reactive power QLi using the

constant power factor shown as:

PLi ¼ PLi0ð1þ aÞ i 2 fPQg ð6Þ

QLi ¼ PLi � tan cos�1 PLi0

� ffi
P2
Li0 þ Q2

Li0

q� �� �
ð7Þ

where a ranges from -0.25 to 0.6. All generators, except

the reference one, offset the load variation proportional to

their base generations. The updated output of generator

n can be calculated using:

PGn ¼ PGn0

1þ
P

i2fPQg
aPLi0

P
n 6¼ref

PGn0

0

B@

1

CA n 2 fPVg ð8Þ

Step 2: Execute time-domain simulation for a severe

fault randomly selected from the pre-defined contingency

list. The fault clearing time is applied as a random number

between 0.15 s and 0.35 s. The longer clearing time implies

the higher possibility of instability of power system.

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ΔT1

Post-fault trajectory

Fault point

V
ol

ta
ge

 a
m

pl
itu

de
 (p

.u
.)

Cycles

Fault clearing point

ΔTd 1

ΔTd

Fig. 2 Illustration of confirming features dimension

High-performance predictor for critical unstable generators based on scalable parallelized neural… 417

123

Step 3: Organize features sample for each generator by

using the simulated trajectories according to (3). It is noted

that for any generator, a set of data samples with different

feature dimensions due to the different DT selection (see

Fig. 1) are produced at the same time for further parallel

training, providing a way to determine the ANN structure

with highest generalization ability for each individual

generator.

Step 4: Identify CUGs based on the simulation results

according to the proposed clusterwise method, enabling the

learning target for each data sample.

Step 5: Save all the samples for the current round and

repeat the complete procedure from the first step until the

given total number of iterations is achieved.

In order to enhance generalization level of data samples,

multiple faults are simulated in data producing procedure

to consider N - k (k B 3) scenarios.

3 Methodology of MapReduce based parallel
BPNN

3.1 Issue of data volume

As discussed previously, BPNN has been widely used in

quite a lot fields due to its stable performance and

remarkable classification accuracy [26]. Therefore, we also

employ such type of ANN to create online predictors to

classify CUGs rapidly fed by PMUs measured data.

However, in this study, the time-series statuses of all

generators produce an extremely large volume of data for

ANN learning, which is completely different from the

traditional applications. Traditionally, BPNN is frequently

applied to train hundreds or a few thousands of instances in

order to identify global instability. Thus, the algorithm

generates less overhead. Currently because of the sharp

increase of data volume, BPNN is forced to deal with

massive scale data.

The volume of data is a specific term generally referring

to the computable size and scale of a massive amount of

data. Fig. 3 illustrates the quantification on the data volume

of input instances fed to BPNN training for predicting

CUGs.

In Fig. 3, N represents the total length of selected fea-

tures, M is the number of available samples, and K refers to

the sum of generators. Therefore, the cubic data volume

can be estimated by

Data Volume ¼ ByteðM � N � KÞ ð9Þ

The data volume of fed instances highly affects training

efficiency. For processing one instance, overhead occurs in

both training and classification phases due to a large

number of sum and sigmoid calculations existing in the

network. Additionally, in training phase, BPNN has to

execute back propagation to tune all the parameters, which

generates overhead. At last each instance is not only

trained once but a number of times. The training loops also

generate overhead. Therefore, the standalone BPNN will

meet a critical bottleneck for processing large volume of

data in terms of efficiency. Our data intensive task will

deteriorate the performance of CUGs prediction. This

motivates us to parallelize BPNN using MapReduce [27].

3.2 Parallelization of BPNN

3.2.1 Standalone BPNN

BPNN is a widely used machine learning technique for

classification due to its remarkable function approximation

ability. It normally employs only feed forward to output

final classification result for each input instance according

to the trained weights and biases in training phase. In feed

forward, the definitions of related variables are listed in

Table 1.

The number of inputs in input layer is decided by n, and

the number of outputs in output layer is decided by the

length of the encoded classifications. Therefore, Ij can be

represented by:

Ij ¼
X

i

wijolj þ hj ð10Þ

In typical BPNN, the non-linear equation is frequently

using sigmoid, therefore the output of the jth neuron from

the current layer to next layer can be represented by:

N

M K

Fig. 3 Illustration of the volume of data

Table 1 Definition of variables used in feed forward stage

Variable

symbol

Definition

n Length of one input instance

wij Weight from ith neuron to jth neuron

hj Bias for varying the activity of the jth neuron

olj Output of the jth neuron from last layer

ocj Output of the jth neuron of the current layer

Ij Input of the jth neuron in hidden and output layers

418 Youbo LIU et al.

123

ocj ¼
1

1þ e�Ij
ð11Þ

Output layer finally outputs its ocj which indicates the

classification result, and then feed forward completes.

Following, back propagation starts. In back propagation,

the related variables are defined in Table 2.

Therefore, Errj in output layer is expressed by:

Errj ¼ ojð1� ojÞðtj � ojÞ ð12Þ

while Errj in hidden layers can be represented by:

Errj ¼ ojð1� ojÞ
X

k

Errkwkj ð13Þ

As a result, the weight wij and bias hj can be tuned

using:

wij ¼ wij þ Errjoj ð14Þ

hj ¼ hj þ Errj ð15Þ

BPNN terminates its training procedure based on two

conditions. The first one is that if the loop reaches a certain

number, the algorithm terminates. The second condition is

that if the error reaches a given threshold according to (16)

for the single output and (17) for the multi-outputs:

minðE½e2�Þ ¼ minðE½ðt � oÞ2�Þ ð16Þ

min E eTe
� 	
 �

¼ min E t � oð ÞT t � oð Þ
h i�

ð17Þ

3.2.2 MapReduce and Hadoop framework

MapReduce is a remarkable distributed computing model,

offering twomain operations named asMap andReduce.Map

function is responsible for data processing and computation.

Reduce function, however operates the collecting and out-

putting operations. Specifically, the inputs and outputs for

Map and Reduce are controlled by key-value pairs. Map

processes each input key-value pair {K1, V1} and outputs

intermediate output {K2, V2}. Reduce collects the output

pairs with the same keys and executes merging, shuffling

operations.And thenReduce outputs the final results {V2}.

Among a number of MapReduce implementations

[28, 29], Hadoop framework [30] is the most famous one.

Specifically, the nodes in a Hadoop cluster contribute their

resources including processors, memory, hard disks and

network adaptors to form hadoop distributed file system

(HDFS) which is not only aiming at storing data but also

the basic infrastructure of Hadoop. The nodes are catego-

rized into one NameNode managing the metadata of cluster

and several DataNodes executing computations. The

implementations of Map and Reduce functions in Hadoop

are named as mapper and reducer which are located in

DataNodes. Based on the design of HDFS, Hadoop sup-

plies remarkable scalability, fault tolerance, load balanc-

ing, heterogeneous environment support, and efficiency in

dealing with large volume of data.

3.2.3 Ensemble technique

The presented parallelization of BPNN is based on data

separation. The main idea is to divide the training data set

into a number of sub-sets. Each sub-set is input into a sub-

BPNN maintained by one mapper in the Hadoop cluster.

As a result, each sub-BPNN is only trained by a part of

original data set so as to improve the training efficiency.

However, the merely simple data separation encounters a

problem that partial training data results in insufficiently

trained NN, which may lose accuracy in classification.

Therefore, this paper employs ensemble technique includ-

ing bootstrapping and majority voting. The solution of

insufficient training for sub-BPNN based on bootstrapping

and majority voting [23] is further detailed in Appendix B.

3.2.4 Algorithm design

As long as each bootstrapped sub-set is generated by

using bootstrapping, each instance in one sub-set is defined

in the format of\instancek, targetk, type[, where

instancek represents the bootstrapped instance, which is

the input of neural network; targetk represents the desirable

output if instancek is a training instance; type field has two

values: ‘‘train’’ and ‘‘test’’, which labels the type of in-

stancek. Therefore the sub-BPNN in a mapper is aware of

the instance type moreover executing training or classifi-

cation operations.

Afterwards each individual mapper in the Hadoop cluster

constructs one BPNN and initializes weights and biases with

random values between -1 and 1 for its neurons. And then

the mapper inputs one instance in the form of\instancek,

targetk, type[from one input sub-set of the mapper.

The mapper parses the data and retrieves the type of the

instance. If the type value is ‘‘train’’, the instance is fed

into the input layer. Secondly, each neuron in different

layers computes its output until the output layer generates

an output which indicates the completion of feed forward

process. And then the mapper starts a back propagation

process and updates weights and biases for neurons. If one

Table 2 Definition of variables used in back propagation

Variable symbol Definition

Errj Error-sensitivity of certain layer

tj Desirable output of neuron j in the output layer

Errk Error-sensitivity of one neuron in the last layer

wkj Corresponding weight of Errk

High-performance predictor for critical unstable generators based on scalable parallelized neural… 419

123

input instance is labeled as ‘‘test’’, all the mappers start to

classify the instances. In this case, each mapper generates

an intermediate output in the form of \ instancek, ojm[
where instancek is the key and ojm represents the classifi-

cation result of the mth mapper.

Finally, a reducer collects the intermediate outputs of all

the mappers. As all the outputs have the same key in-

stancek, the reducer merges these outputs into one set, in

which the reducer executes majority voting and outputs the

finally voted result of instancek into HDFS in the form of

\instancek, rk[where rk represents the voted classification

result of instancek. Fig. 4 and Fig. 5 illustrate the algorithm

architecture for training and classification procedure of

MapReduce based BPNN respectively.

Based on the majority voting, a number of sub-BPNNs

(weak classifiers) can form a strong classifier. Therefore,

although each sub-BPNN is only trained by a portion of the

original training data which may lead to the wrongly

classification, the final voted classification result of a

number of sub-BPNNs has a higher chance to be correct

with higher efficiency for dealing with a large volume of

data.

3.3 Implementation framework

The presented technique is able to be implemented to

WAMS application platform, enabling online prediction of

transient stability for each generator after fault clearing.

Compared with the conventional methods only predicting

global stability [16], the proposed approach could provide

more in-depth information for the potential emergency

control which aims to resynchronize the disturbed power

system as fast as possible. The implementation framework

is simply shown in Fig. 6.

As illustrated in Fig. 6, a distributed simulator for fault

response of power systems according to previous study

[31] serves to generate massive data samples based on the

given operation point in a parallel computing environment.

Although it is an off-line procedure from the traditional

concept, however, due to the fast variability of operation

point including unexpected topology change, updating

training samples ensures generalization of data. Therefore,

the simulated fault scenarios which reflect various stability

patterns of all the generators are collected accumulatively

to update sample database in the proposed framework,

resulting in an intensive computation burden of the stan-

dalone ANN training.

In the previous literature, the well-trained ANN is used

as stability predictor which normally does not need update.

However, the generalization of ANN could be enhanced by

means of re-training the updated transient samples. The

presented technique, shown in the dotted frame, enables

high-performance computing framework and algorithm of

large-scale parallelized BPNNs training. The training

Fig. 4 Algorithm architecture of parallelized BPNN training

Fig. 5 Algorithm architecture of parallelized BPNN classification

Fig. 6 Implementation framework built on the presented

technique

420 Youbo LIU et al.

123

efficiency highly depends upon the number of DataNodes,

which operates in a similar way of distributed samples

generation [31].

Theoretically, in order to enable industrial application,

the time consumption of samples update and thousands of

BPNNs re-training could be reduced to an acceptable level,

few minutes for example, by configuring sufficient com-

puting resources based on the scalable Hadoop framework.

The trained parallel BPNNs for each generator are stored in

the distributed environment. When a fault occurs in power

system, the PMUs installed on generator busbars capture

the disturbance signal in a few cycles, providing the tra-

jectories-based features which are imported into the well-

trained parallel CUGs predictors that can avoid time-con-

suming series ANNs prediction. As a result, CUGs infor-

mation, the most leading or lagging generators, will be sent

back to the WAMS application, contributing to further

emergency or correction control.

4 Case study

4.1 Test systems and training data

NPCC 48-machines test system and a provincial power

system in the southwest of China [31] are used to validate

the proposed technique. Details of test systems are shown

in Table 3.

In order to obtain BPNN-based CUGs predictor with

high generalization ability, rich data samples are required,

preferably including all the potential operation conditions

and fault modes. Therefore, massive samples are generated

for both test systems. In this work, a distributed random

fault simulator has been developed to generate massive

samples [31]. Random fault refers to stochastic three-phase

short circuits on any transmission lines. In addition, fault

clearing time is randomly set between 0.1 s to 0.35 s. The

samples generation procedure is in the following steps.

Step 1: Load base case, if the initial outage exists, trip

the component and calculate power flow.

Step 2: Change P and Q on each bus by multiply a

random number in the range of [0.8, 1.4] to simulate load

level, allocate unbalance power to all generators in pro-

portion to their base generation.

Step 3: Implement three-phase fault on a randomly

selected component at time Tf, clear fault at Tf?l, where l
is a random decimal in [0.1, 0.35].

Step 4: Perform time-domain simulation for above

randomly configured operation and fault scenario, collect

output trajectories to calculate features.

The results of data samples production based on the fault

simulator are detailed in Table 4. In addition, the volume

of data which are fed to train and validate parallel BPNNs

in this study is shown in Table 5 according to (9).

In Table 5, Vmax and Vmin represent the maximal and

minimal block of data samples for individual generator in

test systems. Table 4 and Table 5 indicate that the massive

samples production as well as DT-dependent features def-
inition for generators according to (5) results in a huge

volume of data. However, a standalone BPNN inputs

instances one by one leading to both sizable IO overhead

and considerable computational overhead. As a result, the

most reasonable way of identifying the CUGs in such a

great volume of data is to apply the presented parallel

BPNN which parallelizes both training and classification

phase. Furthermore, it is the most feasible approach to

enable WAMS application integrated with CUGs predic-

tion according to the architecture in Fig. 6.

4.2 Computing cluster configuration

In order to evaluate the performance of MapReduce

based parallel BPNN enabling predicting CUGs after fault

clearing, a practical Hadoop cluster was built up. The

cluster contains ten nodes, nine of which are Datanodes and

the rest one is Namenode. Table 6 shows the configuration

of the cluster.

Table 3 Details of test system

Test system Bus Branch Generator Base load (GW)

System I 140 233 48 28.03

System II 762 889 146 13.56

Table 4 Details of simulated samples

Test system Fault modes Stable Unstable

N-1 N-2 N-3

System I 8450 4600 2950 11,426 4574

System II 14,252 6223 3525 17,208 6792

Table 5 Volume of data

Test system Total volume (GB) Vmax (MB) Vmin (MB)

System I 5.188 14.67 2.77

System II 20.042 21.78 3.94

Table 6 Configuration of computing cluster

CPU

(GHz)

Memory

(G)

SSD (G) Operating

system

Namenode Core i7@3 8 750 Fedora

Datanode Core i7@3.8 32 250 Fedora

High-performance predictor for critical unstable generators based on scalable parallelized neural… 421

123

4.3 Evaluation of MapReduce based parallel BPNN

4.3.1 Precision of CUGs prediction

In this evaluation, we tested the algorithm precision of

the generator status prediction. In terms of precision, when

the number of training instance is large, the presented

MapReduce based parallel BPNN has the same precision

compared to that of standalone BPNN. Therefore, the fol-

lowing only lists the precision of the parallel BPNN

without comparison with a standalone BPNN algorithm.

Fig. 7 illustrates the precision of CUG identification for

two test systems.

The figure recording the CUGs predicting precision of

test systems indicates that the parallel BPNN is of satis-

factorily high precision in identifying the generators tran-

sient status during the post-fault period of power systems.

The average precisions for all generators of two test sys-

tems are 99.18% and 98.57% respectively.

However, it is worth noting that features dimension

which depends upon the determination of DT affects CUGs

prediction precision. In this study, we choose BPNNs

possessing the highest average precision to be the CUGs

predictor, even though it is not the best DT choice for all

the generators. Table 7 gives the details.

Table 7 indicates that when the value of DT equal to 5

cycles and 8 cycles respectively, two test systems get the

BPNNs predictor with highest average precision. However,

the particular machines, 3rd generator in system I and 16th

generator in system II for example, could only obtain their

most precise NN-based predictors by setting longer DT.

4.3.2 New samples validation

In order to test the generalization ability of parallelized

ANNs based CUGs predictor, thousands of new simulated

samples of two test systems are generated and fed into the

trained ANNs to assess their prediction precision. The

additional samples information is listed in Table 8.

Aiming to validate the comprehensive performance of

MapReduce based CUGs predictor with new data cases, the

numerical studies are investigated by retraining the BPNNs

using the initial data samples introduced in Table 4 with

different DT setting. Then the well-trained BPNNs are

applied to predict CUGs using the data of new cases as

input with the corresponding DT setting. The test results of

precision statistics are provided in Table 9.

The validation results listed in Table 9 indicate that the

parallelized BPNNs based on the presented technique have

a well-performance of generalization ability for the new

data cases which are not included in the training data set.

4.3.3 Features dimension impact analysis

As discussed above, the features dimension determined

by DT according to (3) is highly related to the prediction

precision. However, it is hardly to understand in advance

that which DT choice is of the highest precision. Owing to

MapReduce and HDFS technique, the parallelized BPNNs

with thirteen types of features dimension for every single

generator are trained and validated at the same time.

In this test, we focus on the comparison of algorithm

precision with increasing dimension of the instance. Fig. 8

shows the variation of CUGs prediction precision against

the change of DT.

Table 7 Precision details of test systems

Test system DT (s) Average precision (%) Generator with lowest precision

Generator No. Precision (%) DTbest (s)

System I 0.10 99.18 3rd 95.82 0.20

System II 0.16 98.57 16th 95.59 0.22

0 5 10 15 20 25 30 35 40 45 50
92
93
94
95
96
97
98
99

100
Pr

ec
is

io
n

(%
)

Generator number (System I)

0 25 50 75 100 125 150
93
94
95
96
97
98
99

100

Pr
ec

is
io

n
(%

)

Generator number (System II)

Fig. 7 Precision of predicted CUGs

422 Youbo LIU et al.

123

It can be observed that, along with an increasing number

of elements involved in an instance, the final precision of

BPNNs trained for single generator changes in a nonlinear

way. It is assumed that over-fitting largely affects training

procedure. Moreover, due to the major part of generators

obtain their most accurate BPNNs when DT equal 0.1 s and

0.16 s respectively in System I and System II, the average

precisions are highest by selecting these DT for all gener-

ators. Fig. 9 illustrates statistical distribution of BPNNs

with highest precision in term of DT.

4.3.4 Validation of ensemble training

Figure 10 indicates that the presented ensemble based

neural network algorithm outperforms the standalone

neural network in terms of precision.

The figure shows that, when the number of training

instance is small, the precision of the ensemble training

strategy in the presented parallel BPNN outperforms that of

a standalone BPNN algorithm. The figure also tells that the

precision of ensemble training strategy increases stably

without fluctuations.

4.3.5 Algorithm efficiency

In this test, we primarily focused on the evaluation of

algorithm efficiency. We duplicate the training data from 1

MB to 1024 MB, with 16 mappers employed. The exper-

imental result is shown in Fig. 11.

It can be observed that when the data size is small, the

standalone BPNN outperforms the parallel BPNN due to

the overhead of Hadoop framework. However, when the

data size keeps increasing, the parallel BPNN can still

execute efficiently. Contrarily, the standalone BPNN needs

more time to execute the data processing.

According to the test result, the time consumption of

training 1 GB data by standalone BPNN costs around 9000

Table 8 Details of new cases for prediction precision test

Test system Fault modes Stable Unstable

N-1 N-2 N-3

System I 1210 820 384 1722 692

System II 2290 1315 945 3295 1255

Table 9 Results of new sample cases test

Test system DT Average precision (%) Generator with lowest precision

Generator no. Precision (%)

System I 0.06 97.24 3rd 94.82

0.08 98.09 5th 95.17

0.10 98.32 12th 95.98

0.12 99.07 3rd 96.72

System II 0.12 97.21 16th 94.51

0.14 98.37 76th 95.66

0.16 98.82 16th 95.37

0.18 98.66 35th 95.29

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
93
94
95
96
97
98
99

100

Pr
ec

is
io

n
(%

)

ΔT (System I)

 8th Generator
 3rd Generator

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
93
94
95
96
97
98
99

100

Pr
ec

is
io

n
(%

)

 14th Generator
 16th Generator

ΔT (System II)

Fig. 8 Variation of prediction precision against the change of DT

High-performance predictor for critical unstable generators based on scalable parallelized neural… 423

123

s. It is obviously not acceptable for continually updated

samples production application, such as the technique

architecture presented in Fig. 6. In order to investigate

efficiency of the presented CUGs prediction algorithm, the

comprehensive comparison in term of training time con-

sumption is performed in Table 10.

The efficiency comparison indicates that along with the

computing resource increasing, the algorithm processing

time is largely reduced without accuracy loss. If more

Datanodes are configured, the efficiency will be further

improved so as to accomplish training procedure in a few

minutes even a few seconds. That enables the on-line

training for the huge bulk of updated samples.

5 Conclusion

This paper presents a high-performance CUGs predic-

tion approach using MapReduce based parallel BPNN. Our

work in the first place employs time domain simulation to

generate massive disturbed scenarios using the published

fault simulator. Secondly we propose features selection

principles to produce feature vector which represents the

system status with reasonable data dimension. Thirdly for

overcoming the disadvantages of standalone application,

MapReduce based BPNNs technique is developed aiming

to facilitate simultaneous training for every single gener-

ator. The presented methodology employs ensemble tech-

nique and data separation to enhance the training

efficiency, whilst it uses data separation in enabling scal-

able integration of computing resource as well as large

classification efficiency improvement. The experiment

results show that the presented technique is able to predict

CUGs especially in large-scale data with high accuracy and

efficiency, providing a way to in-depth awareness of sta-

bility based on WAMS architecture.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix A

Generally k-means algorithm tries to minimize the

within-cluster sum of squares, that is, to minimize

argmin
S

Xk

i¼1

X

xj2Si
D2 xj; li

 �

Table 10 Efficiency comparison

Standalone

BPNN (h)

MapReduce based Parallel BPNNs

2 Datanode

(s)

5 Datanode

(s)

9 Datanode

(s)

System I 6.5 2482 1148 682

System II 23.4 9233 3827 2083

0 1

6

23

2
4

6

0
4

2
0 0 0

0 0 2 4
14

23

72

12 7 4 8
0 0

0

5

10

15

20

25

N
um

be
r o

f g
en

er
at

or
s

0

20

40

60

80

N
um

be
r o

f g
en

er
at

or
s

ΔT (System II)

0.04
0.06

0.08
0.10

0.12
0.14

0.16
0.18

0.20
0.22

0.24
0.26

0.28
0.30

ΔT (System I)

0.04
0.06

0.08
0.10

0.12
0.14

0.16
0.18

0.20
0.22

0.24
0.26

0.28
0.30

Fig. 9 Distribution of BPNNs with highest precision

92

93

94

95

96

97

98

3303002702402101801501209060

Pr
ec

is
io

n
(%

)

Number of training instances

 Ensemble training
 Standard training

300

Fig. 10 Precision of less number of training instances

0

2000

4000

6000

8000

10000

2048128 102451225664168421 32

Ef
fic

ie
nc

y
(s

)

Data size (megabytes)

 Parallel BPNNs
 Standalone BPNN

0
-2000

Fig. 11 Distribution of BPNNs with highest precision

424 Youbo LIU et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

where k is the number of cluster, Si is the set of the ith

cluster (or elements in the ith cluster), li is the mean of the

points in ith cluster and D2(xj, li) is the distance between

point xj and li.

Assign K clusters

Randomly choose K points as the
centroid points for the K clusters

Assigning each point to the cluster with
the most similarity (shortest distance)

Calculate new centroid for the current
grouping

Convergence or not ?

Y

N

Start

End

The above flow chart is the primary procedure of k-

means algorithm. The third and fourth step can be further

expressed as following mathematic equations respectively

S
ðtÞ
i ¼ xp : D xp; l

ðtÞ
i

�
�D xp; l

ðtÞ
j

�
81� j� k

on

m
ðtþ1Þ
i ¼ 1

S
ðtÞ
i

���
���

X

xj2SðtÞi

xj

where (t) means the tth iteration and |Si
(t)| denotes the

number of elements in ith set (Si). Each point xp is assigned

to exactly one set Si.

The ‘‘replicate’’ indicates the number of times to repeat

the clustering, each with a new set of initial cluster centroid

positions. k-means returns the solution with the lowest

value for sum of distance. The times to repeat the clus-

tering depends on the distinction in clustering data. The

choice of the initial clustering center has a large effect on

the clustering results. It may lead bad results if the initial

clustering center is not appropriate. In this case, increase

the times to repeat the clustering with different set of initial

cluster centroid positions can improve the accuracy of

clustering results.

Appendix B

To solve the issue of insufficient training for sub-BPNN,

the solution is to re-sample the training dataset based on

bootstrapping and then execute majority voting. The

operations are able to reduce the misclassification errors

and increase the classification accuracy. Balanced boot-

strapping ensures that each training instance equally

appears in the bootstrap samples. However, it might not be

always the case that each bootstrapping sample contains all

the training instances. The method to create the balanced

bootstrap samples is to construct a number of instances X1,

X2, X3,…, Xn repeating B times so that a sequence of Y1, Y2,

Y3,…,YBn is achieved. A random permutation p of the

integers from 1 to Bn is taken. Therefore the first boot-

strapping sample can be created from Yp(1), Yp(2),

Yp(3),…, Yp(n), moreover the second bootstrapping sample

from Yp(n?1), Yp(n?2), Yp(n?3),…, Yp(2n) and so on,

until Yp((B-1)n?1), Yp((B-1)n?2), Yp((B-1)n?3),…,

Yp(Bn) is the B
th bootstrapping sample. The majority voting

is a commonly used combination technique. The ensemble

classifier predicts a class for a testing instance which is

predicted by the majority of base classifiers.

References

[1] Baldick R, Chowdhury B, Dobson I et al (2009) Vulnerability

assessment for cascading failures in electric power systems. In:

Proceedings of the 2009 power systems conference and expo-

sition (PSCE’09), Seattle, WA, 15–18 Mar 2009, 9 pp

[2] Vaiman M, Bell K, Chen Y et al (2012) Risk assessment of

cascading outages: methodologies and challenges. IEEE Trans

Power Syst 27(2):631–641

[3] Miao L, Fang JK, Wen JY et al (2013) Transient stability risk

assessment of power systems incorporating wind farms. J Mod

Power Syst Clean Energy 1(2):134–141. doi:10.1007/s40565-

013-0022-2

[4] De La Ree J, Centeno V, Thorp JS et al (2010) Synchronized

phasor measurement applications in power systems. IEEE Trans

Smart Grid 1(1):20–27

[5] Makram EB, Vutsinas MC, Girgis AA et al (2012) Contingency

analysis using synchrophasor measurements. Electr Power Syst

Res 88(1):64–68

[6] Alvarez JMG, Mercado PE (2007) Online inference of the

dynamic security level of power systems using fuzzy techniques.

IEEE Trans Power Syst 22(2):717–726

[7] Chow JH, Chakrabortty A, Arcak M et al (2007) Synchronized

phasor data based energy function analysis of dominant power

transfer paths in large power systems. IEEE Trans Power Syst

22(2):727–734

[8] Cepeda JC, Rueda JL, Colomé DG et al (2014) Real-time

transient stability assessment based on centre-of-inertia estima-

tion from phasor measurement unit records. IET Gener Transm

Distrib 8(8):1363–1376

[9] Liu JH, Chu CC (2014) Wide-area measurement-based voltage

stability indicators by modified coupled single-port models.

IEEE Trans Power Syst 29(2):756–764

High-performance predictor for critical unstable generators based on scalable parallelized neural… 425

123

http://dx.doi.org/10.1007/s40565-013-0022-2
http://dx.doi.org/10.1007/s40565-013-0022-2

[10] Makarov YV, Du PW, Lu S et al (2012) PMU-based wide-area

security assessment: Concept, method, and implementation.

IEEE Trans Smart Grid 3(3):1325–1332

[11] Gomez FR, Rajapakse AD, Annakkage UD et al (2011) Support

vector machine-based algorithm for post-fault transient stability

status prediction using synchronized measurements. IEEE Trans

Power Syst 26(3):1474–1483

[12] Kamwa I, Samantaray SR, Joos G (2010) Development of rule-

based classifiers for rapid stability assessment of wide-area post-

disturbance records. In: Proceedings of the 2010 IEEE PES

general meeting, Minneapolis, MN, 25–29 Jul 2010, 1 pp

[13] Xu Y, Dong ZY, Zhao JH et al (2012) A reliable intelligent

system for real-time dynamic security assessment of power

systems. IEEE Trans Power Syst 27(3):1253–1263

[14] Guo TY, Milanović JV (2014) Probabilistic framework for

assessing the accuracy of data mining tool for online prediction

of transient stability. IEEE Trans Power Syst 29(1):377–385

[15] Hashiesh F, Mostafa HE, Khatib AR et al (2012) An intelligent

wide area synchrophasor based system for predicting and miti-

gating transient instabilities. IEEE Trans Smart Grid

3(2):645–652

[16] Al-Masri AN, Ab Kadir MZA, Hizam H et al (2013) A novel

implementation for generator rotor angle stability prediction

using an adaptive artificial neural network application for

dynamic security assessment. IEEE Trans Power Syst

28(3):2516–2525

[17] Cui MJ, Ke DP, Gan D et al (2015) Statistical scenarios fore-

casting method for wind power ramp events using modified

neural networks. J Mod Power Syst Clean Energy 3(3):371–380.

doi:10.1007/s40565-015-0138-7

[18] Gu R, Shen FR, Huang YH (2013) A parallel computing plat-

form for training large scale neural networks. In: Proceedings of

the 2013 IEEE international conference on big data, Silicon

Valley, CA, 6–9 Oct 2013, pp 376–384

[19] Rizwan M, Jamil M, Kothari DP (2012) Generalized neural

network approach for global solar energy estimation in India.

IEEE Trans Sustain Energy 3(3):576–584

[20] Yuan JW, Yu SC (2014) Privacy preserving back-propagation

neural network learning made practical with cloud computing.

IEEE Trans Parallel Distrib Syst 25(1):212–221

[21] Ikram AA, Ibrahim S, Sardaraz M et al (2013) Neural network

based cloud computing platform for bioinformatics. In: Pro-

ceedings of the 2013 IEEE Long Island conference on systems

applications and technology (LISAT’13), Farmingdale, NY, 3

May 2013, 6 pp

[22] Long LN, Gupta A (2008) Scalable massively parallel artificial

neural networks. J Aerosp Comput Inf Commun 5(1):3–15

[23] Alham NK (2011) Parallelizing support vector machines for

scalable image annotation. PhD Thesis. Brunel University,

London

[24] Kundur P (2012) Power system stability and control, 3rd edn.

McGraw-Hill, New York

[25] Rajapakse AD, Gomez F, Nanayakkara K et al (2010) Rotor

angle instability prediction using post-disturbance voltage tra-

jectories. IEEE Trans Power Syst 25(2):947–956

[26] Hagan MH, Demuth HB, Beale MH (1996) Neural network

design. PWS Publishing Company, Boston

[27] Dean J, Ghemawat S (2008) MapReduce: simplified data pro-

cessing on large clusters. Commun ACM 51(1):107–113

[28] He BS, Fang WB, Govindaraju NK et al (2008) Mars: a

MapReduce framework on graphics processors. In: Proceedings

of the 17th international conference on parallel architectures and

compilation techniques (PACT’08), Toronto, 25–29 Oct 2008,

pp 260–269

[29] Taura K, Kaneda K, Endo T et al (2003) Phoenix: a parallel

programming model for accommodating dynamically joining/

leaving resources. ACM SIGPLAN Notices 38(10):216–229

[30] Apache Hadoop. http://hadoop.apache.org/. Accessed 07 June

2016

[31] Liu YB, Liu Y, Liu JY et al (2014) A cloud computing frame-

work for cascading failure simulation and analysis of large-scale

transmission systems. In: Proceedings of the 2014 international

conference on power system technology (POWERCON’14),

Chengdu, 20–22 Oct 2014, pp 287–293

Youbo LIU received the PhD degree in electrical engineering from

Sichuan University, China, in 2011. He is currently a lecturer with the

School of Electrical Engineering and Information, Sichuan Univer-

sity, China. His research interests mainly include cascading failure

modeling and analysis, machine learning application, and data-driven

optimal operation of power systems.

Yang LIU is an associate professor with the School of Electrical

Engineering and Information, Sichuan University, China. His research

interests include distributed computing technologies, high-perfor-

mance information retrieval, and big data analysis in power systems.

Junyong LIU received the PhD degree in electrical engineering from

Brunel University, UK, in 1998. He is currently a Professor with the

School of Electrical Engineering and Information, Sichuan Univer-

sity, China. His current research interests include power system

planning, operation, stability, and big data application.

Maozhen LI is a professor with the School of Electronic and

Computer Engineering, Brunel University, UK. His research interests

include high-performance computing, big data analysis, information

retrieval and distributed machine learning techniques.

Zhibo MA received his B.Sc. degree from the Sichuan University,

China, in 2007, and the M.Sc. degree in power systems from the

University of Bath, Bath, in 2008. He is pursuing PhD degree from

University of Bath since 2012. He worked various positions in

National grid UK since 2009 and currently he is a senior power

system engineer in Electricity Control Center. His current research

interests include smart grids, renewable energy, and system control.

Gareth A. TAYLOR received his B.Sc. degree from the University

of London, London, UK, in 1987, and the M.Sc. and PhD degrees in

power systems from the University of Greenwich, London, in 1992

and 1997, respectively. He was the National Grid UK. Post-Doctoral

Scholar at Brunel University, London, from 2000 to 2003. He is

currently a Professor and Director within the Brunel Institute of

Power Systems, Brunel University London. His current research

interests include smart grids, wide area monitoring of power systems,

and network optimization.

426 Youbo LIU et al.

123

http://dx.doi.org/10.1007/s40565-015-0138-7
http://hadoop.apache.org/

	High-performance predictor for critical unstable generators based on scalable parallelized neural networks
	Abstract
	Introduction
	ANN-based CUGs prediction
	Definition
	Clusterwise CUGs identification
	Features selection
	Data samples production

	Methodology of MapReduce based parallel BPNN
	Issue of data volume
	Parallelization of BPNN
	Standalone BPNN
	MapReduce and Hadoop framework
	Ensemble technique
	Algorithm design

	Implementation framework

	Case study
	Test systems and training data
	Computing cluster configuration
	Evaluation of MapReduce based parallel BPNN
	Precision of CUGs prediction
	New samples validation
	Features dimension impact analysis
	Validation of ensemble training
	Algorithm efficiency

	Conclusion
	Open Access
	Appendix A
	Appendix B
	References

