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Abstract
The aging process leads to alterations of gut microbiota and modifications to the immune

response, such changes may be associated with increased disease risk. Prebiotics and

probiotics can modulate microbiome changes induced by aging; however, their effects have

not been directly compared. The aim of this study was to use anaerobic batch culture fer-

menters to assess the impact of various fermentable carbohydrates and microorganisms on

the gut microbiota and selected immune markers. Elderly volunteers were used as donors

for these experiments to enable relevance to an aging population. The impact of fermenta-

tion supernatants on immune markers relevant to the elderly were assessed in vitro. Levels
of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture superna-

tants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and

inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation

supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifi-
dum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 pro-

duction, induced by LPS, was enhanced by fermentation supernatants from faecal batch

cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and
Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to poten-

tially beneficial effects to host health by targeting specific bacterial groups, increasing sac-

charolytic fermentation and decreasing inflammation associated with aging. Compared to

probiotics, prebiotics led to greater microbiota modulation at the genus level within the

fermenters.

Introduction
Currently, there is an increase in life expectancy, thus a rapidly aging population. According to
WHO, the population of adults aged 60 and over has doubled since 1980, and by 2050 this
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figure is forecast to reach 2 billion, outnumbering children under 14 years of age [1]. The aging
population has several health issues, these may include reduced organ function and compro-
mised immune system. Intestinal motility and transit time are slow in older people; this can
lead to faecal impaction and constipation [2–4]. Slow colonic transit can also bring about
increases in detrimental metabolites of proteolytic bacteria, such as ammonia and amines [5].
There are also problems associated with the diet of elderly people, for example, more limited
foods, incorporating less carbohydrates and fewer nutrients [5]. This may be a result of higher
thresholds for taste and smell than younger adults [6] and loss of tooth function with difficul-
ties in masticating [7] and swallowing [8].

Elderly populations have a depleted immune defence to exogenous infectious agents but
may experience increased immune response to endogenous signals caused by damage of host
cells and tissues [9]. This process is loosely termed immunosenescence [10]. Increased levels of
cytokines, such as interleukin-6 (IL-6), IL-1β, and tumour necrosis factor-α (TNF-α),
decreased phagocytosis and natural killer (NK) cell activity have been observed in elderly pop-
ulations [11–13]. During aging, the clearance of apoptotic cells is impaired and incomplete
[14]. As such, abnormal immune responses including autoimmunity are observed during
immunosenescence. In addition, naive B cells generated by bone marrow decrease with increas-
ing age [15], resulting in a reduced ability to protect the host against infectious agents.

There are a great variety of microorganisms inhabiting the human intestinal tract, which is
important in maintaining host health and providing a natural defence against invading patho-
gens [16, 17]. Due to age-related changes in the gastrointestinal tract, such as decreased transit
time and increased mucosal membrane permeability [18], as well as changes in diet and immune
function, microbial dysbiosis may occur in elderly populations [13]. Studies have shown
decreased viable counts of Bacteroides in the elderly compared to younger adults [19, 20]. A
reduction of bifidobacteria in terms of numbers and species diversity is also a notable change in
elderly populations [19–25]. An increase in facultative anaerobes, such as streptococci, entero-
cocci and enterobacteria is a confirmed age-related phenomenon [20, 21, 23, 26–28].

Overall changes in microbial numbers and species diversity may lead to a reduction in gut
function which impacts on the immune response, and potentially results in greater susceptibil-
ity to gastrointestinal disorder and metabolic syndrome [24, 28]. In addition, aging is associ-
ated with declined mucin production which may lead to increased gut barrier permeability and
may enable resident microbiota to more easily traverse gut epithelium cells [29]. A damaged
mucosal barrier function with changes in the gut microbiota in elderly people may therefore
increase translocation of pathogens and susceptibility to infection [29]. Consequently, these
will lead to immune dysregulation. The triadic relationship between an impaired gastrointesti-
nal tract, imbalanced gut microbiota and inflammation has been associated with disease risk in
elderly populations, such as infections, colorectal cancer [29] and Clostridium difficile associ-
ated diarrhoea [30].

The aging population are prone to infections; therefore, there should be heightened atten-
tion to their physiological welfare. Several in vitro and in vivo approaches have shown that pre-
biotics and probiotics can modulate the gut microbial composition towards a potentially
healthier community structure in the elderly [2, 13, 31–33]. They have also been shown to
improve immune function in elderly persons [13, 34–36]. A dietary prebiotic is ‘a selectively
fermented ingredient that results in specific changes, in the composition and/or activity of the
gastrointestinal microbiota, thus conferring benefit(s) upon host health’ [37]. Probiotics are
‘live microorganisms that, when administered in adequate amounts, confer a health benefit on
the host’ [38, 39].

The prebiotics B-GOS and inulin have been shown to modulate microbiota composition in
elderly persons [2, 13]. B-GOS has also been found to enhance immune function [13].
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Compared to inulin, short chain FOS has also been shown to improve immune function in
older persons [34, 40, 41]. Two synbiotics containing mixtures of Bifidobacterium bifidum BB-
02, Bifidobacterium lactis BL-01 and inulin, and a mixture of Lactobacillus acidophilus and lac-
titol, were shown to exert positive effects on microbiota composition in healthy elderly persons
[16, 42]. Bacillus coagulans GBI-30, 6086 (GanedenBC30 (BC30)) has the potential to suppress
the growth of pathogens [43]. In an in vitro study, both the cell wall and the metabolite frac-
tions of BC30 were shown to possess immune modulation properties, anti-inflammatory
effects and direct induction of IL-10 [36].

Few studies have directly compared the efficacy of both probiotics and prebiotics in modu-
lation of gut microbiota composition and immune function within the same setting. By target-
ing a population aged 60–75 it may be possible to target the microbiota and the immune
changes in their early stages. Therefore, the aim of this study was to use an in vitro approaches
with samples from donors aged 60–75 years to compare the impact of prebiotics and probiotics
on the gut microbiota and selected immune markers relevant to the elderly. Common commer-
cial prebiotic and probiotic products were used. Inulin and B-GOS were used as prebiotics; Bifi-
dobacterium bifidum, Lactobacillus acidophilus, and Bacillus coagulans were used as probiotics.
Placebos were microcrystalline cellulose and maltodextrin. Bac. thetaiotaomicron and S. typhi-
murium were also used to investigate the influences of commensal bacteria and a pathogen
respectively on the test parameters.

Materials and Methods

Chemicals
Bacteriological growth medium supplements were obtained from Oxoid Ltd. (Basingstoke,
Hants, U.K.). Inulin was obtained from BENEO GmbH (Mannheim, Germany) and B-GOS
from Clasado Ltd (Milton Keynes, UK). All nucleotide probes used for fluorescent in situ
hybridisation (FISH) were commercially synthesised and labelled with the fluorescent dye Cy3
at the 50 end (Sigma-Aldrich Co. Ltd., Spain). Sterilisation of media and instruments was car-
ried out by autoclaving at 121°C for 15 min.

Bacterial strains and culture preparation
Bacillus coagulans: GBI-30 (PTA-6086, GanedeBC30TM) was sourced from American Type
Culture Collection (Manassas, United States) and Bacteroides thetaiotaomicron NCTC 10582
from Health Protection Agency Culture Collection (Salisbury, UK). For Bifidobacterium bifi-
dum NCIMB 30179 (PXN23), Lactobacillus acidophilusNCIMB 30179 (PXN23), Bacteroides
thetaiotaomicron NCTC 10582 and Salmonella typhimurium SL134. For each organism growth
curves of optical density (OD660nm) against colony forming units (CFU) per millilitre were con-
ducted in triplicate by regular sampling of 48 hour cultures. B. bifidum and L. acidophilus were
grown in de Man—Rogosa—Sharpe (MRS) broth (10 ml) (Oxoid Ltd, Basingstoke, Hampshire,
UK), at 37°C to late log phase under anaerobic (10:10:80%; H2:CO2:N2) conditions. After
centrifuging at 14 000 g for 10 min, supernatants were removed. According to growth curves
and standards, concentrations of cells were adjusted to 5×108 CFU/ml by addition of anaerobic
phosphate buffered saline (1 M, pH 7.4). Finally, 1ml of 5×108 CFU/ml of cells was added to
batch culture vessels immediately. S. typhimurium was grown in Luria Bertani (LB) broth (10
ml) (Oxoid Ltd, Basingstoke, Hampshire, UK) to late log phase in a shaking incubator at 37°C.
Bac. thetaiotaomicron was grown in nutrient broth (10 ml) (Oxoid Ltd, Basingstoke, Hamp-
shire, UK) to late log phase anaerobically (10:10:80%; H2:CO2:N2) at 37°C. They were treated
in the same way as the probiotics before adding to the batch culture fermenters. 1ml of 5×108
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CFU/ml of Salmonella typhimurium SL1344 and 1ml of 5×108 CFU/ml of Bacteroides thetaio-
taomicron NCTC 10582 were added to corresponding batch culture vessels immediately.

Bacillus coagulans GBI-30 product contained 1×109 CFU in each capsule. Half a capsule
(5×108 CFU) was suspended in 1ml phosphate buffered saline (1 M, pH 7.4). The cells were
then immediately added to batch culture vessels.

Faecal sample preparation
Faecal samples were collected from three individuals (62–66 years of age). All volunteers were
in good health and had not ingested antibiotics for at least 6 months before the study. Samples
were collected on site on the day of the experiment and were used immediately. These were
diluted 1:10 (w/v) with anaerobic phosphate buffered saline (PBS; 0.1 M; pH 7.4) and homoge-
nised in a stomacher for 2 min (460 paddle beats/min). Resulting faecal slurries from each indi-
vidual were used to inoculate batch culture vessels.

Faecal batch culture fermentation
Three separate fermentation experiments were carried out. Batch culture fermentation vessels
were autoclaved and aseptically filled with 135 ml of basal nutrient medium (peptone water (2
g/l), yeast extract (2 g/l), NaCl (0.1 g/l), K2HPO4 (0.04 g/l), KH2PO4 (0.04 g/l), NaHCO3 (2 g/
l), MgSO4�7H2O (0.01 g/l), CaCl2�6H2O (0.01 g/l), tween 80 (2 ml/l), hemin (50 mg/l), vitamin
K1 (10 ml/l), L-cysteine (0.5 g/l), bile salts (0.5 g/l), resazurin (1 mg/l)). The vessels were gassed
overnight with O2-free N2 (15 ml/min). Before addition of the faecal slurries, temperature of
the basal nutrient medium was set to 37°C by use of a circulating water bath and pH was main-
tained at 6.8 using a pH controller (Electrolab, UK). The vessels were inoculated with 15 ml of
faecal slurry (1:10, w/w), and in order to mimic conditions located in the distal region of the
human large intestine the experiment was carried out under anaerobic conditions, 37°C and
pH 6.8− 7.0 for a period of 48 h. During this period, samples (10 ml) were collected at six time
points (0, 5, 10, 24, 30 and 48 h). Fluorescent in situ hybridisation was used for bacterial enu-
meration and gas chromatography (GC) for organic acid analysis.

Inoculation of substrate in the batch culture
Batch culture fermentations were conducted using a range of treatments: control (no treat-
ment), trans-galactooligosaccharides mixture (manufactured by Clasado Ltd) called BiMuno1

(B-GOS, 1.5g), standard inulin (Orafti1 ST, Beneo, Tienen, Belgium; 1.5g), microcrystalline
cellulose (1.5g), maltodextrin (1.5g), B. bifidum (5×108 CFU), L. acidophilus (5×108 CFU), Ba.
coagulans (5×108 CFU); Bac. thetaiotaomicron (5×108 CFU, commensal bacteria); and S. typhi-
murium (5×108 CFU, pathogen). B-GOS and inulin are common commercial prebiotics. B.
bifidum, L. acidophilus and Ba. coagulans are common commercial probiotics. Microcrystalline
cellulose and maltodextrin were used as placebo treatments compared to prebiotics. Bac. the-
taiotaomicron and S. typhimurium were also used to investigate the influences of a commensal
bacterium and pathogen. In addition, 0.5g potato starch from Sigma-Aldrich Co. Ltd. (UK)
was added to each vessel as a fermentable carbon source.

Sample processing
In preparation for FISH analysis 375 μl batch culture supernatant was taken in duplicate into
two tubes of 4°C 1125 μl 4% (w/v) paraformaldehyde solution and fixed at 4°C for 4 hours.
After 4 hours, the batch culture supernatant was centrifuged for 5 minutes at 11337 xg (Eppen-
dorf centrifuge minispin, Eppendorf, UK) at room temperature. The supernatant was carefully
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removed and discarded. The pellet was re-suspended in 1 ml of cold 1×PBS by aspirating care-
fully using a pipette. Again, the sample was centrifuged for 5 minutes at 11337 xg at room tem-
perature and the supernatant discarded. The sample was washed again in 1 ml cold PBS as
above and centrifuged. All supernatant was carefully removed. Finally, the pellet was re-sus-
pended in 150 μl cold 1×PBS and 150 μl ethanol. The sample was mixed by vortexing and then
stored at -20°C.

In preparation for SCFA analysis, 1 ml of batch culture supernatant was taken in duplicate
and centrifuged for 10 minutes at 11337 xg. The supernatant was stored at -20°C.

For in vitro immunoassays, 1 ml of batch culture supernatant was taken in triplicate, centri-
fuged for 10 minutes at 11337 xg and filtered through a 0.22 μm filter device (Millipore,
Schwalbach, Germany). The cell-free supernatant was finally stored at -20°C.

Bacterial enumeration
Bacterial populations were enumerated using FISH, with oligonucleotide probes targeting spe-
cific regions of 16S rRNA. Probes were commercially synthesised and coated with the fluores-
cent dye Cy3. The probes used were: Ato 291 for Atopobium cluster (ATO) [44], Lab 158 for
lactobacilli/enterococci (LAB) [45], Bif 164 for bifidobacteria (BIF) [46], Erec 482 for Eubacte-
rium rectale–Clostridium coccoides group (EREC) [47], Chis 150 for the Clostridium histolyti-
cum group (CHIS) [47], Bac 303 for Bacteroides—Prevotella spp. (BAC) [48], and EUB 338
mixture consisting of EUB338, EUB338II and EUB338III for total bacteria (Total) [49]. Condi-
tions of hybridisation and washing for individual probes are given in Table 1. Hybridisation of
samples was performed as described by Daims, Stoecker [50]. Briefly, the sample was diluted
for each probe. 20 μl diluted sample was added to the well of a Teflon- and poly L-lysine-coated
6-well slide (Tekdon Inc, Myakka City, FL). Slides were dried in a desktop plate incubator for
15 minutes at 46–50°C. Then, slides were dehydrated in 50, 80, 96% (v/v) ethanol series for 3
minutes in each solution and then dried for 2 minutes. For probes Lab 158 and Bif 164, 20 μl of
lysozyme was added to each well before dehydration in ethanol to increase cell permeability.
Then, the hybridisation mixture (0.9 M NaCl, 0.02 M Tris/HCl (pH 8.0), formamide (if
required–Table 1), 10% (w/v) sodium dodecyl sulphate, 4.55 ng ml-1 probe) was added to each
well, and slides placed on a tray, which was sealed and put in a hybridisation oven for 4h at
probe specific hybridisation temperature (Table 1). 20 μl nucleic acid stain 4’, 6-diamidino-2-
phenylindole (DAPI; 50 ng μl-1) was added to the wash buffer, once the hybridisation had com-
pleted, slides were placed into wash buffer (0.9 M NaCl, 0.02 M Tris/HCl (pH 8.0), 0.005 M

Table 1. Hybridisation and washing conditions for oligonucleotide probes.

Probe
name

Sequence (5’ to 3’) Hybridisation pre-
treatment

Formamide (%) in
hybridisation buffer

Hybridisation
temperature (°C)

Washing
temperature (°C)

Reference

Ato 291 GGTCGGTCTCTCAACCC Lysozyme 0 50 50 [44]

Lab 158 GGTATTAGCAYCTGTTTCCA Lysozyme 0 50 50 [45]

Bif 164 CATCCGGCATTACCACCC Lysozyme 0 50 50 [46]

Erec 482 GCTTCTTAGTCARGTACCG None 0 50 50 [47]

Chis 150 TTATGCGGTATTAATCTYCCTTT None 0 50 50 [47]

Bac 303 CCAATGTGGGGGACCTT None 0 46 48 [48]

EUB338* GCTGCCTCCCGTAGGAGT None 35 46 48 [49]

EUB338II* GCAGCCACCCGTAGGTGT None 35 46 48 [49]

EUB338III* GCTGCCACCCGTAGGTGT None 35 46 48 [49]

* These probes are used together in equimolar concentrations (all at 50 ng μl−1)

doi:10.1371/journal.pone.0162604.t001
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ethylenediaminetetraacetic acid (EDTA) solution (pH 8.0, Table 1), H2O) and warmed at the
appropriate temperature for each probe (Table 1) for 10–15 minutes. After washing, slides
were dipped into ice-cold distilled water for 2–3 seconds and dried by a stream of compressed
air. Finally, antifade solution (Dabco) was added to each well, a cover slip applied and slides
examined using fluorescent microscopy (Nikon Eclipse E400; Nikon, Tokyo, Japan). The
DAPI-stained cells were examined under ultraviolet light, and hybridised cells viewed with the
use of a DM510 filter. For each slide, at least 15 random fields of view were counted. The fol-
lowing formula was used to calculate numbers of bacteria: (0.8 × A1 × 6732.42 × 50 × Dilution
factor), where A1 is the average count of 15 fields of view, 6732.42 is area of the well divided by
the area of the field of view, multiplying by 50 takes the count back to millilitre of sample.
Results were expressed as Log10 (bacterial numbers per millilitre batch culture fluid).

Organic acid analysis
Organic acid production was determined by GC. Extraction and derivatisation of samples was
conducted according to Richardson, Calder [51]. Briefly, samples were defrosted on ice. Each
sample was vortexed and 1 ml sample or a standard solution transferred into a labelled 100
mm×16 mm glass tube (Fisher Scientific UK Ltd, Loughborough) with 50 μl of 2-ethylbutyric
acid (0.1 M; internal standard). 0.5 ml concentrated HCl and 2 ml diethyl ether were added to
each glass tube and samples vortexed for 1 minute. Samples were centrifuged at 2000 xg for 10
minutes (SANYOMSE Mistral 3000i; Sanyo Gallenkap PLC, Middlesex, UK). The diethyl
ether (upper) layer of each sample was transferred to a labelled clean glass tube. A second
extraction was conducted by adding another 1 ml diethyl ether, followed by vortexing and cen-
trifugation. The diethyl ether layers were pooled. 400 μl of pooled ether extract and 50 μl N-
(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) were added into a GC
screw-cap vial. Samples were heated at 80°C for 20 minutes and then left at room temperature
for 48 hours to allow lactic acid in the samples to completely derivatise.

A 5890 SERIES II Gas Chromatograph (Hewlett Packard, UK) using an Rtx-1
10m×0.18mm column with a 0.20μm coating (Crossbond 100% dimethyl polysiloxane; Restek,
Buckinghamshire, UK) was used for analysis of SCFA. Temperatures of injector and detector
were 275°C, with the column programmed from 63°C for 3 minutes to 190°C at 10°C min-1

and held at 190°C for 3 minutes. Helium was the carrier gas (flow rate 1.2 ml min-1; head pres-
sure 90 MPa). A split ratio of 100:1 was used. The SCFA standard was run every 20 samples to
update the calibration as necessary. This standard solution contained (mM): sodium formate,
10; acetic acid, 30; propionic acid, 20; isobutyric acid, 5; n-butyric acid, 20; iso-valeric acid, 5;
n-valeric acid, 5; sodium lactate, 10; sodium succinate, 20. Peak areas of the standard solution,
to which internal standard was added, were used to calculate response factors for each organic
acid with respect to the internal standard. Response factor and peak areas within samples were
calibrated and calculated using Chemstation B.03.01 (Agilent Technologies, Cheshire, UK).
The response factors were calculated using Eq 1. Amount of organic acids in the samples was
calculated using Eq 2.

Internal Response Factor ¼ areaIS� amountSC
amountIS� areaSC

ð1Þ

IS = Internal Standard; SC = Specific Compound of Interest

Amount of Specific Compound ¼ amountIS� areaSC � IRFSC
areaIS

ð2Þ
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IS = Internal Standard; SC = Specific Compound of Interest; IRFSC = Internal Response
Factor for Specific Compound of Interest

Preparation of peripheral blood mononuclear cells
Fasted blood samples were taken from six healthy volunteers aged 60–73 years, in sodium hep-
arin vacutainer tubes (Greiner Bio-One Limited, Gloucestershire, United Kingdom). The study
was conducted according to guidelines laid down in the Declaration of Helsinki, and all proce-
dures involving human subjects were approved by the Ethics Committee of the University of
Reading. The ethics approval number was UREC 14/05. Written informed consent forms were
obtained from all subjects. Blood was layered over an equal volume of lympholyte (Cedarlane
Laboratories Limited, Burlington, Ontario, Canada) and centrifuged at 930 xg for 15 min at
room temperature. Peripheral blood mononuclear cells (PBMCs) were harvested from the
interface, washed once with PBS, and then resuspended in Roswell Park Memorial Institute
(RPMI) 1640 medium (containing glutamine, Autogen Bioclear Ltd., Wiltshire, UK). These
steps were repeated to achieve low contamination of erythrocyte. The pellet was finally resus-
pended in RPMI 1640 medium and cell numbers counted using trypan blue and a cell counter
(Coulter, Fullerton, CA, USA). Cells were adjusted to the required concentration.

Viability assays
To determine the appropriate supernatant concentration, PBMC viability, at different supernatant
concentrations was determined using the trypan blue test. PBMCs, adjusted to 2×106 cells/ml,
were incubated in twenty-four-well plates in the presence of RPMI 1640 medium, pure batch cul-
ture medium supernatant, 0h and 24h supernatant from B. bifidum treated and S. typhimurium
treated vessels separately for 24 h at 37°C in an air—CO2 (19:1) atmosphere. The tested superna-
tant amounts of each treatment were 1%, 1.5%, 2%, 3%, 4%, 5% and 10% (v/v) of 2ml (final work-
ing volume). At the end of the incubation, cell numbers were counted using trypan blue test.
According to the results, 1% (v/v) was appropriate to use for different treatment supernatants.

Cytokine stimulation and detection
PBMCs, adjusted to 2×106 cells/ml, were incubated in twenty-four-well plates in the presence of
1 mg/ml lipopolysaccharide (LPS; L4516, Sigma-Aldrich Co. Ltd. UK), 1% (v/v) pure batch cul-
ture medium, 1 mg/ml LPS with 1% (v/v) pure batch culture medium or 1 mg/ml LPS with 0h,
5h and 24h 1% (v/v) supernatants from ten vessels for 24 h at 37°C in an air—CO2 (19:1) atmo-
sphere. At the end of the incubation, cell culture supernatants were collected and stored at -20°C
for later analysis of cytokine production. Non-stimulated cultures were used as blank controls.

The production of IL-1β, IL-6, IL-8, IL-10 and TNF-α was measured using BD™ Cytometric
Bead Array (CBA) Human Soluble Protein Master Buffer Kit (BD Biosciences, Oxford, UK)
and corresponding BD™ Cytometric Bead Array (CBA) Human Flex Set (BD Biosciences,
Oxford, UK) by BD Accuri™ C6 flow cytometer according to the manufacturer’s instructions.
BD™ CBA analysis software FCAP Array v3.0.1 (BD Biosciences, Oxford, UK) was used to per-
form data analysis.

Statistical analysis
All statistical tests were performed with the use of SPSS version 18 (SPSS Inc, Chicago, IL).
Results are presented as means (n = 3) ± SD.

For bacterial populations and SCFA concentrations, within the same treatment, differences
from 0-h value were tested using paired Student’s t test. At the same time point, differences
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among treatments were analysed by one-way ANOVA. For cytokine production, differences
from LPS value were tested using an independent t test. Within the same fermentation treat-
ments, variations from 0-h values were tested using paired Student’s t test. At the same time
point, differences among treatments in cytokine production were analysed by one-way
ANOVA. Significant differences were determined by post hoc Tukey HSD (Honestly Signifi-
cant Difference) test. A value of P<0.05 indicates a significant difference.

Results

Enumeration of bacterial populations by FISH
Bacterial populations are shown in Fig 1 and S1 Fig. In the control vessel, growth of Atopobium
group (p<0.05, paired Student’s t test) and total bacteria (p<0.05, paired Student’s t test) were
stimulated compared to 0h. Growth of bifidobacteria was significantly stimulated by B-GOS,
inulin and maltodextrin during fermentations compared to control (p<0.05, ANOVA), with
higher levels following B-GOS fermentation. B. bifidum, L. acidophilus and Ba. coagulans were
also shown to significantly stimulate bifidobacterial numbers compared to time 0h (p<0.05,
paired Student’s t test). Numbers of lactobacilli/enterococci were significantly increased follow-
ing B-GOS, inulin, L. acidophilus and Ba. coagulans at 30h and 48h compared to other treat-
ments (p<0.05, ANOVA). Numbers of Eubacterium rectale–Clostridium coccoides were
increased following B-GOS fermentations at 48h compared to others (p<0.05, ANOVA). In
addition, the Clostridium histolyticum group was reduced following B-GOS fermentation at
30h compared to other treatments (p<0.05, ANOVA). Following maltodextrin fermentation,
levels of Bacteroides—Prevotella spp. and Clostridium histolyticum group were significantly
stimulated compared to other treatments (p<0.05, ANOVA). Following the different treat-
ments, there was no significant change in total bacterial numbers, indicating that overall bacte-
rial numbers remained constant following prebiotic (B-GOS and inulin) and probiotic (B.
bifidum, L. acidophilus and Ba. coagulans) use.

SCFA analysis
Fig 2 and S2 Fig. shows SCFA concentrations during batch culture fermentations. In the control
vessel, as a carbon source, potato starch stimulated the production of all SCFAs compared to 0h
(p<0.05, paired Student’s t test). Acetate production was significantly stimulated following
B-GOS and maltodextrin fermentation compared to other treatments (p<0.05, ANOVA). Pro-
pionate production was significantly stimulated following maltodextrin fermentation compared
to other treatments (p<0.05, ANOVA). Levels of butyrate were significantly higher in vessels
with B-GOS (p<0.05, ANOVA) and inulin (p<0.05, ANOVA) compared to others. Production
of branched chain fatty acids, iso-butyrate and iso-valerate, were repressed by prebiotics
(B-GOS and inulin) and probiotics (B. bifidum, L. acidophilus and Ba. coagulans) (p<0.05,
ANOVA). However, they were significantly higher in vessels with maltodextrin (p<0.05).

Viability
After 24h incubation of PBMC with supernatants, viability of PBMC cells was measured by try-
pan blue. Viability was 92% with 1% (v/v) RPMI 1640 medium, 80% with 1%(v/v) pure batch
culture medium, 64% and 56% with 1% (v/v) 0h and 24h supernatant from B. bifidum, 72%
with both 1% (v/v) 0h and 24h supernatant from S. typhimurium. The viability of other
amounts (1.5%, 2%, 3%, 4%, 5% and 10% v/v) were all lower than 40%. Differences in viability
may have an impact on cytokine production; therefore 1% (v/v) supernatant was used as the
most appropriate choice.
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Fig 1. Bacterial populations in pH-controlled batch cultures. Samples were collected at 0 (white), 5
(shaded), 10 (spots), 24 (fine diaganol lines), 30 (spaced diagonal lines) and 48h (black). (A) Bifidobacteria
changes during batch culture fermentation. (B) Lactobacilli/enterococci changes during batch culture
fermentation. (C) Eubacterium rectale—Clostridium coccoides group changes during batch culture
fermentation. (D)Clostridium histolyticum group changes during batch culture fermentation. Values are
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Cytokine production
Supernatants from PBMCs cultured without batch culture supernatant were used as controls
(+/-). In the absence of LPS, there was no stimulation of IL-1β, IL-6, IL-8, IL-10 and TNF-α

mean ± SD from triplicate samples.*, significant differences from the 0h value within the same treatment, p<0.05.
Significant differences (p<0.05) among treatments at the same time point are indicated with different letters from
the same colour of column.

doi:10.1371/journal.pone.0162604.g001

Fig 2. SCFA concentrations in pH-controlled batch cultures. Samples were collected at 0 (white), 5 (shaded), 10
(spots), 24 (fine diaganol lines), 30 (spaced diagonal lines) and 48h (black). (A) Acetate production during batch culture
fermentation. (B) Butyrate production during batch culture fermentation. Values are mean ± SD from triplicate samples.
*, significant differences from the 0h value within the same treatment, p<0.05. Significant differences (p<0.05) among
treatments at the same time point are indicated with different letters from the same colour of column.

doi:10.1371/journal.pone.0162604.g002
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(Fig 3 and S3 Fig). Pure batch culture medium did not significantly change the production of
IL-1β, IL-6, IL-8, IL-10 and TNF-α induced by LPS (p<0.05, independent t test). LPS-induced
TNF-α production, observed in the positive control, was suppressed by 5h and 24h fermenta-
tion supernatants from B-GOS, inulin and maltodextrin (p<0.01, independent t test). It was
also suppressed by 24h supernatants from B. bifidum, L. acidophilus and Ba. coagulans
(p<0.05, independent t test). In addition, LPS-induced IL-10 production was enhanced by 5h
and 24h fermentation supernatants from B-GOS, inulin, microcrystalline and maltodextrin
(p<0.01, independent t test). It was also enhanced by 5h and 24h supernatants from B. bifidum,
L. acidophilus, Bac. thetaiotaomicron and Ba. coagulans fermentations (p<0.05, independent t
test). The LPS-induced IL-6 production was only enhanced by 24h supernatants from Ba. coa-
gulans (p = 0.008, independent t test).

Discussion
Prebiotics and probiotics have been shown to modulate the intestinal bacterial composition
towards a potentially healthy composition in elderly populations in several studies [2, 13, 42,
43]. The current study directly compared the impact of both prebiotics and probiotics on the
gut microbiota of elderly volunteers using an in vitro approach; then using an ex vivo approach
monitored the potential impact on selected immune parameters.

In the current study B-GOS led to a positive microbial shift, with the potential for reduced
inflammation by stimulating bifidobacteria growth, enhancing IL-10 production and inhibiting
TNF-α production. Positive effects of B-GOS on colonic bacterial balance with stimulation of
bifidobacteria, concurrent with reduced inflammation following intervention was observed by
Vulevic et al., [13]. The reduced inflammatory potential observed in the current study was not
as dramatic as that observed in the in vivo study of Vulevic, such differences could be related to
the PBMC in vitro approach. The impact of B-GOS on the microbiota has been observed in dif-
ferent clinical settings, such as, overweight adults [52] and Irritable Bowel Syndrome patients
[53]. In addition, an in vitro study looking at the porcine microbiota also confirmed the posi-
tive effects of B-GOS [54]. In the current study, the positive effect of B-GOS on beneficial bac-
teria at the expense of pathogenic bacteria showed that B-GOS intervention could lead to a
potentially beneficial shift of microbiota composition in elderly persons [13, 55]. This is rele-
vant when considering the changes that occur in the microbiota during ageing, this includes
lower levels of bifidobacteria and increased inflammation. The results from the current study
also showed a positive microbial shift following inulin with stimulation of bifidobacteria and
lactobacilli which has also been supported by several in vivo and in vitro studies [2, 56–58].

The current study confirmed the bifidogenic effects of B. bifidum used as a probiotic, rather
than in a synbiotic combination. In previous studies, synbiotics containing B. bifidum were
also shown to induce a significant stimulatory effect of the bifidobacteria genus rather than B.
bifidum alone [16, 59]. Furthermore, the stimulation of lactobacilli by probiotic L. acidophilus
in this study was similar to that of a synbiotic containing L. acidophilus, observed to increase
faecal lactobacilli levels in healthy elderly [42, 60]. This shows that both of these probiotics pos-
sess this functionality in the absence of a prebiotic.

Both prebiotics and probiotics may modulate the microbiota composition by targeting differ-
ent beneficial bacterial groups. Consequently, gut barrier function may be improved, pathogen
infections reduced and disease risk decreased. Prebiotics showed the potential to lead to greater
microbiota modulation at the genus level compared to probiotics in the current in vitro study.
When comparing B-GOS and inulin, B-GOS showed a greater stimulatory effect on positive bac-
teria and a greater inhibitory effect on harmful bacteria. This indicates that under the current con-
ditions, B-GOS was a more effective prebiotic candidate in modulating microbiota composition.
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Fig 3. Effect of fermentation supernatants on cytokine production by peripheral bloodmononuclear cells (PBMC).
Supernatants at 0 (white), 5 (shaded) and 24h (black). Supernatants from PBMCs cultured without batch culture
supernatant were used as controls (+/-) (spaced diagonal lines). (A) TNF-α production by PBMC. (B) IL-10 production by
PBMC. (C) IL-6 production by PBMC. Values are mean ± SD. PBMC from three volunteers was incubated with batch culture
supernatants for 24h. #, significant differences from LPS value p<0.05. *, significant difference from 0-h value within the
same fermentation treatments. At the same time point, differences among different treatments in cytokines production were
analysed by one-way ANOVA. Significant differences (p<0.05) determined by post hoc Tukey HSD test were not found. In
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Changes in SCFA production were associated with microbiota influences following treat-
ment. As bifidobacteria and E. rectale–C. coccoides are producers of acetic acid [61] and butyric
acid [13, 61], respectively, B-GOS and inulin showed stimulatory effects on these two acids.
Alterations in SCFA and BCFA production suggest proteolytic fermentation was reduced upon
fermentation of B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans. Proteolysis is
often associated with dysbiosis and negative fermentation end-products, such as ammonia and
nitrosamines [62]. As such the results indicate a potential shift in fermentation to the more
beneficial saccharolysis.

Although a few studies have shown that prebiotics and probiotics could directly modulate
cytokine production of elderly people in vitro [63–66], the current study is the first to directly
compare their effects. In addition, the metabolites of pathogenic and commensal bacteria were
considered. Cell-free supernatants contain batch culture medium, faecal water and metabolites
of substrates. LPS would invoke an immune response and subsequently stimulate production
of immune markers. Cell free fermentation metabolites may subsequently have anti-inflamma-
tory effects by inhibiting production of TNF-α and enhancing production of IL-10. The SCFA
production would become stable after 24 hours, therefore batch culture supernatants at 0h, 5h
and 24h were collected and incubated with LPS and PBMC.

The down-regulation effects of metabolites from prebiotics and probiotics on TNF-α sug-
gest anti-inflammatory potential. A positive impact may be directly associated with fermenta-
tion end products of prebiotics and probiotics. A few studies have shown that TNF-α
production induced by stimuli in vitro could be inhibited by SCFA, especially butyrate and ace-
tate [67–70]. This study showed fermentation supernatants from prebiotics and probiotics con-
tained high levels of acetate and butyrate, with anti-inflammatory potential. Therefore, this
study indicated the beneficial effects of prebiotics and probiotics metabolites and their benefi-
cial effects on selected immune markers in elderly.

IL-10 is an important anti-inflammatory cytokine, which may counteract the production of
proinflammatory cytokines, such as TNF-α [71, 72]. In this study, supernatants from prebiotic
and probiotic fermentations enhanced production of IL-10 in vitro. There may be several fer-
mentation metabolites associated with this impact, for example SCFA [67, 69, 72]. Similarly,
enhancement of IL-10 production by Bac. thetaiotaomicronmay be also linked to its fermenta-
tion end products, although the increase was not as dramatic as that produced by prebiotics
and probiotics. In this study S. typhimurium has not been found to change inflammation sta-
tus, although prebiotics and probiotics led to a more positive inflammatory status.

Prebiotics (B-GOS, and inulin) and probiotics (B. bifidum, L. acidophilus and Ba. coagulans)
led to a change in the balance of the microbiota to a potentially positive balance, as seen by an
increase in bifidobacteria, a group known to be at reduced levels in older people. Furthermore,
supernatants from prebiotic and probiotic fermentations showed an anti-inflammatory effect
by inhibiting production of pro-inflammatory cytokines and enhancing production of anti-
inflammatory cytokines which was possibly related to SCFA concentrations. This research
indicates that prebiotics and probiotics have huge potential for modulating the microbiota and
inflammation status of elderly people. Furthermore, the prebiotic effect observed was more
marked than that of probiotics. Such results are important when evaluating the best treatment
to use in targeted interventions.

addition, cytokines in non-stimulated PBMC (blank) and in pure batch culture medium-treated PBMC (batch) were also
determined. There was no significant difference between them. There was also no significant difference between LPS
(LPS-stimulated PBMC) and batch+LPS (PBMC incubated with pure batch culture medium and LPS).

doi:10.1371/journal.pone.0162604.g003
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Supporting Information
S1 Fig. Mean bacterial populations in pH-controlled batch cultures at 0 (white), 5 (shaded),
10 (spots), 24 (fine diaganol lines), 30 (spaced diagonal lines) and 48h (black). (A) Atopo-
bium cluster changes during batch culture fermentation. (B) Bacteroides—Prevotella spp.
changes during batch culture fermentation. (C) Total bacteria changes during batch culture fer-
mentation. Values are mean ± SD from triplicate samples.�, significant differences from the 0h
value within the same treatment, p<0.05. Significant differences (p<0.05) among treatments at
the same time point are indicated with different letters from the same colour of column.
(TIF)

S2 Fig. SCFA concentrations in pH-controlled batch cultures at 0 (white), 5 (shaded), 10
(spots), 24 (fine diaganol lines), 30 (spaced diagonal lines) and 48h (black). (A) Propionate
production during batch culture fermentation. (B) iso-Butyrate production during batch cul-
ture fermentation. (C) iso-Valerate production during batch culture fermentation. Values are
mean ± SD from triplicate samples. �, significant differences from the 0h value within the same
treatment, p<0.05. Significant differences (p<0.05) among treatments at the same time point
are indicated with different letters from the same colour of column.
(TIF)

S3 Fig. Effect of fermentation supernatants from batch cultures on cytokine production by
peripheral blood mononuclear cells (PBMC). Supernatants at 0 (white), 5 (shaded) and 24h
(black). Supernatants from PBMCs cultured without batch culture supernatant were used as
controls (+/-) (spaced diagonal lines). (A) IL-8 production by PBMC. (B) IL-1β production by
PBMC. Values are mean ± SD. PBMC from three volunteers was incubated with batch culture
supernatants for 24h. #, significant differences from LPS value p<0.05. �, significant difference
from 0-h value within the same fermentation treatments. At the same time point, differences
among different treatments in cytokines production were analysed by one-way ANOVA. Sig-
nificant differences (p<0.05) determined by post hoc Tukey HSD test were not found. In addi-
tion, cytokines in non-stimulated PBMC (blank) and in pure batch culture medium-treated
PBMC (batch) were also determined. There was no significant difference between them. There
was also no significant difference between LPS (LPS-stimulated PBMC) and batch+LPS
(PBMC incubated with pure batch culture medium and LPS).
(TIF)
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