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Abstract 

A distinct feature of the Toll-like receptor 4 (TLR4) is its ability to trigger both MyD88-dependent 

and MyD88-independent signalling, culminating in activation of pro-inflammatory NF-κB and/or 

the antiviral IRF3. Although TLR4 agonists (lipopolysaccharides; LPSs) derived from different 

bacterial species have different endotoxic activity, the impact of LPS chemotype on the 

downstream signalling is not fully understood. Notably, different TLR4 agonists exhibit anti-

tumoural activity in animal models of glioma, but the underlying molecular mechanisms are 

largely unknown.  

Thus, we investigated the impact of LPS chemotype on the signalling events in the human 

glioma cell line U251. We found that LPS of Escherichia coli origin (LPSEC) leads to NF-κB-

biased downstream signalling compared to Salmonella minnesota-derived LPS (LPSSM). 

Exposure of U251 cells to LPSEC resulted in faster nuclear translocation of the NF-κB subunit 

p65, higher NF-κB-activity and expression of its targets genes, and higher amount of secreted 

IL-6 compared to LPSSM. Using super-resolution microscopy we showed that the biased 

agonism of TLR4 in glioma cells is neither a result of differential regulation of receptor density 

nor of formation of higher order oligomers. Consistent with previous reports, LPSEC-mediated 

NF-κB activation led to significantly increased U251 proliferation, whereas LPSSM-induced 

IRF3 activity negatively influenced their invasiveness. Finally, treatment with methyl-β-

cyclodextrin (MCD) selectively increased LPSSM-induced nuclear translocation of p65 and NF-

κB activity without affecting IRF3.   

Our data may explain how TLR4 agonists differently affect glioma cell proliferation and 

migration.  

 

Keywords 
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1. Introduction  

Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) responsible for 

detection of pathogen-associated molecular patterns (PAMPs) and damage-associated 

molecular patterns (DAMPs) (reviewed in [1]). TLR4 is the most extensively studied TLR and 

recognises lipopolysaccharides (LPSs) that are outer surface compounds of gram-negative 

bacteria [2, 3]. Prior to receptor binding, LPS forms a complex with LPS-binding protein. 

Activation of TLR4 is further facilitated by accessory co-receptors cluster of differentiation 14 

(CD14), and myeloid differentiation protein-2. Ligand binding induces TLR4 dimerisation which 

in turn leads to recruitment of adaptor proteins Myeloid differentiation primary response gene 

88 (MyD88) or Toll-interleukin receptor-domain-containing adapter-inducing interferon-β 
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(TRIF), that determine the downstream signalling pathway [4, 5]. In particular, recruitment of 

MyD88 leads to activation of the pro-inflammatory transcription factor nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB). This is preceded by phosphorylation and 

proteasomal degradation of the inhibitory IκB proteins. On the other hand, assembly of TRIF 

and TRIF-related adaptor molecule [5, 6] is independent of MyD88 and activates the 

transcription factor interferon regulatory factor 3 (IRF3) [7, 8]. The subsequent DNA-binding of 

IRF3 induces expression of type I interferons (IFNα, IFNβ) [9]. The IRF3 target gene IFNβ 

exhibits not only anti-viral but also anti-inflammatory properties [10]. Notably, compensatory 

induction of anti-inflammatory factors following the initial pro-inflammatory phase plays a 

central role in resolving acute inflammation caused by LPS [11, 12].  

In addition to immune cells, functional TLR4 is constitutively expressed within most cell types 

of the central nervous system including neural stem cells, microglia, neurons, astrocytes, and 

neural stem cells [13-17]. In particular, TLR4 is involved in development of the nervous system 

[18, 19] and regulates differentiation and proliferation of adult neuronal precursor cells [14]. It 

has been reported that both the intracranial challenge with LPSEC and the intraperitoneal 

infection with E. coli lead to secretion of pro-inflammatory cytokines such as interleukin 6 (IL6) 

in mouse brain [15]. Similar to astrocytes, primary glioblastoma cells and glioblastoma cell 

lines express functional TLR4 [20-22]. Interestingly, studies on LPS-mediated activation of 

TLR4 in glioblastoma cells in vitro and in vivo revealed largely conflicting outcomes ranging 

from significant anti-tumoural action to tumour-promoting effects [21, 23].  

 

To date, the exact mechanisms used by TLR4 to regulate ligand-dependent downstream 

signalling events remain unidentified. In 2004, Saitoh and colleagues suggested that 

oligomerisation may play a role in ligand biased TLR4-mediated signalling [24]. Furthermore, 

cholesterol-rich plasma membrane microdomains are known to regulate TLR4 oligomerisation 

[25]. However, the impact of microdomains on TLR4 signalling in non-hematopoietic cells 

including cancer cells is unclear. 

 

Since different LPS chemotypes exert different endotoxic activity and seem to have diverse 

impact on glioblastoma, we aimed to elucidate the underlying molecular mechanisms and 

challenged the human glioma cells line U251 with LPSEC and LPSSM. We present evidence 

that TLR4 activation by LPS derived from LPSEC or LPSSM differently affects the inflammatory 

balance between NF-κB and IRF3. We also demonstrate that the dynamics and kinetics of NF-

κB and IRF3 activation is ligand-specific. We further show that the differences in downstream 

signalling are not dependent on receptor oligomerisation or receptor density. Finally, our data 

suggests that the discrimination between LPS chemotypes is membrane microdomain 

dependent.    
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2. Materials and Methods 

2.1. Cell culture and LPS treatment 

Human glioblastoma cell line U251 (Cell Line Service, Eppelheim, Germany) was cultivated in 

antibiotic/antimycotic-free Dulbecco's Modified Eagle’s Medium (DMEM) high glucose (Sigma-

Aldrich, cat. No. D5671, Taufkirchen, Germany) supplemented with 1% L-glutamine (200 mM; 

Sigma-Aldrich) and 10% heat-inactivated fetal calf serum (FCS, lot: 126K3398, Sigma-Aldrich) 

(hereinafter referred to normal culture medium) in a humidified incubator (Binder, Tuttlingen, 

Germany) at 37°C and 5% CO2. Ultrapure LPS from Salmonella minnesota (Ultrapure S. 

minnesota R595, InvivoGen, Toulouse, France) and E. coli (Ultrapure Escherichia coli K12, 

InvivoGen) were dissolved in endotoxin-free water. U251 cells were grown in normal culture 

medium prior to 4 h starvation by replacing the medium with normal medium without FCS. For 

super-resolution microscopy, starvation was performed 12 h prior to treatment. Afterwards, 

U251 cells were treated with respective LPS chemotype.  

 

2.2. Transient transfection and gene reporter assays  

Transfection of glioblastoma cell lines was performed using Amaxa™ RatNSC Nucleofector™ 

Kit (Lonza Group AG, Basel, Switzerland) and the Amaxa™ Nucleofector II device (Lonza 

Group, Basel, Switzerland) according to manufacturer’s guidelines. Briefly, 5 ×106 cells were 

mixed with Nucleofector solution containing pmaxGFP (Lonza) and pRL-CMV (Promega, 

Mannheim, Germany). For NF-κB reporter gene assays, TK (NF-κB)6LUC [26] vector and for 

IRF3 reporter gene assays IRF-3-Gal4 (pEFGal4−IRF-3) and UAS-LUC vectors 

(p-55UASGLuc, kindly provided by K. Fitzgerald, University of Massachusetts Medical School, 

Worcester, USA) were used. Expression of pmaxGFP was confirmed via confocal scanning 

microscopy (LSM 510, Carl Zeiss, Jena, Germany) 24 h after transfection. Cells were exposed 

hereinafter to LPS for 48 h. Transcription factor (NF-κB or IRF3)-dependent firefly-luciferase 

activity versus transcription factor independent Renilla luciferase measurement was performed 

using Dual-Luciferase® Reporter Assay System (Promega Corporation, cat. no. E1960) 

according to manufacturer’s guidelines on a Lumat device (Berthold Technologies, Bad 

Wildbach, Germany).  

 

2.3. Immunocytochemistry and visualisation of membrane microdomains  

U251 cells were cultivated in 12-well plates on microscope coverslips, serum starved, 

stimulated with LPS (see above, (0-24 h)) and fixed in PBS containing 4% paraformaldehyde 

(4% PFA, 20 min, 4°C). For TLR4 staining 4% PFA solution was supplemented with 320 mM 

sucrose. Cells were then permeabilised and blocked in PBS containing 0.02% Triton-X-100 

(Sigma-Aldrich, cat. No. T8787) and 5% normal goat serum (Dianova, Hamburg, Germany). 
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Cells were stained for p65 (1:100, sc-8008, Santa Cruz Biotechnology, Heidelberg, Germany), 

IRF3 (1:50, sc-9082, Santa Cruz Biotechnology) or TLR4 (1:100, sc-10741, Santa Cruz 

Biotechnology) followed by incubation with respective secondary fluorochrome-conjugated 

antibodies (AlexaFluor555 or AlexaFluor488, Thermo Fisher Scientific, Waltham, MA, USA, 

1:300). Nuclei were stained using DAPI (1:2000, Life Technologies, Darmstadt, Germany). For 

membrane microdomain visualisation, cells were incubated with AlexaFluor488 conjugated 

Cholera Toxin subunit B (CTx, 1:100, 10 min, room temperature, Thermo Fisher Scientific). 

Imaging was performed using confocal laser scanning microscopy (CLSM (LSM 780, Carl 

Zeiss, Jena, Germany)). Fiji was used for image processing, co-localisation (colocalization 

threshold) analysis and pixel intensity measurements [27].  

 

2.4. Membrane microdomain disruption 

For membrane microdomain disruption, cells were treated with 10 mM MCD (30 min, Sigma-

Aldrich) and washed with normal medium twice prior to further experimentation.  

2.5. Flow cytometry 

For flow cytometric analysis of TLR4 expression, cells were harvested using Accutase and 

fixed as a single cell suspension in 4% PFA supplemented containing 320 mM sucrose (15 

min, room temperature), followed by blocking with 10% FcR blocking reagent (Miltenyi Biotec, 

Bergisch Gladbach, Germany) and incubation with anti-TLR4 antibody (Santa Cruz 

Biotechnology, 1:100, 1 h, room temperature). Phycoerythrin (PE)-conjugated goat-anti rabbit 

IgG was used for detection. Detection was performed on a CyFlow Space flow cytometer 

(Partec, Muenster, Germany).  

 

2.6. Western blotting 

To establish a low baseline of active NF-κB, cells were serum-starved for 4 h and subsequently 

incubated in fresh FCS-containing medium with or without LPS for the indicated time points. 

Unstimulated cells (for each time point) served as control for quantification. Stimulated and 

unstimulated U251 cells were washed with PBS after the indicated time points and lysed in 

RIPA buffer containing proteinase inhibitors (Roche, UK). Cell lysates were incubated (4°C, 1 

h), centrifuged (13000 g, 15 min) and boiled (95°C, 10 min) following addition of reducing 

sample buffer. Samples were separated by SDS-PAGE and transferred to PVDF membrane 

(10600029, GE Healthcare, Chalfont St. Giles, UK). Membranes were incubated in PBS for 10 

min, blocked in 5% BSA in PBS supplemented with Tween 20 (PBST) for 1 h and incubated 

with primary antibodies: 14-3-3-ζ (1:4000, sc-1019, Santa Cruz Biotechnology) or IκBα 

(1:1000, ab32518, Abcam, UK) in 5% BSA in PBST for 1.5 h. After washing with PBST, 

membranes were incubated in secondary antibody (goat anti-rabbit IgG HRP (Sigma-Aldrich, 

GERPN2108, 1:5000)) for 1 h. Immunoreactive proteins were detected using 
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chemiluminescence (ECL Reagent, Sigma-Aldrich, GERPN2108) and visualized using an 

ImageQuant LAS 4000 mini device (GE Healthcare). Fiji was used for image processing and 

densitometric analysis. Relative IκB protein amount was calculated as a ratio of IκB/14-3-3-ζ 

and normalised to the untreated control for each time point. 

 

2.7. RNA isolation and cDNA synthesis 

Total RNA from U251 cells was isolated using a NucleoSpin 8 core kit (Macherey-Nagel, 

Düren, Germany) according to manufacturer’s guidelines. cDNA synthesis was performed 

using First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, cat. No. K1612, Darmstadt, 

Germany) according to manufacturer’s guidelines. 

 

2.8. RT-qPCR 

qPCR was performed using PerfeCTa® SYBR® Green SuperMix (Quanta BioSciences, 

Gaithersburg, USA) and measured in a Rotor Gene 6000 (QIAGEN, Hilden, Germany) 

according to respective manufacturer's guidelines. The primer sequences (5’-3’) were as 

follows: Tumor necrosis factor α (TNFα) (fwd: CAGAGGGCCTGTACCTCATC, rev: 

GGAAGACCCCTCCCAGATAG), Interleukin 8 (IL8), (fwd: GTGCAGTTTTGCCAAGGAGT, 

rev: CTCTGCACCCAGTTTTCCTT), IFNβ (fwd: TGCTCTCCTGTTGTGCTTCT, rev: 

AGCTGCTTAATCTCCTCAGGG), GAPDH (fwd: CATGAGAAGTATGACAACAGCCT, rev: 

AGTCCTTCCACGATACCAAAGT), PPIA (fwd: CAAGCATGTGGTGTTTGGCA, rev: 

TGGTCTTGCCATTCCTGGAC), PGK1 (fwd: GACAATGGAGCCAAGTCGGT, rev: 

TCTGGGCCTACACAGTCCTT), and PPIB (fwd: AGATGTAGGCCGGGTGATCT, rev: 

CTCCGCCCTGGATCATGAAG). Relative expression was calculated using the equation of 

mathematical delta-delta method. Since activation of TLR4 can result in a regulation of several 

widely used reference genes [28], additional control qPCRs using GAPDH, PPIA, PGK1, and 

PPIB were performed (Fig S4).  

 

2.9. ELISA 

U251 cells were grown in 96-well plates in normal culture medium, starved and treated with 

LPS. Supernatants were collected, centrifuged (5000 g, 5 min, 4°C) and IL-6 quantified using 

the Human IL-6 DuoSet ELISA (RnD Systems, cat. No. Dy206, Abingdon, United Kingdom) 

according to manufacturer’s guidelines.  

2.10. Proliferation assay 

U251 cells were grown in a 12-well plate in normal culture medium with and without LPS. Cells 

were detached using trypsin/EDTA after 3 days of incubation in a humidified incubator at 37 

°C and 5 % CO2. Cells numbers were assessed using a Neubauer improved cell counting 

chamber (Carl Roth, Karlsruhe, Germany) and the EVOS XL digital inverse microscope (EVOS 
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® Cell Imaging Systems, Life Technologies, Darmstadt, Germany). All proliferation assays 

were performed as a triplicate for each condition followed by statistical evaluation.  

2.11. Wound healing assay 

The in vitro wound healing assay was performed as described previously in a 24-well plates 

[29]. Briefly, confluent U251 cells were grown in normal culture medium, starved (4 h) and a 

vertical scratch made in each well using a small plastic pipette tip followed by a careful washing 

step with starving medium. The medium was replaced with normal culture medium containing 

either LPSSM or LPSEC. The region of the scratch was defined by reference markings and 

documented using an inverse microscope 30 min and 8 h after the scratch. Image analysis 

was performed using Fiji.  

 

2.12. Immunolabelling for super-resolution imaging 

Cells were washed with pre-warmed 400 mM sucrose solution (Merck, Germany) prior to 

incubation in fixation buffer containing 4% formaldehyde (methanol-free, Thermo Fisher 

Scientific), 0.2% glutaraldehyde (Sigma-Aldrich, USA) and 400 mM Sucrose for 15 min. After 

extensive washing in PBS, blocking was performed using 2% BSA (Sigma, Germany) for 30 

min. Mouse monoclonal antibody against human TLR4 (Santa Cruz Biotechnology, USA) in 

2% BSA over night at room temperature (2 µg/ml) was used for immuno-labelling of the 

samples. For control measurements, mouse monoclonal anti-human TLR4 (ab22048, Abcam, 

UK) was applied for 1 h at room temperature (0.1 µg/ml). After 3 washing steps with PBS, 

AlexaFluor647 coupled F(ab’)2 goat anti-mouse IgG antibody (A-21237, Life Technologies, 

USA) was used as secondary antibody (4 µg/ml; diluted in 2% BSA solution) and incubated for 

1 h, followed by three washing steps in PBS. 

 

2.13. Super-resolution imaging  

A custom-built setup was used, as previously described by Fricke et al. [30]. Briefly, excitation 

laser lines (405 nm (CUBE 405-50C, Coherent, USA), 643 nm (diode laser, iBEAM smart, 

Toptica, Germany)) were aligned with appropriate dichroic mirrors, passed an acousto-optic 

tuneable filter (AAOptics, France) and were focused on the back focal plane of an Olympus 

IX-71 inverted microscope equipped with a 100 × oil immersion objective (PLAPO 100× 

TIRFM, NA ≥ 1.45, Olympus). A nose piece (Olympus, Japan) was implemented to minimize 

mechanical drift. Fluorescence was detected on an EMCCD camera (iXon3, Andor, UK). 

Imaging was performed in 100 mM β-mercaptoethylamine (MEA (Sigma; Germany)) in PBS, 

pH 7.5. 20 000 frames were recorded using an integration time of 30 ms under continuous 643 

nm laser illumination at intensity densities of 2 – 2.5 kW/cm². Photoswitching of Alexa Fluor647 

was induced by low-intensity irradiation with 405 nm at well-defined time points in order to 

achieve an optimal density of active single molecules during the experiment. 
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2.14. Data analysis of super-resolved images 

Super-resolved images were reconstructed using rapidSTORM [31]. Cluster analysis was 

performed using Ripley’s H -function in a custom-written software [32]. Analysis was performed 

for 13 cells for each condition; five regions of interest (ROIs) with a size of 2 × 2 µm² were 

selected for each cell.  

Morphological cluster analysis was performed using the image-based cluster analysis plugin 

‘Analyze Particles’ implemented in Fiji. The number of TLR4 clusters and their area on the cell 

membrane was extracted, as well as the particle number per µm² (Fig. S2, Table 1 and S1).  

 

2.15. Statistical analysis 

GraphPad Prism software (GraphPad Software, La Jolla, CA, USA) was used to perform 

statistical analysis. For statistical comparison, unpaired students t-test (two tailed, confidence 

interval 95%) or one-way analysis of variance with Bonferroni’s correction (confidence interval 

95%) was performed (when appropriate). A value of p<0.05 was considered as significant. All 

results were obtained from at least three independent experiments. 

 

3. Results 

3.1. Clusters of TLR4 are uniformly distributed in the membrane of U251 cells  

Flow cytometry was used to confirm expression of TLR4 in U251 cells. In agreement with 

previous studies demonstrating expression of TLR4 in various glial cells [33], we detected high 

levels of cell-surface TLR4 in the U251 cell line (Fig. 1A). We applied single-molecule 

localization microscopy (SMLM, [34]) to determine the nano-spatial organization of TLR4 at 

the cell-surface of unstimulated cells. Specifically, we used direct stochastic optical 

reconstruction microscopy (dSTORM) [35] to visualize immuno-labelled TLR4 (Fig. 1B). 

Individual TLR4 clusters on the cell membrane were resolved and a localization precision of 

8.9 - 10.3 nm was determined (Fig. S1) using nearest neighbour analysis [36]. We found that 

TLR4 is uniformly distributed across the whole plasma membrane and exhibits a density of 7.0 

± 1.0 receptor clusters / µm2 (Fig. 1B).  

 

3.2. Kinetics of TLR4-induced nuclear translocation of IRF3 and NF-κB are ligand-dependent 

The downstream signalling cascades activated by LPS chemotypes was investigated using 

immunocytochemical assessment of nuclear NF-κB subunit p65 (Fig. 2). Treatment with LPSEC 

promoted rapid nuclear translocation of p65 (30 min, peak at 2h) compared to LPSSM where 

only low levels of nuclear NF-κB were observed at 2 h. Through the time course, the nuclear 
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translocation of p65 in cells treated with LPSSM was significantly lower compared to LPSEC-

treated cells. In contrast, the levels of nuclear IRF3 were significantly higher in LPSSM-treated 

cells in comparison to LPSEC at both 4 and 24 h.  

 

3.3. LPSEC leads to a fast degradation of IκBα 

Degradation of its cytoplasmic inhibitor IκBα is mandatory for nuclear translocation of NF-κB 

[37]. In order to investigate potentially different degradation kinetics of IκB-protein after 

treatment, total levels of the IκBα protein were analysed using Western blot. To determine the 

level of basal IκB degradation after re-exposure of the cells to serum, relative IκBα-protein 

amount was assessed in unstimulated cells at all time points (Fig. 3A). Relative IκB after 

exposure to LPSSM or LPSEC was normalised to unstimulated cells at the respective time points 

(Fig. 3B). A significant reduction of IκBα-protein amount was observed in lysates of cells 

stimulated with LPSEC for 2 h, whereas no differences were detected between control and 

LPSSM-treated cells (Fig. 3B).  

3.4. Levels of TLR4-induced IRF3 and NF-κB activity are ligand dependent  

To measure the sustained induction of NF-κB, and IRF3 activity, we transiently transfected 

U251 with NF-κB and IRF3 reporter plasmids.  Here, we observed a significantly higher NF-

κB activity in LPSEC treated cells (Fig. 3C, LPSEC: 12.2 ± 2.0 fold, LPSSM: 7.96 ± 2.1 fold 

increase of relative NF-κB activity compared to control). In contrast, no significant difference 

was detected in the relative IRF3 activity (Fig. 3C). 

3.5. Different LPS chemotypes differentially affect the expression level of NF-κB and IRF3 

target genes 

Activation of NF-κB and IRF3 results in transcription of the respective target genes. Thus, 

RT-qPCR was applied to investigate a potential regulation of the IRF3 target gene IFNβ, and 

TNFα, IL8 as targets of NF-κB. Cells were treated with LPSSM or LPSEC for 1 h or 24 h, 

respectively. In order to exclude potential regulation of the reference gene GAPDH, control 

qPCRs were performed using PGK1, PPIA, and PPIB as a reference. In U251, no LPS-

dependent regulation was observed for all reference genes in all experimental conditions (Fig. 

S4). In contrast, we observed a significantly stronger induction of NF-κB targets TNFα (3.54 ± 

1.46 fold) and IL8 (3.07 ± 0.27 fold) after treatment with LPSEC (Fig. 3D) compared to control. 

In contrast, upregulation of the IRF3 target gene IFNβ was observed only in cells treated with 

LPSSM for 24 h (2.02 ± 0.34 fold, Fig. 3E).  

3.6. Levels of IL6-secretion after TLR4-activation depend on LPS chemotype 

ELISA was applied to quantitatively measure LPS-induced secretion of the pro-inflammatory 

IL6 (Fig. 3F). Here, we were able to detect low levels of IL6 after 4 h of stimulation with both 
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LPS chemotypes (LPSEC: 804.73 ± 114.33 pg/ml; LPSSM: 449.03 ± 272.83 pg/m). Notably, 

significantly higher levels of IL6 were secreted after stimulation with LPSEC (5810.27 ± 1062.36 

pg/ml) for 24 h compared to LPSSM (2571.12 ± 156.18 pg/ml). 

 

3.7. LPSEC but not LPSSM promotes proliferation of U251 cells 

Proliferation of glioma cells is known to be largely NF-κB dependent [38]. In order to investigate 

if the differential NF-κB activity in LPSEC and LPSSM-treated cells correlates with their 

proliferative behaviour, total cell number was determined (Fig. 3G). Here, significantly higher 

cell numbers were measured after treatment with LPSEC for 72 h (1.1 × 105 ± 3.45 × 104) 

compared to both LPSSM-treated (6.67 × 104 ± 2.71 × 104) and control cells (6.67 × 104 ± 1.57 

× 104). 

 

3.8. Migration of glioma cells is inhibited by LPSSM but not by LPSEC 

It has previously been shown that migration of glioblastoma cells is NF-κB-dependent [39] and 

that an active IRF3 inhibits their migration [40]. To test the impact of differential NF-κB and 

IRF3 activity on U251 migration, wound healing assays were performed. Cells were exposed 

to LPSEC or LPSSM and allowed to migrate for 8 h. Quantification of the coverage area (Fig. 3H) 

revealed no significant differences in migratory behaviour of cells treated with LPSEC (51.81 ± 

1.46 %) in comparison to the control (70.22 ± 18.79 %). In contrast, a strong inhibitory effect 

was observed if LPSSM was applied (26.92 ± 6.46 % coverage, Fig. 3H).  

 

3.9. LPS chemotype affects TLR4 cluster distribution  

It has been suggested that internalisation and oligomerisation of TLR4 on the cell membrane 

can influence the shift from pro- to anti-inflammatory signalling [24, 41].  

Thus, we used dSTORM to quantitatively determine the influence of different LPS chemotypes 

on the spatial distribution, density and clustering behaviour of TLR4 (Fig. 4A). On average 7.0 

± 1.0 (SEM) TLR4 clusters per µm² were found in untreated cells (n=13). For cells treated with 

either of the two LPS chemotypes and at different incubation time, the average number of 

receptor clusters did not change significantly (Table 1). A broad distribution of receptor cluster 

density per µm² was found for most experimental conditions. However, we also observed that 

1 h stimulation with LPSSM and 2 h with LPSEC leads to a narrowing of the distribution patterns 

at lower levels (Table 1, Fig. 4B). In contrast, treatment with LPSEC for 1 h induces in a 

subpopulation with 10 receptor clusters per µm² (Fig. 4B).  

 

3.10. LPS does not induce higher order TLR4 cluster formation independent on its chemotype 

To further investigate the size of TLR4 clusters on the plasma membrane before and after 

stimulation with different LPS species, we determined the radius of each receptor cluster from 
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the area of each counted cluster. For each condition, the cluster radii were averaged and 

determined to range from 26 to 28 nm (Table 2, Fig. 4C). We verified the above results by 

using a different primary antibody; super-resolution imaging and counting of receptor clusters 

led to similar results (Fig. S3). As negative control, no primary antibody was applied to the cells 

and analysis of those measurements resulted in 0.3 ± 0.1 particles per µm² (Fig. S2). Next, 

Ripley’s H-function [32, 42] was applied, which allows a coordinate-based distribution analysis 

of point distributions, and deliver information on average cluster size. Applied to SMLM data, 

a uniform distribution of single-molecule localizations results in a horizontal line at zero. 

Clustering of single-molecule localizations results in an H-function that deviates to positive 

values, with the maximum reporting on the average cluster size. For each cell and experimental 

condition, 5 regions of interest were analysed and the H-functions determined for each cell 

were summed up. Each condition showed a clear maximum between 52 and 58 nm (Tab. 2, 

Fig. 4D+E). This is consistent with the results on cluster radii obtained from the morphological 

cluster analysis: if the inter-cluster distance is large compared to the cluster size, the maximum 

of the H-function reports the cluster diameter [32]. As the overall density of TLR4 receptor 

clusters is small, the inter-cluster distance is large compared to the cluster sizes. The maximum 

of the H-function can thus be interpreted as cluster diameter, and values of 52 to 58 nm 

correspond well to a cluster radius of 26 to 28 nm determined with the morphological cluster 

analysis. Again, we did not observe a significant change in the size of TLR4 clusters, 

suggesting that TLR4 is not building higher-order structures in glioma cells after LPS induction. 

 

3.11. MCD treatment significantly increases LPSSM induced NF-κB activity, but neither 

influences LPSEC-mediated NF-κB activation nor IRF3 activity driven by both LPS chemotypes 

As TLR4 oligomerisation is known to be partly dependent on cholesterol-rich membrane 

microdomains in hematopoietic cells [25], we determined if the same was true in the U251 

glioblastoma line. Cells were co-labelled with CTx and an anti-TLR4 antibody (Fig. 5A) followed 

by CLSM. Here, we detected a partial co-localisation of CTx and TLR4 signal.  

In order to investigate the impact of intact microdomains on TLR4-mediated signalling, cells 

were treated with MCD followed by a wash-out and exposure to both LPS chemotypes. In an 

alternative approach, cells transiently transfected with NF-κB or IRF3 reporter plasmids were 

treated with MCD and LPS followed by cultivation, lysis and determination of promotor-driven 

luciferase bioluminescence. Here, we found a significant increase of TLR4-mediated nuclear 

translocation of NF-κB after treatment with LPSEC (Fig. 5B). Notably, the amount of nuclear NF-

κB in LPSSM / MCD treated cells was significantly higher than both, control / MCD and LPSEC / 

MCD treated cells. We detected no nuclear translocation induced by MCD-treatment alone. 

Finally, reporter gene assays revealed a significantly increased NF-κB driven bioluminescence 

in cells treated with LPSSM and MCD. In particular, microdomain disruption led to an increase 
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in LPSSM-induced NF-κB activity to a level comparable to the LPSEC approach (Fig. 5C). In 

contrast, exposure of the cells to MCD had no effect on LPS-induced IRF3 activity (Fig. 5D). 

4. Discussion 

Unlike all other TLRs, TLR4 is the only TLR family member with the ability to trigger both 

MyD88-independent and MyD88-dependent pathways after ligand binding [5]. MyD88-

dependent signalling culminates in activation of NF-κB, a transcription factor with pro-

inflammatory and proliferation inducing properties [43, 44]. In contrast, MyD88-independent 

pathways mainly activates IRF3 regulating anti-viral and anti-inflammatory signals, including 

type I interferons [10, 45]. Our results show that U251 cells, a human glioblastoma cell line, 

express cell-surface TLR4 and for the first time, that stimulation with diverse TLR4-activating 

LPS species promotes biased activation of NF-κB and IRF3 pathways. In particular, we show 

using Western blotting and microscopy that LPSEC and LPSSM promote differential activation 

and nuclear translocation of NF-κB and IRF3. In addition, we observed that differential 

activation of signalling pathways has consequences on gene transcription and cellular 

proliferation and migration. Finally, we show that MCD-induced disruption of membrane 

microdomains is sufficient to induce an increase in LPSSM-induced NF-κB activity to a level 

comparable to the LPSEC approach. 

 

4.1. U251 cells express TLR4 at the plasma membrane 

TLR4 is constitutively expressed in most cells of the central nervous system under 

physiological conditions, but also in glioblastoma cells [20-22]. As a first step to investigating 

potential ligand-dependent differences in TLR4-mediated downstream signalling in U251 cells, 

we first verified TLR4 expression using flow cytometry and dSTORM imaging. In agreement 

with the literature [46], we verified that U251 cells express TLR4 at the cell-surface and that 

the receptor clusters are uniformly distributed (Fig. 1B). In addition to TLR4, U251 cells also 

express myeloid differentiation protein-2 as well as the intracellular adapter proteins, MyD88 

and TRIF, but lack CD14. As CD14 is believed to contribute to the activation of MyD88-

independent signalling [47], we performed our experiments in the presence of serum, to 

provide a source of soluble CD14 [48].   

 

4.2. Diverse LPS species exhibit ligand-specific activation of NF-κB and IRF3 in U251 cells 

The kinetics and dynamics of signalling pathways activation can have profound effects on 

biological function. Indeed, it has been known for some time that biological and synthetic 

agonists of receptors can act as biased agonists, preferentially activating one signalling 

pathway over another. The existence of biased agonists is not restricted to one receptor type, 

with biased agonists now known to exist for G protein-coupled receptors (reviewed in [49, 50], 
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enzyme-coupled receptors (reviewed in [51, 52] and nuclear receptors [53]. Furthermore, this 

phenomenon is not restricted to the binding of molecules to the orthosteric site, as allosteric 

modulators are also known to have diverse effects (reviewed in [54, 55]). 

To assess the respective kinetics of NF-κB and IRF3 activation driven by LPSEC and LPSSM, 

we analysed nuclear translocation of the NF-κB subunit p65 and IRF3. We observed that 

treatment of U251 with LPSEC promoted faster and stronger nuclear translocation of p65 

compared to cells exposed to LPSSM. This result is consistent with the kinetics of IκB 

degradation following exposure to LPSEC as demonstrated using Western blotting.  In parallel, 

we measured nuclear translocation of IRF3. Stimulation of the cells with LPSSM resulted in an 

early nuclear translocation of IRF3 and a significantly higher amount of nuclear IRF3 after 24 

h. These results suggest that LPSEC and LPSSM shift the inflammatory balance by differentially 

activating the NF-κB and IRF3 pathways. In support of this observation, 

vaccine adjuvant monophosphoryl lipid A and synthetic TLR4 agonists have been reported as 

TRIF-biased agonists of TLR4 [56-58]. In addition, it has been suggested that interferon 

signalling contributes to the TRIF bias that synthetic lipid A promotes following activation of 

TLR4 in mouse bone marrow-derived dendritic cells [59]. Interestingly, in hepatocytes IRF3 

can directly regulate NF-κB-signalling via a direct binding and inactivation of the upstream 

kinase IKK [60]. 

Endotoxins from diverse sources including Neisseria meningitidis, E. coli 55:B5 and Vibrio 

cholerae differentially activate MyD88-dependent and -independent signalling pathways in 

human and mouse macrophage cells [61]. N. meningitidi lipooligosaccharide potently 

activated both MyD88-dependent and -independent signalling pathways, whereas E. coli 

55:B5 and V. cholerae LPSs selectively induced the MyD88-dependent pathway. Similar to 

our study, LPSSM was demonstrated to selectively activate the MyD88-independent pathway 

[61]. Interestingly, very recently, Salyer and colleagues suggested that nystatin and 

amphotericin B could act as TRIF-biased TLR4 agonists [62].   

 

4.3. Gene expression and secretion is regulated by ligand-specific activation of TLR4 

Recently, using a bioinformatical approach, Iwanaszko and colleagues suggested that cross-

talk between IRF3 and NF-κB signalling pathways could also occur at the level of target gene 

promoters [63]. We used luciferase-based gene reporter assays to measure the sustained 

induction of NF-κB and IRF3. We detected significantly higher levels of NF-κB-driven luciferase 

in cells exposed to LPSEC in comparison to cells treated with LPSSM and untreated cells. In 

contrast, no significant differences were observed in cells treated with LPSEC and LPSSM 

regarding IRF3-driven luciferase activity suggesting a shift towards pro-inflammatory NF-κB 

signalling in LPSEC treated cells. This shift was further verified by faster degradation of IκBα 

and higher expression and secretion of pro-inflammatory NF-κB target genes in LPSEC treated 
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cells. In contrast, LPSSM induced higher expression of IFNmRNA.  A similar shift in gene 

transcription was observed in macrophages, with E. coli 55:B5 and V. cholerae LPSs inducing 

similar levels of pro-inflammatory TNF, IL-1 and macrophage inflammatory protein 3, but 

significantly less than LPSSM. Conversely, LPSSM induced significantly more IFN, nitric oxide 

and IFN-inducible protein 10 than E. coli 55:B5 and V. cholerae LPSs, confirming the bias of 

LPSSM towards MyD88-indendepent signalling [61]. Indeed, earlier studies measuring cytokine 

release using whole blood assays also noted disparate secretion depending on the nature of 

the purified LPS used for the challenge [64]. 

A shift in balance between NF-κB and IRF3 towards the anti-inflammatory IRF3 signalling is 

known to be a feature in regulating tolerance to LPS [65] and is protective in inflammation 

resulting from stroke [66]. Juang and colleagues reported that IRF3 nuclear translocation and 

activation can be prevented by 1 µg/ ml LPS from E. coli 055:B5 during simultaneous exposure 

to Newcastle disease virus, and this effect was reversed by overexpression of IRF3 [67].  

 

4.4. LPSEC and LPSSM have diverse effects on U251 cellular proliferation and migration  

 

TLR4 and its ligands are known to influence differentiation and proliferation of neural stem 

cells, and neuronal progenitor cells during development and in adulthood under physiological 

and pathological conditions [17, 68]. In contrast, the impact of TLR4 agonists on glioblastomas 

is controversial and a matter of an ongoing scientific debate. For example, while anti-tumoural 

effects of LPS has been reported in vivo [20], a tumour-promoting action (increase of 

proliferation and invasion) has been proposed in vitro for U118 and U87 cells [21]. Deciphering 

these observed differences is not helped by the fact that in the past, many studies have not 

reported the chemotype of LPS used in their studies. Interestingly, constitutively active NF-κB 

is known to play a pivotal role in glioblastoma cell proliferation and invasiveness [38, 69]. In 

contrast, apoptosis and reduced invasive behaviour, as well as decreased production of pro-

angiogenic factors can be observed after overexpression of IRF3 [40]. Thus, our data could 

provide an explanation for the conflicting reports on the role of TLR4 signalling in glioma calls. 

NF-κB is known to promote glioma cell proliferation and migration [69], whereas IRF3 induces 

apoptosis [40]. In general accordance with the literature, our data showed that stimulation with 

LPSEC led to an increase in cell number, whereas LPSSM had no effect on cell number. These 

effects correlate with our results showing that LPSEC induces higher NF-κB activity than LPSSM. 

Previously, Westhoff and colleagues suggested that inhibition of NF-κB resulted in inhibition 

of glioma cell migration [39]. Therefore, we also examined migration of U251 cells following 

LPS treatment. Treatment with LPSSM resulted in significant inhibition of migration, whereas 

stimulation with LPSEC had no inhibitory effects. This LPSSM-dependent inhibition is consistent 
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with our observation that LPSSM leads to lower NF-κB activity than LPSEC, whereas both 

chemotypes promote similar IRF3 activation.  

4.5. LPS chemotypes do not affect TLR clustering or higher order oligomer formation 

The spatial organisation of TLR4 at the cell membrane is involved in the activation of the 

respective downstream signalling [24, 41]. In order to investigate if the ligand dependent 

differences in the signalling are a result of changes in spatial organisation of the receptor at 

the plasma membrane, we applied dSTORM super-resolution imaging. Due to the molecular-

scale size of TLR4 and its clusters (< 200 nm) conventional microscopy cannot be applied to 

assess size and density of TLR4 on the membrane. In our study, we could not observe any 

significant differences in TLR4 abundance after treatment with different LPS chemotypes. 

However, we measured a remarkable cell-to-cell heterogeneity, ranging between 1.9 and 15.6 

receptor clusters per µm². On average 7.0 ± 1.0 (SEM) TLR4 clusters per µm² were found in 

untreated cells (n=13), which is comparable to the density of other membrane receptors [70].  

For other receptors, a formation of higher order oligomers after the respective ligand induction 

has been reported [30, 71]. For TLR4, Aaron and colleagues used dSTORM to analyse 

potential ligand-dependent changes in TLR4 cluster size in haematopoietic cells. In their study, 

they reported a TLR4 cluster size of ~ 300 nm which increased to over 500 nm after LPS 

stimulation [72]. In contrast, we determined a TLR4 cluster size of ~ 50 nm in unstimulated 

cells. Moreover, we did not observe changes in cluster size following stimulation with either of 

the two LPS chemotypes (Fig. 4, Tables 1 and 2). One possible explanation for this 

discrepancy is the different cell lines used to quantify the TLR4 cluster size. While our study 

used U251 glioma cells line, P388D1 macrophage cell lines were used by Aaron et al.. An 

interesting note on extracting molecular-level clustering from SMLM data was recently reported 

by Burgert et al. [73], who investigated the influence of photoswitching rates on the appearance 

of clusters. They report that for high labelling densities in combination with inappropriate 

photoswitching rates, artificial clustering can occur in SMLM images. The reason behind this 

observation is that more than one fluorophore is active within a diffraction-limited region which 

leads to a false localization [74, 75]. In our study, we carefully adjusted the laser intensities to 

guarantee optimal photoswitching of Alexa Fluor 647. With these settings, we could not 

observe any difference in receptor density and cluster size prior or post LPS induction. We 

conclude that neither internalisation nor formation of higher order TLR4 oligomers play a 

decisive role in LPS-induced downstream signalling events. 

 

4.6. Cholesterol-rich microdomains play a role in TLR4 signalling 

In hematopoietic cells and cell lines TLR4 is known to be partly associated with cholesterol-

rich membrane microdomains [25, 76] and can internalise via rafts/caveolae-mediated 

endocytosis in astrocytes [77]. In agreement with this, we show that TLR4 is partially co-
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localised with CTx at the plasma membrane of U251 cells (Fig. 5A). Membrane microdomains 

have been suggested to play a role in TLR4 oligomerisation and downstream signalling [25]. 

Recently, Schoeninger and colleagues demonstrated that remodelling of macrophage 

cholesterol-rich microdomains using polyunsaturated fatty acids results in attenuated 

inflammatory signalling after TLR4 stimulation [76]. In our study, MCD treatment resulted in an 

early nuclear translocation of p65 and significantly increased sustained NF-κB activity in cells 

treated with LPSSM compared to both LPSEC treated and control cells (Fig. 5C-D). No increase 

in p65 translocation and sustained NF-κB activity was observed in cells exposed to LPSEC. 

Notably, MCD-treatment has no effects on activity of IRF3 (Fig. 5C). These results suggest 

that microdomains play a decisive role in TLR4 mediated activation of MyD88- or TRIF- 

mediated signalling pathways. Interestingly, TLR4 can be internalised via rafts/caveolae in 

astrocytes [77]. Membrane microdomains were believed to have a size ranging from 10-200 

nm [78] and cannot be resolved by confocal microscopy. Recently, we applied helium ion 

microscopy (HIM), atomic force microscopy and dSTORM to visualize microdomains in the 

membranes of mammalians cells including neurons [79]. Both HIM and dSTORM revealed a 

size of 10-50 nm. Notably, the TLR4 clusters detected in the present study are in similar range 

(~50 nm).  

 

4.7. Implications for biased agonism of TLR4 

Due to the broad range of TLR4-ligands including PAMPS but also DAMPs, precise regulation 

of the inflammatory balance could be an efficient way to control the cellular reaction. Indeed, 

investigation into the use of TLR agonists for therapeutic use is an area of great scientific 

interest (reviewed in [80]). According to this assumption, Morris and colleagues reported that 

the inflammatory balance is an intrinsic feature of TLR4 that allows monocytes to respond in a 

concentration-dependent manner to LPS [12]. Our study further proves that inflammatory 

balance of TLR4 signalling can be regulated not only in a concentration-dependent, but also 

in a ligand-dependent manner. The creation of a highly sensitive and specific signalling hub 

also raises the possibility that the potential of TLR4 as a therapeutic target might not be 

restricted to cellular responses following infection or tissue damage. TLR4 is expressed in 

many cancer types including head and neck, skin and breast cancer (reviewed in [81]) and is 

involved in tumour cell proliferation and migration, if the inflammatory balance is shifted 

towards NF-κB-dependent pro-inflammatory signalling. In this context, Nunez and colleagues 

reported that LPS induced and TLR4 mediated induction of IFN has a potent antitumoural 

activity in melanoma cells [82].  

In conclusion, our results provide insights in the ligand-dependent intracellular responses 

mediated by TLR4. In particular, we show for the first time that natural TLR4 ligands can act 

as biased agonists, preferentially activating IRF3 over NF-κB in glioma cells. Notably, these 
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differences in downstream signalling are not dependent on the organization of the receptor on 

the membrane, as clustering cannot be seen under any condition with single-molecule 

localization microscopy. Here we show that high NF-κB activation in combination with 

moderate IRF3 activity promotes glioma cell proliferation. In contrast, low NF-κB and moderate 

IRF3 activity have no influence on glioma proliferation, but inhibit their migration potentially 

pointing towards future treatment of gliomas using TRIF-biased natural, synthetic or 

endogenous TLR4 ligands.   
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Figure 1. Clusters of TLR4 are uniformly distributed in the membrane of U251 cells. A. 

To verify the expression of TLR4 in U251 glioma cell, cells were incubated with an anti-TLR4 

antibody without permeabilisation step and processed for flow cytometry revealing high 

expression of TLR4 at the membrane. Left: dot plot, FSC: forward scatter. Right: histogram. 

Orange: anti-TLR4, black: control. B. Direct stochastic optical reconstruction microscopy 

(dSTORM) was applied to investigate the nano-spatial organization of TLR4 at the membrane 

of U251 cells stained with an anti TLR4 primary antibody and AlexaFluor647 as detection 

antibody. We found that TLR4 is uniformly distributed across the membrane and exhibits a 

density of 7.0 ± 1.0 receptor clusters / µm2. 
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Figure 2. Kinetics of TLR4-induced nuclear translocation of IRF3 and NF-κB are ligand-

dependent. A. In order to determine if the chemotype of the LPS affects the kinetics of nuclear 

translocation of NF-κB and IRF3, control cells and cells exposed to LPSSM or LPSEC were fixed 

at the indicated time points and co-stained for IRF3 and NF-κB subunit p65. B. Quantification 

of nuclear p65 and IRF3. We found that LPSEC promotes rapid nuclear translocation of p65 (30 

min, arrowhead). In cells stimulated with LPSSM only low levels of nuclear NF-κB were 

observed at 2 h (arrowheads). Note the lower levels of nuclear p65 in cells treated with LPSSM 

at all time points and reached the maximum after 24 h (arrows). In contrast, the levels of 

nuclear IRF3 were significantly higher in LPSSM-treated cells in comparison to LPSEC at both 4 

and 24 h. The values represent means ± SEM. All experiments were performed in triplicate. 

*P<0.05, ** P<0.01, ***P<0.001. 
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Figure 3. LPSEC leads to MyD88-biased signalling and triggers U251 glioma cell 

proliferation, whereas LPSSM stimulation results in a weak activation of NF-κB and 

inhibits migration. A-B. Cells were serum-starved to set a low baseline of active NF-κB (time 

point 0, panel A). Medium was changed to fresh serum-containing media with and without 

LPS for the indicated time. Samples were subjected to Western blotting to determine the basal-

serum induced degradation of IκBα (A) and after LPS treatment (B). Representative Western 

blots are shown. Densitometric analysis was performed to semi-quantitatively determine the 

relative abundances of IκBα relative to that of 14-3-3-ζ. Normalisation was performed to 

respective relative abundances of IκBα in untreated cells at each time point. Significantly 

stronger IκBα degradation was detected after 2h treatment with LPSEC compared to untreated 

control. Data are mean values of three independent experiments ± SEM. *P<0.05. C. Cells 

were transiently transfected with NF-κB and IRF3 driven luciferase reporter plasmids followed 

by stimulation with LPS and detection of luciferase activity. Note the significantly higher NF-κB 

activity in LPSEC treated cells compared to control and cell exposed to LPSSM and no 

significantly different IRF3 activity after exposure to both LPS chemotypes. All experiments 

were performed in triplicate, data is displayed as mean ± SEM. ***P<0.001. D-E. RT-qPCR 

was performed using mRNA isolated from cells treated with LPS 1h or 24h. Normalisation was 
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performed for all samples using GAPDH expression and untreated control approach (ΔΔCT). 

Data is displayed as mean of three independent experiments ± SEM. *P<0.05, ** P<0.01, 

***P<0.001. Note that the pro-inflammatory NF-κB target genes TNF-α and IL8 are expressed 

at significantly higher level after treatment with LPSEC, whereas LPSSM results in higher 

transcription of the IRF3 target gene IFNβ. F. ELISA was applied to measure LPS-induced 

secretion of the pro-inflammatory IL6 into the medium. We found that treatment with LPSEC 

leads to significantly increased secretion of IL6 compared to control and cells exposed to 

LPSSM. Data represents three independent experiments ± SEM. ** P<0.01. G. Total cell number 

was determined after 3 days of culture in presence of LPSSM or LPSEC. Treatment with LPSEC 

leads to significantly higher proliferation, whereas we found no significant change of 

proliferation in cells after stimulation with LPSSM. The values represent means of three 

independent experiments ± SEM. ** P<0.01. H. Wound healing assay was performed to 

determine the influence of LPS chemotype on U251 cell migration. In contrast to LPSEC, LPSSM 

significantly inhibits U251 migration. Data are mean values of three independent experiments 

± SEM. ** P<0.01, ***P<0.001 
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Figure 4. Distribution and size of TLR4 receptor clusters in U251 cells before and after 

induction with LPS. A. Representative dSTORM images of immunostained TLR4 receptor 

clusters on the membrane of U251 cells. Super-resolution images are shown for a cell after 

treatment with LPSEC for 2 h and LPSSM for 2 h, respectively. A magnified view of the boxed 

regions is given for each cell. For both LPSEC and LPSSM, the receptor is uniformly distributed 

across the plasma membrane. B. Box plot of the number of TLR4 receptor clusters per µm² 

before and after incubation with LPSEC or LPSSM. For each condition the result of every single 

cells is shown (n=13). C. Ripley clustering analysis of the single molecule localization data sets 

of TLR4 receptors on U251 cells after applying LPSEC. The maxima of the Ripley function 

indicate the cluster size.  D. Ripley clustering analysis of TLR4 receptors in cells treated with 

LPSSM. D. TLR4 receptor cluster sizes on the plasma membrane of U251 cells calculated with 

imaged-based cluster analysis. For each incubation time the radius of each receptor cluster 

was determined and averaged. 
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Figure 5. MCD induced depletion of cholesterol-rich membrane microdomains 

increases LPSSM induced NF-κB activity, but neither influences LPSEC-mediated NF-κB 

activation nor IRF3 activity driven by both LPS chemotypes. A. To investigate potential 

co-localisation of TLR4 with cholesterol-rich membrane microdomains, cells were co-labelled 

with an anti TLR4 antibody and AlexaFluor488 conjugated Cholera Toxin subunit B (CTx). 

Analysis revealed a partial co-localisation of TLR4 and CTx. B. U251 cells were treated with 

MCD followed by a wash-out and exposure to both LPS chemotypes for 30 min followed by 

immunocytochemical staining for NF-κB subunit p65 and analysis of nuclear signal. 

Quantitative analysis of nuclear p65 shows significantly increased amount of nuclear p65 in 

cells treated with MCD and LPSSM but no significant differences in LPSEC induced nuclear 

translocation of p65. The values represent means ± SEM. All experiments were performed in 

triplicate. ***P<0.001. C. U251 cells transiently transfected with NF-κB and IRF3 reported 

plasmids were treated with MCD and LPS and processed for analysis of bioluminescence. 

Note that treatment with MCD / LPSSM significantly increased NF-κB driven luciferase activity 

compared to LPSSM alone and control, but has no effect on IRF3 driven bioluminescence. Data 

displayed as mean of three independent experiments ± SEM. ***P<0.001. 
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Figure S1. Localization precision of the dSTORM images.  Localization precision was 

determined using nearest neighbour analysis [36] for a single cell. A. Control. B. Induction with 

LPSEC. C. Induction with LPSSM .The localization precision ranges from 8.9 nm to 10.3 nm.  
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Figure S2. Principle of image-based cluster analysis. A. SMLM image of a U251 cell which 

was labelled with the secondary antibody only (negative control; inset shows bright-field 

image). On average, 0.3 ± 0.1 particles per µm² were found. B. An intensity threshold is applied 

to the raw image (boxed region from A) and particles composed of at least 12 pixels are 

counted. The composite image (right) shows an overlay of the raw image (white) and the 

identified particles (red). 
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Figure S3. Results of single-molecule localization microscopy are consistent for 

different primary antibodies. A. Control experiment with different primary antibody (ab32518, 

Abcam, UK). Box plot shows the number of TLR4 receptor clusters per µm² for each time point 

before and after incubation with LPSEC or LPSSM. 
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Figure S4. GAPDH expression is not regulated by TLR4 in U251 glioma cells. RT-qPCR 

was performed using mRNA isolated from cells treated with both LPS chemotypes for 1h or 

24h. Statistical analysis was performed to assess the potential regulation of the reference 

genes by TLR4-mediated signalling cascades. Note that neither GAPDH nor the control 

reference genes PGK1, PPIB, and PPIA were regulated by the LPS treatment. C: control, E: 

LPSEC, S: LPSSM. 
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Table 1. Average number of TLR4 receptors per µm² on the plasma membrane of U251 

cells before and after applying LPS. The cluster numbers were determined using image-

based analysis of dSTORM images. Numbers are average values determined from 13 cells 

per condition (SEM is given for each value). 

  

Condition 
Number of TLR4 

clusters per µm² 

TLR4 only 7.0 ± 1.0 

TLR4 + LPSEC 0.5 h 6.8 ± 0.8 

TLR4 + LPSEC 1 h 9.2 ± 1.0 

TLR4 + LPSEC 2 h 6.3 ± 0.5 

TLR4 + LPSSM 0.5 h 7.4 ± 0.8 

TLR4 + LPSSM 1 h 5.7 ± 0.5 

TLR4 + LPSSM  2 h 7.1 ± 0.8 
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Table 2.  TLR4 receptor cluster sizes on cell membrane of U251 cells. Cluster size was 

calculated using imaged based analysis (radius) and coordinate based analysis (Ripley’s H-

function) before and after applying LPSEC and LPSSM for the indicated time points (SEM is 

given for each value).  

 

 

  

Condition 
Cluster radius  

[nm] 
Maximum Ripley’s H-

function [nm] 

TLR4 only 27.6 ± 0.04 54.7 ± 1.3 

TLR4 + LPSEC 

0.5 h 
26.9 ± 0.04 

57.2 ± 1.7 

TLR4 + LPSEC 1 

h 
28.5 ± 0.04 

56.3 ± 1.2 

TLR4 + LPSEC 2 

h 
26.2 ± 0.03 

52.3 ± 1.2 

TLR4 + LPSSM 

0.5 h 
28.1 ± 0.03 

57.4 ± 1.7 

TLR4 + LPSSM 1 h 26.7 ± 0.04 52.6 ± 0.9 

TLR4 + LPSSM  2 

h 
27.4 ± 0.04 

55.7 ± 1.0 
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Table S1.  Control experiment with different primary antibody. Numbers of average 

TLR4 receptors per µm² for each condition (n=6 for control condition, all other conditions: 

n=3). 

  

 

 

 

 

 

 

 

Condition 
Number of TLR4 

clusters per µm² 

TLR4 only 7.6 ± 1.2 

TLR4 + LPSEC 0.5 h 5.6 ± 1.6 

TLR4 + LPSEC 1 h 6.5 ± 0.4 

TLR4 + LPSEC 2 h 6.4 ± 1.4 

TLR4 + LPSSM 0.5 h 7.0 ± 0.4 

TLR4 + LPSSM 1 h 5.6 ± 1.3 

TLR4 + LPSSM 2 h 6.7 ± 1.4 


