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SUMMARY

We propose a method for efficient evaluation of surface integrals arising in boundary element methods
for three-dimensional Helmholtz problems (with real positive wavenumber k/, modelling wave scattering
and/or radiation in homogeneous media. To reduce the number of degrees of freedom required when k is
large, a common approach is to include in the approximation space oscillatory basis functions, with support
extending across many wavelengths. A difficulty with this approach is that it leads to highly oscillatory
surface integrals whose evaluation by standard quadrature would require at least O

�
k2
�

quadrature points.
Here, we use equivalent contour integrals developed for aperture scattering in optics to reduce this
requirement to O .k/, and possible extensions to reduce it further to O .1/ are identified. The contour
integral is derived for arbitrary shaped elements, but its application is limited to planar elements in many
cases. In addition, the transform regularises the singularity in the surface integrand caused by the Green’s
function, including for the hyper-singular case under appropriate conditions. An open-source Matlab™code
library is available to demonstrate our routines. © 2016 The Authors International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

The boundary element method (BEM) can be an effective technique for simulating wave scattering
and radiation problems in homogeneous media. Here, we consider scalar problems that can be
modelled by the Helmholtz equation:

r2ˆC k2ˆ D 0; (1)

where k > 0 is the wavenumber and ˆ might for instance represent the pressure of an acoustic
wave. By reformulating (1) as an integral equation that holds on the boundary of the medium, the
dimensionality of the problem is reduced and unbounded homogeneous media can be modelled in a
straightforward way.

Despite these advantages, standard BEM schemes using piecewise-polynomial basis functions
have a computational cost that grows rapidly as the wavenumber k becomes large. This occurs
because the boundary mesh must be refined to keep the elements small with respect to wavelength;
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for a three-dimensional (3D) problem, with two-dimensional (2D) boundary, the number of
elements, and therefore the number of degrees of freedom, must grow with O

�
k2
�

to maintain accu-
racy as k increases. BEM produces full interaction matrices linking every basis function to every
other basis function, leading to excessive computational cost and storage requirements as k grows,
even with application of fast multipole methods (e.g. [1]).

High frequency BEM (HF-BEM) approaches such as partition-of-unity BEM (POU-BEM)
(e.g. [2]) and hybrid numerical asymptotic BEM (HNA-BEM) (e.g. [3]) aim to reduce storage
requirements so as to make problems with larger k values tractable. The dominant strategy
in these approaches is to replace the piecewise-polynomial basis functions with a smaller, ideally
k-independent, number of appropriately chosen oscillatory basis functions, whose support may span
many wavelengths. A consequence is that the computational cost of integrating each BEM matrix
entry directly by quadrature, which is independent of k for standard BEM, scales for HF-BEM
(in 3D) with O

�
k2
�

for collocation schemes and O
�
k4
�

for Galerkin schemes.
For HF-BEM algorithms to achieve their potential, there is therefore a need for algorithms that can

efficiently evaluate the types of oscillatory integrals that arise. There has been significant progress
towards achieving this for 2D HF-BEM schemes using Filon type methods (e.g. the recent review
in Section 4 of [3]), but these ideas have yet to be fully extended to 3D scenarios. Ideas for com-
puting the surface integrals that arise in 3D HF-BEM include those of Trevelyan and Honnor [4],
and Bruno and Geuzaine [5]. The integration algorithm in [4] is based on element subdivision
on a curvilinear grid, fitted such that the oscillation of the kernel occurs in one direction only.
Integration in the direction perpendicular to the phase variation is performed using a standard
Gauss-Legendre rule with a k-independent number of weights, leaving a set of one-dimensional
(1D) oscillatory integrals that are evaluated with k-independent cost using the method of numerical
steepest descent (e.g. [6]). The algorithm was shown to be capable of achieving near machine-
precision with k-independent computational cost, but the algorithmic complexity involved meant
this only outperformed standard approaches for quite large values of k. The algorithm in [5] is
based on the observation that only the singular and stationary phase points contribute significantly
to the value of oscillatory integrals, because the oscillation in other areas largely cancels out. The
integrand may therefore be windowed in space to only include these regions, with the size of the
windows reducing as k increases, but the asymptotic nature of the resulting scheme means it is not
fully error controllable. Moreover, the construction of these window functions, in particular for the
cases they may overlap, is an algorithmically complicated task; in [5], this scheme is only applied
to the case of a spherical obstacle.

Here, we adopt an entirely different approach. Rather than examining the kernel of the surface
integral and attempting to design algorithms to suit its characteristics (as was done in [3–5]), we
instead use Stokes’ theorem to transform the surface integral into a contour integral around its edge.
This places some limitations on the geometry and the form of the integration kernels (Section 4),
but results in a very simple algorithm, which is available in an accompanying Matlab toolbox (avail-
able to download from the publisher’s website as the ‘Supporting Information’ that accompanies
this manuscript).

Transformation of surface integrals to contour integrals is an approach that has been widely used
in BEM, mainly to regularise the singularity present in the Green’s function in cases where the
evaluation point is adjacent to or on the element over which integration is being performed. The
focus here has particularly been on integrals arising from the hyper-singular integral operator in
collocation schemes (e.g. [7, 8]). An early and influential exposition of this approach was given
by Terai [9], based on conversion to polar coordinates; this included support for higher-order
polynomial basis functions, but was restricted to planar elements. More recently, there has been
interest in evaluating the resulting line integrals analytically using a power series expansion [10],
but this is valid only for piecewise-constant basis functions on planar polygonal elements.

The approach reported in this paper differs from those in [7, 10] in that it arises specifically
from the wave nature of the fields involved. In particular, it draws on formulations derived for
modelling aperture scattering, so has a specific physical interpretation. These integral transforms
have been known for many decades, and some were specifically focussed on reducing computa-
tional cost of numerical integration (e.g. [11, 12]); however, their application to the computation
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of BEM matrix coefficients is believed to be novel. One of the closest works to that con-
tained herein is [13]; this treats a different class of oscillatory integral (a polynomial-exponential
product), but does so by applying Stokes’ theorem and identifies the same connection with aperture
scattering problems.

The paper is structured as follows. In Sections 2.1 and 2.2, we review HF-BEM, and investigate
the resulting wave behaviour. Following this, we describe an alternative grouping of discretisa-
tion terms and show how this more directly leads to a contour integral formulation. In Section 3,
we review the aperture scattering formulations before discussing in Section 4 their application to
integrals commonly found in HF-BEM, along with the contents of the Matlab toolbox.

2. BOUNDARY INTEGRAL EQUATION FORMULATION

2.1. The Kirchhoff-Helmholtz boundary integral equation

The Kirchhoff-Helmholtz boundary integral equation (KHBIE) is the foundation of the direct
BEM. It is derived by applying Green’s second identity to the free-space Green’s function
G .x; y/DeikR

ı
4 R, where R D jx � yj, and a wave ˆ, that is, a time-harmonic scalar field that

satisfies the Helmholtz equation (1). Various configurations are possible, including ‘interior prob-
lems’ concerning a bounded medium in a cavity (Figure 1a) and ‘exterior problems’ concerning an
obstacle submerged in an unbounded medium (Figure 1b). Excitation of the medium may come from
part of the boundary (e.g. a vibrating panel) or from an additional incident wave pre-defined in the
medium (a scattering problem). However, once all the necessary manipulations have been performed
(e.g. using the Sommerfeld radiation condition to show that the contribution from the integral over
S1 in Figure 1b is zero), then all these configurations result in very similar integral equations.
Because our focus here is on evaluating integrals arising from the KHBIE rather than its vari-
ous applications, it is convenient to state it abstractly without considering precisely which scenario
it is being applied to. To this end, we define an operator K, which maps a field ˆ on a surface S to
a field ‰ in the surrounding volume:

‰ .x/ D K ¹ˆº .x/ D
ZZ
S

On .y/ �Œˆ.y/rG .x; y/�G.x; y/rˆ .y/�dSy: (2)

Here, On is the surface normal unit vector orientated into the acoustic medium, and r is always
taken with respect to y unless specifically stated otherwise (e.g. in Section 4.4). The surface-normal
component of the gradient On � r is often denoted by the shorthand @=@n, read as ‘surface-normal
derivative’, and this will be used interchangeably in what follows. In scattering problems,‰ equates

Figure 1. Geometries for the application of the Kirchhoff-Helmholtz boundary integral equation; (a) and
(b) represent ‘interior’ and ‘exterior’ problems, respectively. In both cases, the volume V is connected and
contains an acoustic medium. The boundary of V is the surface S in the interior case, or S [ S1 in the
exterior case, and this has a normal vector On orientated so as to point into V . Here, y is a point on S , and x

is a point off S , and R denotes the distance between them.

© 2016 The Authors International Journal for Numerical Methods
in Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



J. A. HARGREAVES, Y. W. LAM AND S. LANGDON

to the scattered wave, that is, the total wave ˆ minus the incident wave. Conversely in an interior
problem (Figure 1a), where ˆ is a known wave emanating from outside V , K acts as a ‘reconstruc-
tion’ operator, driving the monopole and dipole layers such that ‰ .x/ D ˆ.x/ if x 2V . These two
contrasting interpretations are emphasised because most POU-BEM and HNA-BEM implementa-
tions are focussed on scattering problems; the results of this paper are therefore most likely to be
applied in that scenario, but the transforms described in Section 3 are motivated by the use of K to
(partially) reconstruct a propagating wave.

This operator K is closely related to the classical single and double layer potentials S and D,
which are the foundation of the indirect BEM:

S ¹f º .x/D
ZZ
S

G .x; y/ f .y/ dSy; (3)

D ¹f º .x/D
ZZ
S

@G

@n
.x; y/ f .y/ dSy: (4)

The physical interpretation of S and D is as distributions on S of monopole and dipole sources,
respectively; the surface quantity f is therefore interpreted as a source density function. Comparing
(2) with (3) and (4), the operator K can be understood as layers of monopoles and dipoles working
together, with densities specified by �@ˆ=@n and ˆ, respectively. Because G and @G=@n both
satisfy the Helmholtz equation for x ¤ y, it follows that ‰ .x/ satisfies the Helmholtz equation
for x …S .

2.2. Discretisation

In order to permit numerical solution, the surface quantities ˆ and @ˆ=@n must be approximated in
a discretised form, usually as weighted sums of basis functions bj .y/:

ˆ.y/ �
X
j

wj bj .y/: (5)

If an algorithm is being coded for a specific boundary condition, then it is often possible to
eliminateˆ or @ˆ=@n (e.g. for sound-hard or sound-soft obstacles) or to express one in terms of the
other (e.g. for a locally-reacting surface impedance boundary condition). However in a multipurpose
BEM code, it is more common to approximateˆ and @ˆ=@n separately and then combine the results
numerically using the boundary data supplied.

With HF-BEM, we attempt to reduce the number of degrees of freedom required to represent
the oscillatory nature of ˆ and @ˆ=@n through intelligent design of the basis functions. A common
form for bj to take in these schemes is

bj .y/ D ej .y/ oj .y/ : (6)

Here, oj is an oscillatory function, and ej is an envelope function, usually both defined only on
S . The purpose of oj is to represent some aspect of the oscillatory behaviour present in ˆ; plane
waves are a common choice. The intention is that these will effectively represent the (often largely
predictable) oscillation in ˆ, leaving the ‘envelope’ functions ej to interpolate a quantity that is
slowly varying with respect to wavelength; piecewise-polynomials defined on a mesh of elements
that are large with respect to wavelength are an effective choice for this. Because this scheme does
not require the oscillations inˆ to be approximated by polynomials, it does not (in principle) require
more degrees of freedom as k increases, provided appropriate choices of oj are made.

2.3. Waves emanating from individual basis functions

We now consider the fields ‰Sj and ‰Dj arising from individual basis functions, where the super-
script indicates the operator used and the subscript indicates that it has been applied to the j th basis
function bj . Specifically,
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‰Sj .x/ D S
®
bj
¯
.x/ D

ZZ
Sj

G .x; y/ bj .y/ dSy; (7)

‰Dj .x/ D D
®
bj
¯
.x/D

ZZ
Sj

@G

@n
.x; y/ bj .y/ dSy: (8)

Here, SjDS\sup
�
bj
�

is the section of S on which bj is non-zero. Clearly, from their definitions
as integrals of G and @G=@n, respectively, both ‰Sj and ‰Dj satisfy the Helmholtz equation for
x …Sj . It is unusual to see ‰Sj and ‰Dj discussed in isolation; usually, they are only considered as a
component of the total solution; however, it is actually the evaluation of ‰Sj and ‰Dj that dominates
the assembly of the BEM linear system. The total field ‰ may also be recovered from a weighted
sum of them, using the same weights that approximateˆ and @ˆ=@n from the set of basis functions.

For standard BEM discretisation schemes, the behaviour of ‰Sj and ‰Dj is fairly predictable
because these waves are dominated by the monopole and dipole behaviour of G and @G=@n. With a
HF-BEM basis function of the form (6) however, the oscillatory behaviour of oj will also influence
the directivity of the resulting field, and the results become more interesting. Figure 2 shows slices
through ‰Sj and ‰Dj for a square planar element Sj (with uniform normal vector Onj / on which the
(plane wave) oscillatory basis function

oj .y/ D eikj �Œy�vref� (9)

is supported. Here, vref2Sj is a fixed vertex (which provides a positional phase reference) and kj
is the wavevector of the plane wave; this points in the direction of propagation and has magnitudeˇ̌
kj
ˇ̌
Dk. The envelope function ej was in this case chosen to be a piecewise-constant function:

ej .y/ D
²
1 if y 2Sj
0 otherwise

: (10)

The plots in Figure 2 are drawn in side view; the plane from which the points x were chosen
passes through the centre of the element and is orientated to contain Onj and kj . The element Sj is
depicted by a heavy black line, and Onj points vertically upwards. The wavenumber was chosen such
that ka D 40, where a is the width of Sj .

The two plots are quite similar, although close to the plane of Sj there are some easily visible
differences. In particular, the dipole radiation pattern of D means that the wave ‰Dj in Figure 2a

Figure 2. Plots versus observer position x of real part of the waves: (a) ‰D
j
.x/ and (b) ‰S

j
.x/. Red and

blue indicate positive and negative values, respectively, and the arrows indicate the direction of propagation.
Plots depict a slice through the wave in side view; the ‘element’ Sj is depicted by the heavy black line and

the element normal vector Onj points vertically upwards.
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is anti-symmetric across the plane of Sj and most noticeably has opposite sign on each side of Sj
and vanishes for x that are in the plane of Sj but not on Sj itself. Conversely, ‰Sj in Figure 2b
is symmetric across the plane of Sj because of the monopole radiation pattern of S and does not
vanish for x that are in the plane of Sj but not on Sj itself.

The arrows indicate the dominant directions of propagation; these are mirror images in the plane
of Sj and are the same for both operators. These will be called the ‘incoming’ and ‘outgoing’
wave directions. These names refer to the fact that Sj , which is part of S , usually represents the
boundary between an acoustic medium and an obstacle. The convention is that Onj points into the
medium; hence, for Figure 2 (in which Onj points upwards), the medium is above the plane of Sj
and the obstacle is below it. With this orientation, the ‘incoming’ direction is the downward arrow,
arriving at the obstacle from the medium, and the upward arrow is the ‘outgoing’ direction, leaving
the obstacle and propagating out into the medium. The corresponding wavevectors are respectively
given by kI

jDktj� Onjk
n
j and kO

jDktjC Onjk
n
j , where ktj is the surface tangential component of kj and

knjD

r
k2 �

ˇ̌̌
ktj

ˇ̌̌2
. Interestingly, this means that, for a planar surface element at least, the dominant

directions in which ‰Sj and ‰Dj propagate out into V are independent of the surface normal
component of the wavevector specified in (9). This is because it is the oscillation in oj that speci-
fies the dominant propagation directions, and for a planar surface element, this is purely controlled
by ktj ; in its exponent, kj � Œy�vref�Dktj � Œy�vref� because y and vref are coplanar, meaning
Onj � Œy�vref� D 0 and the value of knj has no effect. In the examples in Figure 2, ktj points to the right
of the figure and has magnitude k=2 (so knjD

p
3k=2/.

Because it is also required that
ˇ̌
kj
ˇ̌
Dk, there are only two valid choices for kj for a specified

value of ktj ; kjDkI
j and kjDkO

j . However, both of these choices produce identical results for ‰Sj
and ‰Dj , and these in turn both show dominant propagation in directions kI

j and kO
j (as seen in

Figure 2). These observations suggest that ‰Sj and ‰Dj may not be the most fundamental building
blocks of what is emanating from bj and that a scheme which emanates waves that propagate only
in the directions kI

j or kO
j may be worth investigating.

2.4. An alternative approach to discretisation

Section 2.2 described the standard approach to discretisation of the single and double layer potential
operators. Here, an alternative approach will be described, which substitutes basis functions directly
into K. This exploits the fact that, while the envelope function ej .y/ is only defined for y 2S ,
the oscillatory function oj .y/ will in general be defined globally. Ultimately, the objective is to
approximateˆ and @ˆ=@n in a consistent way, which captures the leading order physical behaviour.
Extending the idea that the wave behaviour should be captured by the oscillatory functions and
that the envelope functions are primarily a partition-of-unity defined on the surface, an appropriate
choice is to approximate @ˆ=@n by

@ˆ

@n
.y/ �

X
j

wj ej .y/
@oj

@n
.y/: (11)

Comparing this to the approach in (8), the main change is that @oj
ı
@n will now be used to

capture the oscillation of @ˆ=@n, in place of oj . This is justifiable because most common choices
for oj (ours in (9) included) are solutions of the Helmholtz equation themselves; hence, they are
well suited to represent both ˆ and @ˆ=@n on S . In practice, for most likely choices of oscillatory
function, @oj

ı
@n is likely to have similar oscillatory behaviour to oj , albeit with some scaling due

to the presence of the differential, which may or may not be spatially dependent (e.g. the specific
example in the following paragraph). Moreover, we are particularly interested in the possibility of
using the same coefficient values wj in both (5) and (11), so that ˆ and @ˆ=@n are approximated
together, because this will be shown in Section 2.5 to be a prerequisite for application of Stokes’
theorem. Considering this and the form of (11), it is therefore natural to consider the field arising
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when a single basis function bj .y/ D ej .y/ oj .y/ is substituted into both ˆ and @ˆ=@n within the
KHBIE; we denote this field as ‰j .x/ D K

®
bj
¯
.x/:

‰j .x/ D K
®
bj
¯
.x/ D

ZZ
Sj

ej .y/ On .y/ �
�
oj .y/rG .x; y/ �G .x; y/roj .y/

�
dSy: (12)

We now go on to show that this form of discretisation scheme produces waves ‰j , which exhibit
dominant propagation in only kI

j or kO
j , as suggested in the previous section. Given that the KHBIE

was derived from the assumption that the waves involved satisfied the Helmholtz equation, it makes
sense now to only consider choices of oj that satisfy this also. For planar elements and the plane
wave basis defined in (9), this amounts to choosing kjDkI

j or kjDkO
j for a specified value of ktj ; this

‘I’ and ‘O’ superscript notion will be continued onto oj , bj and‰j to indicate which choice of kI
j or

kO
j has been used. This implies that the basis functions will naturally occur in pairs bI

j and bO
j , which

have equal values of ktj and are equal on Sj , but which have opposite surface normal derivatives.

Noting that @oI
j

.
@n .y/ D �iknj o

I
j .y/ and that @oO

j

.
@n .y/ D iknj o

O
j .y/, it follows that ‰I

j .x/ D

K
°
bI
j

±
.x/ D ‰Dj .x/C ik

n
j‰

S
j .x/ and‰O

j .x/ D K
°
bO
j

±
.x/ D ‰Dj .x/� ik

n
j‰

S
j .x/. These waves

are shown in Figure 3 using the same parameters as Figure 2. It can be seen that ‰I
j and ‰O

j each
possess only one dominant propagation direction; these are equal to kI

j and kO
j , respectively.

A system of discretisation based on incoming and outgoing waves would require separate
discretisation weights for bI

j and bO
j so the total number of degrees of freedom would be equal

to a scheme based on D and S . Such a scheme would represent ˆ on S as a weighted sum of
wave terms oj , albeit windowed by the envelope functions ej . Particularly for asymptotically large
k, where the propagation behaviour becomes geometric, it can be imagined that ‰I

j and ‰O
j are

simpler components from which to construct the total solution off S , compared with ‰Dj and ‰Sj ,
which require addition or subtraction in order to represent a wave travelling in only one direction.
Locally reacting impedance boundary conditions may also be readily incorporated. For example,
if ˆ and @ˆ=@n on Sj are related by @ˆ=@n D �ikˇˆ, where ˇ is the relative surface admit-
tance, then it is straightforward to show that the weight of bO

j should be R times the weight

of bI
j , where R D

�
knj�kˇ

�.�
knjCkˇ

�
is the standard pressure reflection coefficient used in

acoustics [14]. Initial studies into the pros and cons of discretising ˆ and @ˆ=@n together in this
way are discussed in [15] and [16], and an equivalent method, which uses only surface normal
wave directions (equivalent to ktjD 0/ on a mesh of elements which were small with respect to

Figure 3. Plots versus observer position x of real part of (a) the incoming wave ‰I
j
.x/ and (b) the outgoing

wave ‰O
j
.x/. For other details, see Figure 2 caption.
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wavelength, has been successfully applied in the time domain [17]. In the context of this paper how-
ever, this representation is used primarily as an intermediate step to permit fast evaluation of ‰Dj
and ‰Sj .

2.5. Reduction of surface integral dimensionality

The integral in (12) to compute ‰I
j and ‰O

j has the same computational cost scaling as those to
compute ‰Dj and ‰Sj ; if a standard approach such as Gaussian quadrature is used, it will require
O
�
k2
�

operations to maintain accuracy as k grows. The strategy adopted here for reducing this is to
transform each surface integral over Sj into a contour integral around the perimeter of Sj . So long
as the integral kernels retain the same order of oscillatory behaviour then the reduction in dimen-
sionality of the integrals (from surface integrals to line integrals) will reduce the computational cost
scaling to O .k/. The transformation of surface integrals into contour integrals in this paper amounts
to application of Stokes’ theorem, and this leads to a more concrete argument for evaluating ‰I

j and
‰O
j in preference to ‰Dj and ‰Sj .
Stokes’ theorem for a vector field J may be stated as

ZZ
Sj

On .y/ �r � J .y/ dSy D

I
@Sj

Ol .y/ �J .y/dly: (13)

Here, Ol is a unit vector tangential to the edge of the Sj , defined such that the contour integral
around Sj and the normal vector On obey the right-hand screw rule. Application to the KHBIE
involves finding a choice for J such that On�r � J D On � I on Sj , where I is the quantity to be
integrated. Any choice for J must satisfy the divcurl identity r� Œr � J�D0, which implies that
application of Stokes’ theorem will only be directly possible for an I that satisfies r � ID0:

If ej .y/ is taken to be piecewise-constant (as defined in (10)) then K
®
bj
¯
.x/ amounts to

choosing I .x; y/ D oj .y/rG .x; y/�G .x; y/roj .y/; it is straightforward to show that the diver-
gence of this equals zero if oj and G satisfy the wave equation because the divergence of the
two terms cancel (in the same way that they do in the derivation of the KHBIE using Greens’
second identity). In contrast, choices for I corresponding to the operators D and S would each
include only one of these terms; hence, the divergence is non zero and Stokes’ theorem cannot be
directly applied.

It therefore makes more sense to look for a contour integral transform for ‰I
j and ‰O

j . The main
challenge here is to find an appropriate choice for J, which matches with K

®
bj
¯
; fortuitously,

this is something that has already been addressed in classical optics. Most of those publications
use differing notation and focus primarily on the case where the oscillatory function is a spherical
wave; hence, a review is included in the next section. Reconstruction of ‰Dj and ‰Sj from ‰I

j and
‰O
j , including support for more realistic choices of envelope function, will then be addressed in

Section 4.

3. FINDING A CONTOUR INTEGRAL KERNEL

The parallel problem, which has led to an appropriate formulation for J, is the classical optics
problem of calculating the field radiated through an aperture in an absorbing (optically black)
screen. The starting point for this is a surface integral identical to (12), so long as ej is defined
to be piecewise-constant according to (10). In this analogy, oj is regarded as being the incident
wave arriving at the screen, Sj the aperture in the screen, and ‰j the wave emerging from it on
the other side. It is widely known that this is an approximate model of aperture diffraction, but
these approximations do not apply to our scheme because our interest is purely in calculating the
field ‰j .x/ D K

®
bj
¯
.x/ emanating from one of our basis functions bj . If we were to use such

an HF-BEM algorithm to model diffraction from an aperture (e.g. [18]), then we would naturally
include a set of multiple basis functions designed to capture all the possible (or likely) behaviour
and represent the entire solution as a combination of these using weights found by a linear algebra
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solver. Importantly, the transforms between surface and contour integrals discussed in the following
sections are exact.

3.1. Maggi-Rubinowicz formulation

It is widely known that the Maggi-Rubinowicz formulation provides a means to transform this sur-
face integral into a contour integral around the edge of the aperture. The mathematical representation
of this was formalised by Miyamoto and Wolf in 1962 [19], which also contains a review of the ear-
lier works on this topic. Here, it will be taken that oj is the plane wave defined in (9), and it will be
assumed that

ˇ̌
kj
ˇ̌
Dk in the medium, so oj satisfies the Helmholtz equation. The known expression

for ‰j corresponding to (12) is then [19]:

‰j .x/ D illumj .x/ oj .x/C
I
@Sj

oj .y/G .x; y/
kj�R� Ol .y/
kR � R � kj

dly: (14)

Here, R D x � y, so R D jRjD jx � yj as previously defined. The kernel of the contour inte-
gral is a combination of the oj at the edge point y, multiplied by the Green’s function from y to
the observation point x, multiplied by a directivity term. Note that there is no requirement for the
aperture Sj to be planar; that was required in the previous section purely to allow reconstruction
of ‰Dj and ‰Sj from ‰I

j and ‰O
j . This formulation therefore contains the same oscillatory terms

as (12) but replaces the surface integral with a contour integral. Because of the reduced dimen-
sionality, the numerical integration cost should therefore reduce from O

�
k2
�

for (12) to O .k/
for (14).

The first term on the right hand side of (14) is referred to as the geometric field in aperture diffrac-
tion problems; it is depicted in Figure 4a, being the oscillatory function oj at the observation point
x (note how it is now essential that oj is defined through all of space) multiplied by a windowing
function illumj .x/. Mathematically, the reason for this additional term is that Stokes’ theorem can-
not be applied where J is singular, as the directivity function is at the point where the geometric
propagation path passes through Sj (because kj and R would point in the same direction hence
kR � R�kjD0/. This point must therefore be excluded from the surface integral before Stokes’
theorem is applied; Miyamoto and Wolf discuss this in more detail in Section 2 of [19] and show
that it gives rise to the geometric field. The ‘geometric region’, in which illumj .x/ is non-zero, is
defined as any point x for which a line in the direction �kj intersects Sj ; this is straightforward

Figure 4. Decomposition of ‰O
j
.x/ into two terms as used by the Maggi-Rubinowicz formulation: (a) the

geometric term; (b) the result of the contour integral around the edge of Sj . The sum of these two terms is
equal to ‰O

j
.x/ as depicted in Figure 3b. For other details, see Figure 2 caption.
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to compute if Sj is planar but can be more involved if Sj is curved. Note that the region is only
projected forward from Sj with respect to kj , not backward; hence, there is still a discontinuity on
Sj , which is consistent with the interpretation of it as containing a distribution of sources. A situa-
tion not typically considered in aperture problems but relevant to the BEM application herein is the
case where On�kj <0. In this case, the illuminated region is still defined by Sj and kj in the normal
way, but the geometric scattered field now equals �oj .x/ because of the anti-symmetry of (12) with
respect to On. We incorporate this behaviour into illumj .x/ by defining it to equal sign

�
On�kj

�
in the

geometric region and zero otherwise.
Because the geometric component illumj .x/ oj .x/ is discontinuous across the boundary of the

geometric zone but the total field ‰j is not, it follows that the contour integral must give rise to a
complementary discontinuity; this can be observed in Figure 4b. Mathematically, this occurs due
to a zero in the numerator of the directivity term kj � R � Ol, which has odd-symmetry in the plane
of kj�Ol, cancelling with the aforementioned singularity in the denominator. The presence of this
discontinuity, however, causes difficulties for numerical integration algorithms; hence, the next
section will examine an alternative formulation that is not affected by this issue.

The decomposition of ‰j in (14) and Figure 4, into a geometric term plus a correction, is
also interesting from an asymptotic perspective because for very large k the geometric component
is dominant, with the correction only being significant vanishingly close to the boundary of the
geometric region in order to make the total field continuous. As k ! 1, only the geometric
component exists; this is the asymptotic form of‰j . This indicates that in addition to thinking about
the asymptotic form of the total solution ˆ, as is often done in the design of HNA-BEM approxi-
mation spaces, one can also consider the asymptotic form of ‰j and therefore of the coefficients in
the BEM interaction matrix. Indeed, it would be possible to compute the latter in O .1/ time by only
computing the geometric term of ‰j and setting the diffracted term to zero.

3.2. Asvestas’ formulation

Asvestas published two papers in 1985 on the topic of converting aperture problems to contour inte-
grals [11, 20]. In these he gave a formulation that circumvents the issue of the geometric visibility
boundary singularity mentioned previously, plus a method for finding J for other choices of oj .
Unlike previous work where the statements for J were usually derived from some manner of geo-
metric construction, Asvestas found J from I by a vector calculus identity. For this to be valid, a
requirement is that oj andG satisfy the wave equation (with respect to y/ everywhere, but this is not
the case forG when x D y so Asvestas first regularised I by subtracting oj .x/ry Œ1=4�R�. In order
to find the correct value for ‰j .x/, this regularising term must be added back in a second integral,
and he shows this is equal to oj .x/�Sj .x/

ı
4� , where �Sj .x/ is the solid angle subtended by the

element Sj at point x.
The same formulation is derived and explained in detail in Appendix A by considering a new

geometric construction, created in such a way so as to eliminate the requirement for a regularising
term. This involves replacing the surface section Sj with the outer surface of a truncated cone; this
is depicted in Figure 5 and is defined as a cone with base equal to Sj and apex at x, minus its

Figure 5. Truncated cone geometry for the derivation of Asvestas’ formulation, showing that as x approaches
Sj this becomes the standard geometry for evaluating the integral in the presence of the singularity in G.
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intersection with a small sphere centred on x. The total result, which is identical to (12) and (14), is
as follows:

‰j .x/ D
I
@Sj

On .y/ �J .x; y/ d ly C
�Sj .x/

4�
oj .x/ : (15)

Here,�Sj .x/ is the solid angle at x subtended by the surface section Sj . Note that orientation of
On with respect to R affects the sign of �Sj (it is negative if x is below Sj with respect to On/. It may
also be computed by a contour integral around the edge of Sj [20]:

�Sj .x/ D �
I
@Sj

1

R

Oz�R� Ol .y/
RC Oz � R

dly: (16)

Here, Oz is a unit vector chosen such that the line extending from x in the direction Oz does not
intersect Sj ; this is easily achieved by setting Oz such that it points from the centre of Sj towards x.

A particular advantage of this formulation is that J may be found for any choice of oj that satisfies
the Helmholtz equation by evaluating the integral ([11] and Appendix):

J .x; y/ D

RZ
0

r

R
OR � I

�
x; x�r OR

�
dr: (17)

Here, ORDR=R is a unit vector pointing from y on @Sj to x. For the case where oj is a plane wave
defined by (9), this gives

J .x; y/ D �oj .x/
OR�ikj
4�R

RZ
0

eirŒk�kj � OR�dr

D �oj .x/
R�kj
4�R

eiŒkR�kj �R� � 1

kR � kj �R

D oj .x/
kj�R
4�R

ieiŒkR�R�kj �=2sinc

�
kR � R�kj

2

	
:

(18)

Expressing the later term as a sinc function is advantageous numerically, because the result where
kR � kj �R tends to zero is well defined, meaning J is well behaved across the geometric visibil-
ity boundary. The solid angle term is of course independent of kj , meaning that the formulation
in (15) is devoid of issues across the geometric visibility boundary and is therefore numerically
favourable compared with (14). It is interesting to note that it was the solid angle �Sj .x/ that was
removed to give this numerically-robust edge kernel, because that is also what is subtracted in many
regularisation schemes for the hyper-singular operator (e.g. [7, 8]].

3.3. The case where x approaches S

An important case that has been ignored in what has been written so far is the one when x
approaches S . Evaluating such integrals correctly is paramount for BEM, because they arise in
the extremely critical ‘self-interaction’ coefficients and the singularity in @G=@n defeats standard
numerical quadrature methods. Indeed, most of the contour integral transforms published in the
BEM literature are solely focussed on this case (e.g. [7–9]).

It is widely known that the correct way to evaluate this is to deform the surface close to x such
that x remains strictly within V . The most convenient geometry for this is to subtract a small disk
of radius � centred on x from S and to then replace it with a hemisphere of equal position and
dimensions orientated away from V (see the right-most graphic in Figure 5). It can be shown that
when � tends to zero the surface integral over the hemisphere contributes ˆ.x/=2, so long as x is
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on a smooth part of S (e.g. [21, 22]), and this is usually brought outside the surface integral as an
explicit term. The remaining surface integral excludes the disk around x, so as � tends to zero this
has the form of a ‘Cauchy Principal Value’ integral, often indicated by a horizontal line through the
integral sign. Guiggiani has however pointed out [21, 22] that this is merely a notational convenience
and that any modification toS that puts x definitively on one side of it or the other is permissible
(pre-empting in a sense the modification to S which is proposed herein).

In this work however, the use of such notation has been resisted and the surface integrals have been
written in a straightforward way. The motivation for this is the observation illustrated in Figure 5,
that as x approaches Sj , the geometry that leads to Asvestas’ formulation flattens to become the
accepted geometry for evaluation of self-interaction. Thus, self-interaction is no-longer a special
case and the problem singularity is regularised automatically by the contour integral transform.
Indeed, the only special consideration that must be implemented is to force OzD On to match the
convention that Oz is chosen such that it points from Sj to x.

3.4. Albani’s Incremental Geometrical Optics formulation

Albani also addressed the issue of the singularity in the kernel of the contour integral of (14) in 2011
[23]. His formulation is derived in a similar manner to the Maggi-Rubinowicz statements, but he
then goes on to express the geometric visibility function i l lumj .x/ as a contour integral; he calls
this the Incremental Geometrical Optics term. He goes on to show that part of this may be combined
with the edge diffraction contour integral kernel, leading to exactly the same expression that appears
in 3.3. His formulation is therefore also well behaved across the visibility boundary.

There are no particular numerical advantages of the Albani formulation compared with that
of Asvestas. An important contribution it does make however is that it shows how the Maggi-
Rubinowicz form in Section 3.1 and that of Asvestas in Section 3.2 are equivalent. In particular,
the Albani formulation can be shown to be a special case of the Asvestas version with a particular
choice of Ó . Albani states this himself for spherical incident waves; for an incident plane wave the
equivalence is as follows. If x lies behind the aperture (with respect to the arriving wave), so R�kj is
predominately positive, then Albani’s extra term is equivalent to (16) with OzDkj . Alternatively, if x
lies in front of the aperture, so R�kj is predominately negative, then Albani’s extra term is equivalent
to (16) with OzD �kj . Both choices are essentially used to compute �Sj .x/.

This equivalence is touched on more in the appendix. For now it is useful to know that the
formulations in Sections 3.1 and 3.2 are equivalent; because they each have advantages in different
situations and they are both in the toolbox.

4. APPLICATION TO COMPUTING HIGH FREQUENCY BOUNDARY
ELEMENT METHOD INTEGRALS

The previous section described efficient methods to compute ‰j .x/ D K
®
bj
¯
.x/, as given in (12)

with ej chosen to be piecewise-constant as defined in (10), but this is not a quantity that existing HF-
BEM algorithms regularly compute. Instead, it is usually the terms ‰Sj and ‰Dj that are of interest,
so this section will first examine the computation of those. How to apply these methods to more
typical choices of ej will then be discussed.

4.1. Computing ‰Dj and ‰Sj from ‰I
j and ‰O

j

The equivalences between ‰Dj and ‰Sj and ‰I
j and ‰O

j were given in Section 2.4 as ‰I
j .x/ D

‰Dj .x/ C ik
n
j‰

S
j .x/ and ‰O

j .x/ D ‰Dj .x/ � ik
n
j‰

S
j .x/. These relations require that the surface

section Sj is planar. Note that this is not a requirement for the contour integration methods given
in Section 3 to compute ‰I

j and ‰O
j ; they can also be applied to curved surfaces. Statements to

compute ‰Dj and ‰Sj are readily found by the sum and difference of these:

‰Dj .x/ D D
®
bj
¯
.x/ D

1

2

�
K
®
bI
j

¯
.x/C K

®
bO
j

¯
.x/
�
D
1

2

�
‰I
j .x/C‰

O
j .x/

�
; (19)
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‰Sj .x/ D S
®
bj
¯
.x/ D

�
K
®
bI
j

¯
.x/ � K

®
bO
j

¯
.x/
� ı
2iknj D

�
‰I
j .x/ �‰

O
j .x/

� ı
2iknj : (20)

Computing ‰Dj by (19) is straightforward. The formula for ‰Sj in 4.2 is, however, undefined

for basis functions corresponding to plane waves that are surface tangential (i.e.
ˇ̌
ˇktj

ˇ̌
ˇ D k/ and is

ill-conditioned when they are close to tangential (
ˇ̌̌
ktj

ˇ̌̌
Š k/. Numerically, this is because in those

cases knj � 0 and bI
j � b

O
j ; hence, both the numerator and the denominator tend to zero. Physically,

this corresponds to the property that a pressure-release surface, as S alone represents, does not sup-
port surface tangential plane waves, because the boundary condition ˆ D 0 forces their amplitudes
to be zero. Conversely, D represents a rigid plane, and this can support surface tangential plane
waves because they satisfy @ˆ=@n D 0 for any amplitude; hence, it is unsurprising that computing
D
®
bj
¯

for
ˇ̌̌
ktj

ˇ̌̌
D k is not a problem.

A possibility not yet considered is that the surface tangential wavenumber
ˇ̌̌
ktj

ˇ̌̌
may be greater

than k in the medium. This corresponds to a plane wave, which is evanescent, or inhomogeneous
in Miyamoto and Wolf’s terminology, and manifests as knj being imaginary. This is considered
in Section 3.2 of [19] where it is shown that the geometric term exists only in the plane of the
element. This would bring various complications in terms of having the geometric visibility bound-
ary (where the Maggi-Rubinowicz contour integral kernel is singular) located in the plane of the
element, thereby causing big problems for self-interaction calculations. However, it turns out that
Asvestas’ formulation in Section 3.2 can be applied directly without issue. The only issue is that
the magnitude of oj .x/ may become very large when x is far away from the plane of Sj ; in princi-
ple, this is counteracted by the solid angle term in (15) cancelling with the contour integral kernel,
but in practice it leads to significant subtraction error when used with numerical quadrature. In
this case, away from the problematic geometric zone, it is better to switch to the edge diffrac-
tion formulation in Section 3.1, for which in this case no geometric term is required. The results
of these computations are shown in Figure 6. For ‰I

j and ‰O
j , it can be seen that the strongest

radiation occurs just below and just above the element, respectively, whereas for ‰Dj and ‰Sj , the
field is anti-symmetric and symmetric, respectively; all these characteristics match what would be
expected from Figure 2 and Figure 3. Interestingly, it can also be observed that for ‰I

j and ‰O
j ,

the wavelength appears to differ on each side of the element. This makes sense because one side
is driven with

ˇ̌̌
ktj

ˇ̌̌
> k whereas the other side is not driven and waves propagate normally with

wavenumber k.
A final comment is to observe the equivalence between the approach described previously,

particularly the variant in Section 3.1 that uses a geometric term plus edge diffraction, and the widely
used contour integral expressions for computing self-interaction on piecewise-constant basis func-
tions on planar elements (e.g. in [9]). This amounts to taking kjD ˙k On, in which case ktjD 0 and
the basis functions are constant over the surface element. This was demonstrated in [17], where pairs

Figure 6. Plots versus observer position x of real part of (a) ‰I
j
.x/, (b) ‰O

j
.x/, (c) ‰D

j
.x/ and (d) ‰S

j
.x/.

These are plotted for
ˇ̌ˇktj

ˇ̌ˇ D 1:02k, so the basis function is a rightwards propagating plane wave that is
slightly evanescent. For other details, see Figure 2 caption.
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of incoming and outgoing surface-normal plane waves were used in a time domain BEM scheme
with the integrals therein evaluated as equivalent contour integrals.

4.2. Numerical results for piecewise-constant ej

The numerical integration algorithm outlined earlier is implemented in the Matlab™toolbox, which
accompanies this publication. This requires the elements Sj to be planar polygons, defined as a
collection of Nj co-planar vertices vi , for 1 � i � Nj , connected by edges liDv.i modNj /C1�vi .
In all cases, the reference vertex vref in the definition of oj in (9) was taken to equal v1.

The integrals are performed using Matlab’s built-in adaptive integration routines; these are not
computationally fast but are effective to demonstrate that the implementations are correct and that
the computational cost scaling occurs in the expected way. In addition to the scheme described
earlier, the surface integral definitions of‰Dj ,‰Sj ,‰I

j and‰O
j were also implemented directly using

adaptive 2D integration for use as a reference method. Both integration routines were run with the
default accuracy tolerances, an absolute error magnitude of 10�10 and a relative error magnitude of
10�6. For more information on these criteria, see the Matlab documentation.

Verification for the case where x …Sj was straightforward. This involved a large number of ran-
domly generated configurations comprising all possible combinations of eight randomly generated
elements of unit area, four polygonal and four parallelogram; 10 randomly generated locations for
x, all within distance 2 of Sj ; 10 randomly generated values for ktj

.
k (i.e. basis function wave

directions), some of which were evanescent. These were then all computed for all variants of ‰j
at 21 logarithmically spaced values of k between k D 10 and k D 100 rad/m. Error between the
contour scheme and the reference scheme was less than 10�8 in all cases.

A similar setup was used to assess the computational complexity. For this, code was inserted into
the integration kernels to count the number of evaluation abscissae the adaptive schemes required to
satisfy their error criterion. The testing methodology here was the same but a slightly smaller number
of element shapes and values for ktj

.
k were used; 6 and 5, respectively. In addition, it was necessary

to run the contour scheme at a higher range of k in order to see the computational cost trend clearly;
these values were logarithmically spaced between k D 100 and k D 10; 000 rad/m. Results are
shown in Figure 7 for all four variants of ‰j ; each line is the number of evaluation abscissae used

to adequately calculate one of these operators for one combination of Sj , x and ktj
.
k, plotted

versus k. Figure 7a shows results from the contour integration scheme, Figure 7b from the direct
implementation of the surface integral. Overlaid are the upper bounds in computational complexity
expected from the integral dimensionality. It can clearly be seen that the contour scheme in Figure 7a

Figure 7. Computational cost trends for evaluation of ‰j using (a) the 1D contour integral implementation;
(b) a direct 2D integral implantation. Plots show the number of kernel evaluations required by an adaptive
integration routine to meet a given error threshold. Overlaid are the expected upper bounds expected from
the integral dimensionality. Note that the range of k used for the two implementations differed, because of

the excessive cost of the 2D scheme for large k.
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requires O .k/ kernel evaluations, whereas the direct evaluation of the surface integral in Figure 7b
requires at least O

�
k2
�
.

Verification for x 2Sj was more involved; this case causes no trouble for the contour scheme, but
the direct implementation of the surface integral is unable to handle the singularity inG. To compute
a reference result, an alternate algorithm had to be implemented. In this, the integration surface was
modified to take advantage of the fact that, because of Green’s second identity, the values of ‰I

j

and ‰O
j will be identical when computed over any surface with the same edge as Sj , so long as

On�R is positive everywhere on it; this is the same idea used in the alternative definition of Asvestas’
formulation given in the appendix. The polygon Sj was therefore replaced by the outer surface of
a pyramid with Sj as its base and its apex slightly below x (with respect to On/. ‰I

j and ‰O
j were

computed over this and ‰Dj and ‰Sj were found from them using (19) and (20). Error between the
contour scheme and the reference scheme was less than 10�8 for most cases, with a few evanescent
basis functions giving marginally larger errors less than 10�6. The source of these larger errors was,
however, the reference scheme, not the contour scheme under test. They arise due to multiplication
of the numerical integration result by the value of oj at the pyramid apex, because this can have
magnitude greater than one for outgoing evanescent waves.

4.3. Application with trigonometric partition-of-unity envelope functions

So far only piecewise-constant envelope functions have been considered, but these are not com-
monly used in POU-BEM because they do not satisfy Melenk and Babuška’s smoothness conditions
[24]. Instead, it is most common to borrow the Lagrangian quadratic shape functions used in
standard BEM. It is however unclear how the integration algorithm given earlier could be applied for
polynomial functions of quadratic order and above (for an outline of a possible extension to handle
linear envelope functions, see the further research proposed in Section 5).

In [25], Peake et al. defined a set of trigonometric POU envelope functions as an alternative to
the standard Lagrangian quadratic shape functions. This was motivated by the observation that error
in POU-BEM schemes is often largest around the ends of elements where the transition between
standard quadratic shape functions defined on different elements is not smooth, even if they are
given the same nodal coefficient to enforce continuity. In contrast, the new envelope functions of
Peake et al. all possess zero gradient at the limits of their support; when joined, they create a smooth
envelope. In [25], they are defined for the local coordinate range �1 � � � 1, but in this paper, the
range 0 � � � 1 is used; for this they scale to become

N1 .�/ D
1

4
C
1

4
cos .2��/C

1

2
cos .��/ ;

N2 .�/ D
1

2
�
1

2
cos .2��/ ;

N3 .�/ D
1

4
C
1

4
cos .2��/ �

1

2
cos .��/ :

(21)

N1; N2 and N3 are shown in Figure 8. For a quadrilateral element, they may be com-
bined with the oscillatory function by tensor product, for example, bj;l;m .y .�1; �2// D
oj .y .�1; �2//Nl .�1/Nm .�2/.

The suitability of these functions for integration using the method developed earlier stems
from the fact that they are weighted sums of trigonometric functions, which themselves may be
expressed as combinations of oscillatory functions. For example, using cos � D

�
ei� C e�i�

� ı
2

givesN1 .�/ D 1
8
ei2�� C 1

4
ei�� C 1

4
ei0�� C 1

4
e�i�� C 1

4
e�i2��. Each of these terms may be

integrated separately, meaning that for a quadrilateral element, the results for the nine possible
combinations of trigonometric envelope functions may be found by various weighted combinations
of results for 25 oscillatory envelope functions. Moreover, if the element is a parallelogram, so
y .�1; �2/Dv1C�1l1C�2l2 then this additional oscillation may be incorporated into ktj . For exam-
ple, if oj is multiplied by two other oscillatory functions eic1�1 and eic2�2 , then it can be shown
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Figure 8. The trigonometric partition-of-unity envelope functions of Peake et al. scaled to the range 0 �
� � 1.

Figure 9. Plots versus observer position x of real part of (a) ‰I
j
.x/, (b) ‰O

j
.x/, (c) ‰D

j
.x/ and (d) ‰S

j
.x/.

These are computed for an envelope function equal to the product of the N2 function of Peake et al. applied
in both local coordinate directions. For other details, see Figure 2 caption.

that oj .y .�1; �2// eic1�1eic2�2 D e
ikt
j
�Œy.�1;�2/�v1�eic1�1eic2�2 D e

i
h
kt
j
Cc1 Qk1Cc2 Qk2

i
�Œy.�1;�2/�v1�,

where Qk1 D
h
jl2j

2 l1 � .l1 � l2/ l2
i.
jl1 � l2j

2 and Qk2 D
h
jl1j

2 l2 � .l1 � l2/ l1
i.
jl1 � l2j

2. Note

that this approach of changing ktj only works directly for ‰Dj and ‰Sj because it affects @bj
ı
@n

in unintended ways when computing K
®
bj
¯
.x/. ‰I

j and ‰O
j with the envelope functions of Peake

et al. may, however, be found from windowed results for ‰Dj and ‰Sj if required.
This approach is implemented in the accompanying Matlab toolbox by calling the integration

functions for piecewise-constant envelopes as a subroutine and combining the results. Verification
for the case where x …Sj was performed in exactly the same manner as in the previous section and
error between the two algorithms was below 10�8 in all cases. Verification was not performed for
the case where x 2Sj because this would lead to an extremely complicated reference algorithm.
However, because the subroutines are already verified for this case and their combination has been
verified by the x …Sj result, we can deduce that the new routines for the envelope functions of Peake
et al. will work in the x 2Sj case too. The computation cost scaling of these routines is directly
inherited from the result in Figure 7 by the same reasoning.

Plots of all four variants of‰j computed with a POU envelope function are shown in Figure 9. In
this, the envelope function chosen was the product of the N2 function of Peake et al. applied in both
local coordinate directions. The profile of the envelope function can be clearly seen in the emanated
field ‰j , although it appears to become wider with increasing distance from Sj . Compared with
Figures 2 and 3, a key difference is that the tapering of the envelope function towards the edges
of the element has significantly reduced the diffraction effects. This has interesting implications as
k becomes asymptotically large. The geometric approximation to ‰O

j is shown in Figure 10a; this
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Figure 10. Decomposition of ‰O
j
.x/ into two terms when an envelope function equal to the product of the

N2 function Peake et al. in both local coordinate directions has been applied: (a) the geometric term; (b)
the result of the contour integral around the edge of Sj . The sum of these two terms is equal to ‰O

j
.x/ as

depicted in Figure 9b. For other details, see Figure 2 caption.

is simply the oscillatory function oj .x/ multiplied by the envelope function projected out in the
direction kO

j (in the same manner that projecting a piecewise-constant envelope function produces
illumj .x/ in (14)). The remaining diffracted component is shown in Figure 10a. This was computed
by subtracting the geometric approximation in Figure 10a from the exact result in Figure 9b; unfor-
tunately, no closed form expression for it is available. The result is, however, interesting because
there is little effect near Sj because the envelope function eliminates the diffraction effects. The
strength of the field further away is required to express the spreading of the beam with distance.
In terms of partial differential equations, this difference can be explained by the fact that the geo-
metric approximation to ‰O

j in Figure 10a satisfies the paraxial approximation to the Helmholtz
equation, whereas the field in Figure 9b satisfies the Helmholtz equation proper.

4.4. Computing the gradient of ‰ j

Many BEM formulations use not only S and D but also the hyper-singular operator H ¹f º .x/ D
Onx�rD ¹f º .x/ and the double-layer-adjoint operator D

0

¹f º .x/ D Onx�r S ¹f º .x/. Here, Onx is the
surface normal vector at point x, and the gradient here must of course be with respect to x also.
These operators appear in the Burton-Miller formulation [26], which is one approach for addressing
the well-known non-uniqueness problem, and when modelling very thin plates [9]. They may be
computed by taking the gradient of ‰Dj and ‰Sj , which in turn involves taking the gradient of (14)
and (15). When x …@Sj , the gradient may be moved inside the contour integral and applied to the
kernels in a straightforward way.

The result of this is also implemented in the Matlab toolbox and a direct reference implementation
using 2D adaptive quadrature is again also provided. Verification was performed in the same manner
as before; error magnitude was below 10�7 for x …Sj and below 10�5 for x 2Sj . Versions using
envelope functions of Peake et al. are also included, and the error magnitude between these codes
was below 10�7 for x …Sj .

Numerical integration of the hyper-singular operator H is notoriously challenging, leading to
complicated regularisation procedures such as those described in [7] and [8]. In contrast, the gra-
dient operator was applied to the contour integration formulations of Section 3 without any further
regularisation, and it is able to handle the case where x 2Sj without issue. Terai regularised the
hyper-singular operator for piecewise-constant planar elements as a contour integral in [9], and his
formulation for computing H

®
bj
¯
.x/ is equivalent to our method if we choose kjD ˙k On

Numerical issues do however arise when x approaches @Sj . Plots of Onj �r‰I
j , Onj �r‰O

j and
Onj �r‰D

j versus the proximity of x to @Sj are shown in Figure 11. Figure 11a considers the case
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Figure 11. Plots of
ˇ̌
ˇ Onj �r‰I

j

ˇ̌
ˇ,
ˇ̌
ˇ Onj �r‰O

j

ˇ̌
ˇ and

ˇ̌
ˇ Onj �r‰D

j

ˇ̌
ˇ with points x lying in the plane of Sj (parameters

as Figure 10). These are arranged in a line that crosses one edge of Sj ; the horizontal coordinate 	 states
the position of x relative to the edge (at 	 D 0/ as a fraction of the element size, and the grey shaded area
indicates points on Sj . (a) Depicts the result for piecewise-constant envelope functions, and a singularity
can be seen in all variants of Onj �r‰j at 	 D 0 due to the discontinuity in the basis function. (b) Depicts
the result with the N2 envelope function of Peake et al.; these are continuous, indicating that the values of

Onj �r‰j are non-singular.

where a piecewise-constant envelope function was used, and it can be clearly seen that all three
quantities are singular as x crosses @Sj . It is unsurprising that issues should occur here, because it is
known that use of the hyper-singular operator requires C 1;˛ basis functions, and piecewise-constant
elements do not satisfy this (although many collocation codes for thin panels ignore this stipula-
tion). This is discussed in detail by Krishnasamy et al. [8], who predicted that the singularity that
results from breaking this condition will be O .log j	j/, where 	 is the minimum distance from x
to @Sj . In Figure 11a, however, it appears to be closer to O

�
j	j�1

�
. Examination of the diffracted

component of the ‰O
j in Figure 4b provides a graphical explanation for this. From this, it is clear

that the diffracted field is finite close to Sj , but also that there is a variation with angle around the
edge, which is roughly independent of distance from the edge; this phenomenon is clearest on the
left hand side of Figure 4b. It follows that there is a derivative with respect to angle around that
edge and that the component of this contributes to Onj �r‰O

j will be inversely proportional to j	j,
explaining the trend seen in Figure 11a. Equivalent behaviour is seen in line-integral representations
of scattering from sound hard wedges (e.g. Equation (4) of [27]).

Related issues regarding the smoothness of basis functions were also encountered by Diwan et al.
in their study of implementing POU-BEM according to the Burton-Miller formulation [28]. This
pertained to the discontinuous derivative, which exists when their N1 and N3 envelope functions
are joined on neighbouring elements. Their solution for their collocation scheme was simply to
avoid this by not picking collocation points on element boundaries. They, however, reported very
poor convergence when integrating their Burton-Miller kernels, so this behaviour may go some way
towards explaining that. Picking abscissae not on @Sj is also not a viable solution for a Galerkin
formulation; numerical experiments have shown that the self-interaction double integral of Onj �r‰D

j

over an element with a piecewise-constant envelope function diverges as increased quadrature res-
olution is applied. The situation may be less extreme for basis functions, which are continuous but
not smooth, such as joined versions ofN1 andN3; this has not been investigated. However, it also is
possible to form a C 1;˛ discretisation using multiple overlapping copies of theN2 function of Peake
et al., so properties of Onj �r‰j when using that are of great interest. For this case, the behaviour of
Onj �r‰I

j , Onj �r‰O
j and Onj �r‰D

j for x near to @Sj is plotted in Figure 11b. Here, it can be seen that
all three fields are well behaved and finite. The integration methods described herein can therefore
also be recommended for computing H when the basis functions are in C 1;˛ . How such a scheme
would be used to model a non-smooth obstacle is, however, an open question.
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5. CONCLUSIONS AND FURTHER WORK

This paper has presented numerical routines for computing integrals arising in HF-BEM. These
operate by transforming surface integrals over elements into contour integrals around the edges of
elements. Such contour integral transforms have previously been applied in BEM to regularise the
singularities due to the Green’s function, and the formulations herein have been shown to address
that issue too. In addition, they reduced the computational complexity for computing oscillatory
integrals from O

�
k2
�

to O .k/, and this has the potential to deliver significant computational cost
savings for HF-BEM implementations operating at large values of k.

The contour integral transform was found by identifying an equivalence between a new way of
stating HF-BEM discretisation, in terms of incoming and outgoing waves, and existing work on
modelling aperture diffraction published within the optics community. Some of this work, partic-
ularly the Maggi-Rubinowicz formulation, has been mentioned previously in the BEM literature
(e.g. in Section 3.2 of [9]); however, these mentions are only with regard to it being used as
an approximate reference solution. Its application to the computation of BEM matrix coefficients
is believed to be novel, as is the transformation of oscillatory integrals to contour integrals by
this approach.

The contour integral formulation presented places few restrictions on the element shape,
although it does require the envelope function present in the basis function be piecewise-constant.
The equivalence between the inward and outward wave representation and the more common
single and double layer potentials, however, requires that the elements be planar. It was shown
that the requirement for piecewise-constant envelope functions can be circumvented if the elements
are parallelograms, in which case results for the trigonometric window functions of Peake et al. can
be computed.

A summary of how the results in this paper might form an integration algorithm for HF-BEM, as
implemented in the accompanying Matlab toolbox, is as follows:

� (14) and (15) allow the radiation of a plane wave through an aperture to be computed as
a contour integral. This is equivalent to the basis function to point computation defined in
(12) when the envelope function is piecewise-constant (10) and the oscillatory function is
a plane wave (9). There are no additional limitations on element geometry (beyond what is
usual in BEM), though the toolbox only implements these integrals for planar polygonal ele-
ments. Use of (15) is preferred in most cases, because it avoids issues associated with the
boundary of the geometric visibility zone; however, (14) should be used if the oscillatory
function is an evanescent wave and the distance from x to Sj is significant (in this case
illumj .x/ D 0/.
� (19) and (20) allow results from the standard single and double layer potentials to be computed

from the aforementioned points. This introduces the additional limitation that the elements
must be planar. The envelope functions are still considered to be piecewise-constant.
� Section 4.3 describes how to extend the aforementioned points to the trigonometric envelope

functions proposed by Peake et al. in [25]. This places the additional limitation that the
elements must be parallelograms.

In terms of future work, it has already been mentioned in Section 4.4 that computation of the
gradient requires more research. In particular, it was shown that the algorithm can compute results
for C 1;˛ basis functions even when the evaluation point lies close to the edge of an element.
However, the code currently achieves this by computing weighted sums of other integrals, which
themselves are singular; hence, it is extremely inefficient when using an adaptive solver; a more
efficient implementation would require all the terms to be combined inside one kernel function.

Other avenues for future development would be to investigate other oscillatory functions and
surface geometries. In terms of the contour integral transform, this should just amount to evaluating
(17) for other choices of oj . However, there also needs to be an appropriate transform between
the incoming and outgoing wave representation and the double and single layer potentials. The
fundamental requirement for this is that the formulae for the incoming and outgoing waves are
separable and that one of those component functions is constant over the element. Obvious examples
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include cylindrical harmonics used with cylindrical surface sections and spherical harmonics used
with spherical surface sections. Because these can be decomposed into trigonometric functions,
it seems likely that smooth envelope functions equivalent to those by Peake et al. could also be
constructed for such schemes.

It would be extremely useful to also be able to efficiently integrate piecewise-polynomial envelope
functions, because these are very widely used. Integration with quadratic order polynomials or
higher seems unlikely, but should be possible with piecewise-linear functions. The strategy to
achieve this would be to consider oj to be a plane wave multiplied by a linear envelope function
ej , which is constant in the direction in which oj is propagating. This combination would satisfy
r2ej D 0 and rej � roj D 0, hence r2

�
ej oj

�
D �k2ejoj , meaning (17) could in principle

be used to find an equivalent contour integral kernel. Problems may, however, arise for surface-
tangential and evanescent waves, for which it would be difficult to find useful choices of ej that
satisfy rej � roj D 0.

Finally, the most impactful next step may be to apply the method of steepest descent [6] to
the contour integrals. This should be relatively straightforward for the polygonal elements consid-
ered herein, because the contour integral kernels are extremely similar to those that occur in the
Biot-Tolstoy-Medwin expression for diffraction from an infinite rigid wedge, and the method
of steepest descent has already been applied to this [29]. This would reduce the computational
complexity to be k-independent, which would make this integration approach extremely competitive
for HF-BEM methods operating with extremely large k.

APPENDIX A

Having a geometric derivation of a contour integral transform has been stated to be advantageous in
the field of aperture diffraction [23], but Asvestas’ formulation in section 3.2 is currently lack-
ing one. In what follows, (15) will be derived and explained through considering a new geometric
construction, created in such a way so as to eliminate the requirement for a regularising term.
This construction differs from those used previously as it only involves a surface integral over the
finite cone whose base is the aperture and whose vertex is the observation point, whereas previous
constructions have always involved some form of cone of infinite extent (see e.g. Figure 1 of [30]
or Figs. 2 and 3 of [23]). The new geometry is depicted in Figure A.1. Two slightly different cases
arise; Figure A.1a shows the version when x is ‘above’ Sj , so On � R > 0, and Figure A.1b shows
the version when x is ‘below’ Sj , so On � R < 0. The cone has been truncated by subtracting its
intersection with a sphere of limitingly-small radius " centred on x; this introduces an additional
small spherical cap designated C . With this modification both ˆj and G satisfy the wave equation

Figure A.1. Truncated cone construction equivalent to Asvestas’ formulation, including the coordinate
system used in the Appendix.
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everywhere in the region enclosed by Sj , C and the side of the cone B , hence applying Green’s
second identity over this volume gives:Z Z

Sj[B[C

On .y/ � I .x; y/ dSy D 0: (A.1)

Here we have again assumed that ej .y/ D 1 for y 2Sj , so I .x; y/ D oj .y/rG .x; y/ �
G .x; y/roj .y/. It follows therefore that:

‰j .x/ D �
ZZ
B[C

On .y/ � I .x; y/ dSy: (A.2)

Note that this relation is only possible because ˆ and @ˆ=@n were discretised together using a
basis function which is a wave term oj multiplied by a piecewise constant window function.

The next step is to convert the surface integral over B into spherical polar coordinates so it can be
integrated analytically in one dimension, producing a contour integral. As described in section 2A
of [23], the surface integral over B can be restated as a double integral with respect to polar
radius r and distance l along the aperture rim. Using this gives dS D

ˇ̌̌
OR�Ol

ˇ̌̌
r=R drdl , which

compensates for the fact that OR and Ol may not be completely perpendicular and the radial scaling
with r . The normal vector on B is perpendicular to both OR and Ol and may be found by
OnD OR�Ol

. ˇ̌̌
OR�Ol

ˇ̌̌
; this applies to both cases in Figure A.1 a and b. Putting these together and taking

the limit as "! 0 gives:

ZZ
B

On .y/ � I .x; y/ dSy D

I
Sj

lim
"!0

RZ
"

r

R
OR�Ol .y/ � I

�
x; x�r OR

�
drdly D �

I
Sj

Ol .y/ �J .x; y/ d ly:

(A.3)
Considering the form of the inner integral demonstrates why J may be found from I by (17).
For the cap of the cone a procedure is followed which is equivalent to what is used in the derivation

of the Kirchhoff-Helmholtz integral equation to bring the pressure at x onto the left hand side. The
definition of C gives that R D " and On D sn OR, where sn is a parameter which is defined to equal
�1 for the case in Figure A.1a andC1 for the case in Figure A.1b. The integrand may be expanded
as On � I .x; y/ D snoj .y/ OR � rG .x; y/� snG .x; y/ OR � roj .y/. Considering the second term, sinceˇ̌
roj .y/

ˇ̌
is bounded in the neighbourhood of x and

ˇ̌̌
roj .y/ � OR

ˇ̌̌
�
ˇ̌
roj .y/

ˇ̌
, it follows that the

integral of OR�roj .y/ over C is O
�
"2
�

and the term G .x; y/ OR � roj .y/ tends to zero as "! 0. In
the first term,G is constant over C because it is spherical and oj .y/may be approximated by oj .x/
since C is vanishingly small. Substituting all this and OR � rG D �@G=@R D �G Œik � 1=R� gives:

lim
"!0

ZZ
C

On .y/ � I .x; y/ dSy D sn lim
"!0

ZZ
C

oj .y/ OR � rG .x; y/ dSy

D snoj .x/ lim
"!0

2
4eik"
4�"



1

"
� ik

� ZZ
C

dS

3
5

D oj .x/
�C .x/
4�

lim
"!0

h
eik" Œ1 � ik"�

i

D oj .x/
�C .x/
4�

:

(A.4)

Here �C .x/ is the solid angle at x subtended by the domain C . Note that orientation of On with
respect to the radial vector OR affects the sign of�C (it is negative if they point in opposite directions),
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hence the term sn has been absorbed into �C. Observing the geometry it is obvious that �C is
equal to the solid angle �Sj .x/ subtended by Sj but with a change of sign; �C .x/D ��Sj .x/.
Substituting this and (A.3) and (A.4) into (A.2) produces (15) as derived by Asvestas.
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