
Neutrality versus materiality: a 
thermodynamic theory of neutral surfaces 
Article 

Accepted Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Tailleux, R. ORCID: https://orcid.org/0000-0001-8998-9107 
(2016) Neutrality versus materiality: a thermodynamic theory 
of neutral surfaces. Fluids, 1 (4). 32. ISSN 2311-5521 doi: 
10.3390/fluids1040032 Available at 
https://centaur.reading.ac.uk/67066/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.3390/fluids1040032 

Publisher: MDPI 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



Article

Neutrality versus materiality: A thermodynamic
theory of neutral surfaces

Rémi Tailleux 1,†

1 Dept of Meteorology, University of Reading, RG6 6BB Reading, United Kingdom;
R.G.J.Tailleux@reading.ac.uk

Academic Editor: Prof. Pavel Berloff
Version September 12, 2016 submitted to Fluids; Typeset by LATEX using class file mdpi.cls

Abstract: Note to referees The abstract has been very significantly rewritten In this paper, a theory1

for constructing quasi-neutral density variables γ directly in thermodynamic space is formulated,2

which is based on minimising the absolute value of a purely thermodynamic quantity Jn. Physically,3

Jn has a dual dynamic/thermodynamic interpretation as the quantity controlling the energy cost4

of adiabatic and isohaline parcel exchanges on material surfaces, as well as the dependence of5

in-situ density on spiciness, in a description of water masses based on γ, spiciness and pressure.6

Mathematically, minimising |Jn| in thermodynamic space is showed to be equivalent to maximising7

neutrality in physical space.8

The physics of epineutral dispersion is also reviewed and discussed. It is argued, in particular, that9

epineutral dispersion is best understood as the aggregate effect of many individual non-neutral10

stirring events, so that it is only the net displacement aggregated over many events that is11

approximately neutral. This new view resolves an apparent paradox between the focus in neutral12

density theory on zero-buoyancy motions and the overwhelming evidence that lateral dispersion13

in the ocean is primarily caused by non-zero buoyancy processes such as tides, residual currents14

and sheared internal waves. The efficiency by which a physical process contributes to lateral15

dispersion can be characterised by its energy signature, with those processes releasing available16

potential energy (negative energy cost) being more efficient than purely neutral processes with17

zero energy cost. Although the latter mechanism occurs in the wedge of instability, its source18

of energy is not baroclinicity but the coupling between thermobaricity and density-compensated19

temperature/salinity anomalies. Such a mechanism, which can only exist in a salty ocean, is20

speculated to be important for dissipating spiciness anomalies and neutral helicity.21

The paper also discusses potential conceptual difficulties with the use of neutral rotated diffusion22

tensors in numerical ocean models, as well as with the construction of neutral density variables23

in physical space. It also emphasises the irreducible character of thermobaric forces in the ocean.24

These are argued to be the cause for adiabatic thermobaric dianeutral dispersion, and to forbid25

the existence of density surfaces along which fluid parcels can be exchanged without experiencing26

buoyancy forces, in contrast to what is assumed in the theory of neutral surfaces.27

Keywords: neutral surfaces; stirring; mixing; energetics; thermodynamics; first-principles.28

1. Introduction29

Note to referees The introduction has been significantly restructured, with the material30

previously discussing McDougall et al. (2014) being now discussed in a full section (Section 2) of31

the paper; material has also been added to clarify the objectives of the paper32

The concepts of neutral surface and neutral density popularised by [1] and [2] — following
earlier attempts by [3] and [4] — have been influential in shaping up thinking about the preferred
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directions for mixing and stirring in the ocean, thus extending [5]’s ideas for tracking ocean water
masses. So far, the main theoretical background for discussing these issues has revolved around the
neutral tangent plane equation

d · δx = 0, (1)

where d is the so-called neutral vector

d = g (α∇θ − β∇S) = − g
ρ0

(
∇ρ− 1

c2
s
∇p
)

, (2)

and δx an adiabatic and isohaline displacement, with α = −(1/ρ0)∂ρ/∂θ and β = (1/ρ0)∂ρ/∂S
the thermal expansion and haline contraction coefficients respectively (defined relative to potential
temperature θ and salinity S), with ρ0 the reference Boussinesq density, c2

s is the squared speed of
sound, ρ is in-situ density, p is pressure, and g is the acceleration of gravity. Here, the local neutral
vector is defined so that its vertical component is equal to the squared buoyancy frequency N2, a key
measure of ocean stability,

d · k = g
(

α
∂θ

∂z
− β

∂S
∂z

)
= N2, (3)

where k is the normal unit vector pointing in the upward vertical direction.33

Because (1) plays a central role in the theory of density variables in the ocean, as well as in current34

formulations of ocean mixing parameterisations, it appears essential to understand its physical35

justification and possible limitations. So far, however, how to obtain (1) rigorously and deductively36

from the equations of motion has remained elusive. In fact, our state of ignorance about (1) is so large37

that no consensus yet exists about whether (1) is best interpreted as a dynamical concept, and hence38

connected to the momentum equations, or as a thermodynamic concept linked to the equation of state39

for density and tracer equations for potential temperature and salinity.40

In the neutral density literature, (1) is usually presented as being linked to the momentum
equations and hence as a dynamical concept. Indeed, such studies as [1,6] usually interpret (1) as
locally defining a surface along which fluid parcels can be exchanged without experiencing restoring
buoyancy forces b, defined as

b = −
g(ρp − ρe)

ρ0
=

g(ρS∇S + ρθ∇θ) · δx
ρ0

= −d · δx, (4)

where ρθ = ∂ρ/∂θ and ρS = ∂ρ/∂S, while ρp and ρe denote the densities of the fluid parcel and41

that of the environment respectively, while S(x), θ(x) and p(x) denote the slowly-varying (relative to42

parcels’ displacements δx) background salinity, potential temperature and pressure fields.43

The thermodynamic foundation of (1), on the other hand, takes as its starting point the density
equation

Dρ

Dt
− 1

c2
s

Dp
Dt

=
∂ρ

∂S
DS
Dt

+
∂ρ

∂θ

Dθ

Dt
= q̇, (5)

where q̇ denotes diabatic modifcations of density by heat and salt sources/sinks, and consists in
making the approximation Dρ/Dt → ∇ρ · δx/δt and Dp/Dt → ∇p · δx/δt, while also neglecting q̇.
After simplifying by δt, this yields(

∇ρ− 1
c2

s
∇p
)
· δx = ρ (β∇S− α∇θ) · δx = − ρ

g
d · δx = 0 (6)

In the thermodynamic approach, Eq. (1) is most commonly interpreted as a statement that fluid44

parcels conserve their locally referenced potential density (LRPD), where LRPD is envisioned as a45

density variable whose value is everywhere equal to that of in-situ density (which is non-material46

and strongly pressure dependent), but which for all practical purposes related to the study of stirring47

and mixing can be regarded locally as behaving quasi-materially. Regardless of how it is justified,48
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the construction of d and of the neutral tangent plane equation (1) entail a number of unclear49

approximations and justifications. Among these are the use of the single-parcel argument for defining50

buoyancy whose validity is not necessarily obvious, e.g., [7,8], or of the seemingly impossible concept51

of LRPD.52

Perhaps one of the most important conceptual difficulty in the dynamical interpretation of (1),
however, is how to justify the focus on zero buoyancy motions as having more importance than
non-zero buoyancy motions in the study of lateral dispersion in the ocean? Indeed, as far as the
adiabatic form of the density equation (5) is concerned, the buoyancy of fluid parcels experiencing
adiabatic and isohaline lateral displacements is — without approximation — given by

b = −d · δx = − g
ρ0

[
∂ρ

∂t
− 1

c2
s

∂p
∂t

]
δt 6= 0, (7)

and therefore differs from zero more often than not. Moreover, a survey of the literature reveals that53

the key physical processes responsible for lateral dispersion in the ocean are all non-zero buoyancy54

processes; indeed, these include tidal and residual currents, as well as internal waves in presence55

of shear, e.g., [9–11]. If so, in order to accept (1) as a meaningful model of epineutral dispersion,56

one has to interpret it as some averaged form of the adiabatic density equation. However, because57

traditional Eulerian averages necessarily give rise to eddy correlation terms, which in the present58

case would lead to an equation of the form d · δx + d′ · δx′ = 0, (1) can only makes sense if59

interpreted in terms of a Lagrangian or quasi-Lagrangian averaging process, such as those considered60

in Generalised Lagrangian Mean (GLM) theory, e.g., [12–14] or the thickness-weighted average (TWA)61

formalism, e.g., [15,16], which are the only known form of averaging capable of not giving rise to62

eddy-correlation terms.63

This poses a dilemma, because from a practical viewpoint, the task of performing a Lagrangian64

or quasi-Lagrangian averaging of the equations of motion requires first identifying a suitable65

Lagrangian density coordinate γ with which to recast the equations of motion, e.g., [17] prior to66

averaging. How to identify γ, however, is precisely the issue that the theories of neutral density67

and quasi-neutral density variables aim to solve, which is still open. Moreover, it has always been68

assumed so far that the construction of γ should proceed from the knowledge of d; for instance,69

[2]’s empirical neutral density γn is constructed so that ∇γn is as parallel to d as feasible, which70

requires that d can be known and computed independently of γn. However, if one accepts that71

the vector d appearing in (1) should be interpreted as a Lagrangian or quasi-Lagrangian averaged72

quantity, γ needs to be known before d can be meaningfully defined and computed. In the neutral73

density literature, this conceptual difficulty is usually overlooked, as it is simply assumed that d74

can be computed from existing climatologies of temperature and salinity without bothering about75

the kind of average underlying the construction of such climatologies (i.e., via a depth, isobaric, or76

isopycnal averaging of individual soundings). Another important conceptual difficulty that tends to77

be overlooked arises from the nonlinearities of the equation of state, as this complicates the definition78

of ’mean’ quantities, since that ρ(S, θ, p) 6= ρ(S, θ, p). Although the latter issue is traditionally ignored79

in the neutral density literature as well as in ocean modelling, [18] recently demonstrated the potential80

importance of subgridscale variability of θ and S on the estimation of the ’mean’ pressure gradient81

and momentum balance. The key implication of the above considerations is that the ’mean’ neutral82

vector d± δd entering (1) cannot be known accurately in physical space, and that its computation is83

necessarily associated with an error bar δd arising both from the subgridscale variability of θ and S,84

as well as from error bars in the mean climatological values of S and θ themselves, the importance of85

which for the accurate determination of γn is unknown.86

Since the construction of any quasi-neutral density variable in physical space from ’mean’87

climatological values of S and θ entails so many conceptual and practical difficulties, one may wonder88

why a purely thermodynamic density variable should not be able do the job (the job itself being89

arguably not entirely clear and not entirely well defined)? Although [2] chose to construct their90
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density variable γn to be a function of both geographic and thermodynamic coordinates, the need for91

a density variable — usually regarded as a thermodynamic concept — to depend on spatial position92

is by no means obvious and difficult to justify from first-principles alone. Because the principles93

underlying the construction of purely thermodynamic quasi-neutral density variables have not been94

addressed so far in full generality, it is the issue that is tackled here. Based on the form of the95

instantaneous neutral vector (2), the most natural choices of purely thermodynamic density variables96

are either purely material functions γ(S, θ) or functions γ(ρ, p) of in-situ density and pressure, of97

which [19]’s orthobaric density represents the most important example. [20] have postulated that both98

orthobaric density and material functions γ(S, θ) are intrinsically limited in their ability to be globally99

neutral, which has represented so far the main justification for assuming that neutral density should100

depend on spatial position as well as on thermodynamic properties. It is generally agreed, however,101

that purely thermodynamic density variables can be constructed to be quite neutral if restricted to102

regional ocean basins, see [21–23], which provides sufficient motivation to elucidate how best to103

construct them.104

From a conceptual viewpoint, the construction of purely thermodynamic quasi-neutral density
variables is most naturally done in thermodynamic space (S, θ, p) and should not require any
knowledge of neutral vectors. It therefore requires that one be able to define the concept of ’neutrality’
in thermodynamic space, which so far has been exclusively defined in physical space. One of the main
result of this paper is to demonstrate that the degree of neutrality of material density variables γ(S, θ)

should be measured by the smallness of the absolute value of the Jacobian term

Jn =
∂(ν, γ)

∂(S, θ)
, (8)

where ν = 1/ρ is the specific volume. Interestingly, it appears possible to justify the introduction105

of Jn from a dual dynamic/thermodynamic perspective, either via the consideration of the energy106

cost of parcel exchanges on an iso-γ surface (the dynamical perspective) or via the minimising the107

dependence of in-situ density on spiciness (the thermodynamic perspective), as explained in Section108

5. In other words, the present paper argues that the equation Jn ≈ 0 should be regarded as the direct109

counterpart in thermodynamic space of the neutral tangent plane equation (1) in physical space.110

The main objectives of this paper are to expand upon the above considerations, and to examine111

some of their consequences for subgridscale ocean mixing parameterisations. The paper is organised112

as follows. Section 2 first provides a critical discussion of [6]’s arguments, which perhaps represent113

the most elaborate attempt at physically justifying the neutral tangent plane equation (1) and the114

use of neutral rotated diffusion tensors in numerical ocean models. One of its main aim is to115

challenge the conventional interpretation of (1) in terms of momentum and to argue that (1) is in116

fact best justified in terms of the energetics of adiabatic and isohaline parcel exchanges along material117

surfaces. This is taken up in Section 3, which also introduces and analyses a new approach to the118

construction of a material density variable γ(S, θ), based on minimising the absolute value of Jn119

defined by (8). A key point of this paper is to emphasise that adiabatic and isohaline parcel exchanges120

can only be meaningfully defined on material surfaces of the form γ(S, θ) = constant. Section 4121

discusses the issues arising from attempting to describe adiabatic and isohaline parcel exchanges122

on non-material density surfaces of the form γ(ρ, p) = constant, and of the need to introduce a123

new term that is analogous to the so-called thermobaric dispersion in the neutral density literature.124

Section 5 provides an alternative way to justify the energetics-based thermodynamic construction of125

γ by means of a first-principles density/spiciness/pressure representation of ocean water masses.126

Section 6 summarises the results and discusses some of their implications. Appendix B provides an127

alternative treatment of the energetics of adiabatic and isohaline exchanges in physical space, which128

in textbooks (see pages 280-282 of [24], pages 262-263 of [25], or [26]) is usually discussed in the129

context of baroclinic instability theory.130
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2. A critical assessment of McDougall et al. (2014)131

Note to referees This is an entirely new section, which expands on material that was initially132

part of the introduction. This new section was primarily introduced to counter the claims made in133

one of the referee’s comments that McDougall et al. (2014) prove that it is the neutral directions that134

should be used in rotated diffusion tensors. This new section aims to demonstrate that McDougall et135

al. (2014) overlook many conceptual difficulties that invalidate their arguments.136

2.1. Objectives of this section137

Although mixing and stirring are widely believed to take place preferentially in local neutral138

tangent planes, the first physical principles basis for such a belief remains unclear. Perhaps the most139

elaborate physical justification for it is that outlined in [6] (see also [27] and [20]). Interestingly,140

this justification is meant to provide a reductio ad absurdum that the directions of mixing in rotated141

diffusion tensors should be based on locally defined neutral tangent planes. Indirect proofs, however,142

while they have a well established place in abstract Mathematics, are generally regarded as being of143

lesser value than direct or constructive proofs in Physics, which by its very nature tends to deal with144

concrete objects. For this reason, it is therefore important to critically review [6]’s arguments.145

Such critical analysis demonstrates that [6]’s arguments do not prove what the authors think it146

proves. In fact, it is argued that [6]’s arguments imply that epineutral dispersion is best understood147

as being made up of non-neutral stirring events, thus calling for a re-interpretation of neutral surfaces148

as notional equilibrium surfaces rather than stirring surfaces. It is also argued that the interpretation149

of the neutral tangent plane equation (1) in terms of momentum cannot be correct, for lacking a150

dependence on the horizontal pressure gradient, and hence that (1) should be justified in terms of151

energetics instead. Finally, the idea that the use of the neutral directions in rotated diffusion tensors152

is required to avoid spurious diapycnal mixing is argued to be non self-evident, since it can be shown153

to imply that the effective diapycnal diffusivity for all conceivable material density variables must154

always exceed the value of turbulent diapycnal mixing used in such tensors.155

2.2. Summary of McDougall et al. (2014)’s arguments156

As far as we understand them, [6]’s arguments rely on a thought experiment and a number of157

qualitative arguments whose connection to the real ocean is not necessarily obvious. In essence, these158

arguments appear to rely on:159

• the definition of the buoyancy force acting on a single fluid parcel entering the dynamical160

interpretation of the neutral tangent plane equation (1),161

• the assumption that it is physically meaningful to parameterise isopycnal and diapycnal162

dispersion in terms of second-rank diffusion tensor as proposed by [28],163

• the observation that lateral dispersion is about 7 orders of magnitude larger than quasi-vertical164

dispersion,165

• the observed smallness of viscous dissipation in the ocean,166

• the assumption that it is legitimate to regard the displacement δx entering the neutral tangent167

plane equation (1) as an actual fluid parcel displacement.168

[6]’s arguments appear to centre on the thought experiment illustrated in Fig. 1 that is adapted169

from their Figure 1. In this thought experiment, a fluid parcel (assumed to characterise meso-scale170

dispersion) is assumed to be stirred away from its level of neutral buoyancy by means of an adiabatic171

and isohaline displacement. Presumably, this causes it to become positively or negatively buoyant172

relative to its environment. As a result, the parcel must feel a vertical restoring buoyancy force that173

will drive it back to its original neutral surface where its closest level of neutral buoyancy lies. To174

quote [6] (page 2165 below their Figure 1), the authors state: The vertical motion would either175
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neutral trajectory

(direction of stirring) 

Figure 1. Schematics adapted and modified from Figure 1 of [6], intended to be a: "Sketch of a central
seawater parcel being moved adiabatically and without change in its salinity to either the right or the
left of its original position in a direction that is not neutral. When the parcel is then released it feels a
vertical buoyant force and begins to move vertically (upward on the left and downward on the right)
toward its original “isopycnal”. The sentence (direction of stirring) was added to the original figure.

• (i) involve no small-scale turbulent mixing, in which case the combined (two-step) process is adiabatic176

and isohaline and so is equivalent to epineutral dispersion (meaning along a neutral tangent plane),177

or178

• (ii) the sinking and rising parcels would mix and entrain in a plumelike fashion with the ocean179

environment, and therefore experience irreversible mixing.180

(Comments within parentheses added for clarify). The authors then argue that the second case181

cannot occur in the ocean, because if it did, it would cause more dissipation than is actually observed.182

Since [6] assume their fluid parcel to belong to the meso-scale, whose spatial scales O(10− 200 km)183

are well separated from those at which irreversible mixing by molecular diffusion of heat and salt184

occur, the impossibility of (ii) is hardly surprising. The authors conclude therefore that only case185

(i) above is possible, and hence that the various non-neutral stirring events involved in meso-scale186

dispersion must on average amount to epineutral dispersion.187

2.3. A critical discussion of McDougall et al. (2014)188

Arguably, [6]’s arguments are too qualitative and imprecise to "prove" that rotated diffusion189

tensors should necessarily be based on neutral directions. Most importantly, [6] do not explain how190

their "proof" could be falsified, in Popper’s sense, e.g., [29]: no tests are identified that could serve to191

prove or disprove it. Yet, falsifiability should be an essential component of any modern theory.192

On the other hand, the idea expressed by (i) that epineutral dispersion should be regarded as193

made up of non-neutral stirring events is interesting and potentially important for clarifying the194

nature of lateral dispersion: we find it surprising that [6] do not seem make much of it.195

Expanding on point (i) of McDougall et al. (2014)196

In order to appreciate the potential importance of point (i) of [6] for clarifying the nature197

of epineutral dispersion, let us return to the details and interpretation of the thought experiment198

illustrated in Fig. 1. To that end, we find useful to formalise this thought experiment as involving199

fundamentally two distinct processes, namely:200
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1. First, a non-neutral stirring event associated with the displacement δx1, which as it takes the201

parcel away from its equilibrium position, must entail a non-zero energy cost and some finite202

buoyancy force, implying b1 = −d · δx1 6= 0;203

2. second, a re-laminarisation process during which the fluid parcel seeks to find its closest level204

of neutral buoyancy, which is also associated with a displacement δx2 experiencing a nonzero205

buoyancy force b2 = −d · δx2 and finite energy cost.206

Because each of the displacements is individually non neutral, it is only the aggregate displacement207

δx = δx1 + δx2 that is approximately neutral and solution of d · δx ≈ 0. As mentioned in the208

introduction, it is important to emphasise that a non-zero buoyancy force does not imply diapycnal209

mixing — contrary to what seems to be often assumed (as point (ii) of [6] seems to imply) — just210

transience as attested by Eq. (7).211

Obviously, this two-event view of epineutral dispersion is an idealisation; in reality, epineutral212

dispersion presumably involves many more non-neutral events, so that we must assume that it is213

actually the net displacement δx = ∑N
i=1 δxi aggregated over N non-neutral stirring events, with N214

large, that is approximately neutral and solution of d · δx ≈ 0. In this new view, the fact that epineutral215

dispersion is seemingly a zero-energy cost process obscures the fact that all of the stirring events that216

cause it may either release available potential energy or require an external source of energy, and be217

in all cases associated with a non-zero buoyancy bi = d · δxi 6= 0. This is consistent with the fact218

that in the literature about lateral dispersion, lateral dispersion is usually associated with non-neutral219

stirring processes, such as tides [9] or waves [10,11].220

Are neutral trajectories really neutral?221

Let us now turn to the issue of what determines the vertical equilibrium position of a fluid parcel
being displaced laterally, which plays a key role in [6]’s arguments. So far, it has generally been
speculated in the neutral density literature that b = −d · δx represents the vertical force exerted on
a fluid parcel experiencing an adiabatic and isohaline lateral displacement δx. If so, a fluid parcel
displacement satisfying (1) must be in vertical equilibrium with its environment at all times, as
assumed by [6]. What is odd with such an argument, however, it that the vertical force experienced
by the fluid parcel should not depend on the horizontal pressure gradient. Indeed, the latter must a
priori be involved in either opposing or promoting any lateral displacement. This can be established
rigorously by considering the expression for the energy cost of a two-parcel exchange, a classical
result of the literature, e.g., [24–26], also established in the next section for a fully compressible fluid,

∆E = − 1
ρg

(d · δx)(∇p · δx), (9)

where ∇p is the full pressure gradient. By invoking energy conservation (neglecting kinetic energy
changes, a classical assumption in the present context), the change in potential energy ∆E must
be balanced by minus twice the work done by the force F acting on the fluid parcels times the
displacement δx, that is ∆E = −2F · δx, where the factor two comes from the system being composed
of two parcels. This defines the force F as

F = −1
2

∂E
∂δx

=
1

2ρg
[d · δx∇p + (∇p · δx)d] , (10)

whose vertical component is easily verified to be given by

F(z) =
1
2

[
N2

ρg
∇p− d

]
· δx = −N2δz +

1
2

[
N2

ρg
∇h p− dh

]
· δxh (11)
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where we used the fact that d · k = N2 and assumed the pressure to be hydrostatic in order to write222

∂p/∂z = −ρg; also dh, ∇h p and δxh denote the horizontal components of d, of the pressure gradient223

and of the total displacement respectively.224

For purely vertical displacements δx = δzk, both classical and new expressions predict b =

F(z) = −N2δz, in agreement with the standard derivation of the buoyancy frequency, but they differ
for lateral displacements, with only F(z) correctly accounting for the dependence on the horizontal
pressure gradient. As a result, the correct expression determining the vertical equilibrium position of
a laterally displaced fluid parcels F(z) = 0 imposes that δx satisfy

d · δx = N2/(ρg)∇p · δx, (12)

rather than d · δx = 0, in contrast to what has been postulated so far in the neutral density literature.
We call the solutions of (12) ’dynamical neutral paths’ to distinguish them from McDougall ’static
neutral paths’. Fig. 2 illustrates the relative positions of McDougall ’static neutral surfaces’, ’dynamic
neutral surfaces’, and ’isobaric surfaces’. This shows that dynamical neutral surfaces are actually
located in the so-called ’wedge of instability’, which plays a central role in the theory of baroclinic
instability, e.g., [30,31]. By combining (12) with (9), it is easily showed that the energy cost of ’dynamic
neutral displacements’ is given by

∆E = − N2

(ρg)2 (∇p · δx)2 = − 1
N2 (d · δx)2 < 0, (13)

which is negative, and hence associated with a release of available potential energy, as is well known.225

Again, it is crucial to recognise that displacements in the wedge of instability do not imply diapycnal226

mixing, just transience, as shown by Eq. 7 and as previously recognised by [32].227

The key implication of the above results is that b = −d · δx do not represent the vertical force228

experienced by an adiabatic and isohaline lateral displacement, and hence that the neutral tangent229

plane equation (1) cannot be justified from momentum considerations. On the other hand, (9) shows230

that displacements satisfying (1) have no energy cost. This suggests therefore that only energetics —231

rather than momentum — can serve to justify (1) in terms of the displacements minimising the energy232

cost |∆E|, as explored in the next section. To that end, it is necessary to exclude isobaric displacements,233

which represent another class of displacements also minimising |∆E|, but which do not in general234

define Lagrangian displacements conserving θ and S. In the following, isobaric displacements are235

excluded by imposing the displacements considered to take place on material surfaces of the form236

γ(S, θ) = constant.237

Whether it is possible to meaningfully define a vertical equilibrium position for fluid parcels238

experiencing adiabatic and isohaline lateral displacements is unclear, because such displacements are239

intrinsically unstable in presence of non-zero baroclinicity, and therefore bound to become transient.240

Are neutral trajectories really adiabatic and isohaline?241

Because the neutral tangent plane equation (1) is constructed by assuming δx to represent an242

adiabatic and isohaline displacement, it is tempting to believe that a fluid parcel following a neutral243

trajectory obtained by integrating (1) must also conserve its potential temperature and salinity. As it244

turns out, this is not the case because of the non-zero helicity of the neutral vector. Indeed, it is well245

known that a fluid parcel following a neutral trajectory obtained by integrating (1) along a closed loop246

around the main gyre in the Atlantic ocean ends up about 10 meters above or below its initial position,247

as discussed by [1]. It is obvious, however, that had the fluid parcel conserved its original potential248

temperature and salinity, it would have returned exactly to its initial position, assuming the ocean to249

be stably stratified. This proves therefore that neutral trajectories can never describe actual adiabatic250

and isohaline fluid parcel trajectories; for a fluid parcel to follow a neutral trajectory, diabatic changes251

in its potential temperature and salinity are required.252
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Figure 2. Relative positions of isobaric surface (blue), McDougall neutral surface (red), and "true"
neutral surface (green).

Of course, the problem arises because the quantity b = −d · δx describes the buoyancy of fluid
parcel displaced laterally from some initial position only for infinitesimal adiabatic and isohaline
displacements δx. As shown by [33] (see also [34]), finite adiabatic and isohaline displacements of
a fluid parcel with potential temperature θp and salinity Sp are solutions of

ρ(Sp, θp, p) = ρ(Se(x, y, p), θe(x, y, p), p), (14)

which states that the density of a fluid parcel is equal to that of the environment. Differentiating while
keeping Sp and θp constant yields

(ρS∇Se + ρθ∇θe) · δx− ρg
[

1
c2

s (Se, θe, p)
− 1

c2
s (Sp, θp, p)

]
dz = 0, (15)

(assuming ∂/∂p = −(ρg)−1∂/∂z and dp = −ρgdz). In other words, the partial differential equation
satisfied by an adiabatic and isohaline neutral trajectory (referred to as the trajectory of submesoscale
coherent structures in [33]) is actually given by

d · δx = −g2
[

1
c2

s (Se, θe, p)
− 1

c2
s (Sp, θp, p)

]
δz 6= 0, (16)

which differs from (1) whenever the compressibility of a fluid parcel differs from that of the253

environment. Thus, whatever the neutral trajectories obtained by integrating (1) are meant to254

represent, they have nothing to do with actual fluid parcel trajectories. As far as we are aware, this is255

rarely if ever acknowledged in the neutral density literature.256

Do neutral rotated diffusion tensors really minimise spurious diapycnal mixing?257

Despite their non-rigorous character, [6]’s arguments are nevertheless regarded as the main basis258

for assuming that the isopycnal and diapycnal directions underlying [28]’s rotated diffusion tensor259

should be based on the neutral vector, and that this is required to avoid spurious diapycnal mixing,260

e.g., [32,35,36]. As a result, rotated diffusion tensors in coarse numerical ocean general circulation261
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models are usually defined as K = KI(I− ddT) + KdddT , e.g., [27], where KI and Kd represent the262

values of isopycnal and diapycnal mixing, where d is a normalised neutral vector.263

Previously, diffusion tensors had been based on using different mixing coefficients in the
horizontal and vertical directions, but such a practice was criticised for causing spurious diapycnal
mixing owing to what is generally known as the Veronis effect, after George Veronis first described it in
[37]. This is because for a model using horizontal and vertical diffusivities Kh and Kv, the diapycnal
diffusivity KVeronis

d experienced by a material density variable γ(S, θ) can be shown to be given by

KVeronis
d = Kh sin2 (k,∇γ) + Kv cos2 (k,∇γ), (17)

where k is the unit normal vector pointing upwards, and (k,∇γ) the angle made between∇γ and k.264

For typical values KH = 1000 m2/s and Kv = 10−5 m2/s, Eq. (17) shows that whenever the angle in265

the sin term exceeds 10−4, the effective diapycnal diffusivity KVeronis
d exceeds 10−5 m2/s and becomes266

dominated by horizontal mixing. Details of the derivations needed to arrive at Eq. (17) are given in267

Appendix A.268

Although neutral rotated diffusion tensors are widely thought to eliminate the Veronis effect
and the creation of spurious diapycnal mixing, following [32] for instance, one may wonder whether
this can ever be true in a thermobaric ocean in presence of density-compensated anomalies. Indeed,
because no density variable can be exactly neutral in the ocean, it follows that all conceivable material
density variables of the form γ(S, θ) must all be affected by a Veronis-like effect, since their effective
diapycnal diffusivity Kγ

d must be given by

Kγ
d = Kn

I sin2 (d,∇γ) + Kn
d cos2 (d,∇γ) = Kn

d + (Kn
I − Kn

d ) sin2 (d,∇γ)︸ ︷︷ ︸
K f ictitious

d ?

> Kn
d , (18)

using the same kind of derivation as that leading to (17), where (d,∇γ) is the angle made between269

∇γ and the neutral vector d. Physically, Eq. (18) states that the effective diapycnal diffusivity Kγ
d270

of all conceivable material density variables γ(S, θ) must always exceed the diapycnal diffusivity Kn
d271

specified in the neutral rotated diffusion tensor, possibly by several orders of magnitude depending272

on their degree of non-neutrality. This seems hard to reconcile with [35,36]’s assertions that using a273

direction other than d in rotated diffusion tensors will necessarily cause spurious diapycnal mixing,274

especially as the above arguments clearly establish that Kn
d cannot represent the diapycnal diffusivity275

of any mathematically well defined density variable. If Kn
d does not even relate to the diffusivity of276

any actual density variable, how is it possible to assume that it relates to the values of diapycnal277

dispersion measured from tracer release experiments, as assumed by [35,36]? So far, the idea that278

using a different direction than d in rotated neutral diffusion tensors would cause spurious diapycnal279

mixing has relied exclusively on calling "fictitious mixing" a quantity similar to that underlined in280

Eq. (18), but as far as we are aware, no studies has ever attempted to test whether different forms281

of rotated diffusion tensors would actually be detrimental to ocean model simulations. In other282

words, the idea that not using a neutral rotated diffusion tensor in a numerical ocean model would283

necessarily cause spurious diapycnal mixing is currently purely speculative, its validity having yet to284

be established in practice by means of actual ocean model experiments. The fact that the diapycnal285

diffusivity of any actual density variables must necessarily exceed Kn
d suggests that the validity of286

such an idea is far less obvious than generally assumed, and that the use of neutral rotated diffusion287

tensors might actually cause numerical ocean models to be potentially significantly more diffusive288

than usually assumed.289

3. Neutrality and the energetics cost of adiabatic and isohaline stirring on isopycnal surfaces290

Note to referees For the most part, this section is largely similar to its previous incarnation,291

except that the material about orthobaric density has been moved to a new separate section, while292
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new material has been added to discuss the mathematical issues that need to be solved to construct293

a material density variable with global uniformly good neutrality properties. The material has also294

been re-organised to improve the structure and flow of the arguments.295

3.1. Objectives of this section296

In the introduction, we postulated that the most plausible way to justify the neutral tangent297

plane equation (1) from first principles was as the Lagrangian or quasi-Lagrangian averaging of the298

adiabatic form of the density equation (5). If so, this would mean that (1) is actually an approximation299

of an equation of the form ∇Lγ · δxL = 0, provided that γ = γ(S, θ) is assumed to be a purely300

material density variable function of θ and S only, and hence that d is an approximation to ∇Lγ301

(up to a multiplicative constant). 1 This would also mean that the justification of (1) is primarily302

thermodynamic in nature, rather than dynamical. This is supported by the result of the previous303

section, which challenges the classical justification of (1) in terms of momentum, as it shows that the304

quantity b = −d · δx cannot be a correct expression for the force acting on a fluid parcel experiencing305

an adiabatic and isohaline lateral displacement, contrary to what had been assumed in the neutral306

density literature so far, because of its lack of dependence on the horizontal pressure gradient.307

Because the number of possible material density variables γ(S, θ) is infinite in a thermobaric and308

salty ocean, a selection principle is needed to categorise all such variables. Since solutions of (1) have309

no energy cost, it is postulated that such a selection principle can be played by the energy cost ∆E of310

fluid parcel exchanges restricted to occur on isopycnal surfaces γ(S, θ) = 0, see Fig. 3. The purpose311

of this section is to expand upon such an idea, and to show that it leads to a simple mathematical312

approach for constructing γ directly in thermodynamic space (S, θ, p).313

Figure 3. Fluid parcel trajectories, depicted as the red arrows, must lie at the intersection of surfaces
of constant potential temperature and salinity for adiabatic and isohaline displacements caused by
stirring. Due to the turbulent character of the ocean, fluid parcel trajectories are expected to undergo
large lateral displacements responsible for isopycnal mixing being much larger than diapycnal
mixing.

1 Using a non-material density variable is also a priori possible, but the resulting equation would only approximately equate
to zero ∇Lγ · δxL ≈ 0.
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Figure 4. Schematics of the three main physical situations characterising the two-parcels exchange
studied in this paper. (Top panel) Spontaneous exchange taking place on a thermodynamic surface
going through the "wedge of instability" thus releasing available potential energy. Following the
exchange, the fluid parcels become statically unstable and attracted back to their original neutral
surfaces; as they do so, they move further apart from each other, causing enhanced lateral dispersion,
while also possibly undergoing some irreversible diffusive mixing through entraining some of the
surrounding fluid in the process (not considered in this paper). (Middle panel) Energy neutral parcels
exchange associated with regular lateral dispersion. (Bottom panel) Forced exchange on a non-neutral
thermodynamic surface not going through the wedge of instability thus requiring an external energy
input. Following the exchange, parcels are attracted back to their original surfaces, with a possible
reduction of the distance separating them, thus with no or little lateral dispersion, while also possibly
undergoing some irreversible diffusive mixing as in the unstable case (not considered in this paper).
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3.2. Link between the energy cost of parcel exchanges and lateral dispersion314

Before discussing the details of the energy cost ∆E of parcel exchanges on material surfaces, let315

us first establish qualitatively that the energetics of adiabatic and isohaline dispersion must have a316

direct bearing on the understanding of the physics of epineutral or isopycnal dispersion. From an317

energetics viewpoint, there are physically three possible types of parcel exchanges —- illustrated in318

Fig. 4 — which are respectively associated with the unstable ∆E < 0 regime (top panel), neutral319

∆E = 0 regime (middle panel) and stable ∆E > 0 regime (bottom panel).320

In all three panels, two fluid parcels are considered before they exchange position on a locally321

defined material surface γ(S, θ) = constant (depicted as the green line). The other surfaces important322

for understanding the physics of the problem are the locally defined neutral planes ρLR
1 = constant323

and ρLR
2 = constant (depicted in red and blue respectively for light and heavy respectively) and324

isobaric surfaces p = p1 and p = p2. The two fluid parcels are initially assumed to be in equilibrium325

with their environment, but this is in general no longer the case after they exchange position; the two326

purple arrows in the top and bottom panels indicate the direction of the buoyancy force experienced327

by each parcel after the exchange.328

As shown in the next paragraph, the energy cost of the parcel exchange is given by ∆E ≈329

ρ−2∆ρLR∆p, assuming ∆p = p2− p1 > 0, where ∆ρLR is the difference in potential density referenced330

to the mid pressure between parcel 2 and parcel 1. By assumption, ∆p > 0 is all three cases but331

∆ρLR is either negative (top panel), zero (middle panel) or positive (bottom panel), corresponding332

respectively to the unstable ∆E < 0, neutral ∆E = 0 and stable ∆E > 0 regimes. The unstable case333

(top panel) is associated with the spontaneous release of available potential energy and is well known334

in the parcel theory of baroclinic instability as corresponding to fluid parcels being moved in the wedge335

of instability, e.g., [24,25,30–32]. In the present treatment, there are two wedges of instability, the first336

one that is comprised between the neutral ρLR
1 surface and p2 isobar, and the second one between the337

ρLR
2 neutral surface and p1 isobar.338

It is easily seen from even a cursory examination of Fig. 4 that only the unstable and neutral cases339

agree with our physical intuition of lateral dispersion. Indeed, in the stable case ∆E > 0, the distance340

between the two fluid parcels appears to be reduced following the exchange, which suggests that341

lateral dispersion is suppressed. In contrast, the distance between the two parcels appears to increase342

in the unstable case ∆E < 0, whereas it is unaltered in the neutral case ∆E = 0; this suggests that the343

unstable case is super-dispersive compared to the neutral case.344

It is important to recognise here that the case of a thermobaric and salty ocean is very different345

from that of a salt-less ocean; indeed, in a salt-less ocean, lateral dispersion can only occur in relation346

to the energy neutral case ∆E = 0, for which the distance between the two fluid parcels remains347

unaltered following the exchange. In other words, a thermobaric salty ocean possesses an additional348

physical process causing enhanced lateral dispersion that does not exist in a salt-less ocean. As349

shown in the next paragraph, the source of energy for this enhanced lateral dispersion stems from350

the coupling between γ-compensated θ/S anomalies and thermobaricity. Since according to Le351

Chatelier’s principle, instabilities tend to remove what cause them, we speculate that the lateral352

dispersion occurring in the unstable case ∆E < 0 represents a mechanism for destroying density353

compensated θ/S (spiciness) anomalies in the ocean. Since the coupling between thermobaricity and354

density-compensated anomalies is the primary cause for the non-zero helicity of the neutral vector,355

it follows that the lateral dispersion occurring in the unstable case ∆E < 0 must also represent a356

destruction mechanism for the neutral helicity. We speculate that this may explain the relatively357

small values of neutral helicity observed by [38], which the authors associate with the "thinness" of358

the ocean in (S, θ, p) space.359

Finally, Fig. 4 clearly illustrates the superiority of two-parcel arguments over one-parcel360

arguments, which make it possible to discuss the physics of lateral dispersion in terms of how the361

distance between the two parcels is affected by the exchange depending on the particular energetics362

regime considered.363
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3.3. Theory of the energetics of two-parcel exchanges on material isopycnal surfaces364

The building block of the theory developed here is the toy model for adiabatic and isohaline
stirring previously considered by [23], restricted to occur on a well defined material surface γ(S, θ) =

constant. Specifically, this model predicts the change in available potential energy resulting from two
fluid parcels with well defined thermodynamic properties (S1, θ1, p1) and (S2, θ2, p2) exchanging their
positions (pressures). The physical ingredients of the problem are illustrated in Fig. 4. By assumption,
the two fluid parcels have equal values of γ, i.e., γ(S1, θ1) = γ(S2, θ2), but their respective potential
density referenced to the mid-pressure p = (p1 + p2)/2 may be different, so that depending on
the particular case considered, parcel 1 may be more or less buoyant than parcel 2. In line with [1]’s
buoyancy argument that neglects the role of kinetic energy, only changes in available potential energy
(APE) are retained. For hydrostatic, adiabatic and isohaline displacements, these can be evaluated in
terms of enthalpy changes, e.g., [39] (or equivalently in terms of changes in dynamic enthalpy, as
considered by [40]), leading to

∆E = h(S1, θ1, p2)− h(S1, θ1, p1) + h(S2, θ2, p1)− h(S2, θ2, p2)

=
∫ p2

p1

[
ν(S1, θ1, p′)− ν(S2, θ2, p′)

]
dp′, (19)

where h(S, θ, p) is the specific enthalpy, and ν is the specific volume. Before showing how to restrict
this result to lateral exchanges on material surfaces of the form γ(S, θ) = constant, let us first
manipulate this expression into a more manageable form. Using a Taylor series expansion around
mean salinity and temperature values S = (S1 + S2)/2 and θ = (θ1 + θ2)/2, the terms making up the
integrand (19) can be approximated as

ν(Si, θi, p′) = ν(Si, θi, p) + νp(Si, θi, p′)(p′ − p) + νpp(Si, θi, p′)
(p′ − p)2

2
+ · · · i = 1, 2. (20)

Inserting the result into (19) yields, after some manipulation,

∆E = (ν(S1, θ1, p)− ν(S2, θ2, p))∆p +
(
νpp(S1, θ1, p)− νpp(S2, θ2, p)

) ∆p3

24
(21)

where it can be verified that the term O(∆p2) vanishes by virtue of the definition of p = (p1 + p2)/2.365

The energy cost function (21) is a purely thermodynamic function that depends uniquely on the six366

parameters Si, θi, pi, i = 1, 2. At leading order, the expression for the energy cost function reduces to367

∆E ≈ −∆νLR∆p ≈ ∆ρLR

ρ2 ∆p, (22)368

where ∆νLR = ν(S2, θ2, p) − ν(S1, θ1, p) ≈ −νS(S, θ, p)∆S − νθ(S, θ, p)∆θ. Eq. (22) is a well known369

result previously obtained in the context of the Boussinesq approximation, e.g., [24–26]. It is here370

extended to retain compressibility effects the contribution of internal energy. The exact expression371

(21) shows that higher-order terms in ∆p could in principle be retained if needed, but for the present372

purposes, the leading order expression is sufficient.373

The classical textbook treatment so far has been to move the problem in physical space by
expressing the specific volume and pressure differences entering (22) in terms of the mean gradients
of these properties times some displacement δx,

S2 ≈ S1 +∇S · δx, θ2 ≈ θ1 +∇θ · δx, p2 ≈ p1 +∇p · δx, (23)

thus leading to374
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∆E ≈ − 1
g
(d · δx)(ν∇p · δx). (24)

Pages 280-284 of [24], for instance, offer a detailed mathematical treatment of the Boussinesq375

version of (24), for which an alternative is also given in Appendix B, and to which the interested376

reader is referred to. In this paper, we depart from previous approaches by analysing (22) entirely377

in thermodynamic space, which proves beneficial for clarifying how the neutrality of well defined378

thermodynamic variables might be optimised.379

Having developed some a priori physical intuition for the different cases of interest, we now turn
to the problem of quantifying the energetic cost of parcel exchanges taking place on a well defined
thermodynamic surface of the form γ(S, θ) = constant. This imposes the following constraint

γ(S1, θ1) = γ(S2, θ2), (25)

which removes one degree of freedom from the problem, thus reducing the dependence of the energy
cost function to 5 parameters instead of 6, e.g., S, θ, p, ∆p and either ∆θ or ∆S. Using a Taylor series
expansion around mean values of salinity and temperature S = (S1 + S2)/2 and θ = (θ1 + θ2)/2
transforms (25) at leading order into a constraint linking the salinity and temperature differences
∆S = S2 − S1 and ∆θ = θ2 − θ1, namely

∂γ

∂S
∆S +

∂γ

∂θ
∆θ ≈ 0 → ∆S = −

(
∂γ

∂S

)−1 ∂γ

∂θ
∆θ. (26)

Next, using the same technique yields the following approximation for the specific volume difference
entering the thermodynamic energy cost function (21)

ν(S1, θ1, p)− ν(S2, θ2, p) ≈ νS(S, θ, p)(S1 − S2) + νθ(S, θ, p)(θ1 − θ2) =

(
∂γ

∂S

)−1 ∂(ν, γ)

∂(S, θ)
∆θ, (27)

where the Jacobian term is defined so that

∂(A, B)
∂(S, θ)

=
∂A
∂S

∂B
∂θ
− ∂A

∂θ

∂B
∂S

, (28)

and proceeding similarly with the νpp difference term, (21) becomes380

∆Ematerial ≈
(

∂γ

∂S

)−1
∆θ∆p

[
∂(ν, γ)

∂(S, θ)
+

∂(νpp, γ)

∂(S, θ)

∆p2

24

]
=

(
∂γ

∂S

)−1 ∂(γLR, γ)

∂(S, θ)
∆θ∆p (29)381

where the function γLR is defined by

γLR = ν(S, θ, p) + νpp(S, θ, p)
∆p2

24
+H(p), (30)

with H(p) is an arbitrary function of the pressure p. Eq. (29) is an important new result, which
establishes that the energy cost of parcels exchanges on an iso-γ surface depends on the tilt of the
γ-isolines relative to those of the in-situ density viewed at constant pressure in thermohaline (θ, S)
space. Since thermobaricity causes the isolines of in-situ density to rotate with pressure in (θ, S)
space, whereas the γ-isolines are pressure-independent, Eq. (29) clearly illustrates the difficulties
encountered by a function of (θ, S) alone to minimise |∆Ematerial |. This rationalises a posteriori the
use of patched potential density used by [41]. The problem can be formalised in the case where
γ(S, θ) = ν(S, θ, pr), where pr is a fixed referenced pressure.

γ ≈ ν(S, θ, p) + νp(s, θ, p)(pr − p) + · · · (31)
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in which case the above formula becomes at leading order382

∆Epotden ≈
(

∂ν

∂S

)−1 ∂(ν, νp)

∂(S, θ)
∆p∆θ(pr − p) (32)

∆νLR ≈ −
(

∂ν

∂S

)−1 ∂(ν, νp)

∂(S, θ)
∆θ(pr − p) (33)

383

Note that the latter parameter is related to the thermobaric parameter, e.g., [42],

Tb =
∂α

∂p
− α

β

∂β

∂p
=

1
ρρS

∂(ρp, ρ)

∂(S, θ)
=

ρ3

ρS

∂(νp, ν)

∂(S, θ)
= ρ

(
∂ν

∂S

)−1 ∂(ν, νp)

∂(S, θ)
(34)

so another way to rewrite the above expression is as384

∆Epotdens ≈ ρ−1Tb∆θ∆p(pr − p) (35)

∆νLR ≈ −ρ−1Tb∆θ(pr − p), ∆ρLR ≈ ρTb∆θ(pr − p) (36)
385

As expected, the above results show that the energy cost of parcels exchange on material surfaces can
be either positive (forced exchange) or negative (spontaneous exchange release APE). A typical value
of Tb = 2.10−8(◦C)−1(dbar)−1, using ∆p = 10 dbars, ∆θ = 1◦C, and (pr − p) = 1000 dbar = 107Pa
yields

∆Epotdens ≈ 2.10−8 × 1× 10× 107

103 ≈ 2.10−3 J/kg, (37)

∆ρLR = 103 × 2.10−8 × 1× 103dbar = 2.10−2 kg.m−3. (38)

In order to get a sense for what these numbers mean, one may for instance compare ∆Epotdens with386

the kinetic energy per unit mass of a parcel with typical velocity U = 1 cm/s = 10−2 m/s, that is387

U2/2 = 5.10−5J/kg, which is significantly smaller than the scaling estimate for ∆Epotdens. As regards388

to the estimate for ∆ρLR, it is somewhat large, and suggests that potential density can only be regarded389

as sufficiently neutral within perhaps less than 500 dbars away from the reference pressure that serves390

to define it. This result therefore vindicates the construction of patched potential density used by391

[41], while also explaining why thermodynamic neutral density γT , which uses a reference pressure392

pr(S, θ) that varies with the thermohaline properties of fluid parcel, appears to be significantly more393

neutral than any other material density variables, as shown in [23].394

3.4. Energy-based definition of global neutral surfaces395

As discussed in Section 2, there appears to be important and previously overlooked conceptual396

difficulties in justifying the neutral tangent plane equation (1) in terms of momentum considerations,397

which have been the main approach to justifying neutral density so far. However, because398

displacements satisfying (1) can be characterised as having a zero energy cost ∆E = 0, a justification399

of (1) in terms of energetics — as shown below — appears to be possible and preferable.400

As regards to identifying the particular material density variables γ(S, θ) maximising neutrality
in [1]’s sense — a problem previously investigated by [21] — the present energetics approach suggests
that γ should be defined to minimise |∆E| and hence satisfy

∆Ematerial ≈
(

∂γ

∂S

)−1
∆θ∆p

∂(ν, γ)

∂(S, θ)
≈ 0. (39)
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Although ∆Ematerial vanishes for ∆θ = 0 and ∆p = 0, these correspond to special cases controlled by
the geographical details of water masses properties unrelated to γ itself. Indeed, the functional form
of γ affects ∆Ematerial only via the Jacobian term

Jn =
∂(ν, γ)

∂(S, θ)
, (40)

so that it is the condition Jn ≈ 0 that should be regarded as defining approximately material neutral401

density surfaces in the present energetics framework. In contrast to the problem considered by [21],402

which was formulated in physical space, the equation Jn ≈ 0 formulates the problem of finding the403

material density variables maximising neutrality directly in thermodynamic space (S, θ, p).404

From a mathematical viewpoint, the general solution of Jn = 0 in thermodynamic space (S, θ, p)
are the particular functions of the form f (ρ, p), of which [17]’s orthobaric density represents a special
case. Because functions of the form f (ρ, p) are not material in general, it follows that material
functions γ(S, θ) cannot be solution of Jn = 0, but rather of an equation of the form

Jn = ε, (41)

with ε small in some sense. 2 How to formulate an appropriate optimisation problem for γ is not405

obvious, however. Although [21] succeeded in constructing a material density variable with good406

neutrality properties over the North Atlantic, attempts at constructing a material density variable407

with uniformly small neutrality for the global ocean, e.g., [23,35], have proved unsuccessful so far,408

with [20,35] speculating that this quest might be impossible to achieve for a purely material density409

variable. None of the arguments given by the latter studies, however, appear to be definitive. As410

a result, whether a material density variable exists that solves Jn = ε, with ε uniformly small over411

the whole range of water masses properties encountered in the ocean, must be regarded as an open412

question until a rigorous mathematical proof is found. The following mathematical analysis aims to413

make progress in clarifying the types of questions that need to be answered to achieve a definitive414

understanding of the issue.415

In order to understand the nature of the mathematical difficulties associated with solving Jn = ε,
with ε a uniformly small number over the range of water masses properties of interest, let us regard
the total pressure p = pr(S, θ) + δp as the sum of a reference pressure field that is a material function
of S and θ plus a perturbation. To fix idea, one may regard pr(S, θ) as the reference pressure of a fluid
parcel in Lorenz reference state, which precisely has such a form, e.g., [23,39], or more simply as a
constant. Using a Taylor series expansion of the specific volume around pr thus yields

ν(S, θ, p) = ν(S, θ, pr(S, θ)) + νp(S, θ, pr)(p− pr) + νpp(S, θ, pr)
(p− pr)2

2
+O((p− pr)

3). (42)

By inserting this result into (40) and re-organising the terms, the corresponding Taylor series416

expansion for Jn is obtained:417

Jn =
∂(νr, γ)

∂(S, θ)
− νrp

∂(pr, γ)

∂(S, θ)︸ ︷︷ ︸
J0

+

[
∂(νrp, γ)

∂(S, θ)
− νrpp

∂(pr, γ)

∂(S, θ)

]
︸ ︷︷ ︸

J1

(p− pr) +O((p− pr)
2), (43)

418

where the notations νr(S, θ) = ν(S, θ, pr(S, θ)), νrp(S, θ) = νp(S, θ, pr(S, θ)), and νrpp(S, θ) =419

νpp(S, θ, pr(S, θ)) were used.420

2 Note that the fact that orthobaric density makes Jn vanish does not imply that the energy cost of parcel exchanges on
orthobaric density surfaces is zero, because as discussed in next section, adiabatic and isohaline parcel exchanges on a
non-material density surface is impossible.
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Eq. (43) is an important result, for it naturally explains why the degree of neutrality of all material
density variables discussed so far in the literature fails to be uniformly small over the range of ocean
water masses. Indeed, all standard potential density variables as well as Lorenz reference density
turn out to satisfy J0 = 0 but J1 6= 0, where J0 and J1 are the terms defined in Eq. (43)3. In other
words, existing material density variables are generally such that they remove the leading order term
of Jn’s Taylor series expansion, but not the second term. The problem with the second term, however,
is that it is proportional to (p− pr), which in general cannot be kept uniformly small over the range
of water masses encountered in the ocean, whether pr is assumed constant, as for standard potential
density variables, or a function of S and θ, as in the case of Lorenz reference density discussed by [23]:
Even in the latter case, there always exist regions of the ocean where (p− pr) becomes very large, such
as the polar regions, and where the neutrality properties of γ deteriorate, possibly significantly. In
the case where γ = σ2 and pr = 2000 dbar for instance, Jn can be written as

Jn(σ2) =
∂(νrp, σ2)

∂(S, θ)
(p− pr) +O((p− pr)

2) = −βTb(p− pr) +O((p− pr)
2). (44)

Because β and Tb do not vary much in the range of (S, θ, p) space encountered in the ocean, it follows421

that |Jn(σ2)| increases linearly with the distance |p − pr| from the reference pressure pr, which is422

consistent with the widely held view that potential density variables are only useful relatively close423

to their reference pressure, thus vindicating the use of [41]’s "patched potential density".424

Whether one should give up any hope of finding a "good" neutral material density variable425

is unclear, however. Indeed, because the poor neutrality properties of a material density variable426

appear to stem from the term J1 in (43), the key question is whether good neutrality properties could427

be obtained by imposing to γ that it be a solution of J1 = 0 instead. If solutions to J1 = 0 could428

be demonstrated to have a small bounded value of J0, as well as small higher-order terms (those429

proportional to O((p − pr)2) and above), one would arguably have constructed a material density430

variable satisfying Jn = ε, with ε uniformly small over the range of water masses of interest, and431

hence with uniformly good neutrality properties. The problem of how to solve J1 = 0 appears to432

be somewhat complex, however, and is currently under investigation; hopefully, progress will be433

reported in a subsequent study.434

4. Neutrality and energetics of parcels exchanges using a non-material density variable435

Note to the referees Most of the material for this new section comes from the section devoted436

to energetics in the previous version of the paper. Part of the material has been re-organised and437

rewritten in an attempt to make it clearer and more logical.438

4.1. Objectives of this section439

The focus so far has been on purely material density variables γ = γ(S, θ). Such variables play440

a fundamental role in the study of stirring, for they define the surfaces along which adiabatic and441

isohaline parcel exchanges take place. Thermodynamic density variables γ = γ(ρ, p) are also of442

theoretical interest, for they can be made quite neutral, e.g. [35,43]; they also have the advantage of443

defining an exact geostrophic streamfunction when used as a generalised vertical coordinate [17].444

This section focuses on the particular case of orthobaric density [19]. Like γn, orthobaric density445

is not conserved during an adiabatic and isohaline parcel exchange. An important consequence of446

non-materiality is illustrated in Fig. 5. This shows that two parcels initially located on the same447

non-material surface must leave it as soon as the parcel exchange is initiated. As a result, what is448

meant by "the energy cost of a parcel exchange on a non-material density surface" is really the energy449

3 Presumably, the material density variables discussed by [21] and [20] are such that J0 6= 0 and J1 6= 0.
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Figure 5. Schematics illustrating the adiabatic vertical dispersion associated with the exchange of
two fluid parcels being initially on the same non-material density surface (such as orthobaric density
or neutral density for instance, whose iso-surfaces are depicted by the dotted lines). Before the
parcel exchange, the non-material density surface coincides with a material density surface γ(S, θ) =

constant, indicated by the purple solid line, on which the adiabatic and isohaline parcel exchange
actually takes place. As the result of the parcels exchange, the density of each parcel changes by ±∆γ,
resulting in a net mass loss for the original orthobatic or neutral density density class, and a mass gain
for the two orthobaric or neutral density surfaces below and above. Since in physical space, the two
fluid parcels are supposed to exchange their position, adiabatic and isohaline stirring on orthobaric or
neutral density surfaces must result in the latter moving relative to the material iso-γ surface.
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cost of the parcel exchange on the material surface γ(S, θ) = constant that best approximates the450

non-material density surface before the parcel exchange. This is also illustrated in Fig. 5. This is an451

important point that needs to be kept in mind in the following. Indeed, it is important to recognise452

that even though orthobaric density is a function of ρ and p alone, and therefore an exact solution453

of the equation Jn = 0, the energy cost of adiabatic and isohaline parcel exchanges on a thermobaric454

surface is not zero, because the parcel exchange actually takes place on the γ(S, θ) = constant surface455

that initially coincide with the othobaric density surface considered, not on the thermobaric density456

surface itself. The consequences is that parcels experience a thermobaric buoyancy force during the457

parcel exchange, which is the force expelling the fluid parcels out of the thermobaric surface, and458

hence the cause for the adiabatic dispersion through thermobaric density surfaces.459

After the parcel exchange, the material surface initially approximating an orthobaric density460

surface must have moved relative to the orthobaric surface. From the viewpoint of the non-material461

density variable, the parcel exchange results in a form of diapycnal diffusion that is analogous to the462

vertical dispersion characterising diabatic diapycnal dispersion, e.g., [44], except that it conserves θ463

and S. In the context of the neutral surfaces literature, this form of dispersion is usually referred to464

as thermobaric dianeutral dispersion, e.g., [42,45]. Adiabatic thermobaric diapycnal dispersion is an465

essential component of the description of adiabatic and isohaline stirring by means of a non-material466

density variable; this is another key point that needs to be kept in mind in the following. The467

above arguments indicate that thermobaric buoyancy forces are the cause for thermobaric dianeutral468

dispersion.469

4.2. Description of adiabatic and isohaline stirring using orthobaric density470

Keeping in mind the above caveats, let us consider two fluid parcels assumed to belong to the
same orthobaric density surface γ(ρ, p) = constant before they exchange position. Mathematically,
this imposes the following constraint:

γ(ρ(S1, θ1, p1), p1) = γ(ρ(S2, θ2, p2), p2). (45)

In order to understand the constraint that this imposes between (S2 − S1) and (θ2 − θ1), let us recall
that the total differential of orthobaric density is defined to be

dγ = γρdρ + γpdp, with
γp

γρ
= − 1

c2
0(ρ, p)

, (46)

where c2
0(ρ, p) has the dimension of a squared speed of sound and is empirically constructed from

climatological data [19]. As a result,

dγ = γρ

{
ρSdS + ρθdθ +

(
1
c2

s
− 1

c2
0

)
dp

}
. (47)

Using as before a Taylor series expansion around mean values of temperature and salinity, it is easy
to show that the constraint satisfied by ∆S is now given by

∆S = − ρθ

ρS
∆θ +

1
ρS

(
1
c2

0
− 1

c2
s

)
∆p = − νθ

νS
∆θ +

1
ρS

(
1
c2

0
− 1

c2
s

)
∆p, (48)

which in turn implies for ∆νLR = ν(S2, θ2, p)− ν(S1, θ1, p),

∆νLR ≈ νS

[
− νθ

νS
∆θ +

1
ρS

(
1
c2

0
− 1

c2
s

)
∆p

]
+ νθ∆θ = − 1

ρ2

(
1
c2

0
− 1

c2
s

)
∆p, (49)
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which in turn yields at leading order471

∆Eortho ≈ −νLR∆p ≈ − 1
ρ2

(
1
c2

s
− 1

c2
0

)
∆p2 (50)

∆νLR ≈ 1
ρ2

(
1
c2

s
− 1

c2
0

)
∆p, ∆ρLR ≈ −

(
1
c2

s
− 1

c2
0

)
∆p, (51)

472

In order to facilitate the comparison with the results obtained for a quasi-material density variable
γ(S, θ), we need to elucidate the role played by the thermobaric parameter Tb in the above formula.
To that end, let us regard cs = cs(ρ, p, S) as a function of in-situ density, pressure, and salinity, and
regard the empirical function c0(ρ, p) as being obtained from the speed of sound evaluated at some
empirically determined characteristic salinity function S∗(ρ, p)

c2
0(ρ, p) = c2

s (ρ, p, S∗(ρ, p)). (52)

Using a Taylor series expansion around S∗, the following approximation is obtained for the difference
cs − c0,

cs(ρ, p, S)− c0(ρ, p) ≈ ∂cs

∂S

∣∣∣∣
ρ,p

(S− S∗(ρ, p)) (53)

where it is shown in Appendix B that

∂cs

∂S

∣∣∣∣
ρ,p

= − c3
s

2
ρρS
ρθ

Tb, (54)

which is consistent with previous similar results obtained by [19,35,46,47]. Apart when ρθ > 0, which
occurs only rarely in the ocean, this term is expected to be positive almost everywhere, and shows
that in general, the speed of sound increases with salinity at constant p and ρ. Using some algebra
yields

∆Eortho =
1
ρ2

(c0 + cs)(cs − c0)

c2
0c2

s
∆p2 ≈ −1

ρ
Tb

ρS∆S∗

ρθ
∆p2, (55)

where ∆S∗ = S − S∗(ρ, p), while we assumed (c0 + cs)cs/(2c2
0) ≈ 1 in simplifying the above473

expression. Now, by defining ∆θ∗ = −ρS∆S∗/ρθ as a suitable temperature anomaly compensating in474

density the salinity anomaly ∆S∗, we arrive at the result475

∆Eortho ≈ 1
ρ

Tb∆θ∗∆p2. (56)

∆νLR ≈ −1
ρ

Tb∆θ∗∆p, ∆ρLR ≈ ρTb∆θ∗∆p. (57)

476

A key property of Eq. (56) is that it is proportional to ∆p2, which is much better than the ∆p(p− pr)477

dependence of the energy cost of parcels exchanges on potential density surfaces. Indeed, because478

∆p is the pressure difference between the two parcels exchanged, it can be assumed to be relatively479

small, say O(10 dbar) at most. In contrast, (p− pr) is the difference between the actual and reference480

pressures; hence |p− pr| can potentially be very large (> 1000 dbar), even for thermodynamic neutral481

density γT especially in the polar regions.482

Since in the ocean Tb does not vary significantly while ∆θ∗ is bounded, the distribution of483

∆Eortho is expected to remain quite uniform in comparison to ∆Ematerial . Moreover, since ∆Eortho is484

proportional to ∆p2, its values are also expected to be statistically more compatible with the amounts485

of energy available for stirring in the ocean in comparison to those associated with ∆Ematerial . This486

suggests that stirring along orthobaric density surfaces is actually realisable, at least from an energetic487

perspective.488
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In order to get a sense for the degree of neutrality of orthobaric density (as measured by the value489

of ∆ρLR), let us use the typical values Tb = 2.10−8(◦C)(dbar)−1, ∆θ∗ = 10◦C, and ∆p = 10dbar. This490

yields ∆ρLR ≈ 103× 2.10−8× 10× 10 = 2.10−3 kg.m−3. This is significantly smaller than the estimate491

for potential density away from its reference pressure. This clearly establishes the superior neutrality492

properties of orthobaric density over potential density variables when assessed in terms of the present493

energy-based neutrality criterion. This is in contrast to [35], who has claimed that the neutrality of494

orthobaric density is not superior to that of σ2; [35]’s conclusion, however, derives from the use of a495

somewhat idiosyncratic definition of neutrality that tends to favour γn over other density variables.496

Specifically, [35]’s approach is based on evaluating the fraction of the ocean over which what they497

call "the spurious diapycnal mixing" associated with a given variable is greater than 10−5 m2/s. They498

find that this fraction is not smaller for orthobaric density compared to σ2. Whether this is a valid or499

fair way to assess neutrality is unclear, however, as other criteria exist according to which orthobaric500

density is clearly more neutral than σ2.501

An important advantage of orthobaric density is that it can a priori be constructed to correctly
represent ocean stability whenever N2 > 0. Indeed, it is easily shown that

N2
ortho = −

g
ρ

∂γ

∂z
= − g

ρ

{
γρ

[
ρSSz + ρθθz − ρgρp

]
− ρgγp

}
= γρ

[
N2 + g2

(
1
c2

s
− 1

c2
0

)]
, (58)

(using the hydrostatic approximation ∂p/∂z = −ρg). Therefore, provided that c2
0 is defined so that

1
c2

s
− 1

c2
0
> 0 → c2

0(ρ, p) > cs(ρ, S, p), (59)

it is possible to guarantee that N2
ortho > 0 whenever N2 > 0. As discussed by [35], defining orthobaric502

density in such a way deteriorates [1]’s static neutrality (as defined in Section 2). However, Eq. (50)503

shows that imposing c0 > cs makes the energy cost ∆E < 0 negative, and hence that constructing504

orthobaric density in such a way makes it dynamically neutral as defined in Section 2. As far as we are505

aware, orthobaric density is the only density variable that can in principle be constructed to correctly506

predict ocean stability everywhere, as all other density variables, including [2]’s empirical neutral507

density γn, are known to exhibit inversions.508

In summary, the fact that orthobaric density can in principle be constructed to be associated with509

a uniformly small and negative energy cost — making it dynamically neutral — as well as to correctly510

predict ocean stability everywhere, makes it stand out as a density variable for use in theoretical511

studies and as a vertical thermodynamic coordinate. These advantageous properties stand in sharp512

contrast with [35] very negative assessment of orthobaric density.513

5. A posteriori thermodynamic justification for computing γ(S, θ) from the minimisation of |Jn|514

Note to referees The material of this section is entirely new. Its main purpose is to provide an515

alternative and more rigorous justification for minimising |Jn| from a thermodynamic perspective,516

rather than from energetics.517

5.1. Objectives of this section518

In Section 3), we suggested that the criterion quantifying the degree of neutrality of a material519

density variable γ(S, θ) in thermodynamic space was the smallness of the absolute value of the520

Jacobian term |Jn| = |∂(ν, γ)/∂(S, θ)|, which is the term controlling the energy cost of parcel521

exchanges on material surfaces γ(S, θ) = constant. One could argue, however, that the equation522

|Jn ≈ 0| is no more rooted in first principles than the neutral tangent plane equation (1), since523

the energetics of two-parcel exchanges is in some sense no less artificial or ad-hoc than the focus524
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on the buoyancy force of a single parcel, each approach representing only a partial and incomplete525

description of the energetics and vertical momentum balance of lateral dispersion respectively.526

As it turns out, a rigorous first-principles justification for minimising |Jn| exists, and naturally527

arises in the context of a description of water masses in terms of two independent material functions528

γ(S, θ) and ξ(S, θ), as well as pressure p. In that case, |Jn| is the quantity that needs to be minimised529

to minimise the dependence of in-situ density ρ = ρ(γ, ξ, p) on the spiciness variable ξ. As a result,530

minimising |Jn| in thermodynamic space also maximises the alignment between ∇γ and the local531

neutral vector in physical space, thus maximising the neutrality of γ. The main aim of this section is532

to formalise this idea mathematically.533

5.2. Density/spiciness representation of water masses534

Although the properties of water masses are most naturally described in terms of θ and S, which535

are the variables that are most directly observable, the study of ocean mixing and ocean dynamics536

most naturally calls for a density/spiciness representation, e.g., [48], in terms of two independent537

material functions γ(S, θ) — the density — and ξ(S, θ) — the spiciness, e.g., see [49] for a recent538

review of related ideas and concepts. From a mathematical viewpoint, ξ(S, θ) can a priori be chosen539

arbitrarily so long as the Jacobian associated with the change of variables J = ∂(γ, ξ)/∂(S, θ) differs540

from zero everywhere in the part of (S, θ) space of interest.541

The density/spiciness representation of ocean water masses naturally leads one to regard in-situ
density ρ(S, θ, p) = ρ̂(γ, ξ, p) as a function of γ, ξ and pressure p. This allows one to write the
differential form dρ− c−1

s dp in the following equivalent forms

dρ− 1
c2

s
dp = dρ̂− 1

c2
s

dp =
∂ρ̂

∂γ
dγ +

∂ρ̂

∂ξ
dξ, (60)

where it can be verified that the partial derivatives of ρ̂ relative to γ and ξ are related to the partial
derivatives of ρ, γ and ξ relative to S and θ via the following relations

∂ρ̂

∂γ
=

1
J

∂(ρ, ξ)

∂(S, θ)
,

∂ρ̂

∂ξ
=

1
J

∂(γ, ρ)

∂(S, θ)
, J =

∂(γ, ξ)

∂(S, θ)
. (61)

Note here that
∂ρ̂

∂ξ
=

1
J

∂(γ, ρ)

∂(S, θ)
=

ρ2

J
∂(ν, γ)

∂(S, θ)
=

ρ2 Jn

J
, (62)

which makes it clear that minimising |Jn| is equivalent to minimising the dependence of in-situ542

density on spiciness ξ.543

In order to establish the link between minimising |Jn| and maximising the neutral character of
γ, let us switch to physical space. From (60), the following expression for the instantaneous neutral
vector is easily obtained

d = − g
ρ

[
∂ρ̂

∂γ
∇γ +

∂ρ̂

∂ξ
∇ξ

]
. (63)

Depending on how ξ(S, θ) is defined,∇γ and∇ξ might be strongly correlated in physical space. For
this reason, it is useful to introduce a modified spiciness variable τ = ξ − ξr(γ), where ξr(γ) is a
function of γ only, in order to rewrite the instantaneous neutral vector (63) as follows

d = − g
ρ

[(
∂ρ̂

∂γ
+ ξ ′r(γ)

∂ρ̂

∂ξ

)
∇γ +

∂ρ̂

∂ξ
∇τ

]
. (64)

In practice, the most logical would be to try to construct ξr(γ) so as to make∇γ and∇τ as orthogonal544

as possible in physical space, a procedure whose details we intend to describe in a forthcoming study.545

Eq. (64) makes it clear that minimising ∂ρ̂/∂ξ (hence |Jn|) is required to maximise the alignment546



Version September 12, 2016 submitted to Fluids 24 of 32

between ∇γ and d, hence to maximise the neutral character of γ. This definitely establishes that547

minimising |Jn| in (S, θ, p) space is equivalent to maximising the neutrality of ∇γ in physical space.548

6. Summary and conclusions549

Note to referees The summary and conclusions have been entirely rewritten, in order to make it550

more structured and logical.551

In this paper, we have revisited the theoretical foundations for quasi-neutral density variables in552

the ocean. The main points are:553

• Elementary but rigorous physical considerations clearly indicate that the physical processes554

for lateral dispersion in the ocean must in general have a non-zero buoyancy and hence be555

non-neutral, which is confirmed by a survey of the literature on the topic. The concept of556

epineutral dispersion, therefore, only makes sense if viewed as the aggregate result of many557

individual non-neutral (i.e., having non-zero buoyancy) stirring events, so that it is only the net558

displacement δx = ∑N
i=1 δxi aggregated over N individual stirring events that is approximately559

neutral and solution of the neutral tangent plane equation d · δx ≈ 0;560

• It is not true that neutral trajectories obtained as solutions of the neutral tangent plane561

equation (1) can describe actual trajectories, contrary to what is usually assumed, because562

such trajectories implicitly require the existence of non-material sources of heat and salt. It563

is also not true that neutral tangent planes represent surfaces along which fluid parcels can be564

exchanged without experiencing (restoring or otherwise) buoyancy forces. Indeed, irreducible565

thermobaric forces always accompany adiabatic and isohaline parcels exchanges, and will force566

any pair of fluid parcels out of their original neutral tangent plane as soon as the parcel exchange567

takes place. If parcel exchanges on neutral tangent planes truly occurred without experiencing568

buoyancy forces, they would not experience thermobaric dianeutral dispersion;569

• The widespread idea that the neutral tangent plane equation (1) can be justified in terms of570

momentum considerations appears to be invalid since the quantity b = −d · δx cannot represent571

the full vertical force F(z) acting on a fluid parcel experiencing an adiabatic and isohaline572

lateral displacement owing to its lack of dependence on the horizontal pressure gradient. The573

new concept of ’dynamic neutrality’ is introduced to describe lateral displacements satisfying574

F(z) = 0 to distinguish it from Mcdougall buoyancy-based ’statistic neutrality’. In contrast575

to McDougall’s neutral displacements, ’dynamic’ neutral displacements occur in the wedge of576

instability, have a non-zero buoyancy, a negative energy cost (they release available potential577

energy) and are necessarily transient;578

• Since the stirring events making up epineutral/isopycnal/lateral dispersion are usually579

individually non-neutral, it is argued that the neutral tangent plane equation (1) can only580

be a valid model for epineutral dispersion if interpreted in an averaged sense; however,581

because traditional Eulerian averages give rise to eddy-correlation terms — absent from582

(1) — it is postulated that (1) can only be justified from first principles as a Lagrangian583

or quasi-Lagrangian average of the density equation (5). This requires that the sought-for584

Lagrangian or quasi-Lagrangian density variable γ whose identification is the ultimate goal of585

the neutral density theory should be identified priori the computation of the mean neutral vector586

appearing in (1); this suggests that γ can only be meaningfully constructed in thermodynamic587

space, and cast doubt on the possibility to provide a rigorous justification for density variables588

also varying geographically;589

• We established, using both energetics and thermodynamics arguments, that the criterion
measuring the degree of neutrality of a material density variable γ(S, θ) is the smallness of
the absolute value of the Jacobian term

Jn =
∂(ν, γ)

∂(S, θ)
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Physically, Jn has both a dynamical and thermodynamic interpretations, as it controls the energy590

cost of parcel exchanges on material surfaces, as well as the dependence of in-situ density on591

spiciness. Minimising |Jn| in thermodynamic space was shown to be equivalent to maximising592

the neutral character of γ in physical space.593

• The present theory naturally explains why most material density variables fail to be uniformly
neutral in the ocean.

Jn = J0 + J1(p− pr) + O((p− pr)
2)

It is speculated that a material density variable constructed to be solution of J1 = 0 might be594

uniformly neutral, a resarch topic left for further research.595

• It was demonstrated that the neutral and non-neutral stirring events contributing to epineutral596

dispersion could be characterised in terms of their energy signature, and suggested that the597

events with negative energy cost ∆E < 0 — that is, releasing available potential energy — are598

associated with enhanced lateral dispersion.599

• A new mechanism for enhanced lateral dispersion was identified whose source of energy stems600

from the coupling between thermobaricity and density-compensated temperature/salinity601

anomalies. Such a mechanism does not exist in a salt-less ocean, and is speculated to act as602

a physical process for the removal of density-compensated θ/S anomaly and neutral helicity in603

the ocean;604

• It was established that the use of a neutral rotated diffusion tensor, as is the current practice605

in numerical ocean modelling, implies that the effective diapycnal diffusivity of all conceivable606

material density variables is potentially much larger than the value of dianeutral diffusivity607

used in such tensors, raising the issue of whether the use of such tensors avoids or causes608

spurious diapycnal diffusion;609

• It was established that orthobaric density appears to significantly more neutral based on the610

present energy-based definition of neutrality than suggested by [35]’s evaluation.611

We believe that our results are important, because:612

• They connect for the first time epineutral dispersion with the actual stirring events that cause it;613

moreover, the realisation that epineutral dispersion is actually made up of non-neutral stirring614

events resolves some longstanding apparent paradoxes and inconsistencies between "neutral615

thinking", "turbulence thinking" and "baroclinic instability thinking" that have caused much616

confusion and controversy in the field;617

• They clearly establish the relevance of energetics for categorising the different possible618

dispersion regimes in the ocean, with epineutral dispersion being associated with energy619

neutral and unstable processes, whereas diapycnal dispersion is associated with positive energy620

consumption;621

• They dispel the widespread misconception, e.g., [1], that the buoyancy forces involved in parcel622

exchanges in potential density surfaces are necessarily restoring;623

• They clearly indicate that the systematic study of density-compensated (spiciness)624

salinity/temperature anomalies, e.g., [48], will be essential to progress our understanding of625

epineutral dispersion, of the observed smallness of helicity, and of the ocean ”thinness” in626

(S, θ, p) space established by [38];627

• They provide a potential unifying framework for discussing a number of widely disparate628

results all connected to the thermobaric instability identified here, such as the thermobaric629

instability sustaining solitary Rossby waves discussed by [50], the existence of a spiciness mode630

[46], the thermobaric production of potential vorticity [47], thermobaric numerical instabilities631

in isopycnic numerical ocean circulation models [51], the possibility for thermobaricity to cause632

a form of conditional instability akin to that at the origin of thunderstorms in the atmosphere633

[52], that [53] speculated might be responsible for past climate change.634

• They provide for the first time concrete ways to test the validity of neutral diffusion tensors; for635

instance if we could establish on the basis of direct numerical simulations or observations that636
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the diapycnal diffusivity of σ0, σ2, σ4 and Lorenz reference density was comparable to observed637

values of diapycnal mixing, it would unambiguously invalidate the idea that neutral rotated638

diffusion tensors are necessarily the best possible practice. Until now, to paraphrase Stommel639

[54], our ideas about neutral density and neutral rotated diffusion have had so far a peculiarly640

dreamlike quality, and it has been unclear whether any of the premises on which neutral density641

thinking relies are actually testable or falsifiable. The present results suggest that they might be.642
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Appendix A652

In numerical ocean models, the evolution equations of potential temperature and salinity are
generally assumed to be of the form

DS
Dt

= ∇ · (K∇S),
Dθ

Dt
= ∇ · (K∇θ), (65)

where K = Kn
I (I− ddT) + Kn

d ddT is a neutral rotated diffusion tensor, with d a normalised neutral
vector. As a result, the evolution equation for any given material density variable γ(S, θ) must obey

Dγ

Dt
= ∇ · (K∇γ)− (K∇S) · ∇γS − (K∇θ) · ∇γθ , (66)

and be the sum of a diffusive conservative and nonlinear production/destruction terms. By
definition, the projection of K∇γ — the diffusive flux of γ — through a iso-γ surface is given by

(K∇γ) · ∇γ

|∇γ| =
[

KI

[
1− (dT∇γ)2

|∇γ|2

]
+ Kd

(dT∇γ)2

|∇γ|2

]
|∇γ| = Kγ

d |∇γ|, (67)

where Kγ
d is the effective diapycnal diffusivity of γ. Using the fact that dT∇γ = |d||∇γ| cos (d,∇γ),

Kγ
d can alternatively rewritten as

Kγ
d = Kn

I sin2(d,∇γ) + Kn
d cos2 (d,∇γ) = Kn

d + [Kn
I − Kn

d ] sin2 (d,∇γ) > Kd, (68)

where (d,∇γ) is the angle between the normalised neutral vector d and∇γ. Provided that Kn
I −Kn

d >653

0, which is usually the case, Kγ
d must always exceed the diapycnal diffusivity Kn

d used in the definition654

of neutral diffusion tensors.655

Appendix B656

The analysis of the cost function (24) is a classical exercise whose analysis can be found in
textbooks such as [25] and [24]. Here, we show that such a cost function naturally defines three
natural eigen-directions for stirring. Before we do this, some qualitative remarks are useful. It is easy
upon simple inspection to remark that ∆E vanishes not only for neutral displacements (i.e., in the case
d · δx = 0 as noted previously), but also for isobaric displacements (such that∇p · δx = 0). Moreover,
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one may also remark that for purely vertical displacements δx = δzk, the cost function (24) reduces
to

∆E = N2δz2 > 0, (69)

which can be recognised as twice the well-known small amplitude formula for the increase of657

available potential energy associated with the work done by the two parcels against the restoring658

buoyancy force due to the stable stratification of buoyancy frequency N, e.g., [55].659

The energy cost of more general displacements is most easily understood by noting that (24) is
quadratic in δx, and that it can be written as

∆E =
1
2

δxTSδx, (70)

in terms of the following symmetric matrix

S =
ν

g

[
d (∇p)T + (∇p) dT

]
. (71)

Since S is real and symmetric, it possesses a set of real orthonormal eigenvectors that forms the natural
basis for describing the energy cost of any arbitrary displacement. The eigensystem is straightforward
to compute, and one may verify through direct substitution that the eigenvectors are given by

e1 =
nd × np

‖nd × np‖
=

nd × np

2
√

1− c2
(72)

e2 =
nd − np√
2(1− c)

, (73)

e3 =
nd + np√
2(1 + c)

, (74)

where nd = d/‖d‖ and np = ∇p/‖∇p‖ are the unit vectors associated with d and ∇p, while c =

nd · np = cos(nd, np) is the cosine of the angle between d and∇p. In order to simplify the expression
for the associated eigenvalues, it is useful to write down the norm of the pressure gradient ∇p and
vector d in terms of the vertical displacements ζp and ζd of an isobaric surface and local neutral
tangent plane as follows

‖∇p‖ = ρg
√

1 + ‖∇hζp‖2, (75)

‖d‖ = N2
√

1 + ‖∇hζd‖2. (76)

By successively computing Sei for all eigenvectors, one finds that the corresponding eigenvalues are
given by

λ1 = 0, (77)

λ2 = −κ(1− c)N2 < 0, (78)

λ3 = κ(1 + c)N2 > 0, (79)

where κ =
√

1 + ‖∇hζp‖2
√

1 + ‖∇hζd‖2.660

The first eigendirection (72,77) has a vanishing eigenvalue and is directed along the line defined661

by the intersection of the local neutral tangent plane and isobaric surface; it therefore defines662

displacements that have zero energy cost. The second eigendirection (73,78) has a negative eigenvalue663

and is directed in the wedge of baroclinic instability depicted schematically in Fig. (6). Physically,664

such eigendirection defines displacements that release available potential energy associated with the665

baroclinicity of the stratification, which was first discussed by [30] (see also [31]) in the context of666

baroclinic instability theory. To the extent that such displacements are realisable, such a direction667
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corresponds to ’spontaneous stirring’, which can occurs without the need for any external source of668

energy. Such a situation has been primarily discussed in relation to the conversion of mean available669

potential energy into eddy available potential energy and the development of meso-scale ocean670

eddies, but not in relation to the possible development of small-scale turbulence, probably because671

classical models of baroclinic instability are generally characterised by the existence of a short-wave672

cut-off that prevents the release of APE for too-small wavelengths. Such a short-wave cut-off does673

not necessarily exists for the unstable solutions of the linearised QG equations when using realistic674

mean flow, however, suggesting that such direction might also be relevant for small-scale stirring and675

mixing. Finally, the third eigendirection (74,79) has a positive eigenvalue and is perpendicular to the676

second eigendirection. In the general case where then angle between the isobaric surface and local677

neutral tangent plane is small, and that both surfaces are close to horizontal, the third eigendirection678

can be regarded as quasi-vertical, it corresponds to displacements — primarily associated with679

internal gravity waves — requiring an external source of energy.680

The above results imply that the energy cost of any arbitrary displacement δx = `[p1e1 + p2e2 +

p3e3] of amplitude ‖δx‖ = ` is given by

∆E =
1
2

[
(1 + c)p2

3 − (1− c)p2
2

]
κN2`2 (80)

isobaric surface
∇p

neutral tangent  
plane

𝜶∇𝜽-𝞫∇S

Wedge of 
baroclinic instability

Optimal stirring 
directions

Figure 6. Schematics illustrating the key directions controlling the energy cost of adiabatic stirring.
The red arrows define the optimal direction for stirring and is located in the so-called wedge of
baroclinic instability whose origin can be traced back to [30]. The neutral direction associated with
zero energy cost is indicated by the big blue dot and is perpendicular to the page.
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p=p1

p=p2

p=p3

Approximate 
Neutral Surface

Approximate 
Optimal Stirring Surface

(S1,θ1)

(S3,θ3)

(S2,θ2)

Figure 7. Schematics illustrating approximate neutral surfaces and approximate optimal stirring
surface obtained by making a continuous surface to be tangent at all points to the neutral tangent
plane and to the optimal stirring direction.

The eigendirections defined by the eigenvectors of S are illustrated in Fig. 6.681

Appendix C682

In this Appendix, expressions for the derivatives of the speed of sound with respect to salinity
and potential temperature at constant p and ρ are derived. To that end, use the expression for the
total differential of in-situ density, viz.,

dρ = ρSdS + ρθdθ + ρpdp, (81)

to obtain the following expression for the total differential of potential temperature viewed as a
function of ρ, S and p,

dθ =
1
ρθ

[
dρ− ρSdS− ρpdp

]
. (82)

Using (82) in the expression for the total differential of the compressibility ρp yields

dρp = ρpSdS + ρpθdθ + ρppdp

=
ρpθ

ρθ
dρ +

1
ρθ

∂(ρp, ρ)

∂(S, θ)
dS +

1
ρθ

∂(ρp, ρ)

∂(p, θ)
dp. (83)

Combining the above results, using the definition of the thermobaric parameter (34), yields

∂cs

∂S

∣∣∣∣
ρ,p

= − c3
s

2
∂ρp

∂S

∣∣∣∣
ρ,p

= − c3
s

2
ρρS
ρθ

Tb. (84)

Using the same technique but for potential temperature, it is easily established that

∂cs

∂θ

∣∣∣∣
ρ,p

=
c3

s
2

ρTb > 0. (85)
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Eqs (84) and (85) show that cs increases with both θ and S in general when ρθ < 0, which is the typical
behaviour of a spiciness variable. Moreover, note that the derivatives of cs with respect to S and θ

satisfy
∂ρ

∂S

∣∣∣∣
S,p

∂S
∂cs

∣∣∣∣
ρ,p

+
∂ρ

∂θ

∣∣∣∣
θ,p

∂θ

∂cs

∣∣∣∣
ρ,p

= 0 (86)

where S and θ are regarded as function of ρ, p, and cs. The derivatives ∂S/∂cs and ∂θ/∂cs are683

density-compensated.684
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