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Abstract

Risk aversion has generally been found to decrease in income. This may

lead one to expect that people in poor countries will be more risk averse

than inhabitants of rich countries. Recent comparative findings with stu-

dents suggest the opposite, potentially giving rise to a risk-income paradox.

Findings with students, however, may result from selection effects. We test

whether a paradox indeed exists by measuring the risk preferences of over

500 household heads across several regions in the highlands of Ethiopia. We

do so using certainty equivalents, which are well suited to the task due to

their simplicity. We find high degrees of risk tolerance, consistent with the

evidence obtained for students using the same tasks. In particular, the level

of risk tolerance is higher than the one found for student samples in most

Western and even middle income countries. We also find risk tolerance to

increase in income proxies within our sample, thus completing the paradox.

Keywords: risk preferences; development; experimental methodology

JEL-classification: C93; D03; D80; O12

∗This study was financed by the World Bank’s Knowledge for Change Program and the Trust
Fund for Environmentally and Socially Sustainable Development. The views expressed in the
paper are the authors’ alone and should not be attributed to the World Bank or its member
countries. We would like to thank Glenn Harrison, Tobias Schmidt, Roel van Veldhuizen, and
seminar pariticpants at the SEEDEC conference in Bergen and the CEAR-CSAE workshop at
the University of Oxford for helpful suggestions. All errors remain ours alone.

†Corresponding author: Department of Economics, University of Reading, UK; and
Risk & Development Group, WZB Berlin Social Science Center, Germany. Email:
f.vieider@reading.ac.uk; Tel: +44-118-3788208

‡EfD Ethiopia
§Portland State University, USA
¶Colby College, USA
�Mekelle University, Ethiopia

∗∗University of Gothenburg, Sweden
††Addis Ababa University, Ethiopia

1



1 Introduction

Uncertainty is a central fact in economic activity, and human life more in gen-

eral. Rural people in developing countries are especially exposed to the vagaries

of chance, since their largely agricultural income strongly depends on highly vari-

able weather patterns and formal insurance against adverse events rarely exists.

Nevertheless, our understanding of risk preferences and the role they play in the

lives of rural populations in developing countries is still limited.

Poor inhabitants of developing countries have long been considered to be very

risk averse (see Haushofer and Fehr, 2014, for a recent review). This conclusion

is mostly based on the fundamental economic intuition that risk aversion should

decline in wealth or income (Arrow, 1970; Gollier and Pratt, 1996). This intuition

has indeed found considerable empirical support within various countries in the

West (Donkers, Melenberg, and Van Soest, 2001; Dohmen et al., 2011), although

the evidence is less uniform than one might think (see Hopland, Matsen, and

Strøm, 2013, for a recent review).1

The evidence for developing countries is even less clear. Binswanger (1980)

famously found no correlation between risk aversion and wealth, and Tanaka,

Camerer, and Nguyen (2010) found a correlation only with average village in-

come but not with personal income, and only for some parameters. Yesuf and

Bluffstone (2009) found risk aversion to decrease in the availability of cash in

Ethiopia, and Liebenehm and Waibel (2014) found the risk aversion of cattle

farmers in Burkina Faso and Mali to decrease in income. Gloede, Menkhoff, and

Waibel (2013) found risk tolerance to increase with income in two large rural sam-

ples in Thailand and Vietnam. Cardenas and Carpenter (2013), however, found

no correlation between risk preferences and economic well-being (an aggregate

measure of several wealth indicators) in an experiment in six Latin-American
1Even though there is considerable support for this hypothesis, not all studies find clear-cut

evidence for the relationship. For instance, and von Gaudecker, van Soest, and Wengström
(2011) only found the correlation for gain-loss prospects, and not for pure gain prospects (see
also Booij, Praag, and van de Kuilen, 2010). Harrison, Lau, and Rutström (2007) even found an
effect to the contrary in the Danish population, while Noussair, Trautmann, and van de Kuilen
(2014) found a significant effect of income in a representative sample of the Dutch population
only after controlling for household wealth.
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countries.

Measurements of risk preferences in developing countries have also often con-

firmed high degrees of risk aversion on average (Binswanger, 1980; Yesuf and

Bluffstone, 2009; Liebenehm and Waibel, 2014). They did, however, generally

employ tasks that are seldom—if at all—used in the West, which makes com-

parisons difficult. The choice lists employed are further asymmetric, limiting

the degree of risk seeking they can detect. Especially in the presence of noise,

such asymmetric choice lists may result in the systematic overestimation of risk

aversion (Andersson et al., 2015). If some subjects decide purely randomly, their

choices may be counted towards risk aversion in lists that are skewed towards the

detection of the latter. In particular, the Binswanger task is cut off at risk neu-

trality, so that any random choice would be counted towards risk aversion. Using

simulations as well as experimental data, Crosetto and Filippin (2015) showed

that Binswanger-style lists overestimate risk aversion, and that noise indeed com-

pounds this overestimation—a problem that may be particularly important in

samples with low education levels.

In contrast to the high risk aversion found in these studies with rural popula-

tions, recent cultural comparisons of risk preferences using student samples and

employing the exact same experimental tasks across a large number of countries

have found risk aversion to be considerably lower in developing countries than in

rich, developed countries (Rieger, Wang, and Hens, 2014; Vieider et al., 2015).

Taken together with the prevalent within-country result of risk aversion decreas-

ing in income, the finding of risk aversion increasing in income per capita between

countries suggests a risk-income paradox. Since these comparative results were

obtained with students, however, it remains unclear whether they may be due

to a selection effect, whereby in poorer countries children from relatively more

affluent families attend universities. In that case, rather than finding a paradox,

we might just observe a systematic selection effect.

In this paper, we test whether the between country results obtained with stu-

dents extend to a large and geographically spread sample of the rural population

of Ethiopia. We measure the risk preferences of a large sample of the Ethiopian
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rural population, covering regions of rural Ethiopia encompassing about 80% of

the Ethiopian population and 70% of its landmass. We focus on the rural popu-

lation, inasmuch as 81% of the population of Ethiopia lives in rural areas (World

Bank data for 2013), and rural populations have been described as particularly

risk averse in previous research (Haushofer and Fehr, 2014), so that they consti-

tute a stronger test for our hypothesis than urban populations. Notwithstanding

some growth over the last decade, Ethiopia remains one of the poorest countries

in the world, with a GDP per capita of $1354 in 2013 in purchasing power parity

(PPP) terms. This makes the sample an ideal testbed for whether the findings

with students extend to general population samples.

We measure risk preferences using choice lists between binary lotteries or

prospects and sure amounts of money. These tasks are commonly used in the

West (Tversky and Kahneman, 1992; Bruhin, Fehr-Duda, and Epper, 2010; Ab-

dellaoui et al., 2011), and have the advantage of being comparable to the above-

mentioned evidence collected with students. This will allow us to assess whether

the differences in results described above are due to differences in elicitation tasks

or differences in subject pools. They are easy to explain using physical devises,

which makes them well suited to a population in which literacy rates are low.

They are furthermore amongst the simplest tasks that can be used to measure

risk preferences and vary familiar monetary amounts within lists, making them

highly suitable for populations with low literacy rates. We further obtain several

measurements of risk preferences for each person, allowing us to econometrically

separate risk preferences from noise. This may be important, as noise in the

measurement of risk preferences may be one of the factors affecting correlations

with income in previous investigations.

Obtaining good income measures is often not trivial for the subsistence farm-

ers that make up most of our sample—a fact that may contribute to the incon-

sistent evidence on the risk-income relationship (correlations with wealth, which

is easier to measure, tend to be weaker and less consistent in general). Instead of

measuring income directly, we thus recur to income proxies such as land size and

altitude, which have been found to correlate strongly with income in agricultural
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populations. This reduces measurement problems, and has the further advan-

tage that endogeneity may not be a primary concern (although we refrain from

making any strong claims on causality, for which our data are not well suited).

We find the rural population of Ethiopia to be highly risk tolerant, thus

departing from traditional conclusions about developing countries. Indeed, our

rural population sample is significantly more risk seeking than typical student

populations in the West. This generalizes the findings obtained with students,

showing that they cannot be explained by systematic selection effects. At the

same time, we find a strong correlation of risk tolerance with income proxies,

indicating that more affluent households exhibit higher risk tolerance. The com-

bination of high levels of risk tolerance in a very poor country with the typical

negative correlation between risk aversion and income within our sample thus

goes to complete the risk-income paradox.

We conclude the paper by discussing the implications of our findings in terms

of the failure to adopt new technologies by poor households in developing coun-

tries, which has often been blamed on low risk tolerance. Given the high levels

of risk tolerance we find in the aggregate, such an account does no longer seem

to hold up (although the explanation may remain valid for the poorest and most

vulnerable households within our sample). This indeed appears to reopen the de-

bate on the relative importance of preferences and institutional constraint when

it comes to risk taking by farmers in developing countries (Feder, Just, and Zil-

berman, 1985), an investigation of which forms a promising avenue for future

research.

This paper proceeds as follows. Section 2 describes the subject pool and

provides details on the experimental tasks and procedures, as well as discussing

data quality. Section 3 discusses our modeling assumptions and presents the

stochastic structure and econometric methods used to fit functional forms to

the data. Section 4 presents the results, using both parametric techniques and

a nonparametric stability check of the results. Finally section 5 discusses the

results and concludes the paper.
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2 Experimental setup

2.1 Subject pool characteristics

A total of 504 household heads were recruited in three regions in the Ethiopian

highlands.2 The study was carried out in the context of an investigation of

the effectiveness of improved cookstoves under the REDD+ program (a United

Nations program aimed at reducing emissions from deforestation). This focus

also determined the stratification technique used to select the sample. Subjects

were selected from the three regions involved based on forest cover, with 20% of

subjects from Amhara, 50% from Oromia, and 30% from the Southern Nations,

Nationalities and Peoples Region (SNNP ; out of the total population of the three

regions, Amhara makes up approximately 29%, Oromia 46%, and SNNP 15%, so

that Amhara is slightly undersampled). These regional states represent 80% of

the population and over 70% of the land area of Ethiopia.

Thirty-six villages (locally called Got or sub-Kebele) were randomly selected

from the three regions from a list of 110 villages previously selected by the

Ethiopian Development Research Institute (EDRI ) to collect forestry data. Out

of the 110 sites, we removed 15 sites that were covered during a pilot survey

conducted to inform our research. We also removed all sites from Tigrai Re-

gional State, as this state was less interesting in terms of the REDD+ questions

asked in the study. We then randomly selected 36 villages from the remaining

list. For each of these villages, a list of households was obtained from the local

administration. Subsequently, 14 households were randomly picked from each

village using systematic random sampling. This resulted in a sample size that

could be covered with our research budget, while at the same time ensuring wide

geographical coverage. The data were collected by a total of 25 fieldworkers (5 su-

pervisors and 20 enumerators) who were extensively trained on the experiments.
2The exclusive use of household heads is unlikely to significantly affect our conclusions.

Studying 347 rural Ethiopian couples, Di Falco and Vieider (2016) show that spouses’ risk pref-
erences are not significantly different from those of their husbands (although female household
heads are much more risk averse than male household heads). This is also consistent with a
recent meta-analysis by Filippin and Crosetto (2015), who show that gender differences are
task specific and may be weaker than thought.
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The supervisors all held a BSc degree and were experienced in field survey work.

The enumerators and supervisors were selected so that they were able to speak

the local languages. The experimental procedures were refined in extensive pi-

lots before starting the actual experiment, which also gave the enumerators a

chance to train on the tasks. Supervisors paid particular attention to making the

enumerators follow standardized procedures.3

The average age of our subjects is 42.13 years (SD: 13.2), with a range between

20 and 90 years. Since the study was targeted at household heads, 89.9% of

respondents are male. At 91% the overwhelming majority of our subjects work

mainly in the agricultural sector, with the second largest group consisting of

women doing house work (5%), and the third largest of people owning a business

(2%). The median household has about 1.5 ha (about 3 acres) of land. About

38% of the respondents are illiterate, with the literate subjects having mostly

only primary education (45% of the sample).

2.2 Experimental tasks and explanations

We measure risk preferences using certainty equivalents (CEs). CEs are easy

to construct and to deploy. Physical representations of the choice problems are

straightforward. In contrast to tasks such as the one popularized by Holt and

Laury (2002), which have been found to result in high rates of inconsistencies

(Lönnqvist et al., 2011; Charness and Viceisza, 2012), only monetary amounts

vary within a given choice list, while probabilities stay fixed. This makes it easy

to lay out money on a table and represent probabilities physically, which is a

great advantage given people’s familiarity with money. CEs can also easily be

used to estimate one’s favorite decision model (although more CEs are typically

required for more complex models). Finally, while they allow for the estimation of

structural models, they are also straightforward to analyze non-parametrically.4

3Since several languages needed to be covered, the assignment of enumerators to villages was
not randomized, so that we cannot control for enumerator fixed effects in our regressions while
also controlling for regional fixed effects. If we drop the latter and add enumerator dummies
instead, all the main effects reported below remain stable.

4Some scholars have raised doubts on whether CEs are ‘realistic’ in the sense of modeling
real world decision processes, based on the observation that real choices occur between risky
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In a typical task or choice list, a subject is offered repeated choices between

a lottery or prospect and different sure amounts of money. The prospect offers a

probability p of obtaining a prize, x, or else an outcome y with a complementary

probability 1�p. We will represent such a prospect as (x, p; y). The sure amounts

s

j

are always included between the prize and the low outcome of the prospect,

i.e. x � s

j

� y. The extreme outcomes of the prospect, x and y, are explicitly

included in the list of sure amounts to serve as a rationality check. If such

extremes are not included and subjects always choose either the prospect or the

sure amount (i.e., they never switch), it may be difficult to determine whether

this is due to true preferences or to a misunderstanding of the task. As long as

preferences are consistent, i.e. subjects switch only once (see below), the certainty

equivalent can then be taken to be the mean between the first sure amount that

is chosen over the prospect, and the last sure amount for which the prospect was

preferred over the safe option.

In this experiment, we fix the prize of the prospect at 40 Birr and the lower

outcome at 0 throughout. The prize of 40 Birr corresponds to about US $6 in

purchasing power parity (World Bank 2013), for an overall expected payoff from

participating equal to $3 PPP for a risk neutral participant. Considering that

most of our subjects live on less than two Dollars a day, the money at stake was

significant and well in line with stakes in similar experiments (Yesuf and Bluffs-

tone, 2009; Attanasio et al., 2012). We used a total of 7 choice lists, which offered

a prize of 40 Birr with probabilities of p = {0.05, 0.10, 0.30, 0.50, 0.70, 0.90, 0.95},

and which were administered in random order. Using several choice lists has the

advantage that noise can be easily separated from preference parameters in the

alternatives. We are unconvinced of this argument. For one, some choices in the real world
do indeed involve tradeoffs between sure amounts and risky options (e.g., the decision whether
to pay a sure amount of money for fertilizer to invest in a risky payoff from agriculture that
may depend on other variables such as rainfall, or to keep that sure amount). Ultimetely,
the question of the relative external validity of different elicitation tasks is one that needs to
be addressed empirically, and no conclusive evidence on this point exists to date. One may
also worry that having a sure alternative in an elicitation may trigger loss aversion relative to
that sure outcome. In a seminal paper, Hershey and Schoemaker (1985) showed that this is
indeed the case when a fixed sure outcome is compared to a prospect in which the probability of
winning is varied. Varying the safe sure outcome instead, however, they found no such reference
dependence.
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econometric analysis. Since people may have difficulties grasping the concept of

probability, we used only physical representations using colored balls, avoiding

verbal references to probabilities. Indeed, the miscomprehension of probabilities

may be inherent to risk preferences—further see the modeling section below for

a discussion of this issue.

The sure amounts increased from 0 to 40 Birr (included) in steps of 1 Birr.

Having a relatively small resolution can assign risk preferences to subjects with a

higher degree of precision, thus potentially reducing noise (Crosetto and Filippin,

2015). Probabilities were implemented using 20 ping-pong balls, with balls of

different colors associated to the high and low outcomes. The composition of

balls was physically shown to subjects for each choice list. We chose to keep

outcomes fixed across choice lists while changing probabilities, as we believe that

for typical experimental stakes most of the interesting patterns emerge along

the probability dimension (see also Fehr-Duda and Epper, 2012, on this point).

This will restrict our model to one subjective dimension, so that more complex

models which allow for two subjective dimensions, such as rank dependent utility

or prospect theory, cannot be estimated based on our data. This methodology

can, however, easily be expanded to the latter.5

Subjects were initially asked whether they consented to take part in the study.

They were explained that the study consisted of various parts, including a ques-

tionnaire, and an experimental game. Before beginning the actual experiment,

the process was carefully explained to subjects. All explanations and subsequent

elicitations took place in individual interviews. Subjects were shown how the

urn was composed. They were then shown the prospect, which was explained

by laying out banknotes next to the associated colored ping-pong balls used as

a chance device. Subjects were asked to choose between this prospect and the

sure amount, also physically laid out next to the prospect. The enumerator in-

troduced the example by explaining the entire choice list, i.e. by pointing out
5In particular, some choice tasks varying outcomes at a given probability are needed to

separate utility curvature from probability transformation in the econometric analysis. To
obtain good power for the observations, prospects with a non-zero lower outcome are necessary
in addition to varying upper outcomes.
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that the prospect would remain unchanged throughout the list, while the sure

amount would change from the lowest to the highest amount in the list in steps

of 1 Birr. Subjects were then asked for their choice between the prospect and

0 Birr for sure; and then for their choice between the prospect and 40 Birr for

sure. Given that for the first everybody ought to prefer the prospect and for

the second everybody ought to prefer the sure amount, this serves as a check of

understanding, and quite naturally conveys the idea that subjects should only

switch once (which was not enforced in case subjects still wanted to switch to

and fro in the experiment).

Once a subject had understood this process, the enumerator began eliciting

the preferences for different probability levels in random order. This random or-

der had been predetermined, and each enumerator could read the order from the

interview sheet (there were 14 different orders in total). Since the outcomes stayed

the same throughout the experiment, the enumerator only needed to change and

explain the color composition of balls from one task to the other. While enu-

merators were instructed to ask for a preference for each of the 41 sure amounts,

in some instances participants would say that their preferences would stay the

same for all higher amounts, or would even directly indicate where they wanted

to switch from the prospect to the sure amount. In such cases, the enumera-

tors were instructed to simply encode this switching point directly. The total

experiment including the explanations took about 30-40 minutes on average.6

At the end of the risk experiment, one of the choice lists was randomly selected

for real play—the standard procedure in this kind of experiment (Cubitt, Starmer,

and Sugden, 1998). In that choice list, one choice between a given sure amount

and the prospect was then extracted for real play, so that overall each decision

had the same probability of being played for real. This procedure had been

thoroughly explained to subjects while presenting the example at the beginning

of the experiment. Subjects were explicitly asked to repeat the randomization

procedure to the enumerator before starting with the actual experiment. Subjects
6This 40 minute period excludes the time needed for the questionnaire, which was adminis-

tered in a separate instance.
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were also told explicitly that, given this procedure, it was in their best interest

to treat every single decision as if it were the one that would be played for real

money at the end.

2.3 Data quality

The overall data quality is reasonably good. Only 3 out of 504 subjects, or 0.6%

of our sample, switched multiple times from the prospect to the sure amount

and back in the choice lists. We will exclude these subjects from the analysis,

leaving us with 501 subjects. A further test of rationality are what we call strong

violations of first order stochastic dominance, consisting in a preference for 0

Birr for sure over playing the prospect, or of playing the prospect over 40 Birr for

sure. No subject preferred the sure 0 Birr to the prospect. On the other hand,

4 subjects, or 0.8% of the sample, indicated a preference for the prospect over

40 Birr for sure in at least one of the choice lists. These subjects will also be

excluded from the analysis. Finally, for one subject we do not have responses to

the questionnaire, leaving us with a total of 496 subjects.

We next look at (ordinary) violations of stochastic dominance. Such a vi-

olation occurs whenever a subject indicates a certainty equivalent for a given

prospect that is lower than the certainty equivalent indicated for another prospect

offering a lower probability of obtaining the same prize, CE(p
j

) < CE(p
i

),

p

j

> p

i

. About 38% of our subjects violate stochastic dominance at least once.

Seen that most violations are relatively small in terms of amounts, this appears

to lie within acceptable bounds, considering also the random ordering of the

tasks. Vieider et al. (2013) found that about 25% of Vietnamese farmers violated

stochastic dominance in a similar setting using a fixed ordering of tasks. Looking

at total choices, our subjects violate first order stochastic dominance in 5.4% of

choices overall. We thus conclude that the data are reasonably consistent, but

that controlling for noise in the analysis will be important.
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3 Aggregate data and modeling approach

3.1 Non-parametric representation of aggregate data

Table 1: Summary measures of aggregate risk preferences by prospect

prob. EV median CE mean CE SD test =EV

0.05 2 7.5 10.88 10.37 z = 18.21, p < 0.001
0.10 4 9.5 13.53 10.19 z = 17.84, p < 0.001
0.30 12 15.5 18.05 10.05 z = 11.51, p < 0.001
0.50 20 22.5 23.01 9.12 z = 6.26, p < 0.001
0.70 32 29.5 27.13 8.58 z = �1.49, p = 0.136
0.90 36 34.5 32.01 8.51 z = �7.33, p < 0.001
0.95 38 37.5 34.38 8.17 z = �6.54, p < 0.001

mean 20 22.07 22.71 7.30 z = 8.19, p < 0.001

We start by conveying a feel for the data through non-parametric summary statis-

tics for the different prospects, shown in table 1. Taking the mean CE over all

the prospects and comparing it to the average expected value (shown in the last

row of the table), we find that subjects are on average significantly risk seeking.

Looking at individual prospects, we see that subjects are risk seeking for small

probabilities and risk averse for large ones, as has typically been found in the lit-

erature (Preston and Baratta, 1948; Kahneman and Tversky, 1979; Abdellaoui,

2000). However, the risk seeking behavior prevails up to and including a proba-

bility of p = 0.5, which is much higher than has been found in the West. This

serves to exclude explanations purely based on psychological factors that may

lead subjects to switch closer to the middle of the list—a point to which we will

return once we fit functions to the data.

The findings are, on the other hand, consistent with recent findings across 30

countries with students using the same type of tasks reported by Vieider et al.

(2015). Figure 1 puts the level of risk tolerance in our sample into perspective

by comparing it to the average in the student data across the 30 countries, based

on the data reported by Vieider et al. (2015). The graph plots the average

risk premium per country, defined as the expected value minus the certainty

equivalent (a measure of absolute risk aversion), against GDP per capita (in logs

and corrected for oil rents; see Vieider, Chmura, and Martinsson, 2012, for a
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discussion). Ethiopia is clearly the poorest country in the data set. It has also

one of the lowest average risk premia, or highest levels of risk tolerance, amongst

the student data from the 30 countries.
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Figure 1: Average risk tolerance relative to student data

Overall, the Ethiopian general population sample (marked by a triangle and

labeled ‘ETH rural’ in the graph) shows somewhat higher risk aversion than the

Ethiopian students (z = �2.22, p = 0.026; two-sided Mann-Whitney test). This

is consistent with findings from a comparison of students and a general population

sample in Vietnam reported by Vieider et al. (2013), where a rural population

sample was also found to be slightly more risk averse than the student sample.

It also corresponds to the results of a comparison of students to a representa-

tive population sample in Switzerland with the same type of tasks reported by

Fehr-Duda and Epper (2012). At the same time, being significantly risk seeking

our sample is clearly more risk tolerant than Western student populations, which

are generally significantly risk averse (with the exception of the UK, which con-

stitutes an outlier in the correlation). This makes them also more risk seeking

than student samples from middle income countries such as China, Thailand,

Colombia or Tunisia, which are only sightly risk averse. The data thus support
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the observation that our general population sample from the poorest country in

the student sample is significantly more risk tolerant than student samples in

rich countries, thus excluding explanations purely based on selection effects in

student data.

3.2 Modeling of preferences

We can now show how our data fit into different models in a purely non-parametric

way. Finding a good descriptive model to fit the data is important inasmuch as

this will improve our econometric analysis of the determinants of preferences, re-

ducing potential attenuation bias. We further discuss our modeling assumptions

in some detail, as they will determine our choice of functional forms to be used.

Since the data patterns we find are relatively complex, they cannot be explained

by one simple measure of risk aversion. The use of overly simple measures of risk

preferences may indeed be partially to blame for past null findings in correlation

analysis, as such measures may confound actual preferences with noise.

We start with an expected utility (EU ) model. Since utility functions are

unique only up to a positive linear transformation, we can arbitrarily fix the

endpoints at u(y) ⌘ 0 and u(x) ⌘ 1. Plugging this into the general equivalence

u(CE

i

) = p

i

u(x) + (1 � p

i

)u(y), we now simply obtain that u(CE

i

) = p

i

. The

non-parametric mean utility function thus obtained is plotted in figure 2(a). This

utility function resembles the one proposed by Markowitz (1952). Markowitz

recognized that people may be risk seeking for some prospects while being risk

averse for others, so that the utility function would have convex as well as concave

sections. To accommodate this finding, he proposed to abandon initial wealth

integration and to instead measure utility though changes of wealth.7

Markowitz based the derivation of this type of utility function on a simple

thought experiment. In this experiment, he asked readers about their choices

between a prospect offering a prize x with probability p = 0.1 or else nothing

and the expected value of the prospect. For small x, most people would likely
7With initial wealth integration, convex and concave sections of the utility function might

co-exist at the same point, since the same pattern has been found for all kinds of wealth levels,
thus giving rise to inconsistencies.
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Figure 2: Non-parametric functions

choose the prospect (e.g., most people would prefer a prospect offering a one

in ten chance of $10 over $1 for sure). As x got larger, however, people would

gradually switch to preferring the sure amount (e.g., most people would prefer a

sure $1,000,000 over a prospect offering a one in ten chance at $10,000,000).

In our case, however, we kept the amounts fixed, and let probabilities vary

instead. In a seminal paper, Preston and Baratta (1948) let both outcomes and

probabilities vary systematically across choices. They observed that outcome

variation had a negligible effect on the data (although the outcomes did obviously

not range up to the amounts in Markowitz’s thought experiment). Also, the

pattern across different probability levels remained constant, no matter what the

outcome level. This pattern gave rise to much experimentation by psychologists

in subsequent years, and hit the economic discipline when probability weighting

was incorporated into prospect theory jointly with utility transformations and

published in Econometrica by Kahneman and Tversky (1979).

This consistent pattern across probabilities, which we also find in our data,

suggests a different approach to modeling the choices we observe. One could

model risk preferences through a subjective transformation of probabilities into

decision weights, rather than a subjective transformation of outcomes into utili-

ties. In other words, we can represent a choice as being linear in outcomes and

non-linear in probabilities, such that CE = ⇡(p)x + [1 � ⇡(p)]y, where we will

impose that ⇡(0) ⌘ 0 and ⇡(1) ⌘ 1. We can again simply solve this, noting that
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in our setting ⇡(p
i

) = CEi
x

. This non-parametric Dual function is depicted in

figure 2(b), and can be seen to mirror the utility function to its left (see Yaari,

1987, for an axiomatization of the Dual function for rank-dependent utility).8

Being the dual of each other, the two functions presented above are prima

facie perfectly equivalent. Nonetheless, we have a strong preference for the dual

function. The experimental stimuli varied probabilities across choice lists. The

same type of pattern—combining risk seeking for small and risk aversion for

large probabilities—has been found for different outcome levels, which directly

contradicts EU with a Markowitz-type utility function (similar violations would

be observed for the Dual, if we had used significant variations in outcomes in-

stead; see Bouchouicha and Vieider, 2016, for evidence of both violations and a

discussion of their relative strength). Also, as we will further discuss below, the

coexistence of risk seeking and risk aversion requires two-parameter functions to

fit the data. Such functions are much more common, and the parameters have a

clearer interpretation, under the dual theory than under EU. An analysis using

a one-parameter utility function is nonetheless reported in the appendix.

3.3 Stochastic modeling

We have so far only derived non-parametric functions from the data. While this

involves the least tampering with the data, such an approach completely neglects

one of the strengths provided by a multiplicity of observations—the possibility

to separate noise from genuine preferences. This will lead to attenuation bias in

regression analysis, since the noise in the measurements will affect the correlations

with our socio-economic variables. In this section, we will thus try to both reduce

the number of parameters needed to describe the data (relative to the seven non-

parametric data points), and to develop an explicit stochastic structure that

allows us to filter out noise from the observations. Alas, this does not come for

free. We will need to add some more assumptions, as well as some complexity to
8One could also think of this model as a rank dependent utility model with linear utility.

Indeed, linearity of utility can often not be rejected in prospect theory models for typical
experimental stakes. For instance, Vieider et al. (2013) fail to reject linearity in utility for their
Vietnamese farmer sample. Linearity also holds for many (although not all) of the student
samples mentioned above—see L’Haridon and Vieider (2015) for details.
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the data estimation. Annotated Stata programs for all estimations in the paper

are available for download at www.ferdinandvieider.com.

Following Bruhin et al. (2010), we econometrically represent decisions directly

using the switching points from the prospect to the sure amount. This takes into

account the structure of the experimental setup, in which we elicit certainty

equivalents for prospects, ce
i

⇠ pi, where the subscript i indicates the particular

prospect at hand, such that pi = (x, p
i

). This approach takes into account that

choices within a given choice list are not independent. It is also much more

efficient than a discrete choice approach, drastically reducing estimation time.

All the results remain stable if a discrete choice approach is used instead.

We start from the observation that at the switching point the utility of the

certainty equivalent is by definition equal to the utility of the prospect. Since

outcomes enter the equation linearly, we can simply write:

ĉe

i

= ⇡(p
i

)x+ [1� ⇡(p
i

)] y = ⇡(p
i

)x (1)

where ĉe

i

is the certainty equivalent predicted by our model. This predicted

certainty equivalent will not necessarily be equal to the one observed in the

actual data. For instance, decision makers may make mistakes when calculating

the utility of a prospect, or our model may be mis-specified relative to the true

underlying decision process. We can thus represent the relation between the

predicted and observed certainty equivalent as follows:

ce

i

= ĉe

i

+ ✏

i

(2)

where ✏
i

⇠ N(0,�2) is an error term which captures the deviations mentioned

above. We can now express the probability density function  (.) for a given

prospect i as follows

 (✓,�
i

,pi) = �

✓
ĉe

✓i

� ce

i

�

i

◆
(3)

where � is the standard normal density function, and ✓ indicates the vector
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of parameters to be estimated. The subscript i to the noise term � serves to

remind us that we allow noise to depend on the characteristics of the single

prospect. Since our prospects are, however, invariant except for the probability

of winning the prize, this error term simply takes the form �

i

= �x, which serves

to standardize the error term of the model.

The parameters of the model can be estimated by maximum likelihood pro-

cedures. To obtain the likelihood function per decision maker, we need to take

the product of the density functions above across prospects:

L(✓) =
Y

i

 (✓
n

,�

ni

,pi) (4)

where ✓ is the vector of parameters to be estimated such as to maximize the like-

lihood function. Taking logs and summing over subjects, we obtain the following

log-likelihood function:

LL(✓) =
NX

n=1

ln [ (✓
n

,�

ni

,pi)] (5)

The subscript n to ✓ indicates that we will allow the estimated parameters to be

linear functions of observable characteristics of decision makers in the regression

analysis, such that ✓̂ = ✓̂

k

+�X, where ✓̂
k

is a vector of constants and X represents

a matrix of observable characteristics of the decision maker. The subscript n to

the noise term � indicates that the error is also made to depend on the observable

characteristics of the decision maker.9 We estimate this function in Stata 12

using the Broyden-Fletcher-Goldfarb-Shanno optimization algorithm. Errors are

always clustered at the subject level.
9Yet a different approach would be to estimate a mixture model, allowing for heterogeneity

in modelling assumption. Harrison, Humphrey, and Verschoor (2010) do so for several different
countries in the developing world. Notice, however, how we could not use these methods
to distinguish between EU and dual-EU, as they model the same processes through different
parameters. While such methods could be used to distinguish between one- and two-parameter
functions, one-parameter functions are a special case of the two-parameter setup in our case.
Directly estimating the two-parameter function thus facilitiates the interpretation of regression
results, without losing any generality in terms of modeling.
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3.4 Aggregate data fitting

We are now ready to fit functional forms to our preference data. In figure 3 we fit

a 2-parameter function developed by Prelec (1998) to the data, which takes the

form ⇡(p) = e

��(�ln(p))↵ . The estimated parameters are ↵ = 0.538 (se = 0.013),

� = 0.703 (se = 0.009), and � = 0.233 (se = 0.002). The result is vastly superior

to the fit of Prelec’s 1-parameter function characterized by � ⌘ 1, thus making

the additional parameter worthwhile (�2(1) = 646.95, p < 0.001, likelihood ratio

test).10 An analysis using a 1-parameter EU function is provided in the appendix.
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Figure 3: Fitting 2-parameter functions to the data

The parameters of the Prelec function have a precise behavioral interpreta-

tion. A parameter combination of ↵ = 1 and � = 1 in combination with linear

utility indicates expected value maximization. The parameter � mostly governs

the elevation of the function, with values >1 indicating a more depressed func-

tion and thus risk aversion under linear utility, and values <1 indicating a more
10The parameters of the 1-parameter function are ↵ = 0.572 (se = 0.013) and � = 0.256

(se = 0.003). This function has a fixed crossing point of the diagonal at 1/e = 0.37, and
was developed with the explicit aim of fitting aggregate results from the West. In this sense,
values of � lower than 1 indicate increased risk seeking, and deviations from what is considered
‘typical’ based on Western data. Other 1-parameter and 2-parameter functional forms perform
similarly.
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elevated function, and hence risk seeking. When ↵ = 1, � can thus be consid-

ered a measure of standard risk aversion. The parameter ↵ governs mostly the

slope of the curve, with values <1 indicating probabilistic insensitivity, i.e. CEs

that change less than proportionately with probabilities. This is a phenomenon

whereby people attribute greater weight to a given change in probability if it

happens towards the endpoints of the scale close to p = 0 or p = 1 than if the

same probability change occurs in an intermediate region. It is one of the most

established findings in the prospect theory literature (Wu and Gonzalez, 1996;

Abdellaoui, 2000; Bleichrodt and Pinto, 2000). Since linear probability weighting

is considered to be normative (Wakker, 2010), probabilistic insensitivity is often

perceived as a rationality failure (Tversky and Wakker, 1995).11 As such, it may

well capture issues of misunderstanding of probabilities, which may be larger in

developing countries with low levels of literacy (indeed, they have been found to

be associated with grade point average even in student samples; see L’Haridon

and Vieider, 2015). We will refer to the two parameters as the risk aversion and

the sensitivity parameter respectively.

4 Risk preferences and socio-economic conditions

4.1 Parametric analysis

We are now ready to examine the correlation of our measures with several charac-

teristics of interest using our structural model (a non-parametric stability analysis

is provided in the next section). We start by looking at indicators of wealth and

income. Especially in developing countries there is a dearth of evidence on the

effect of income, probably because good income measures are difficult to come by

amongst the poor inhabitants of the rural regions of developing countries, who

more often than not are subsistence farmers.

Rather than trying to obtain income measures—which would be unreliable

in a sample consisting for the most part of subsistence farmers—we thus look at
11The parameter may also capture some systematic noise—as opposed to the truely random

noise captured in �—consisting in answers that are systamatically closer to the midpoint of the
choice list.
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Table 2: Summary statistics of main regressors

mean SD min max

land size (hectares) 1.80 1.61 0 10.5
altitude (meters) 2218 337.31 1437 3150
age (years) 42.13 13.14 20 90
literate 0.453 0.498 0 1
middle school 0.169 0.375 0 1
female 0.101 0.301 0 1
unmarried 0.086 0.281 0 1
TLUs⇤⇤ 4.990 3.669 0 26.23
pc1 wealth⇤⇤⇤ 0 1.214 -3.415 2.912
⇤⇤TLU stands for Tropical Livestock Units
⇤⇤⇤Wealth is represented as the first principal component of several indicators

some variables likely to be closely associated with income. Table 2 summarizes

the income proxies used, along with several other controls in the regression. The

land size owned by our households ranges from 0 to 10.5 hectares, with a mean of

1.80. While the use of land size as an income proxy clearly glosses over behavioral

issues such as e.g. the use of fertilizer or effort expended on the farm, we consider

this a strength of this measure inasmuch as this reduced endogeneity concerns.

We do not have direct measures of income in our sample. However, using data

collected in a survey run by the International Food Policy Research Institute

(IFPRI), which is representative of an area largely overlapping with our study

area in the Ethiopian highlands, land size and income show a clear positive

correlation (⇢ = 0.318, p < 0.001, N = 892; Spearman rank correlation). This

further confirms the validity of land size as an income proxy.

Our second income proxy is altitude. This measure is taken from GPS mea-

surements, and measured as elevation above sea level. At between about 1450 and

3150 meters, the range of elevations in our data is significant. The productivity of

land decreases with altitude for several reasons. The lower temperatures preva-

lent at high altitudes lead to slower growth of crops. This effect is compounded

by stronger winds, which tend to dry out the top soil. Furthermore, land at high

altitude is often steeper, which means that water drains quickly and soil is easily

eroded, leading to reduced soil quality and hence lower agricultural productivity.

Recurring again to the same IFPRI data mentioned above, we indeed find a neg-

ative correlation between income and altitude (⇢ = �0.096, p = 0.004, N = 886).
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Nonetheless, altitude is clearly an imperfect proxy, as agricultural practices will

also change with altitude. In particular, we find that at higher altitudes land is

increasingly used to graze livestock, i.e. there is a significant correlation between

altitude and the tropical livestock units (TLUs

12) owned by a household in our

data (⇢ = 0.127, p = 0.005, N = 487). It is thus important to control for this in

regression. There is no correlation between land size and altitude.13 Finally, it

is important to notice that altitude varies mostly between villages in our sample.

This may make it a less reliable income proxy than land size, as other unobserved

factors may also vary between villages.

Table 3 shows our regression results. Regression I looks at proxies for income,

while controlling for level of education, business ownership, and some demograph-

ics including the sex and age of the respondent, and his marital status. We find

land size to be highly correlated with risk preferences, with larger land ownership

being associated with higher risk tolerance as indicated by a smaller � parame-

ter, as we hypothesized. We also find higher altitudes to be related to reduced

risk tolerance, as well as with increased probabilistic sensitivity. Notice again,

however, that altitude varies mostly between villages. Adding village dummies

to the regression thus eliminates the effect of altitude, while the effect of land

size remains intact. Adding an interaction term between land size and altitude

does not yield any additional insights.

Regression II tests the stability of the findings by adding indicators of wealth.

In particular, we add tropical livestock units owned. This is important inasmuch

as farmers at higher altitudes increasingly switch to livestock. In addition, we

add the first principal component of wealth constructed out of a number of wealth
12Tropical livestock units were calculated based on the following conversion factor: cattle =

0.7, sheep = 0.1, goats = 0.1, pigs = 0.2, chicken = 0.01 donkey=0.5 horse=0.8 mule= 0.7
camel=1 beehive=0.001. See Jahnke (1982).

13Altitude may, in principle, also have effects on the disease environment, with tropical
temperatures at lower altitudes likely resulting in a higher prevalence of diseases such as malaria.
Notice how this may reverse the effect we predict, as poor health is generally associated with
reduced risk tolerance (Akay et al., 2012). We do, however, not find a significant correlation
between altitude and self-declared health state (⇢ = �0.014, p = 0.752), likely because none of
our subjects live at particularly low altitudes (for instance, malaria is virtually inexistent in the
Ethiopian highlands). Since we did not find a direct effect of health on risk preferences either,
we will not further mention this variable.
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Table 3: Income and wealth

I II
↵ � � ↵ � �

land size -0.015 -0.057*** 0.003 -0.006 -0.054** 0.002
(0.017) (0.020) (0.008) (0.019) (0.024) (0.008)

altitude 0.046*** 0.085*** -0.036*** 0.040** 0.087*** -0.035***
(0.015) (0.024) (0.005) (0.017) (0.028) (0.006)

literate 0.012 0.060 0.005 -0.001 0.062 0.004
(0.034) (0.045) (0.013) (0.035) (0.046) (0.013)

middle school 0.048 0.116* -0.001 0.035 0.117* 0.002
(0.053) (0.070) (0.018) (0.052) (0.071) (0.019)

business -0.038 0.079 -0.038 0.064 0.038 -0.049
(0.098) (0.143) (0.052) (0.114) (0.165) (0.061)

female -0.110 0.207** 0.029 -0.106 0.204** 0.028
(0.067) (0.089) (0.028) (0.071) (0.091) (0.028)

age -0.006 0.050** -0.014*** -0.009 0.047** -0.015***
(0.018) (0.020) (0.005) (0.018) (0.021) (0.006)

unmarried 0.029 -0.193** -0.013 0.001 -0.186** -0.012
(0.075) (0.083) (0.021) (0.075) (0.087) (0.021)
(0.058) (0.069) (0.018) (0.059) (0.071) (0.018)

TLUs -0.000 -0.005 -0.003
(0.017) (0.022) (0.006)

wealth pc1 -0.017 -0.003 0.006
(0.015) (0.015) (0.006)

Region dummies X X X X X X
constant 0.675*** 0.637*** 0.181*** 0.689*** 0.636*** 0.178***

(0.040) (0.039) (0.013) (0.043) (0.041) (0.014)

Subjects 493 493 493 486 486 486
LL �12, 335.17 �12, 335.17 �12, 335.17 �12, 163.75 �12, 163.75 �12, 163.75

Standard errors in parentheses; *p<0.1, **p<0.05, ***p<0.01
Continuous independent variables are entered as z-scores (land size, elevation, age, TLU)

indicators (Filmer and Pritchett, 2001), such as number of houses owned, number

of rooms, whether the house has a water closet, materials of roof and wall, and

whether the household has a private telephone. Adding these variables does not

yield additional insights. Importantly, the effects of altitude (as well as land size)

remain significant (this conclusion does not change if we add the single indicators

of wealth instead of their principal component).

We also find some effect for the demographic controls. Most notably, we

find unmarried subjects, which make up about 9% of the sample, to be less

risk averse, and older and female subjects to be more risk averse. These effects

correspond to the majority of results in the literature, although not all of them

are uncontroversial. For instance, while gender effects have often been found

(Croson and Gneezy, 2009), they may be sensitive to the elicitation task and

decision context (Filippin and Crosetto, 2015), as well as socialization (Booth and
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Nolen, 2012). Notice, however, that females in our sample are female household

heads. Female-headed households are also likely to be poorer than male-headed

households on average and particularly vulnerable, which may partially explain

the strength of the gender effect we find (see also footnote 2).

4.2 Stability analysis

In this section, we replicate the main findings from above using non-parametric

data. While non-parametric analysis will likely result in weakened results due

to the noise incorporated in the measures, this is nevertheless useful in order to

establish the stability of our main findings. We focus on the regression without

wealth controls, since the latter was mostly important as a control for our altitude

variable, which we consider of secondary importance given the between village

rather than between household variation.

Table 4 shows the main regression from the previous section for the seven CEs

plus the mean of the seven CEs taken at the individual level, using OLS with

robust standard errors. The dependent variable is shown in the header, with

the number in parentheses identifying the probability level for which the CE was

obtained. The first column shows the regression using the mean response in all

the CE tasks. This measure has the advantage that it may to some extent even

out any idiosincratic noise occurring between responses. Land size still clearly

shows the expected effect, with larger land holdings being correlated with larger

certainty equivalents on average, and thus increased risk tolerance. Altitude

shows a significant effect in the opposite direction, again as seen previously.

The subsequent regressions use the single CEs as dependent variables, in order

of increasing probabilities of winning. The effect of land size can be seen to be

significant for all except the largest three probabilities. A similar observation

holds for altitude, which is significant for all but the largest two probabilities.

The absence of significant effects for high probabilities may well be driven by a

limitation of the choice list design employed. Given the high level of risk tolerance

found on average, the choice lists indeed provide little discriminatory power once

the probability of winning gets large and there is little space to express risk
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seeking behavior. Importantly, however, the effect of the income proxies shows

up clearly for the 50-50 prospect. Offering equal probabilities of winning or not,

the latter should have been comprehensible even for subjects who had troubles

comprehending more extreme probabilities. It thus establishes the stability of

our results.

Table 4: Nonparametric stability analysis

dep. variable: CE(mean) CE(0.05) CE(0.1) CE(0.3) CE(0.5) CE(0.7) CE(0.9) CE(0.95)

land size 0.891*** 0.922* 1.629*** 1.537*** 1.085** 0.529 0.353 0.183
(0.344) (0.502) (0.490) (0.449) (0.441) (0.379) (0.363) (0.393)

altitude -1.096*** -2.285*** -2.060*** -1.583*** -0.990** -0.970** -0.108 0.323
(0.356) (0.510) (0.480) (0.477) (0.442) (0.403) (0.408) (0.367)

literate -1.093 -1.230 -2.217** -1.852* -1.622* -0.865 -0.314 0.450
(0.761) (1.063) (1.063) (1.033) (0.944) (0.890) (0.865) (0.846)

middle school -1.955* -3.268** -3.546** -2.676* -1.599 -1.893 -1.187 0.486
(1.148) (1.480) (1.498) (1.594) (1.439) (1.374) (1.267) (1.155)

business -0.922 -0.882 -1.482 -1.455 -1.295 -1.414 1.958 -1.885
(2.154) (3.246) (3.249) (3.001) (2.632) (2.211) (1.972) (2.802)

female -3.302** -2.507 -2.640 -3.281 -3.810** -2.913* -4.804*** -3.162*
(1.498) (1.980) (2.087) (2.025) (1.870) (1.766) (1.821) (1.731)

age -0.868** -0.765 -1.377*** -0.782 -1.179** -0.575 -0.735* -0.664*
(0.360) (0.512) (0.512) (0.514) (0.469) (0.411) (0.387) (0.389)

unmarried 2.743* 2.464 2.495 4.081* 2.873 1.741 2.496 3.052**
(1.472) (2.344) (2.332) (2.158) (1.755) (1.700) (1.746) (1.279)

Region dummies X X X X X X X X
constant 24.266*** 10.240*** 15.436*** 19.017*** 25.183*** 29.497*** 33.554*** 36.937***

(0.725) (1.013) (1.090) (1.003) (0.921) (0.837) (0.990) (0.668)

Subjects 493 493 493 493 493 493 493 493
R

2 0.059 0.089 0.081 0.067 0.049 0.035 0.041 0.058
Robust SEs in parentheses; *p<0.1, **p<0.05, ***p<0.01
Continuous independent variables are entered as z-scores

5 Discussion and conclusion

We have examined the risk preferences of rural Ethiopian households using cer-

tainty equivalents. The results expand and generalize recent findings according

to which students in poor countries are on average more risk tolerant than stu-

dents in rich, industrialized, countries. In particular, the finding of high levels

of risk tolerance in one of the poorest countries in the world indicates that the

differences found in the student comparison are not merely due to systematic

selection effects of relatively richer students in poorer countries, but that this

result indicates a more general phenomenon.

The negative correlation between risk tolerance and GDP found in the be-
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tween country data contrasts markedly with the prevalent within-country evi-

dence. Here we find a positive correlation of risk tolerance with income proxies,

in agreement with a large (if not always consistent) body of evidence from in-

dustrialized countries (Dohmen et al., 2011; Donkers et al., 2001; Hopland et al.,

2013). These opposing effects of national income between countries and personal

income within countries gives thus rise to a risk-income paradox.

Most evidence on risk preferences in developing countries stems from stud-

ies using a single choice list (Binswanger, 1980; Yesuf and Bluffstone, 2009).

Responses to such a list may, however, be contaminated by noise. One of the

presumed virtues of the Binswanger list is that it does not allow for any noise

to register in the response, given that subjects are asked to pick their favorite

amongst a list of lotteries. This, however, makes it impossible to tease apart

econometrically how much noise played into the response, and in general pref-

erence data and noise can thus not be separately identified. Andersson et al.

(2015) showed how noise may systematically be counted towards risk aversion

in some choice list designs, thus resulting in spurious correlations. This criti-

cism particularly applies to the Binswanger design—given that the choice list is

capped at risk neutrality, random choices will be systematically counted towards

risk aversion.14

An additional methodological point is that certainty equivalents, so far rarely

used in development economics but a standard tool in decision theory, hold great

promise for the application with poor and often illiterate subjects. Comparing

different sure amounts of money to a prospect with a constant probability is easy

to explain and represent physically, and appears to produce good results. While

the variation of probabilities may have created issues of comprehension in our
14The Binswanger list is a prime example of asymmetry in choice list design, since it is

strongly skewed towards the detection of risk averse choices, but by no means the only one.
The choice lists developed by Tanaka et al. (2010) share some of these features, with more
choices counted towards (stronger) risk aversion than towards risk seeking. A complete review
and assessment of these different tasks and their effect on choices is left for future research.
A curious outlier in this respect is Akay et al. (2012), who found high levels of risk aversion
eliciting CEs with poor farmers in Ethiopia. The latter finding appears to be driven mostly
by subjects who consistently chose the sure amount for all choices. Since the design did not
include the lower outcome of the prospect, however, it is hard to tell whether this behavior
reflects true preferences, or whether it is driven by misunderstanding of the task.
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subject population, such miscomprehension of probabilities is indeed inherent to

risk preferences and commonly found also in developed countries (Tversky and

Wakker, 1995; Barseghyan et al., 2013). We chose the variation in probabili-

ties explicitly because more interesting effects are thought to emerge along the

probability dimension than when varying outcomes (Prelec, 1998; Fehr-Duda and

Epper, 2012). Nonetheless, it is still possible to focus on a few tasks offering a

50% probability if one should deem the probability variation undesirable.

The findings of considerable risk tolerance by our subjects raises the question

what may be driving the reluctance to adopt new technologies that has often

been observed in developing countries, and which has frequently been attributed

to risk aversion. In the face of this evidence, such a conclusion does not appear to

be tenable—at least not in any simple sense. One possible alternative explana-

tion is that reluctance to switch to new technologies may be driven by downward

risk exposure—the extend to which basic consumption needed for survival would

suffer in the case of an adverse shock (Dercon and Christiaensen, 2011). Other ex-

planations obviously exist as well, including low trust in the information provided

by outsiders, slow information diffusion through social networks, etc. This is an

important question raised by our data, the investigation of which will hopefully

shed some fresh light on what induces people to take risks in real life decisions

beyond their pure risk preferences as measured in economic experiments.

We conclude by pointing out some limitations of our method. We have con-

centrated on eliciting certainty equivalents for gain prospects only. They provided

the cleanest test for our hypotheses, as one need not worry about giving subjects

endowments from which losses are deducted as in pure loss or mixed prospects,

and about whether subject integrate these endowments into their decisions or

not. That said, an extension to mixed gain-loss tasks seems desirable when it

comes to predicting behavior, since most real world decisions involve both gains

and losses. Our method can indeed be easily extended to such a decision domain

(Abdellaoui, Bleichrodt, and L’Haridon, 2008). Obviously, any measure of risk

preferences has its peculiarities and may induce some sort of bias, and certainty

equivalents are no different in this respect. More evidence on the relative pre-
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dictive power of different measures of risk preferences is indeed highly desirable,

but must be left for future research.
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A Results using 1-parameter EU

In the present section, we estimate the same regressions as in the main text

using an expected utility framework with a power utility formulation. This will

leave our econometric apparatus above intact, except that our predicted certainty

equivalent now takes the following form:

ĉe

i

= u

�1 [p
i

u(x) + (1� p

i

)u(y)] = u

�1 [p
i

u(x)] (6)

where utility takes the form u(x) = x

⇢ (alternative functional forms produce

similar results). The fit of the resulting function to the nonparametric data is

shown in figure 4. As already discussed above, this one-parameter function does

not provide a good fit on average, as it cannot account for both risk seeking and

risk aversion. Rather, it reflects the average pattern of risk seeking, resulting in a

parameter estimate of ⇢ = 1.634 (se = 0.065), and thus a globally convex utility

function.

Figure 4: Fitting 2-parameter functions to the data

Table 5 shows the same four regressions as above using the expected utility

formulation. Both land size and altitude have the expected significant effects in
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regression I.

Table 5: Stability analysis EU

I
⇢ �

land size 0.186*** 0.007
(0.066) (0.009)

distance road 0.054 0.003
(0.081) (0.009)

altitude -0.280*** -0.036***
(0.076) (0.007)

literate -0.159 0.002
(0.104) (0.015)

middle school -0.250 -0.005
(0.222) (0.020)

business -0.366 -0.030
(0.309) (0.054)

female -0.329* 0.040
(0.188) (0.029)

age -0.179*** -0.012*
(0.048) (0.007)

unmarried 0.446** -0.003
(0.185) (0.024)

region fixed effects X X
constant 1.830*** 0.193***

(0.117) (0.015)

N_clust 493
chi2 45.85
Standard errors in parentheses; *p<0.1, **p<0.05, ***p<0.01
Continuous independent variables are entered as z-scores
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