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A B S T R A C T
Data assimilation methods that work in high dimensional systems are crucial to many areas of the geo-
sciences: meteorology, oceanography, climate science etc. The equivalent weights particle filter has been
designed, and has recently been shown to, scale to problems that are of use to these communities. This
article performs a systematic comparison of the equivalent weights particle filter with the established and
widely used local ensemble transform Kalman filter. Both methods are applied to the barotropic vorticity
equation for different networks of observations. In all cases it was found that the local ensemble trans-
form Kalman filter produced lower root mean squared errors than the equivalent weights particle filter.
The performance of the equivalent weights particle filter is shown to depend strongly on the form of
nudging used, and a nudging term based on the local ensemble transform Kalman smoother is shown to
improve the performance of the filter. This indicates that the equivalent weights particle filter must be
considered as a truly 2-stage filter and not only by its final step which avoids weight collapse.

Keywords: Equivalent weights particle filter, nonlinear data assimilation, EMPIRE, LETKF, nudging, LETKS relax-
ation

1. Introduction1

1.1. Data assimilation and Bayes’ theorem2

When making a prediction based on a dynamical model of3

a system it is necessary to initialise that model. This could be4

done simply by guessing the initial conditions of such a model5

or, as is more common, confronting the model with observations6

of the system.7

Such observations necessarily have errors associated with
them and also tend to be incomplete. That is, they are not direct
observations of every component of the model. The mathemati-
cal formulation of how to rigorously incorporate such observa-
tions into the model is Bayes’ theorem (Bayes and Price, 1763;
Jazwinski, 1970):

p(x | y) =
p(x)p(y | x)

p(y)
. (1)

In this equation x represents the model state and y the observa-8

tions. Hence the posterior pdf p(x | y) is given as the product9

? Corresponding author.
e-mail: p.browne@reading.ac.uk

of the likelihood p(y | x) with the prior p(x) and normalised10

by the pdf of the observations p(y). Different approximations11

of Bayes’ theorem lead to different methods of data assimila-12

tion. For instance if one reduces the problem to finding a lo-13

cal mode of the posterior pdf, this becomes an inverse prob-14

lem which can be solved by variational techniques: the famous15

3DVar and 4DVar methods (see for example Le Dimet and Ta-16

lagrand (1986); Dashti et al. (2013)).17

1.2. Particle filters18

A particle filter is a Monte-Carlo approach to computing19

the posterior via Bayes’ theorem (see for example Smith et al.20

(2013) or van Leeuwen (2009)) in the context of a dynamically21

evolving system.22

Without loss of generality, suppose that we have the prior pdf,
p(xk), at timestep k written as a finite sum of delta functions
(formally distributions),

p(xk) =

Ne∑
i=1

wki δ(x
k − xki ) (2)

where δ(x) is the standard Dirac delta function. The set of state23

vectors xki , i = 1, . . . , Ne is known as the ensemble and each24

state vector is referred to interchangeably as a particle or en-25

semble member. Note that in this notation the prior is arbitrary:26

c© 0000 Tellus
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it may depend on any data that has previously been assimilated27

and may have been evolved from a known probability density28

at a previous time. This information will be encoded into the29

weights wki . As p(xk) is a pdf,
∫
p(xk) dxk = 1 which implies30 ∑Ne

i=1 w
k
i = 1 and p(xk) > 0 implies wki > 0.31

We have a model for the dynamics of the state which is
Markovian:

xk+1 = f(xk) + βk (3)

where f is a deterministic model and βk is a stochastic model
error term. To evolve the prior in time we note that, from the
definition of conditional probability,

p(xk+1) =

∫
p(xk+1 |xk)p(xk) dxk. (4)

Now following Gordon et al. (1993), p(xk+1 |xk) is a Markov
model defined by the statistics of βk that are assumed known:

p(xk+1 |xk) =

∫
p(xk+1 |xk, βk)p(βk |xk) dβk. (5)

As βk is independent of the state xk, p(βk |xk) = p(βk) and
we have

p(xk+1 |xk) =

∫
p(βk)δ

(
xk+1 − [f(xk) + βk]

)
dβk. (6)

Substituting (2) and (6) into (4) we obtain

p(xk+1) =∫∫
p(βk)δ

(
xk+1 − [f(xk) + βk]

)
dβk

Ne∑
i=1

wki δ(x
k − xki ) dxk.

(7)

Integrating over xk this reduces to

p(xk+1) =

Ne∑
i=1

wki

∫
p(βk)δ

(
xk+1 − [f(xki ) + βk]

)
dβk.

(8)
Now for each ensemble member i we make a single draw from
p(βk), βki (i.e. p(βk) = δ(βk − βki )) so that

p(xk+1) =

Ne∑
i=1

wki δ
(
xk+1 − [f(xki ) + βki ]

)
=

Ne∑
i=1

wki δ(x
k+1 − xk+1

i ), (9)

i.e. wk+1
i = wki .32

Now suppose we some observations of the system, y, at
timestep n. What we desire is a representation of the posterior
pdf at timestep n, p(xn | y). To do this we can use the weighted
delta function representation of the prior in combination with
Bayes’ theorem (1):

p(xn | y) =

Ne∑
i=1

wni p(y |xni )

p(y)
δ(xn − xni ). (10)

Hence the weights in the posterior pdf are the normalised prod-33

uct of the prior weights and the pointwise evaluation of the like-34

lihood. For any subsequent timesteps, the posterior is used as35

the prior in a recursive manner.36

Filter degeneracy, or weight collapse, is the case scenario in37

which wkj ≈ 1 for some j ∈ 1, . . . , Ne. Hence wki ≈ 0 ∀i 6= j.38

In this case the first order moment of the posterior pdf, x̄k, will39

be simply xkj . All higher order moments will be computed to be40

approximately 0.41

Snyder et al. (2008) showed that, in the case of using a naive42

particle filter such as the SIR filter (Gordon et al., 1993), to43

avoid filter degeneracy the number of ensemble members must44

be chosen such that Ne ∝ exp(N2
τ ) where Nτ is a measure45

of the dimension of the system. Ades and van Leeuwen (2013)46

showed that this dimension of the system is actually the number47

of independent observations.48

Simply increasing the number of ensemble members is, for49

most geophysical applications, infeasible. Ne will be deter-50

mined by the size of the supercomputer available. For opera-51

tional NWP methods Ne may typically be around 50. For in-52

stance, simply for forecasting, the Canadian NWP ensemble53

forecast uses Ne = 20, ECMWF has Ne = 51 and the UK54

Met Office has Ne = 46.55

Therefore it is clear that for a particle filter to represent56

the posterior pdf successfully the case that wkj ≈ 1 for some57

j ∈ 1, . . . , Ne should be avoided. The equivalent weights par-58

ticle filter (van Leeuwen, 2010) that we shall discuss in Sec-59

tion 2. is designed specifically so that wki ≈ 1/Ne for all60

i ∈ 1, . . . , Ne. It does this in a two stage process. Firstly61

the particles are nudged towards the observations. Secondly an62

‘‘equivalent weights step” is made to avoid filter degeneracy.63

1.3. Ensemble Kalman filters64

The Ensemble Kalman filter (EnKF) is a method of data65

assimilation that attempts to solve Bayes’ theorem when as-66

suming that the posterior PDF is Gaussian (see for example67

(Evensen, 1994; Burgers et al., 1998; Evensen, 2007)). In that68

case, the posterior can be characterised by its first two mo-69

ments: the mean and covariance. The prior pdf, or more pre-70

cisely the covariance of the prior, is represented by an ensemble71

of model states. Instead of propagating the full covariance ma-72

trix of the prior by a numerical model (as in the Kalman Filter73

(Kalman, 1960)), only the ensemble members are propagated74

by the model.75

If the dimension of the model state, Nx, is much greater than76

the number of ensemble members used, Ne, then the EnKF is77

much more computationally efficient than the Kalman filter.78

Defining Xk to be the scaled matrix of perturbations of each
ensemble member from the ensemble mean at time k, then the
update equation of the EnKF can be written as

xak = xfk+XkX
T
k H

T (HXkX
T
k H

T +R)−1(y−Hxfk). (11)

Here, xfk refers to the forecast of the ensemble member at time79
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k and xak the resulting analysis ensemble member at time k80

which has been influenced by the observations. H is the ob-81

servation operator which maps the model state into observation82

space and R is the observation error covariance matrix.83

There are many different flavours of Ensemble Kalman filter,84

each of which is a different way to numerically compute the up-85

date equation. For a discussion on the different kinds see, for86

example, Tippett et al. (2003); Lei et al. (2010). In this paper87

we shall consider implementing the EnKF by means of the Lo-88

cal Ensemble Transform Kalman filter and shall discuss this in89

detail in Section 3.90

1.4. Motivation for this investigation91

We have seen that if we are trying to use a particle filter to92

recover the posterior pdf via a numerical implementation of93

Bayes’ theorem then it makes sense to ensure the weights of94

each particle are approximately equal. Or at least, it pays to en-95

sure that each particle has non-negligible weight, specifically96

when higher order moments of the posterior pdf are required.97

Until now there has been no systematic comparison of the98

equivalent weights particle filter and an ensemble Kalman filter99

using a nontrivial model of fluid dynamics. This is a necessary100

study to see if anything is gained by not making the assump-101

tions of Gaussianity that are made by the EnKF method. Previ-102

ous investigations of the equivalent weights particle filter have103

focused on tuning the free parameters in the system to give ap-104

propriate rank histograms. In this study we shall investigate the105

method’s ability to appropriately constrain the system in ide-106

alised twin experiments.107

To this end the system we shall consider are the equations108

of fluid dynamics under the barotropic vorticity assumptions.109

This is perhaps the model most well studied for the equivalent110

weights particle filter. As a system of one prognostic variable111

on a 2-dimensional grid it is easily understood and reasonably112

cheap to experiment with. We also know the parameter regimes113

in which the equivalent weights particle filter will perform well.114

The remainder of this paper is organised as follows. In Sec-115

tion 2. we discuss the use of proposal densities within parti-116

cle filters before introducing the the equivalent weights particle117

filter. In Section 3. we discuss the Local Ensemble Transform118

Kalman filter. In Section 4. we discuss the barotropic vorticity119

model which we consider. In Section 5. we define the experi-120

mental setup which we use, and performance measures. In Sec-121

tion 6. we show the numerical results which are discussed in122

detail in Section 7. Finally in Section 8. we finish with some123

conclusions and discuss the implications for full-scale NWP.124

2. Particle filters using proposal densities125

In this section we briefly summarise the use of a proposal126

density within a particle filter, before going on to discuss the127

specific choices of these made in the equivalent weights particle128

filter.129

2.1. Proposal densities130

A key observation which has advanced the field of particle
filters is the freedom to rewrite the transition density as

p(xk+1 |xk) =
p(xk+1 |xk)q(xk+1 |xk, y)

q(xk+1 |xk, y)
(12)

which holds so long as the support of q(xk+1 |xk, y) is larger
than that of p(xk+1 |xk). Now we are also free to change the
dynamics of the system such that

xk+1 = f(xk) + g(xk, y) + βk (13)

as in van Leeuwen (2010). As in Section 1.2. we assume that,131

without loss of generality, we have a delta function representa-132

tion for the prior at timestep k given by (2). Then, in a manner133

similar to the marginal particle filter (Klaas et al., 2005),134

p(xk+1) =

∫
p(xk+1 |xk)q(xk+1 |xk, y)

q(xk+1 |xk, y)
p(xk) dxk (14)

=

∫
p(xk+1 |xk)q(xk+1 |xk, y)

q(xk+1 |xk, y)

Ne∑
i=1

wki δ(x
k − xki ) dxk

(15)

=

Ne∑
i=1

wki
p(xk+1 |xki )q(xk+1 |xki , y)

q(xk+1 |xki , y)
. (16)

We can write the transition density p(xk+1 |xki ) and proposal
density q(xk+1 |xki , y) in terms of βk:

p(xk+1) =

Ne∑
i=1

wki

∫
p(βk)q(βk)

q(βk)
δ
(
xk+1 − [f(xki ) + g(xki ) + βk]

)
dβk.

(17)

Now, similarly to before, drawing a single sample βki for each
ensemble member, but now from the distribution q(βk) gives

p(xk+1) =

Ne∑
i=1

wki
p(βki )

q(βki )
δ
(
xk+1 − [f(xki ) + g(xki ) + βki ]

)
(18)

=

Ne∑
i=1

wki
p(βki )

q(βki )
δ(xk+1 − xk+1

i ) (19)

=

Ne∑
i=1

wki
p(xk+1

i |xki )

q(xk+1
i |xki , y)

δ(xk+1 − xk+1
i ). (20)

i.e.

p(xk+1) =

Ne∑
i=1

wk+1
i δ(xk+1 − xk+1

i ) (21)

where

wk+1
i = wki

p(xk+1
i |xki )

q(xk+1
i |xki , y)

. (22)

To find the delta function representation of the posterior, it is135

case of combining this derivation with Bayes’ theorem to arrive136

at the same equation as in (10).137
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The use of proposal densities are the basis of particle filters138

such as the Implicit Particle Filter (Chorin and Tu, 2009) and the139

equivalent weights particle filter, and more recently the Implicit140

Equal Weights Filter (Zhu et al., 2016). The goal is to choose141

the proposal density in such a way that the weights wki do not142

degenerate.143

2.2. The equivalent weights particle filter144

The equivalent weights particle filter (EWPF) is a fully non-145

linear DA method that is nondegenerate by construction. For a146

comprehensive overview of the equivalent weights particle filter147

see van Leeuwen (2010) and Ades and van Leeuwen (2013).148

A key feature of the EWPF is that it chooses the proposal den-149

sity q(xk+1 |xk, y) equal to p(βk) but with new mean g(xk, y).150

It proceeds in a two-stage process with one form of g(xk, y) for151

the timesteps that have no observations and a different form of152

g(xk, y) when there are observations to be assimilated.153

For each model timestep k+ 1 before an observation time n,
the model state of each ensemble member, xki , is updated via
the equation

g(xki , y) = A(yn −H(xki )) (23)

where yn is the next observation in time, H is the observation
operator that maps the model state onto observation space and
A is a relaxation term. In this work we consider

A = σ(k)QHTR−1 (24)

where the matrices Q and R correspond to the model evolution154

error covariance and observation error covariance matrices re-155

spectively. σ(k) is a function of the time between observations;156

in this paper σ(k) increases linearly from 0 to a maximum (σ)157

at observation time. Equations (23) and (24) together make up158

what we will refer to as the nudging stage of the EWPF. This159

process is iterated until k + 1 = n− 1.160

In this work we consider only unbiased Gaussian model error
(i.e. βki ∼ N (0, Q)). To obtain a formula for the un-normalised
weights at timestep k + 1, we can use this Gaussian form in
(22). Taking logarithms leads to a formula for the weights of the
particles (van Leeuwen, 2010; Ades and van Leeuwen, 2015) as

− log(wk+1
i ) =− log(wki )

+
1

2
(xk+1
i − f(xki ))TQ−1(xk+1

i − f(xki ))

− 1

2
(βki )TQ−1(βki ).

(25)

The second stage of the equivalent weights filter involves up-
dating each ensemble member at the observation time n using
the term

g(xn−1
i , y) = αiQH

T (HQHT +R)−1(yn −H(f(xn−1
i )))

(26)
where αi are scalars computed so as to make the weights of the161

particles equal. This is done for a given proportion (0 < κ 6162

1) of the ensemble which can make the desired weight. The163

remaining ensemble members are resampled using stochastic164

universal sampling (Baker, 1987; van Leeuwen, 2010).165

It is important to realise that the covariance of the prior en-166

semble is never explicitly computed in the EWPF but implicitly,167

via the EWPF approximation to Bayes’ theorem: increasing the168

spread in the prior will increase the spread in the posterior. In-169

stead, the covariance of the error in the model evolution Q is170

crucial.171

3. LETKF172

The Local Ensemble Transform Kalman Filter (LETKF) is an
implementation of the Ensemble Kalman filter which computes
in observation space (Bishop et al., 2001; Wang et al., 2004;
Hunt et al., 2007). As with all ensemble Kalman filters, the pdfs
are assumed Gaussian. Formally, the LETKF update equation
for ensemble member i at the observation timestep n can be
written as

xni = xnf +Xn
fW

n
i (27)

where xf is the mean of the forecast ensemble, Xf the ensem-
ble of forecast perturbations, andW a

i is the column of a weight-
ing matrix corresponding to ensemble member i. Full details of
this is given in Hunt et al. (2007). This can be extended through
time (Posselt and Bishop, 2012) such that for k < n, we get the
Local Ensemble Kalman Smoother (LETKS) update equation

xki = xkf +Xk
fW

n
i . (28)

As typically the number of ensemble members will be much173

fewer than the dimension of the model state, spurious correla-174

tions will occur within the ensemble. These spurious correla-175

tions lead to information from an observation inappropriately176

affecting the analysis at points far away from the observation.177

To counteract this, the LETKF effectively considers each point178

in the state vector separately and weights the observation error179

covariance by a factor depending on the distance of the obser-180

vation from the point in the state vector.181

For each point in the state vector, the inverse of the observa-
tion error covariance matrix, R−1 (also known as the precision
matrix), is weighted by a function w so that

R̂−1
ij = R−1

ij w(d(i))−1w(d(j))−1.

The weighting of the observation error covariance matrix R
is given by the function

w(d)−1 =

{
exp(− d2

4`2
), if d

`
< 4

0, otherwise
(29)

where d is the distance between the point in the state vector and182

the observation and ` is a predefined localisation length-scale.183

In the case of a diagonal R matrix, then

R̂−1
jj = R−1

jj w(d(j))−2.

The weightingw(d) is a smoothly decaying function which cuts184
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off when d
`

= 4, i.e.w(d)−2 = e−8 ≈ 0.0003. This means that185

the computations are speeded up by ignoring all the observa-186

tions which have a precision less that 0.0003 of what they were187

originally.188

Inflation is typically also required for the LETKF in large sys-189

tems (e.g. Anderson and Anderson, 1999). That is, the ensem-190

ble perturbation matrices are multiplied by a factor of (1 + ρ)191

in order to increase the spread in the ensemble that is too small192

because of undersampling. i.e. Xf → (1 + ρ)Xf in (27).193

4. Barotropic vorticity model194

In this section we consider the model which we investigate.
We start with the Navier-Stokes equations and assume incom-
pressible flow, no viscosity, no vertical flow and that flow is
barotropic (i.e. ρ = ρ(p)). We define vorticity q to be the curl of
the velocity field. This results in the following PDE in q (see for
example Krishnamurti et al. (2006)), known as the barotropic
vorticity (BV) model,

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0

where u is the component of velocity in the x direction and v195

is the component of velocity in the y direction. The domain we196

consider is periodic in both x and y and so the computation of197

this can be made highly efficient by the use of the FFT. In or-198

der to solve this equation, it is sufficient to treat vorticity q as199

the only prognostic variable. The curl operator can be inverted200

in order to derive the velocity field u from the vorticity. We201

use a 512 × 512 grid, making Nx = 218, a 262, 144 dimen-202

sional problem. Timestepping is achieved by a leapfrog scheme203

with dt = 0.04 (roughly equivalent to a 15 minute timestep204

of a 22km resolution atmospheric model). The decorrelation205

timescale of this system is approximately 42 timesteps, or 1.68206

time units.207

There are a number of good reasons for investigating this208

model. For example, it exhibits strong nonlinear behaviour, de-209

velops cyclonic activity and generates fronts. All of which are210

typical of the highly chaotic regimes occurring in many mete-211

orological examples. Turbulence in the model is prototypical:212

energy is transferred downscale due to the presence of nonlin-213

ear advection. See Figure 2a for a plot of a typical vorticity field214

from the model. Note that it was the barotropic vorticity model215

that was used for some of the earliest numerical weather predic-216

tions (Charney et al., 1950).217

Note that this model has no balances that can be destroyed218

by data assimilation, something which should be considered in219

other studies of this kind. A further advantage for this first study220

is that we do not have to worry about bounded variables when221

applying the LETKF.222

Also for this model we know the parameter regimes and223

model error covariance structure for which the EWPF performs224

well. Ades and van Leeuwen (2015) first applied the EWPF to225

the BV model, albeit at a lower resolution, and in this paper we226

employ similar parameters in the EWPF such as the nudging227

strength σ(k) and use the same model error covariance matrix228

Q. The Ades and van Leeuwen (2015) study concentrated on us-229

ing rank histograms as the performance diagnostic of the EWPF230

whereas in this paper we consider performance in terms of root231

mean squared errors.232

5. Experimental setup233

In this section we discuss the two experiments we shall run.234

All of the experiments were carried out using the EMPIRE data235

assimilation codes (Browne and Wilson, 2015) on ARCHER,236

the UK national supercomputer.237

5.1. Model error covariance matrix238

For ensemble methods in the NWP setting, obtaining spread239

in the ensemble is a key feature in the performance of both240

the analysis and the forecast. In NWP applications this is typi-241

cally achieved by employing a stochastic physics approach (e.g.242

Baker et al., 2014) or using stochastic kinetic energy backscat-243

tering (e.g. Tennant et al., 2011) to add randomness at a scale244

which allows the model to remain stable. For the EWPF (or in-245

deed any particle filter that uses a proposal density), we must246

specify (possibly implicitly) the model error covariance matrix.247

Understanding and specifying the covariances of model error in248

a practical model is a challenge to which much more research249

must be dedicated.250

The model error covariance matrix used in this article is the251

same as that used in Ades and van Leeuwen (2015). That is, Q252

is a Second Order Autoregressive matrix based on the distance253

between two grid points, scaled so that the model error has a254

reasonable magnitude in comparison to the deterministic model255

step.256

5.2. Initial ensemble257

The initial ensemble is created by perturbing around a ref-
erence state. Thus, for each ensemble member xi and the true
state xt,

{xi}, xt ∼ N (xr, B) ∀i ∈ {1, . . . , Ne}. (30)

The background error covariance matrix B is chosen propor-258

tional to Q such that B = 202Q. The reference state xr is a259

random state which is different for each experiment.260

5.3. Truth run for twin experiments261

The instance of the model that is considered the truth is prop-
agated forward using a stochastic version of the model where

xk+1
t = f(xkt ) + βt where βkt ∼ N (0, Q).
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5.4. Observing networks262

We shall show results from experiments with 3 different ob-263

serving networks that make direct observations of vorticity. The264

first is regular observations throughout the domain as consid-265

ered by Ades and van Leeuwen (2015), the second a block of266

dense observations, and the third a set of strips which could be267

thought of as analogous to satellite tracks. The details of the268

observing networks are shown below and visualised in Figure269

1.270

ON1 Every other point in the x and y directions observed271

ON2 Only those points such that (x, y) ∈ [0, 0.5]× [0, 0.5] are272

observed273

ON3 Only those points such that (x, y) ∈ [0, 1]×([0, 0.0675]∪274

[0.25, 0.3175] ∪ [0.5, 0.5675] ∪ [0.75, 0.8175]) are observed275

In each case we haveNy = Nx/4 = 65536. The observation276

errors are uncorrelated, with a homogeneous variance such that277

R = 0.052I . Observations occur every 50 model timesteps.278

These observations are quite accurate when you consider the279

vorticity typically lies in the interval (−4, 4) (see Figure 2a).280

5.5. Comparison runs281

For comparison and analysis purposes we will run a number282

of different ensembles as well as the LETKF and the EWPF. We283

detail these subsequently.284

5.5..1. Stochastic ensemble285

Each ensemble member is propagated forward using a
stochastic version of the model. That is,

xk+1
i = f(xki ) + βi where βki ∼ N (0, Q).

5.5..2. Simple nudging286

For each timestep, the nudging terms of the EWPF are used287

to propagate the model forward. That is, equations (13), (23)288

and (24) are used to update the model state. The weights of the289

particles are disregarded, and the ensemble is treated as if it was290

equally weighted.291

5.5..3. Nudging with an LETKS relaxation292

The model is propagated forward in time stochastically until293

the timestep before the observations. During this stage, no re-294

laxation term is used (i.e. g(xk, y) = 0). At the timestep before295

the observations, the relaxation term that is used comes from296

the LETKS. That is, term in (23) is the increment that would be297

applied by the LETKS. At the observation timestep, the ensem-298

ble is propagated using the stochastic model. The weights of the299

particles are disregarded, and the ensemble is treated as if it was300

equally weighted.301

This can be written in equation form, so that at each iteration
k before the observation time n, the update for each ensemble
member i is given by

xk+1
i =

{
f(xki ) + βki for k∈{0, . . . , n−3}∪{n−1}
f(xki ) + gi + βki for k=n−2

(31)
where gi is the increment arising from the LETKS for ensemble302

member i.303

5.5..4. The EWPF with an LETKS relaxation304

Similarly to nudging with the LETKS relaxation, the model305

is propagated forward in time stochastically until the timestep306

before the observations. At the timestep before the observations,307

the relaxation that is used comes from the LETKS. At the obser-308

vation timestep, the equivalent weights step (26) of the EWPF309

is used. The weights are calculated using (22) which in this case310

with Gaussian model error remains given explicitly by (25). We311

employ κ = 0.75, 0.25, and 0.5 for observations networks 1, 2,312

and 3 respectively. This is discussed in Section 7.3.313

5.6. Assimilation experiments314

Observations occur every 50 timesteps for the first 500 model315

timesteps. After that a forecast is made from each ensemble316

member for a further 500 timesteps.317

For each observing network, we run 5 different experiments:318

• The EWPF319

• The LETKF320

• Simple nudging321

• Nudging with an LETKS relaxation322

• The EWPF with an LETKS relaxation323

Tables 1 and 2 list the parameter choices used for the dif-324

ferent methods for the different observational networks. They325

were chosen by performing a parameter sweep across the var-326

ious free parameters and selecting those that gave the lowest327

RMSEs (shown in Figure A1 in the appendix).328

All of these experiments are repeated 11 times. In each of the329

11 experiments, the initial reference state, xr is different, as is330

the random seed used. For reference, we also run a stochas-331

tically forced ensemble from each of the different reference332

states. As no data is assimilated here, these runs are indepen-333

dent of the observing network.334

We choose to run 48 ensemble members for each method.335

This is for 2 reasons: there are 24 processors per node on336

ARCHER so this is computationally convenient, and 48 is of337

the order of the number of ensemble members that operational338

NWP centres are currently using.339
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(a) Observing network 1 (ON1) ⇓

y

x

(b) Observing network 2 (ON2) ⇓

y

x

(c) Observing network 3 (ON3) ⇓

y

x

Fig. 1. Observing network diagrams

Table 1. Parameter values used in the LETKF

Observation network on 1 on 2 on 3

Localisation length scale l 0.005 0.02 0.007
Inflation factor ρ 0.01 0.01 0.01

Table 2. Parameter values used in the EWPF

Observation network on 1 on 2 on 3

Keep proportion κ 1.0 1.0 1.0
Nudging factor σ 0.7 0.5 0.7

6. Results340

6.1. Root mean squared errors341

Figures 3 to 5 show root mean squared errors (RMSE) for342

the different assimilation methods on the 3 separate observing343

networks. Formally, the RMSE we show is the square root of the344

spatial average of the square of the difference from the ensemble345

mean and the truth. Each line of the similar colour refers to a346

distinct experiment with a different stochastic forcing and initial347

reference state. Values are shown only for the initial ensemble,348

10 analysis times (recall that each analysis time is separated by349

50 model time steps) and 10 subsequent forecast times that are350

again separated by 50 model timesteps.351

In brown, for reference, is plotted the RMSE from the352

stochastically forced ensemble. In black the total RMSE, blue353

the unobserved variables and red the observed variables.354

The RMSE, as defined previously, is a measure of the similar-355

ity of the ensemble mean to the truth. If the posterior is a mul-356

timodal distribution then the ensemble mean may be far from357

a realistic, or accurate, state. EnKF methods, by their Gaussian358

assumptions that they make, naturally assume a unimodal pos-359

terior. Particle filters on the other hand do not make such an360

assumption. In this article we do not investigate the effect of361

using a different error measure.362

Figure 3 is markedly different from Figures 4 and 5 - in this363

case the unobserved variables behave as if they are also ob-364

served. This is because each unobserved variable is either di-365

rectly adjacent to 2 observed variables or diagonally adjacent to366

4 observed variables. Contrast this with the observing networks367

2 and 3 where an unobserved variable could be a maximum of368

181 or 48 grid points, respectively, away from an observed vari-369

able.370

6.2. Trajectories of individual gridpoints371

In Figure 6 we show the evolution of the vorticity at a given372

gridpoint for a single experiment. Every model timestep is373

shown for each of the ensemble members for the different meth-374

ods.375

7. Discussion376

It is clear from the results presented that the EWPF with sim-377

ple nudging, as implemented by Ades and van Leeuwen (2015),378

is not competitive with the LETKF in terms of RMSEs. This is379

similar to the results noted in Browne and van Leeuwen (2015)380

in that the EWPF gives RMSEs higher than the error in the ob-381

servations.382

In this section we shall discuss different aspects of the results,383

in an attempt to give some intuition as to why they occur.384

7.1. RMSEs from the EWPF are controlled by the385

nudging term386

Consider the differences between RMSE plots for the simple387

nudging and the EWPF. They are qualitatively similar (Figures388

3 - 5, (a) vs (c)). Further, when we use a different type of nudg-389

ing (Figures 3 to 5, (d) vs (e)) the results are again similar.390

This is due to the 2-stage nature of the EWPF. The first stage391

is a relaxation towards the observations (23), followed by a392

stage at observation time which ensures against filter degener-393

acy (26). In the second stage, we are not choosing the values394

of αi to give a best estimate in some sense (compare with the395

Best Linear Unbiased Estimator, for example) but instead they396

are chosen so that the weights remain equal. Hence, most of the397

movement of the particles towards the observations happens in398

the first, relaxation, stage.399
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(a) True model state ⇓ (b) Observations from ON1 ⇓

(c) Observations from ON2 ⇓ (d) Observations from ON3 ⇓

−4 −3 −2 −1 0 1 2 3 4

Fig. 2. Plots of vorticity for the true state and the resulting observations using the different networks at the 6th analysis time, for a
particular random seed.

This is shown strongly in Figure 6; the simple nudging and400

the EWPF are qualitatively similar. Also in Figure 6 it can be401

seen that the LETKS nudging and the EWPF-LETKS also fol-402

low similar trajectories. This shows that the equivalent weights403

step of the EWPF is not moving the particles very far in state404

space in order to ensure the weights remain equal.405

7.2. Simple nudging is insufficient to get close to the406

observations407

Figures 3c to 5c show that, with simple nudging, the RMSEs408

are much larger that the observation error standard deviation.409

This is due to the choice of nudging equation used (24).410
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(e) EWPF with LETKS nudging ⇓
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Fig. 3. Observing network 1, every other gridpoint. The Total and Unobserved RMSEs are almost exactly underneath the Observed
RMSE plots. This is due to the widespread information from the observations effectively constraining the whole system.
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(e) EWPF with LETKS nudging ⇓
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Fig. 4. Observing network 2, block of dense observations
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Fig. 5. Observing network 3, tracks of observations
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(a) Observed gridpoint at (0.75, 0.03)
for the DA methods ⇓
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(b) Unobserved gridpoint at (0.25, 0.91)
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(c) Observed gridpoint at (0.75, 0.03)
for the nudging techniques ⇓
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(d) Unobserved gridpoint at (0.25, 0.91)
for the nudging techniques ⇓
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Stochastic ensemble Truth EWPF
LETKF Simple nudging LETKS nudging

EWPF-LETKS

Fig. 6. Trajectories of 2 different points in the domain when using the different assimilation methods with observing network 3 for
a single experiment

The goal of nudging is to bring the particles closer to the411

observations, or equivalently, to the area of high probability in412

the posterior distribution. In this section we shall discuss the413

properties that this nudging term should have.414

Let the nudging term be denoted A(x, y) and write it as a
product of operators

A(x, y) = As ◦Am ◦Aw ◦AI

where AI is the innovation, Aw is the innovation weighting,415

Am a mapping from observation space to state space and As416

an operator to spread the information from observation space417

throughout state space.418

The innovation should have the form

AI = y −H(f(x))

where f takes the state at the current time and propagates it419

forward to the corresponding observation time. With this, the420

innovation is exactly the discrepancy in observation space that421

we wish to reduce, however it is valid only at the observation422

time.423

Consider now the innovation weightingAw. When the obser-
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vations are perfect we wish to trust them completely and hence
we should nudge precisely to the observations. When they are
poor, we should distrust them and nudge much less strongly to
the observations. Hence

R→ 0 =⇒ Aw → I & R→∞ =⇒ Aw → 0.

Hence with

Aw = (I +R)−1

the appropriate limits are obtained.424

Am = HT is a way to map the scaled innovations into state425

space.426

The term As should compute what increment at the cur-427

rent time would lead to such an increment at observation time.428

Hence As = MT , the adjoint of the forward model.429

Thus to nudge consistently,

A(x, y) = As◦Am◦Aw◦AI = MTHT (I+R)−1[y−H(f(x))]

(32)
Now let us compare this to the simple nudging term in (23),430

working through the terms from right to left.431

AI = y −H(f(x)) 6= y −H(x) (33)

In the simple nudging term, the innovations used compare the432

observations with the model equivalent at the current time. This433

ignores the model’s evolution in the intervening time, and thus434

the more the model evolves, the larger this discrepancy. This435

discrepancy occurs even with linear model evolution. In Figure436

6 this can be seen by considering the evolution of the simple437

nudging ensemble between times 0 and 1. The model is forced438

to be close to the observation too early due to this time discrep-439

ancy in the innovation.440

Aw = (I +R)−1 6= R−1

For the form of observation error covariance matrix R used in441

this study, this is not an issue. To see this, we have to consider442

Aw = σR, and note that we have R = γI . Then I + R =443

I + γI = (1 + γ)I , and hence I + R = (1+γ)
γ

R. Thus the444

coefficient (1+γ)
γ

can be subsumed into the nudging coefficient445

σ.446

With simple nudging Am is consistent.447

Finally, the term As = MT 6= Q. The model error covari-448

ance matrix is clearly not a good approximation to the adjoint449

of the model. Hence the information from the observations is450

not propagated backwards in time consistently.451

All of these factors serve to make simple nudging ineffective452

at bringing the ensemble close to the observations.453

7.3. LETKS as a relaxation in the EWPF454

Given the theory described in Section 7.2., it is reasonable455

to believe that the Ensemble Kalman Smoother (EnKS) may456

provide better information with which to nudge.457

As with the EnKF, there are many flavours of EnKS. Here we458

have used the LETKS simply because of its availability within459

EMPIRE.460

Using the notation of the EnKF introduced in Section 1.3.,
we can write the EnKS analysis equation as

xa` = xf` +Xf
` X

fT
k HT (HXf

kX
fT
k HT +R)−1(y −Hxfk).

(34)
Hence the nudging term that comes from the EnKS is

g(xk, y) = Xf
` X

fT
k HT (HXf

kX
fT
k HT +R)−1(y −Hxfk).

Comparing with (32), we can see that the innovations are cor-461

rect. The observation error covariance matrix is regularised with462

HXf
kX

fT
k HT instead of the identity, but the same limits are463

reached asR→ 0 andR→∞. The main difference is that now464

the information is brought backwards in time via the temporal465

cross-covariances of the state at the current time and the fore-466

casted state at the observation time. Hence using this method467

there is no need for the model adjoint.468

Comparing Figures 3 to 5, (c) vs (d) it can be seen that469

LETKS nudging provides a decrease in RMSE when compared470

to the simple nudging. Moreover, comparing the trajectories471

shown in Figures 6c and 6d it can be seen that the LETKS nudg-472

ing follows the evolution of the truth much more closely than the473

simple nudging. This is especially noticeable at the timesteps474

between observations, likely due to the time discrepancy of the475

innovations that simple nudging makes (see equation (33)).476

There are immediate extra computational expenses involved477

with using the LETKS as a nudging term. Firstly, the model478

has to be propagated forward to the observation time in order479

to find the appropriate innovations. Secondly, the LETKF has480

to be used to calculate the nudging terms, thus adding a large481

amount to the computational cost.482

Moreover, consider the difference in the weight calculations
caused by using the LETKS and not the simple nudging given
in (23) and (24). Writing the update equation in the form

xk+1
i = f(xki ) + gi + βi (35)

where gi is the nudging increment and βi is a random term. The
weight update has the form (van Leeuwen, 2010; Ades and van
Leeuwen, 2015):

− log(wk+1
i ) =− log(wki )

+ 1
2
(gi + βi)

TQ−1(gi + βi)

− 1
2
βTi Q

−1βi.

(36)

When βi ∼ N (0, Q), βi = Q
1
2 ηi where ηi ∼ N (0, I). Hence

the final term

βTi Q
−1βi = ηTi Q

T
2 Q−1Q

1
2 ηi = ηTi ηi (37)

can be calculated without a linear solve with Q. Similarly, if483

the nudging term gi is premultiplied by Q (or Q
1
2 ) then Q−1

484

cancels in the calculation of the weights. This is the case for the485

simple nudging used as given in (23).486



14
P.A. BROWNE

Hence, using the LETKS to compute a nudging term for use487

in a particle filter, we cannot avoid computing with Q−1 to find488

the appropriate weights for each ensemble member. This may489

prove to be prohibitive for large models, or must be a key con-490

sideration in the choice of Q matrix used. In the application to491

the BV model shown in this article, Q is computed in spectral492

space using the FFT, hence applying any power ofQ to a vector493

is effectively the same computational cost.494

Furthermore, in order to compute the LETKS nudging term,495

EnKF-like arguments are adopted. That is, the when comput-496

ing the analysis update, the posterior pdf is assumed Gaussian.497

Linear model evolution is assumed so that the updates can be498

propagated backwards in time. Having made this Gaussian as-499

sumption at the timestep before the observations will limit the500

benefits of using the fully nonlinear particle filter which does501

not make any such assumptions on the distribution of the pos-502

terior. Indeed, considering the evolution of the EWPF with the503

LETKS nudging and comparing with that of the LETKF (Fig-504

ures 6a and 6b), they are markedly similar. Hence the extra ex-505

pense of the EWPF over the LETKF may not be justified.506

The choice of κ when we use the LETKS as a relaxation507

within the EWPF is a complicated and not fully understood pro-508

cess. Figures B1 to B4 in the Appendix show the behaviour of509

the analysis as you vary κ for each different observation net-510

work. What is clear is that the optimal κ is problem depen-511

dent. Further, it can be seen that κ = 1 performs poorly in512

all cases. One conjecture for this is that using the LETKS as513

a relaxation gives a large change to some ensemble members.514

Making a large change to the position of any ensemble mem-515

ber must be paid for in the weights of that particle: its weight516

decreases. Keeping κ = 1 forces all ensemble members to de-517

grade their positions in order to achieve a weight equal to that518

of the worst particle. This process could then move all the other519

ensemble members away from the truth – thus increasing the520

RMSE. Further investigations on this matter are warranted.521

8. Conclusions522

Both the Local Ensemble Transform Kalman Filter and the523

Equivalent Weights Particle filter were used in data assimilation524

experiments with the barotropic vorticity model. Typical values525

for the parameters in the methods were used for 3 different set526

of observations.527

In all cases, the LETKF was found to give RMSEs that were528

substantially smaller than those achieved by the EWPF. No-529

tably, the EWPF gives RMSEs much larger than that of the ob-530

servation error standard deviations.531

The efficacy of the EWPF to minimise the RMSE was shown532

to be controlled by the nudging stage of the method. Experi-533

ments with both simple nudging and using the LETKS as a re-534

laxation showed that the resulting particle filter followed those535

trajectories closely. An analysis of the relaxation term used in536

the simple nudging procedure showed why such a method does537

not bring the ensemble mean close to the truth. This same anal-538

ysis motivated the use of the LETKS relaxation and this was539

numerically shown to lead to improvements in RMSE.540

The model investigated had a state dimension of Nx =541

262144 and assimilatedNy = 65536 observations at each anal-542

ysis. In such a high-dimensional system it is a challenge to as-543

certain if the posterior is non-Gaussian. Without such knowl-544

edge it appears that the LETKF is a better method of data as-545

similation in terms of efficiency and accuracy.546

Finally, note that all these experiments were conducted with547

an ensemble size ofNe = 48. This ensemble size is representa-548

tive of what can typically be run operationally. In the future, if549

much larger ensembles are affordable, then the results presented550

here may be different when the data assimilation methods are551

tuned to a significantly larger ensemble size.552
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APPENDIX A: EWPF parameter sensitivity664
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Fig. A1. Performance of the EWPF under different parameters
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APPENDIX B: EWPF with LETKS relaxation665 (a) On 1 EWPF with LETKS nudging ⇓
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Fig. B1. Performance of the EWPF with the LETKS relax-
ation when κ = 1.0
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(a) On 1 EWPF with LETKS nudging ⇓
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Fig. B2. Performance of the EWPF with the LETKS relax-
ation when κ = 0.75

(a) On 1 EWPF with LETKS nudging ⇓
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Fig. B3. Performance of the EWPF with the LETKS relax-
ation when κ = 0.50
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(a) On 1 EWPF with LETKS nudging ⇓
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Fig. B4. Performance of the EWPF with the LETKS relax-
ation when κ = 0.25
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