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Summary 27 

 28 

• Processes governing the fixation, partitioning, and mineralization of carbon in soils are 29 

under increasing scrutiny as we develop a more comprehensive understanding of global 30 

carbon cycling.  Here we examined fixation by Douglas-fir seedlings and transfer to 31 

associated ectomycorrhizal fungi, soil microbes, and full-sibling or non-sibling 32 

neighbouring seedlings. 33 

 34 

• Stable isotope probing with 99% 
13

C-CO2 was applied to trace 
13

C-labelled 35 

photosynthate throughout plants, fungi, and soil microbes in an experiment designed to 36 

assess the effect of relatedness on 
13

C-transfer between plant pairs.  The fixation and 37 

transfer of 
13

C-label to plant, fungal, and soil microbial tissue was examined in biomass 38 

and PLFAs. 39 

 40 

• After a 6-day chase period, approximately 26.8% of the 
13

C remaining in the system 41 

was translocated belowground.  Enrichment was proportionally greatest in 42 

ectomycorrhizal biomass.  The presence of mesh barriers (0.5 or 35 µm) between 43 

seedlings did not restrict 
13

C-transfer.  44 

 45 

• Fungi were the primary recipients of 
13

C-labelled photosynthate throughout the system, 46 

representing 60–70% of total 
13

C-enriched phospholipids. Full-sibling pairs exhibited 47 

significantly greater 
13

C-transfer to recipient roots in two of four Douglas-fir families, 48 

representing 3- and 4-fold increases (+ approx. 4 µg excess 
13

C) compared to non-49 

sibling pairs.  The existence of a root/mycorrhizal exudation – hyphal uptake pathway 50 

was supported.   51 

 52 

Key words (5-8): Carbon allocation / ectomycorrhizas / host relatedness / interior Douglas-fir / 53 

PLFA / stable-isotope probing. 54 
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Introduction 55 

 Accurate estimates of belowground carbon cycling are critical to linking terrestrial 56 

ecosystems with biogeochemical processes and making useful predictions about how these 57 

may change under future climates (Richter & Billings, 2015). In temperate forests, the 58 

estimated quantities of atmospheric carbon sequestered via fixation are globally-relevant (~73-59 

159 Pg C aboveground, and 153-195 Pg C belowground; Reichstein, 2007; Lorenz & Lal, 60 

2010), with humid and warm evergreen forests displaying the highest gross primary production 61 

of any temperate or boreal forest types (Luyssaert et al., 2007).  Photosynthate is mainly 62 

incorporated into plant biomass, but also supports a diverse microbial soil community either 63 

directly, via mycorrhizal fungi, or more generally, via scavenging of root exudates (Nehls et 64 

al., 2007; Phillips et al., 2011) and rhizodeposits (Jones et al., 2009). Studying the 65 

belowground ecology governing carbon cycling is challenging due to the complexity of these 66 

communities and soil systems in general (De Deyn et al., 2008; Bardgett et al., 2013), and 67 

requires quantitative data on the allocation of photosynthate to plant biomass and its transfer to 68 

mycorrhizal fungi and microbes (Kaiser et al., 2015). Here we undertook a multifaceted 69 

exploration of carbon allocation within and between paired interior Douglas-fir (Pseudotsuga 70 

menziesii var. glauca) seedlings, their mycorrhizal symbionts, and soil microbiota. 71 

 While the majority of plants form mycorrhizas, less than 5% of plant species are 72 

estimated to associate with ectomycorrhizal fungi (EMF). However, globally, these interactions 73 

are abundant in all forest biomes (Brundrett, 2009). Soils in ecosystems where ectomycorrhizal 74 

plants dominate exhibit higher C:N ratios compared to soils where they do not (Averill et al., 75 

2014), and ectomycorrhizal hosts have been found to allocate 10% – 30% of their 76 

photosynthate to mycorrhizas (Söderström, 1992; Leake et al., 2006; Högberg & Read, 2006). 77 

EMF incorporate photosynthate into their biomass, enhancing carbon sequestration by 78 

synthesising recalcitrant carbon compounds like chitin (Clemmensen et al., 2013; Kashian et 79 

al., 2013), especially in poorly oxygenated soil where decomposition is slow (Wallander et al., 80 

2001). Additionally, EMF add mineral nutrients to soils through the breakdown of rock with 81 

organic acids (Hoffland et al., 2003; Plassard & Fransson, 2009), and promote soil aggregate 82 

formation and carbon sequestration by exuding extracellular proteins and compounds that bind 83 

mineral particles (Rillig & Mummey, 2006; Graf & Frei, 2013). However, not all mycorrhizal 84 

activity is a carbon sink. In addition to respiration of host-derived photosynthate, some EMF 85 

species can decompose plant litter to acquire limiting nutrients, thus releasing soil carbon back 86 

into the atmosphere at rates comparable to saprotrophic fungi (Talbot et al., 2008; Rineau et 87 

al., 2013; Phillips et al., 2014). Therefore, to assess how these processes jointly influence the 88 
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dynamics of soil carbon cycling in complex belowground systems, quantification of the fate of 89 

photosynthate in EMF-dominated systems is required.  90 

 An emergent property of mycorrhizal systems is the common mycorrhizal network, 91 

which arises when a fungal mycelium connects multiple plant hosts belowground across scales 92 

of cm
2 

to at least tens of m
2
 (Selosse et al., 2006; Beiler et al., 2010; Simard et al., 2012). 93 

Ectomycorrhizal networks have been demonstrated to transfer water, nitrogen, and small 94 

quantities of carbon between interior Douglas-fir hosts (Simard et al., 1997a; Teste et al., 95 

2009; Bingham & Simard, 2011). Evidence that EMF display trait heritability based on host 96 

and fungal genotype (Rosado et al., 1994a,b; Karst et al., 2008), and that closely related plants 97 

display greater arbuscular mycorrhizal network size and root colonisation (File et al., 2012; 98 

Dudley et al., 2013), raises the possibility of preferential connectivity of kin through 99 

compatibility of parent-mycorrhiza-offspring genotypes. This has not previously been explored 100 

in conifers.  In arbuscular mycorrhizal grassland plant species, root exudates play a role in ‘kin 101 

recognition’ (Dudley et al., 2013) by moderating intra- and inter-specific plant root behaviour 102 

(Semchenko et al., 2014), suggesting that plant relatedness may influence nutrient uptake or 103 

transfer by altering root growth and hence mycorrhizal formation.  The finding that root 104 

exudates are important in kin recognition suggests that mycorrhizas are involved in recognition 105 

mechanisms in temperate forests, where trees are comprehensively mycorrhizal.  If nutrient 106 

transfer through ectomycorrhizal networks can also differ with host relatedness, then fitness, 107 

and thereby forest stand composition, may be altered (Simard, 2009).  Thus, to assess the 108 

potential for host relatedness effects in the experimental system, the extent of carbon transfer 109 

between ‘kin’ (full sibling) and ‘non-kin’ (no shared parent) seedling pairs was quantified. 110 

 Although mycorrhizal fungi are known to transfer labelled carbon between plants 111 

(Finlay & Read, 1986; Simard et al., 1997b), interpretations are split between those suggesting 112 

retention of labelled carbon by fungi within their biomass (Graves et al., 1997; Fitter et al., 113 

1998; Wu et al., 2001) and those indicating small (Simard et al., 1997a; Teste et al., 2010; 114 

Philip et al., 2010) or large (Klein et al., 2016) degrees of carbon transfer through fungal 115 

mycelium and into plant biomass.  The transfer of carbon between plants may also occur via 116 

uptake of root exudates along an ‘exudation-dissolved organic carbon-mycorrhizal hyphae’ 117 

pathway (Robinson & Fitter, 1999), and these hypotheses regarding the mechanism of transfer 118 

need not be mutually exclusive.  In this experiment we established a size-hierarchy between 119 

seedlings of different ages together in the same pot, separated by a mesh barrier to prevent 120 

direct root interaction, and labelling the larger (older) seedling with 
13

C-CO2. 121 
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 A small number of stable isotope probing (SIP) studies, in which a plant is exposed to  122 

13
C-labelled CO2 and the distribution of 

13
C-photosynthate is examined after a specific time 123 

period, have investigated interconnections between the Pinaceae and their EMF symbionts (see 124 

Epron et al., 2012).  Here, for the first time in a paired seedling model system, we investigated 125 

the fungal and microbial communities active in plant photosynthate assimilation and transfer, 126 

applying SIP methods to quantify 
13

C allocation to plant and fungal biomass and the 127 

phospholipid fatty acids (PLFA) of plants, fungi, and bacteria (Boschker et al., 1998). Our 128 

study examined paired interior Douglas-fir seedlings with the following objectives: (i) to 129 

quantify the distribution of 
13

C-labeled photosynthate throughout plant and soil carbon pools 130 

and within microbial biomass, (ii) to determine the proportion of carbon transferred (if any) 131 

between seedlings by EMF symbionts, and (iii) to determine whether relatedness has a role in 132 

carbon transfer between conifer seedlings. 133 

 134 

Materials and methods 135 

Seed and soil 136 

 Seeds from four ‘families’ (cross-bred from four different pairs of known parents) of 137 

interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco) were 138 

sourced from the B.C. Ministry of Forests, Lands, and Natural Resource Operations 139 

(Kalamalka Research Station, B.C.). To encourage EMF colonization, seeds were grown in a 140 

soil mixture with the following specifications: 1:1 mix (approximately 3.4 L total) of 141 

autoclaved potting soil (1.7 L 1:1 mix of peat to perlite) and forest soil (1.7 L). Forest soil was 142 

classified as Dystric Brunisol (Inceptisol in U.S. soil taxonomy) with moderate humus and 143 

sandy loam texture (Soil Classification Working Group, 1998). Soil was collected from two 144 

sub-locations within a mono-specific interior Douglas-fir stand (120.58°W, 49.43°N) in the 145 

Dry, Cool Interior Douglas-fir (IDFdk) biogeoclimatic subzone (Pojar et al., 1987). Following 146 

the removal of the litter layer, the fermentation layer, humus layer, and mineral soil were 147 

sampled to a total depth of 10-15 cm.  Large debris was removed during collection and soil 148 

was homogenised in clean conditions before sub-sampling to create experimental units. 149 

 150 

Experimental design and seedling growth 151 

 Each experimental unit was a 3.8 L pot containing a pair of seedlings of different ages 152 

to establish a carbon gradient, which were spaced approximately 8 cm apart and separated by a 153 

nylon mesh bag (Plastok® Meshes and Filtration Ltd., Birkenhead, UK).  One ‘donor’ seedling 154 

was established from seed planted in March 2012 in the 805 g (11.9 s.e.m.) dry weight soil 155 
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outside the mesh bag.  One ‘recipient’ seedling was established from seed planted in November 156 

2012 inside the 8 x 18 cm mesh bag containing 403 g (5.9 s.e.m.) dry weight soil.  Seedlings 157 

were grown in a glasshouse without supplementary light or fertiliser, in order to encourage 158 

mycorrhizal formation. Pots were watered to field capacity once per week following an early 159 

germination period of light daily watering. A fine gravel layer was applied to soil surfaces to 160 

discourage infection and mortality by pathogenic soil fungi (e.g. Fusarium, Phytophthora, 161 

Pythium, Rhizoctonia; colloquially called ‘damping off’ fungi).  Harvesting took place in the 162 

first week of February 2013, when donor and recipient seedlings were 11 and 3 months old, 163 

respectively (Asay, 2013). 164 

 Seedling relatedness was manipulated through seed origin: seedling pairs were either 165 

full siblings (same parents; ‘kin’) or non-siblings (different parents; ‘non-kin’).  Kin seed was 166 

obtained from four pairs of parent trees to assess whether any relatedness effects were a 167 

general observation or family specific.  Sufficient seed was provided to establish 10 kin pairs 168 

from each of the four sets of parents (n=40).  Non-kin seed was more readily available so 169 

additional pairs were planted (n=60).  Hyphal connection was manipulated via mesh bags: 170 

seedling pairs were separated by a root-blocking barrier that either allowed the passage of EMF 171 

hyphae (35 µm mesh) or was expected to restrict or prevent the passage of EMF hyphae (0.5 172 

µm) (Teste et al. (2006).  Mesh sizes were divided equally among the relatedness treatments 173 

resulting in the following experimental factors: kin-unrestricted (n=20), kin-restricted (n=20), 174 

non-kin-unrestricted (n=30), non-kin-restricted (n=30).   175 

 176 

13
CO2 isotope labelling  177 

 Donor plants were pulse-labelled with 99 atom% 
13

C-CO2 eleven months after they 178 

were established in pots. Surviving pairs in each treatment were assigned to subsequent 179 

analyses as follows. To estimate the initial uptake and fixation of 
13

C-label, we assessed 180 

incorporation of 
13

C-photosynthate into plant and fungal biomass 1 day after labelling (“1-day 181 

chase”): non-kin-unrestricted (n=3), non-kin-restricted (n=3), non-labelled controls (n=3).  To 182 

examine the transfer and incorporation of 
13

C-photosynthate into biomass 6 days after labelling 183 

(“6-day chase”): kin-unrestricted (n=9), kin-restricted (n=8), non-kin-unrestricted (n=10), non-184 

kin-restricted (n=10).  Unlabelled controls consisted of kin-unrestricted (n=9), kin-restricted 185 

(n=8), non-kin-unrestricted (n=7), non-kin-restricted (n=7). 186 

 Immediately before labelling, all donor seedlings were sealed using Tuck® Contractors 187 

Sheathing Tape inside plastic Foodsaver® vacuum bags (6 L). Bags were fitted with an 188 

injection valve and inflated with ambient air. Non-labelled control seedlings were bagged in 189 
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the same manner and stored with a minimum separation distance of 4 m from the nearest 190 

labelled seedling.  Three injections of 
13

C-CO2 were received by labelled seedlings at equal 191 

time intervals through the 10 h pulse period, totalling 50 mL of 
13

C-CO2 (with maximum 192 

concentrations of 2500-3000 ppm). An additional seedling was used to monitor bag CO2 193 

concentration using a portable infrared gas analyser (Qubit Systems, Kingston, Canada). 194 

Ambient greenhouse CO2 levels (394 ppm) were checked prior to labelling, 5 h after labelling, 195 

and 10 h after labelling and showed no significant variation.  After the final pulse, when bag 196 

CO2 concentrations had dropped below 300 ppm, labelling bags were removed.  197 

 198 

Sampling of plant and soil pools 199 

 Eleven distinct plant and soil pools were examined in this experiment, with donor (D) 200 

and recipient (R) seedling samples collected as described in Figure 1. Due to growth stage 201 

differences between donor and recipient seedlings, root sections were collected from donor 202 

transport fine roots (McCormack et al., 2015) and the recipient’s main tap root, which were of 203 

equivalent diameter and structure (i.e. no absorptive fine roots were included in these samples). 204 

Samples were kept on dry ice after weighing, and stored at -80
 o

C.  All fine root tips were 205 

sampled from each seedling, morphotyped based on ectomycorrhizal structures or their absence 206 

(Goodman et al., 1998), then counted and weighed prior to subsampling for fungal 207 

identification via amplified internal transcribed spacer (ITS) sequences. All root tips from six 208 

plant pairs were kept on dry ice after weighing, and stored at -80
 o

C. Soil for PLFA analyses 209 

was immediately frozen in liquid nitrogen before storage at -80 
o
C. Samples were lyophilized 210 

prior to DNA or PLFA extraction and isotopic analysis. Remaining plant biomass from each 211 

pool was oven-dried and weighed.  212 

 213 

Isotopic measurements 214 

 Total carbon and nitrogen content and carbon isotopic composition of samples were 215 

measured with combustion analysis using an elemental analyzer (Elementar, Hanau, Germany) 216 

in C, N mode, interfaced with an isotope-ratio mass spectrometer (IRMS; Isoprime, Cheadle, 217 

UK). Samples were considered enriched if their δ
13

C value was greater than the upper 99% 218 

confidence interval of the control mean δ
13

C (natural abundance) and all control sample δ
13

C 219 

values. Atom %
13

C excess was calculated for each pool as per Leake et al. (2006). Teste et al.'s 220 

(2009) modification of Boutton's (1991) isotopic calculations was applied to convert δ
13

C into 221 

“excess 
13

C”
  
as

 12
C-equivalent (mg), the mass of labelled carbon compensating for the one 222 

Dalton difference in mass of 
12

C.  223 
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 Isotopic composition of PLFAs was analysed using gas chromatography-IRMS, 224 

following extraction according to Bligh & Dyer (1959), as detailed in Churchland et al. (2013), 225 

with the following exceptions: (i) methyl undecanoate (c11:0) was the internal standard, and 226 

(ii) quantitation was performed based on average values derived from serial dilution of 227 

undecanoate, nonadecanoate (c19:0), and methyl cis-13-docosenoate (c22:1ω9). Peak 228 

identification was based on retention time compared to two reference standards: bacterial acid 229 

methyl-ester standard 47080-0 (Sigma–Aldrich, St. Louis, USA) and a 37-Component fatty 230 

acid methyl-ester mix (47885-U). Unidentifiable 
13

C-enriched peaks were included in analysis 231 

if they met the following conditions: i) detection in > 3 samples, ii) average δ
13

C > +50 ‰.  232 

Taxonomic affiliations of specific PLFAs were assigned as per Högberg et al. (2013), with 233 

c18:1ω9 and c18:3ω6 added as fungal markers, according to Ruess & Chamberlain (2010). 234 

 235 

Fine root tip fungal DNA extraction-sequencing 236 

 Fungal DNA was extracted from multiple representative root tips of each EMF 237 

morphotype, from which adhering soil had been carefully removed, using ITS1 (White et al., 238 

1990) and ITS4/ITS4B primers (Gardes & Bruns, 1993) following the protocol provided in 239 

Supporting Methods S1. Raw sequence data were analysed using SEQUENCHER Version 3.0 240 

(Gene Codes Corp., Ann Arbor, USA) and converted into FASTA format prior to comparison 241 

with the UNITE database (Kõljalg et al., 2013), using the BLAST algorithm to identify each 242 

fungal species. Sequence data were deposited in the GenBank database as accession numbers 243 

KT314836 to KT314861.  Three samples from the rhizosphere soil partition were selected for 244 

metatranscriptomic sequencing to assess activity of root-associated communities (Supporting 245 

Methods S2).   246 

 247 

Statistical analyses 248 

 All analyses were performed using R 3.2.3 (R Core Team, 2015) unless otherwise 249 

stated.  Data was square root or log10 transformed where necessary to meet parametric 250 

assumptions, with highly influential data points (> 3 st. dev. from the treatment median) treated 251 

as statistical outliers and removed prior to analysis. Differences between treatments in the 252 

excess 
13

C content of recipient pools were assessed by fitting linear mixed models in R-253 

packages “nlme” (Pinheiro et al., 2016) and “lme4” (Bates et al., 2015).  The fixed factors in 254 

each model were: seedling relatedness (kin or non-kin), hyphal restriction (35 µm or 0.5 µm), 255 

recipient family (A, B, C, or D), and their two-way interactions. In all models, donor family 256 

was included as a random factor.  The response variables examined were “excess 
13

C as 
12

C 257 
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equivalent” of the Rbulk, Rrhizosphere, RECM, and Rroot pools.  Model fit was determined using R-258 

package “piecewiseSEM” (Lefcheck, 2016).  Standardised coefficients, a measure of 259 

standardised effect size (SES) (Schielzeth, 2010), were estimated for each model (regression 260 

coefficients divided by two times their standard deviation). 261 

 Linear models were used to assess whether excess 
13

C in kin and non-kin recipient 262 

pools displayed different relationships to potentially explanatory biological factors (Dshoot 
13

C-263 

enrichment, DECM 
13

C-enrichment, DECM abundance). SES was measured using Cohen’s d 264 

(Cohen, 1988). False discovery rate (FDR) correction (Verhoeven et al., 2005) was applied 265 

where data was regressed against multiple factors.  266 

 Enriched fungal biomass (
13

C per g tissue dry weight) was calculated by converting 267 

from mg enriched fungal PLFAs, using the conversion factor provided by Joergensen & 268 

Wichern (2008). Average carbon incorporation into fungal biomass was calculated for DECM 269 

(reflecting the hartig net, mantle, and extramatrical mycelium of EMF) and Droot (to account for 270 

the presence of fungal endophytes and any potential extension of EMF hyphae into transport 271 

fine roots; see Kaiser et al., 2010).  272 

 Seedling EMF community data was examined with the Sørensen (Bray-Curtis) distance 273 

measure using nonparametric multi-dimensional scaling (NMDS) and multi-response 274 

permutation procedures (MRPP) in PC-Ord 5 (MjM Software, Gleneden Beach, USA).   275 

 All data used in this analysis, along with a custom script for processing SIP-PLFA data, 276 

can be found at the stable URL: https://github.com/roli-wilhelm.  277 

 278 

Results 279 

Partitioning of 
13

C-labeled photosynthate 280 

 Every plant and soil pool exhibited elevated levels of 
13

C-labelled carbon relative to the 281 

natural abundance in unlabelled controls (Table 1). No significant differences in δ
13

C were 282 

observed among unlabelled controls. 
13

C-enrichment of Rshoot, the most distant pool from donor 283 

plants, was significant in 4 kin and 2 non-kin samples (6/37). The decrease in 
13

C-labelled 284 

carbon, from Dshoot to Rshoot, revealed the scope and scale of carbon flow through the 285 

belowground system (Table 1; Supplementary Figure S1a). As expected, in each plant DECM 286 

and RECM contained significantly more 
13

C-labelled carbon as a percentage of their total carbon 287 

content compared to all other pools, illustrating their assimilation of this carbon 288 

(Supplementary Figure S1b). 289 

 Of the total mass of pulsed 
13

C-labelled carbon (29.02 mg), approximately 75.4% 290 

(21.88 mg) was fixed in donor plant tissue after the 1-day chase.  Following the 6-day chase 291 
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period, approximately 44.1% (9.64 mg) of the fixed label (33.2% of the pulse) was detected 292 

across all biomass pools. The total transfer to measured belowground and recipient pools was 293 

approximately 12% of the 
13

C-label fixed, amounting to 26.8% of the total 
13

C-label detected 294 

in the 6-day chase. For an account of all individual pools see Table 1. The remaining 295 

unaccounted 
13

C-label was either not fixed or fixed and respired during the labelling period.    296 

 A strong inverse relationship was observed between Dshoot δ
13

C and donor biomass (r
2 

= 297 

0.66, P < 0.001), while the total mass of excess 
13

C
 
in Dshoot did not vary significantly with 298 

donor biomass (r
2 

< 0.01, P = 0.29). Thus larger plants had a lower 
13

C-content relative to total 299 

seedling biomass than smaller plants.   300 

 301 

Role of seedling relatedness and ectomycorrhizal hyphae in carbon transfer  302 

 Analysis using linear mixed models revealed a seedling relatedness effect on Rroot 303 

excess 
13

C, with the significant model interaction term revealing variation between the four 304 

recipient families (Table 2). Significantly greater Rroot excess 
13

C was observed in kin 305 

recipients from families A and B than in non-kin recipients (Fig. 2a), whereas there was no 306 

significant difference based on relatedness in families C and D.  In terms of µg excess 
13

C this 307 

represented a 3-fold increase in kin of family A (kin mean 5.7 µg; non-kin mean 1.9 µg), and a 308 

4-fold increase in kin of family B (kin mean 5.6 µg; non-kin mean 1.4 µg).  Carbon transfer to 309 

other recipient pools was not significantly different between relatedness treatments (Table 2). 310 

Linear regression analysis revealed that Rroot δ
13

C enrichment increased with increasing DECM 311 

abundance in kin pairs only (Fig. 3a).  In both kin and non-kin pairs, Rbulk δ
13

C enrichment 312 

increased with increasing DECM abundance (both: r
2
 = 0.34, kin: P = 0.014; non-kin: P = 313 

0.007). In kin pairs only, RECM excess 
13

C
 
was positively associated with that of both DECM 314 

(Fig. 3b) and Dshoot (Fig. 3c). 315 

 Hyphal exclusion did not reduce colonisation of recipient roots, or significantly reduce 316 

overall sub-surface carbon transfer. However, analysis using linear mixed models (Table 2) 317 

indicated a reduction in Rbulk excess 
13

C with hyphal exclusion in recipient family D (SES = 318 

0.60-0.66), and reduced Rrhizosphere excess 
13

C among kin recipients in families C (SES = 0.58) 319 

and D (SES = 0.62).  Conversely, increased Rroot excess 
13

C with hyphal exclusion was 320 

observed for kin in recipient family A and regardless of relatedness in family D (Fig. 2b). 321 

Carbon transfer to other recipient pools did not differ between mesh treatments (Table 2). 322 

 To assess whether the observed relatedness effects could be due to differences in 323 

belowground biomass allocation between families, the same linear mixed models were 324 

performed for donor and recipient root: shoot ratio, and the biomass of Droot, Rroot, DECM and 325 
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RECM. The only significant factor across these models was that family C exhibited a lower root: 326 

shoot ratio than the other three families. No other fixed or interactive factors proved to be 327 

significant (data not shown). 328 

 329 

Assimilation of 
13

C-photosynthate by the microbial community 330 

 Total 
13

C-incorporation into PLFAs in all pools amounted to 1% of belowground 331 

carbon transfer (0.023 mg 
13

C in PLFAs / 2.31 mg total 
13

C transferred). Fungal PLFA 
13

C-332 

enrichment was 5.57 mg fungal C g
-1

 dry weight in DECM and 1.97 mg fungal C g
-1

 dry weight 333 

in Droot. Estimated DECM PLFA 
13

C-enrichment was strongly correlated with 
13

C-enrichment of 334 

DECM tissue (r
2
 = 0.844, P < 0.001), and DECM PLFAs contained the highest total excess 

13
C 335 

measured (Supplementary Figure S2). The Droot pool contained the next highest level of PLFA 336 

13
C-enrichment, originating from the plant root and associated fungi and bacteria. Fungal 337 

PLFA markers were the most 
13

C-enriched in all pools, containing ~70% of assimilated 
13

C-338 

label. The second most 
13

C-enriched taxonomic group were the ‘higher eukaryotes,’ a 339 

heterogeneous category of long-chain fatty acids, indistinguishable between fungi, plants, and 340 

other eukaryotic species.   341 

 Microbes closely associated with host roots were less diverse than those in soil (~27 342 

PLFAs), based on the average number of enriched PLFAs (Droot: 12, DECM: 9, RECM: 13). 343 

Differences between root-associated and soil-associated communities were evident in 
13

C-344 

enriched PLFA profiles (Supplementary Figure S3) and unidentified fatty acid profiles 345 

(Supplementary Figure S4). The Dcoarse community was the most distinct, displaying increased 346 

13
C-enrichment of medium-length fatty acids between c14:0 – c16:1ω9. Fungi assimilated the 347 

vast majority of photosynthate based on total 
13

C-enrichment of PLFAs; however, other 348 

taxonomic groups in the rhizosphere exhibited substantial assimilation rates (Fig. 4). In the 349 

Droot pool bacteria incorporated 
13

C-label at rates comparable to that of fungi (i.e. relative to 350 

their biomass). Gram-negative bacteria assimilated significant amounts of 
13

C-exudate across 351 

all donor pools in every sample assayed, whereas gram-positive bacteria did not assimilate 352 

detectable 
13

C-exudate in ectomycorrhizal pools.  353 

 354 

Fungal root-tip community 355 

 Seedlings were primarily colonised by Rhizopogon vinicolor, and an ectomycorrhizal 356 

Pyronemataceae sp. (Table 3), both of which were also detected in a preliminary 357 

metatranscriptomic analysis of three rhizosphere soil samples (Supporting Methods S1 and Fig. 358 

S5). The abundance of these EMF species on recipient seedlings was positively related to their 359 
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abundance on donor seedlings regardless of treatment. MRPP analysis following NMDS 360 

ordination (Supporting Fig. S6) revealed that the only significant difference between EMF 361 

communities was weak and occurred between donor and recipient seedlings, rather than 362 

treatments (A = 0.131, P < 0.001; where A > 0.3 is considered an ecologically relevant effect).  363 

Notably, in the sole case where a plant lacked Rhizopogon sp. ectomycorrhizas, 
13

C-enrichment 364 

was not detected in recipient pools. 365 

 366 

Discussion 367 

 Fungi dominated the assimilation of photosynthetic carbon in all belowground 368 

experimental pools, with ectomycorrhizal fungi serving as major agents of carbon transfer. 369 

EMF incorporation of photosynthate from host plants is hypothesised to be a major factor in 370 

carbon sequestration in coniferous forests (Clemmensen et al., 2013).  An estimated 26.8% of 371 

the 
13

C-label remaining in the system was recovered from belowground pools (primarily donor 372 

roots), of which 6.3% was assimilated by, or transferred through, EMF. Carbon transfer from 373 

donor to recipient seedlings was significantly greater to sibling roots than non-sibling roots in 374 

two of the Douglas-fir families, indicating a host relatedness effect that was most likely 375 

mediated by EMF. The transfer of 
13

C-label in the presence of a hyphae-restricting mesh 376 

implies that labile 
13

C-compounds were exuded into soil by donor roots and/or EMF, before 377 

being taken up by recipient hyphae. Overall we observed that a diverse microbial community 378 

was actively assimilating 
13

C-labeled photosynthate. 379 

 380 

Scale and significance of belowground partitioning of Douglas-fir photosynthate 381 

 Carbon allocation to donor plant root and ectomycorrhzial root tip biomass (~23% of 382 

the total recovered) was within the range of previously estimated allocation values for 383 

ectomycorrhizal seedlings of other species: Norway spruce, Scots pine, and silver birch (13-384 

24%; Pumpanen et al., 2008), Scots pine (31%; Heinonsalo et al., 2010), and willow (47%; 385 

Durall et al., 1994). Furthermore, 
13

C-enrichment of fungal-specific PLFAs indicated 386 

significant carbon allocation to fungi within donor transport fine roots, most likely attributable 387 

to intra-root EMF biomass (Kaiser et al., 2010) and/or fungal endophytes.  388 

 Mycorrhizal networks in mature forests can be extensive (Beiler et al., 2010), offering 389 

the potential for substantial carbon transfer among plants. Yet the net benefit of seedling-to-390 

seedling carbon transfer remains poorly understood. Previous research indicates that EMF and 391 

their mycorrhizal networks mediate the transfer of variable amounts of carbon (Simard et al., 392 

1997a; Teste et al., 2009; Philip et al., 2010), water (Allen, 2007; Plamboeck et al., 2007; 393 
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Bingham & Simard, 2011), and nitrogen (He et al., 2003; Read & Perez-Moreno, 2003; Teste 394 

et al., 2009) between plants.  The quantities of seedling-seedling carbon transfer measured in 395 

our experiment (~0.1% of total recovered 
13

C-label across all pools) and elsewhere (Teste et 396 

al., 2009, 2010) are small, and unlikely to represent a substantial nutritional source.  However, 397 

research on the EMF host-symbiont interface reveals that EMF produce signalling compounds, 398 

which are translocated into plant cell nuclei. For example, Laccaria bicolor produces the 399 

MiSSP7 protein, which alters the host transcriptome to promote ectomycorrhizal formation and 400 

reduce jasmonic acid production (Plett et al., 2011, 2014). Our observations may therefore 401 

represent the transfer of signalling compounds through a fungal mycelium, or their uptake by 402 

roots or fungal hyphae following exudation.  The stimulation of physiological responses in 403 

recipient plants by potential signalling compounds has previously been observed in arbuscular 404 

mycorrhizal systems (Babikova et al., 2013; Song et al., 2014) and EMF systems involving 405 

interior Douglas-fir and ponderosa pine (Song et al., 2015).  406 

 407 

Host relatedness 408 

 Intriguingly, kin pairs exhibited increased carbon transfer to the Rroot pool in two of the 409 

four Douglas-fir families, with excess 
13

C in those families 3 to 4-fold greater than in non-kin 410 

pairings. The absolute quantities of increased excess 
13

C involved in this relatedness effect 411 

were small (+ 4 µg), but represented a large proportion of total recipient plant excess 
13

C 412 

content (overall recipient plant mean: 6.4 µg). The strong positive relationship between Rroot 413 

δ
13

C and DECM abundance in kin pairs demonstrated that the genetic relatedness effect on 414 

carbon transfer involved donor plant EMF. This was further reinforced by the positive 415 

relationships between excess 
13

C in the RECM pool and both the Dshoot and DECM pools in kin 416 

pairs.  Further investigation is required, but we propose that the establishment of an 417 

ectomycorrhizal symbiosis between an individual fungal mycelium and a host plant may 418 

increase both the likelihood that the fungus will successfully colonise other hosts of a similar 419 

genotype, and the efficiency of carbon transfer through its mycelium. In our system, 420 

Rhizopogon spp. and the ectomycorrhizal Pyronemataceae sp. are the most likely candidate 421 

fungi due to their abundance on seedling roots and their detected activity in soil 422 

metatranscriptomes.  We further hypothesise that increased carbon transfer among kin 423 

seedlings may have resulted from (i) increased inter-root EMF biomass between compatible 424 

host genotypes (Rosado et al., 1994a,b; Dudley et al., 2013), and/or (ii) increased inter-root 425 

activity due to increased transfer of signalling compounds and/or micronutrients (Plett et al., 426 

2011; Babikova et al., 2013). Alternative explanations for the observed carbon transfer are 427 
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certainly possible, but would have to account for the significant interaction between relatedness 428 

and family (e.g., differences in belowground carbon allocation between families would not 429 

explain why increased transfer of 
13

C to roots in families A and B only occurred in the 430 

presence of kin). 431 

 432 

Hyphal restriction 433 

 Transfer of 
13

C-carbon to recipient pools occurred regardless of hyphal exclusion, 434 

demonstrating that 
13

C-compounds can be transferred in the absence of a direct linkage 435 

between mycorrhizal hyphae (e.g. Robinson & Fitter, 1999). Carbon transfer was clearly 436 

associated with mycorrhizas, since: (i) exclusion reduced transfer to bulk soil in some of the 437 

recipient families; (ii) donor and recipient EMF abundance was positively associated for 438 

several EMF species; (iii) DECM abundance was associated with enrichment of recipient pools; 439 

and (iv) DECM and RECM biomass contained proportionally more 
13

C-label than all other pools. 440 

Previous studies similarly reported small quantities of 
13

C transfer across a 0.5 µm mesh in 441 

both ectomycorrhizal (Teste et al., 2009; Philip et al., 2010; Deslippe & Simard, 2011) and 442 

arbuscular mycorrhizal (Fitter et al., 1998) systems. Thus, the mesh-bagging treatment may not 443 

be effective for preventing mycorrhizal-mediated carbon transfer. This is potentially due to: (i) 444 

recipient EMF hyphae scavenging donor 
13

C-exudates that diffused through the mesh 445 

(Robinson & Fitter, 1999; Johnson & Gilbert, 2015), (ii) hyphae fusing across the mesh, or (iii) 446 

hyphae breaching the mesh, possibly degrading it via secreted organic acids (Plassard & 447 

Fransson, 2009). No breaches were observed in our experiment, but consistent with 448 

possibilities (i) and (ii), there were regions of mesh with adjacent patches of hyphae on either 449 

side. Future experiments could employ the in-growth core rotation method (Johnson et al., 450 

2001) to reduce the possibility of (ii) and (iii), although it is unlikely to prevent (i), which 451 

represents an alternative belowground transfer pathway in natural systems (Simard et al. 452 

1997b; Robinson & Fitter, 1999; Philip et al., 2010; Deslippe & Simard, 2011). 453 

 454 

Conclusions  455 

 Our stable isotope approach successfully elucidated the pattern and scale of 456 

mycorrhiza-mediated carbon transfer between interior Douglas-fir seedlings, and the 457 

incorporation of enriched carbon into microbial biomass.  EMF symbionts, specifically 458 

Rhizopogon spp. and Pyronemataceae sp., were the primary external beneficiaries of host-459 

derived photosynthate, and were able to take it up despite the presence of a hyphae-restricting 460 

mesh.  The small quantities of carbon transferred between seedlings suggest that it is unlikely 461 
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to be an important nutritional source, although the timing and transfer of micronutrients or 462 

signalling compounds may have a substantial ecological impact. We report evidence that 463 

relatedness influences carbon transfer between donor and recipient plants, and that the presence 464 

of this effect varied between families, raising the possibility of a mosaic of relatedness effects 465 

at larger scales. These findings require further exploration in the field, however, the 466 

implications for forest ecology are substantial.  467 
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Figure headings 723 

Figure 1. Illustration of the plant and soil carbon pools sampled in each experimental unit, 724 

which consisted of (a.) one donor (D) and one full-sibling or unrelated recipient (R) 725 

Pseudotsuga menziesii var. glauca seedling in one pot separated by a nylon mesh bag (dark grey 726 

dashed cylinder) with holes of either 0.5 µm or 35 µm.  In panels b-f, red and blue fill represents 727 

the donor and recipient pools, respectively.  b. Above-ground plant biomass, divided into donor 728 

shoot pool (Dshoot) and recipient shoot pool (Rshoot). c. Below-ground plant biomass, divided into 729 

donor root pool (Droot) and recipient root pool (Rroot). d. Below-ground plant-fungal biomass, 730 

divided into donor ectomycorrhizal root tip pool (DECM) and recipient ectomycorrhizal root tip 731 

pool (RECM). e. Soil attached to roots following their removal from soil and light shaking, 732 

divided into donor rhizosphere pool (Drhizosphere) and recipient rhizosphere pool (Rrhizosphere); the 733 

donor rhizoplane pool (Drhizoplane), very tightly adhering soil washed from root surface following 734 

vigorous vortexing in sterile water and subsequently pelleted by centrifugation, is approximated 735 

with solid black lines. f. Soil not attached to roots following their removal from soil and light 736 

shaking, divided into donor coarse soil pool (Dcoarse) and recipient bulk soil pool (Rbulk).  737 

Figure 2. Relatedness and hyphal restriction effects on Pseudotsuga menziesii var. glauca 738 

seedling Rroot pool enrichment (excess 
13

C as 
12

C-equivalent), and their variation among 739 

recipient families.  a-b, Standardised regression coefficients for linear mixed models (refer to 740 

Table 2), illustrating the differences between treatment levels in each recipient family in terms of 741 

their standardised effect size (SES).  a. difference between kin and non-kin within mesh 742 

treatment (positive values indicate greater enrichment in kin pairs).  b. difference between 35 743 

µm and 0.5 µm mesh within relatedness treatment (positive values indicate greater enrichment in 744 

pairs separated by 35 µm mesh).  Circles indicate average estimates, lines are 95% confidence 745 

intervals.  Filled circles indicate significant difference between treatment levels, open points 746 

indicate no significant difference. 747 

Figure 3. Linear regression of kin (left panels) and non-kin (right panels) 
13

C-enrichment in 748 

Pseudotsuga menziesii var. glauca seedlings, revealing the positive relationships between: a. 749 

Rroot δ
13

C and DECM abundance (kin significant), b. RECM and DECM excess 
13

C as 
12

C-equivalent 750 

(mg)
 
(kin significant), and c. RECM and Dshoot excess 

13
C as 

12
C-equivalent (mg)

 
(kin significant).  751 

Circles represent data points.  Black lines indicate significant linear relationship, grey lines 752 

indicate non-significant relationship.  Note that kin and non-kin panels are scaled separately. 753 

Figure 4. Incorporation of 
13

C-label into PLFAs by different taxonomic groups in each biomass 754 

pool based on the average δ
13

C of PLFAs.  Error bars correspond to standard error.  Dotted red 755 

line indicates natural abundance value of δ
13

C.  Dashed vertical black line indicates separation 756 
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between donor and recipient pools by mesh bag.  Text indicates whether biomass in the pool was 757 

primarily derived from plant material (Pseudotsuga menziesii var. glauca), plant and fungal 758 

material, the interface between plant/fungi and soil, or soil alone.  PLFA identities are provided 759 

in Supporting Figures S2 and S3. 760 

 761 
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Table 1. Partitioning of plant-assimilated 
13

C-labelled carbon in aboveground and belowground pools of interior Douglas-fir associated with 762 

ectomycorrhizal fungi six days after the start of a 10-h 
13

CO2 labelling period  763 

13
C atom% excess (APE) Total amount of excess 

13
C (µg plant

-1
) 

Excess 13C incorporated of the 

mean total fixed (%) 

  Total n Kin n Non-kin n Kin Non-kin 

Pool APE (s.e.m.) µg (s.e.m.)  µg (s.e.m.)  µg (s.e.m.)  % (s.e.m.) % (s.e.m.) 

Dshoot 0.439 (0.037) 7050.67 (325.77) 35 6858.59 (521.51) 16 7212.41 (418.62) 19 31.345 (2.383) 32.962 (1.913) 

Droot 0.238 (0.020) 1980.24 (159.76) 35 1878.00 (229.32) 17 2076.80 (226.67) 18 8.583 (1.048) 9.491 (1.036) 

DECM 0.979 (0.068) 136.21 (27.57) 31 156.72 (56.54) 14 119.31 (20.52) 17 0.716 (0.258) 0.545 (0.094) 

Drhizoplane 0.076 (0.010) 231.81 (21.54) 36 241.61 (33.26) 17 223.04 (28.65) 19 1.104 (0.152) 1.019 (0.131) 

Drhizosphere 0.035 (0.004) 167.07 (20.08) 35 122.88 (22.96) 16 204.29 (29.39) 19 0.562 (0.105) 0.934 (0.134) 

Dcoarse 0.014 (0.002) 53.74 (11.29) 33 60.44 (18.81) 15 48.15 (13.69) 18 0.276 (0.086) 0.220 (0.063) 

Rbulk 0.001 (0.000) 3.96 (0.50) 27 5.35 (0.83) 13 2.68 (0.39) 14 0.024 (0.004) 0.012 (0.002) 

Rrhizosphere 0.004 (0.001) 4.90 (1.06) 33 4.80 (1.67) 16 4.98 (1.39) 19 0.022 (0.008) 0.023 (0.006) 

RECM 0.119 (0.021) 2.43 (0.48) 34 2.48 (0.86) 16 2.39 (0.52) 18 0.011 (0.004) 0.011 (0.002) 

Rroot 0.013 (0.001) 3.76 (0.47) 33 4.96 (0.80) 16 2.64 (0.35) 17 0.023 (0.004) 0.012 (0.002) 

Rshoot 0.006 (0.001) 2.76 (1.11) 6 3.46 (1.59) 4 1.37 (0.59) 2 0.016 (0.007) 0.006 (0.003) 

Plant and soil mean values 

Dplant  9167.11  8893.31  9408.52  40.64 43.00 

Dsoil  452.62  424.93  475.48  1.94 2.17 

Rsoil  8.86  10.15  7.66  0.05 0.03 

Rplant  8.95  10.89  6.40  0.05 0.03 

APE = atom percent excess; n = number of significantly enriched samples; Total amount added during pulse = 29 020 µg excess 
13

C; Mean 764 

amount fixed after 1-day chase = 21 881.08 µg excess 
13

C765 
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Table 2. Effects of hyphal restriction and donor relatedness treatments on excess 
13

C as 
12

C equivalent (µg) of recipient Pseudotsuga menziesii 766 

var. glauca seedling biomass pools, using maximum likelihood analysis of linear mixed-effects models
1 
and likelihood ratio tests 767 

Pool Rbulk  Rrhizosphere  RECM  Rroot  

Data transformation - sqrt - log10 

Marginal R
2
 0.605 0.565 0.325 0.673 

Factor df F-value P-value df F-value P-value df F-value P-value df F-value P-value 

Intercept 1,15 97.53 <0.0001 1,15 283.15 <0.0001 1,15 50.41 <0.0001 1,15 110.65 <0.0001 

Relatedness (Re) 1,15 1.81 0.199 1,15 0.15 0.708 1,15 0.08 0.787 1,15 6.47 0.020 

Hyphal (Hy) 1,15 3.65 0.077 1,15 3.29 0.090 1,15 0.79 0.387 1,15 5.38 0.032 

Recipient Family (Rfam) 3,15 2.79 0.079 3,15 2.14 0.138 3,15 0.31 0.816 3,15 0.50 0.687 

Re*Hy 1,15 0.14 0.710 1,15 0.31 0.585 1,15 1.82 0.197 1,15 2.34 0.143 

Re*Rfam 3,15 0.37 0.775 3,15 0.61 0.619 3,15 1.55 0.243 3,15 4.59 0.015 

Hy*Rfam 3,15 3.36 0.050 3,15 3.54 0.041 3,15 0.03 0.991 3,15 4.14 0.021 

Values in bold are significant at the α < 0.05 level.  768 

Marginal R
2
 = model fit based on fixed factors alone.  Inclusion of random factor did not increase model fit. 769 

1
Model form: (Pool) ~ (Re)*(Hy) + (Re)*(Rfam) + (Hy)*(Rfam), random ~ 1| (Donor family) 770 
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Table 3. Identity and relative abundance of root-associated fungi on kin and non-kin Pseudotsuga menziesii var. glauca seedlings based on root 771 

tip morphotyping and ITS region taxonomic classification.  No significant differences in colonisation were observed between mesh sizes. 772 

Fungal morphotype ID Seedling Relative abundance Accession  Sequence match (NCBI accession)  % Identity 

Kin Non-kin 

Rhizopogon vinicolor (Morphotype 1) Donor 0.46 0.58 KT314836 Rhizopogon vinicolor (AF263933) 652/656 (99%) 

Recipient 0.44 0.57 

Rhizopogon vinicolor (Morphotype 2) Donor 0.24 0.11 KT314840 Rhizopogon vinicolor (HQ385848) 529/535 (99%) 

Recipient 0.14 0.03 

Pyronemataceae sp. Donor 0.12 0.09 KT314854 uncultured Pyronemataceae (GU452518) 524/524 (100%) 

Recipient 0.26 0.29 

Wilcoxina sp. Donor 0.08 0.05 - Sequencing failed – Taxonomic ID - 

Recipient 0.13 0.09 

Uncolonised root tips Donor 0.05 0.15 N/A N/A N/A 

Recipient 0.00 <0.01 

Fusarium sp. Donor 0.03 0.01 KT314859 Fusarium acuminatum (KP068924) 478/478 (100%) 

Recipient 0.03 0.02 KT314860 Fusarium oxysporum (KP132221) 451/451 (100%) 

Rhizopogon sp. Donor 0.01 0.01 KT314850 Rhizopogon fragrans (AM085523) 619/621 (99%) 

Recipient < 0.01 < 0.01 

Rhizopogon ochraceisporus Donor 0.01 0.00 KT314851 Rhizopogon ochraceisporus (AF366389) 603/609 (99%) 

Recipient 0.00 0.00 

N/A = not applicable (uncolonised root tips which did not generate fungal DNA). 773 

 774 
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