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Article  50 

 51 

Capsule 52 

Meteorology of Tropical West Africa: The Forecasters' Handbook is set to change the way 53 

forecasters, researchers and students learn about tropical meteorology and will serve to 54 

drive demand for new forecasting tools. 55 

 56 

Abstract  57 

Bridging the gap between rapidly moving scientific research and specific forecasting tools, 58 

Meteorology of Tropical West Africa: The Forecasters' Handbook, gives unprecedented 59 

access to the latest science for the region’s forecasters, researchers and students and 60 

combines this with pragmatic approaches to forecasting. It is set to change the way 61 

tropical meteorology is learned and will serve to drive demand for new forecasting tools. 62 

The Handbook builds upon the legacy of the AMMA (African Monsoon Multidisciplinary 63 

Analysis) project (www.amma-international.org), making the latest science applicable to 64 

forecasting in the region. By bringing together, at the outset, researchers and forecasters 65 

from across the region, and linking to applications, user communities and decision-makers, 66 

the Forecasters’ Handbook provides a template for finding much needed solutions to 67 

critical issues such as building resilience to weather hazards and climate change in West 68 

Africa. 69 

 70 

 71 

1. INTRODUCTION 72 

Daily weather patterns directly influence human survival in Africa more so than in any 73 

other well-populated continent. Furthermore, West Africa currently exhibits one of the 74 

largest population growths on Earth, with many emerging megacities that are prone to 75 



BAMS -- Article -- 

 4 

urban flooding from very intense convective events. Despite this, 24-hour quantitative 76 

precipitation forecasts for West Africa often have no additional skill when compared to 77 

climatology in operational ensemble forecasts from global numerical weather predication 78 

models (Vogel et al. 2018). Indeed, weather forecasting and “nowcasting” for the region 79 

has in recent years fallen behind relative to other parts of the world.  80 

To advance the scientific understanding of the weather and climate of West Africa, and its 81 

human interactions, AMMA, the African Monsoon Multidisciplinary Analysis (Redelsperger 82 

et al. 2006, Polcher et al. 2011 and Lebel et al. 2011) was launched in the spring of 2002 83 

with funding from France (in 2002), the UK (in 2004) and the European Commission and 84 

the US (in 2005). It was the largest program of research into the African environment and 85 

climate ever attempted. An overarching goal of the project was to ensure that the 86 

multidisciplinary research was effectively integrated with prediction and decision-making 87 

activity and AMMA has thus been deeply rooted in the realities of operational methods in 88 

the region (Fink et al. 2011). Part of AMMA’s legacy was the activation of a remarkable 89 

community of researchers and forecasters from Africa and around the world. By continuing 90 

to work together, this community has since produced a landmark document, describing the 91 

state-of-the-art in weather prediction for tropical and subtropical West Africa, and updating 92 

forecasting techniques.  93 

The Forecasters’ Handbook utilizes the new weather and climate research from AMMA, 94 

and makes this applicable to forecasting. Through its sponsorship by the World 95 

Meteorological Organization, and its publication as a textbook in 2017, the methods and 96 

tools will be made available to the operational prediction community in West Africa, to 97 

early-career researchers, to summer school participants such as those with the Ewiem 98 

Nimdie (Tompkins et al. 2012; Danuor et al; 2011), started in AMMA, as well as to future 99 

generations of undergraduate and Ph.D. students of Meteorology and related fields from 100 

all over the globe. 101 
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 102 

2. KEY ELEMENTS  103 

Our overall aim in developing the Handbook was to synthesize the latest knowledge of 104 

African meteorology with operational tools and methodologies for improving weather 105 

forecasting in West Africa. One specific objective was to transfer new insights into the 106 

dynamics of West African weather systems, which emerged from recent international 107 

research efforts such as AMMA, into operational forecasting (Polcher et al. 2011; Fink et 108 

al. 2011). There is surprisingly little documented text regarding tropical forecasting, and 109 

almost nothing written about West African meteorology outside of scientific papers. The 110 

Forecasters’ Handbook therefore sets out to make optimum use of the rapidly-moving 111 

research in this area, and to move African meteorology forwards as quickly as possible.  112 

A second objective was to summarize the recent status of understanding of West African 113 

weather and climate systems across scales, from planetary to local (see for example Lebel 114 

et al. 2010). As a consequence, the Handbook is presented in a textbook style, with each 115 

chapter starting with the scientific background, followed by operational methods. A series 116 

of case studies provided by Météo-France are also available and updated in the online 117 

version (see Table 1), enhancing understanding of the potential application of methods. A 118 

third objective was to produce a physical book. The reason for this was that whilst there is 119 

a diversity of resources available to forecasters in the region, only a number of National 120 

Hydrological and Meteorological Services (NHMS) have access to sophisticated data 121 

products and tools in their main forecasting centres (for example, Ghana Meteorological 122 

Agency (GMA) - Accra, Ghana; Agence Nationale de l'Aviation Civile et de la 123 

Météorologie (ANACIM) – Dakar, Senegal; African Centre of Meteorological Application for 124 

Development (ACMAD) - Niamey, Niger), whilst many of the provincial offices work in 125 

isolation and without access to the internet. There was, therefore, a real need to create a 126 



BAMS -- Article -- 

 6 

traditional, printed handbook to be used as a reference guide that forecasters can refer to 127 

when they need to check details of thresholds, or examples of a phenomenon. 128 

 129 

To produce the Handbook, formal governance structures were put in place at the outset, in 130 

order to generate ownership, provide credibility and build the sustainability of this 131 

resource. Key partners to achieve this included ACMAD (the African Centre of 132 

Meteorological Application for Development) and the WMO (World Meteorological 133 

Organization).  134 

 135 

Place sidebar 1 here 136 

 137 

The Editorial Committee (Sidebar 1) provided strategic guidance on the project 138 

throughout. It agreed to the Editors, developed the overall structure and content, and 139 

approved and invited chapter authors and other consultants. 140 

 141 

The Lead Authors were both researchers and forecasters, ensuring the pull-through of the 142 

relevant latest content, and were able to involve a wide group of “contributors” for each 143 

chapter comprising operational forecasters and other specialists in West African 144 

forecasting. A vital piece of the jigsaw was including members of the African 145 

Meteorological Services who were able to commit their time, and were fully supported by 146 

their organizations.   147 

 148 

3. HANDBOOK STRUCTURE 149 

To help build vital capacity, and enable NHMS to develop practical applications from 150 

weather and climate research that can support resilient strategies (Boyd et al. 2013) on the 151 

ground, each chapter in the Handbook is split into two parts: 152 
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 153 

Part 1: Scientific background and literature 154 

Part 2: Operational methods  155 

 156 

Some chapters also include a final section of “Case studies and learning resources”; 157 

additional case studies have been provided in the online support. 158 

 159 

This layout means that the Handbook can be used for self-study. We describe pragmatic 160 

approaches to forecasting, including for example the plotting of synoptic charts from 161 

regional observations, and the computation of stability indices from upper air data. 162 

Working together, forecasters and researchers have generated canonical figures for 163 

typical synoptic situations, thereby translating the science to specific forecasting tools. The 164 

case studies help to close the gap between research and user applications through 165 

relevant examples (see Table 1), and with this in mind, explicit attention has been given to 166 

useful graphical and presentational formats for forecast dissemination.  167 

 168 

Table 1: List of Case Studies 169 

 170 

The Handbook has been deliberately designed to provide a logical flow from large scales 171 

to the local level, with forecasters in mind as they are working at their posts. A summary of 172 

a number of the key themes in each chapter follow below. 173 

 174 

The Handbook  begins by discussing the mean climate and seasonal cycle of West 175 

Africa (Chapter 1; see Fig. 1) based on new observations made during AMMA including 176 

traditional in-situ ground and upper-air observations, a state-of-the-art re-analysis, as well 177 

as a variety of satellite-derived maps. Focus is on the hydrologic cycle, including clouds, 178 

surface, and upper-air circulations, as well as the climatologies of African Easterly Waves. 179 
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The complex climate system over West Africa is synthezised in a map and meridional 180 

cross section. This builds on the classical four-weather zones concept (see Fig. 1) and 181 

Chapter 1 is likely one of the most complete and up-to-date climate references for the 182 

West African Monsoon (WAM) region. 183 

 184 

Fig. 1. The West African Monsoon (WAM) in July, depicted in (a) a map showing the 185 

major climate features, and (b) a north-south cross section between 10°W and 186 

10°E with classical weather zones A-D. Shown are positions of the intertropical 187 

discontinuity (ITD, also known as the intertropical front (ITF)), upper-level jet 188 

steams (African Easterly Jet, AEJ), tropical easterly jet (TEJ)/ easterly jet (EJ), 189 

and subtropical jet (STJ)), the monsoon layer (ML) (as defined by westerly or 190 

positive zonal winds), streamlines, clouds, the freezing level (0°C isotherm), 191 

isentropes (theta), minimum (Tn), maximum (Tx), mean (T), and dewpoint 192 

(Td) temperatures, atmospheric pressure (p), and mean monthly rainfall totals 193 

(RR). The weather zones (A-D) denote regions of specific and very different 194 

weather across the WAM as described by Hamilton et al. in their 1945 195 

conceptual model. 196 

 197 

Discussion of mean climate then flows to synoptic systems (Chapter 2) in which many of 198 

the convective rainfall events in the West African Monsoon (WAM) are embedded. AMMA 199 

has brought about considerable progress in the understanding and modeling of such 200 

systems. Prime examples are African Easterly Waves (AEWs) and their diversity, as they 201 

appear on daily weather maps. There are many cases where important scientific ideas 202 

need to be known by forecasters but are not necessarily coupled to specific forecasting 203 

tools. For instance, all forecasters should know about the current understanding of AEWs, 204 

but this is not always easily translated into forecast parameters such as rainfall, winds or 205 
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visibility.  Fig. 2 is a new, consensus schematic of these various observable parameters 206 

and likely relationships. It was forged through many lengthy and animated conversations 207 

between researchers and forecasters, exemplifying the transfer of new insights into the 208 

dynamics of West African weather systems (e.g. a precipitable water perspective, its 209 

relationship with mesoscale convective systems (MCS)), and its translation into 210 

operational forecasting). The chapter also discusses tropical-extratropical interactions that 211 

are important in the dry and transition seasons. Also included are schematic depictions of 212 

the large-scale circulation associated with dry-season precipitation over West Africa linked 213 

to low-latitude upper-level disturbances from the extratropics.  214 

 215 

Fig. 2. Schematic of the various observable elements of an African Easterly Wave 216 

(AEW), and likely relationships between these. The left hand panels show a 217 

“normal” situation, as far as this exists, while the right hand panels show common 218 

alternatives.  219 

 220 

The deep convective systems that provide the bulk of the rainfall in West Africa (Chapter 221 

3) range from isolated cells to huge organized Mesoscale Convective Systems (MCSs), 222 

with new research from AMMA explaining how they are triggered. The type of convection 223 

depends on the ambient profiles of vertical wind shear and humidity distribution. Mid-level 224 

dry layers are pivotal in the creation of deep convective density currents, which in turn 225 

favor organization and longevity of convection. 226 

 227 

Moving through the atmospheric scales as the chapters advance, the phenomena that 228 

shape the local weather (Chapter 4) are discussed in the next chapter. West Africa is a 229 

region where the population is particularly vulnerable to local patterns of precipitation, 230 

temperatures and winds, and these fields are also critical for vital sectors such as aviation, 231 
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agriculture or healthcare, and thus local weather prediction is particularly important for the 232 

forecaster. The chapter brings new research from AMMA into forecasting, such as the 233 

dependence of measures of daily max/min temperatures on soil moisture, and new 234 

observations of wind-shear in the lower boundary layer. Topics discussed include gravity 235 

waves, inertial oscillations, land sea breezes and related cloudiness, winds and convective 236 

initiation related to land-surface characteristics, surface energy fluxes, low-level shear, and 237 

fog.  238 

 239 

A critical forecasting element influencing both synoptic and local conditions in West Africa 240 

is dust (Chapter 5). This phenomenon is tackled from different perspectives, explaining 241 

the physics of dust uplift in different meteorological conditions, and using these ideas to 242 

show how certain synoptic conditions can induce dust-generating winds over wide regions, 243 

as well as over a number of days. Key thresholds, and observational criteria for forecasting 244 

dust and associated visibility are tabulated. 245 

 246 

New knowledge about convective storms, local severe weather and dust storms come 247 

together in the discussion of nowcasting (Chapter 6). In preparing this material, it became 248 

apparent that systematic methodologies for nowcasting in West Africa are lacking.  A 249 

general perspective on nowcasting principles, methods and operational practice are thus 250 

given, underpinned with examples from the Americas as well as from West Africa. Despite 251 

the current lack of nowcasting know-how, the longevity of the region’s MCSs (which can 252 

persist and propagate for many hours) gives optimism that nowcasting methods can in the 253 

future produce useful alerts and advisories for severe weather. As there are only a few 254 

radars that are operational in the region, emphasis is placed on the ways in which 255 

nowcasting can exploit satellite remote sensing products. This field is clearly one in which 256 
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more research is needed in the region in order to develop climatologies, conceptual 257 

models, case studies and quantitative tools.  258 

 259 

AMMA has shown that MCSs and convective activity are modulated not only by synoptic 260 

systems like African easterly waves, but also at longer intraseasonal time scales (10-90-261 

day). These sub-seasonal modes of variability are mostly controlled by convectively-262 

coupled equatorial waves, mid-latitude atmospheric intrusions, as well as the Madden-263 

Julian Oscillation (MJO). They influence the onset of the rainy season and have an 264 

important impact on agricultural yields in the Sahel. The progress made in sub-seasonal 265 

forecasting (Chapter 7) emphasizes the skill of weather prediction at lead times of 1-14 266 

days, and that there exists genuine potential in at least week-1 and week-2 forecasts. 267 

 268 

Transitioning from subseasonal to seasonal prediction timescales (Chapter 8), the 269 

Handbook reviews and explains the blend of statistical and numerical methods which are 270 

currently used to deliver guidance and advisories in the region. Examples of specific 271 

impact-focused seasonal forecasting efforts, in regard to water resources, agriculture and 272 

meningitis prediction, are used to illustrate the methods.  273 

 274 

The next chapter of the Forecasters’Handbook introduces the reader to all kinds of satellite 275 

sensors (Chapter 9), which are an inevitable and growing source of information in a 276 

ground and upper-air data sparse region. The lead author also led the COMET online 277 

tropical meteorology textbook (https://www.meted.ucar.edu) development and this is 278 

reflected in a scholarly review on the use of more classical (e.g., visible, infrared and water 279 

vapor images) and advanced (e.g., RGB multi-channel composites, spaceborne 280 

microwave and radar products) satellite information. 281 

 282 
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Clearly, any survey of forecasting methods must address the topic of numerical weather 283 

prediction, (NWP; Chapter 10): know-how and training in this area is one of the highest 284 

demands among West African forecasters, and the field of NWP is moving forward rapidly. 285 

The next generation of convection-permitting models may in the near future offer the 286 

chance to deliver more reliable local scale predictions. The fundamentals of NWP, 287 

including the basic equations solved, the essentials of various parametrization schemes, 288 

and the principles of data assimilation and ensemble prediction, and examples of the use 289 

of NWP in operational forecasting (Chapter 10), link the material back to questions of 290 

synoptic and local prediction, as well as nowcasting. 291 

 292 

An exciting development in AMMA was the creation and interpretation of the WASA/F 293 

(West African Synthetic Analysis and Forecast: WASA/F; Chapter 11) maps that 294 

emerged from the 2006 ground campaign. The maps synthesize the major weather 295 

features, such as the monsoon trough, African easterly jet, and the troughs and cyclonic 296 

centres associated with African easterly waves (AEW), on an analysis and forecast map, 297 

which helps forecasters capture complex weather situations at a glance. The WASA/F 298 

maps continue to be produced operationally at ACMAD and CISMF by Météo-France 299 

forecasters. The 10 key features that are included in the WASA/F are shown in Fig. 3.  300 

  301 

Mindful that the Forecasters’ Handbook is both a reference guide and a learning resource, 302 

online training materials have been made available in both English and French. This 303 

includes the case studies, as well as the ability for users to visualise selected maps and 304 

obtain scholarly explanations in both languages (see http://www.umr-305 

cnrm.fr/waf_handbook_casestudies). Further to this, the Handbook was fully translated 306 

into French, published and made available in July 2018 at the following 307 

website: https://laboutique.edpsciences.fr/produit/1038/9782759821808/Meteorologie%20308 
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de%20lAfrique%20de%20lOuest%20tropicale with165 French copies distributed across 309 

West Africa.  310 

 311 

4. CHALLENGES  312 

From first inception to completion, the Forecasters’ Handbook has taken 10 years of work. 313 

The decade has been driven by debate, as much as by a commonly held desire to make a 314 

difference; to transfer insight and summarize our mutual understanding for the benefit of 315 

future generations. Notable challenges have been in reaching consensus against a 316 

background of basic differences of perspective between researchers, NWP providers and 317 

bench forecasters, and in sustaining momentum amongst a community of scientists and 318 

operational specialists without specific funding for the work. 319 

 320 

Basic differences in perspective have been a common theme throughout the project. One 321 

example of this was in forecasters’ use of 850 hPa charts  to locate the depth, northward 322 

extension, and organization of monsoon inflow and the presence and locations of vortices 323 

and convergence lines. Researchers had neglected this important level, because they had 324 

focused on the theoretical dynamics of interactions between waves at the surface and the 325 

jet level of 650 hPa. This made clear the importance of making space for dialogue 326 

between both researchers and forecasters. At times, both communities displayed 327 

conservatism and were unwilling to abandon their accepted ideas and untested methods. 328 

For example, researchers were unwilling to accept that AEW troughs are commonly 329 

observed by forecasters to tilt downshear, while forecasters were reluctant initially to 330 

abandon their use of divergence and convergence fields in rainfall prediction. Another 331 

example, came from the realization that fog is a common high-impact phenomenon in the 332 

region, for which more research is needed.  Indeed, responding to this particular challenge 333 

threw into sharp relief the balance that had to be struck between the latest science and 334 
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finding pragmatic solutions in often resource poor environments. Ultimately, untested 335 

methods were included in the Handbook, if there was demonstrated success in another 336 

part of the world. An example of this would be the use of the temperature and humidity 337 

data for evaluation of the human impact of extreme temperatures, where the methodology 338 

comes from the USA. This approach ultimately will enable forecasters to perform the 339 

necessary testing for their region. 340 

 341 

5. MOVING FORWARD:  Top 10 suggested research directions 342 

The closing of this chapter of work from AMMA, inevitably opens the door to the next. 343 

Together, the community has identified research areas to focus on that are driven by the 344 

needs of forecast operations and users - those with a shorter time horizon for realizing 345 

improvements in forecasting. These include: 346 

1. Better understanding of other African regions – coastal regions, central Africa, and 347 

the Eastern Sahel as a source of intraseasonal variability affecting West Africa;  348 

2. Further study of the forcing by, and interactions with, midlatitude and equatorial 349 

waves, and the Indian monsoon; 350 

3.  Extending research to other seasons, in particular spring and the corresponding 351 

heat waves, and to the pre-onset of the monsoon; 352 

4. Coupling with the ocean, in particular cold tongue development and its impact on 353 

the monsoon; 354 

5. More attention on radiation processes, clouds and aerosols – because these are 355 

needed to improve models for the region; 356 

6. More research on maximum and minimum temperatures, and their links to synoptic 357 

and aerosol environments; 358 

7. More research into climatology and the dynamics of fog; 359 
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8. Development of region-specific nowcasting procedures. These must take into 360 

account the different observational and model data available, notably the lack of radars 361 

and the need to use high frequency geostationary images. A suggested entry point might 362 

be through leveraging and collaborating with the European Organisation for the 363 

Exploitation of Meteorological Satellites (EUMETSAT) and the COMET Program, part of 364 

the University Corporation for Atmospheric Research's (UCAR's) Community Programs 365 

(UCP). Both EUMETSAT and COMET have a long record of training through the African 366 

Satellite Meteorology Education and Training (ASMET) program; 367 

9. Need for more, and better-validated conceptual models, to inform interpretation, 368 

nowcasting, and forecast communication. Notably, better synoptic models for the 369 

situations leading to extreme rainfall or drought, such as breaking AEWs or dry 370 

intrusions; 371 

10. Exploitation of (i) convective-scale NWP, and (ii) ensembles, especially at the 372 

convective-scale - need to deal more in depth with ensemble techniques which are as of 373 

yet of modest value for West Africa due to the very poor skill of models in the region. 374 

 375 

In addition to the research required going forwards, the Handbook should be embedded 376 

into training programs for forecasters in the region. Sustainability would be enhanced 377 

through linking these into capacity building activities integrated into the implementation of 378 

the Global Framework for Climate Services for the Sahel through country-driven National 379 

Action Plans. By having a common reference, it is intended that good practice across the 380 

region can be shared, and that future improvements in practice are completed against a 381 

common understanding. Plans are already going ahead to use the handbook to support 382 

training activities in the l’École Africaine de la Météorologie et de l’Aviation Civile (EAMAC) 383 

regional centers at Lagos and Niamey, and in international training, for instance supporting 384 
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the World Meteorological Organisation's Severe Weather Forecasting Demonstration 385 

Project (SWFDP) West African program. 386 

Finally, the success of the Handbook project has raised questions around whether similar 387 

material can be collected for other areas, such as East Africa. The African Science for 388 

Weather Information and Forecasting Techniques, funded in 2017 by the UK’s Global 389 

Challenge Research Fund (GCRF), will provide resources over a period of 4 years to 390 

support training initiatives making use of the Handbook, and will extend the material to the 391 

East African region. 392 

 393 

6. TIMELINESS 394 

Given the notable trend emerging in science applications worldwide which increase the 395 

emphasis on the need to provide ‘climate services’ (Lamb et al., 2011), the production of 396 

this Handbook ensures that for the first time ever, there is long-term documentation of 397 

robust, reliable and up-to-date scientific weather forecasting methods available to the 398 

operational prediction community in West Africa. The publication of a French translation of 399 

the handbook in 2018 will undoubtedly help to spread its use in the Francophone West 400 

African countries. Its preparation has helped to sustain partnerships between forecasters 401 

and African researchers. Its legacy includes the sharing of existing good practice made 402 

possible in Africa and elsewhere, and the development of new tools, new methods and 403 

new data sources for forecaster training and wider meteorological education. Dialogue, 404 

ownership and co-development were pioneering elements for overcoming multiple barriers 405 

and bringing the Handbook to completion. This co-production approach now underpins the 406 

effective delivery of Climate Services not only across West Africa, but across the world. 407 

The Handbook provides a means to link the producers (the African weather services) with 408 

the user community of decision-takers (for instance aviation, agriculture, industry, 409 

humanitarian and development practitioners) and decision-makers (government and policy 410 
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makers).	Above all, the production of the Forecasters Handbook for West Africa 411 

demonstrates that research and forecasting knowledge, held by a dispersed community of 412 

people, with different perspectives and priorities, can be brought together effectively to 413 

address climate challenges. We can only become truly resilient to changes in climate if we 414 

improve our capacity to respond in partnership. By bringing together, at the outset, 415 

researchers and forecasters from across the region, and linking to applications, user 416 

communities, and decision makers, the Forecasters’ Handbook provides a template for 417 

finding much needed solutions to critical issues such as building resilience to weather 418 

hazards and climate change in West Africa.  419 

 420 
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TABLE CAPTION LIST  519 

Table 1: List of Case Studies 520 

521 
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FIGURE CAPTION LIST 522 

Fig. 1. The West African Monsoon (WAM) in July, depicted in (a) a map showing the 523 

major climate features, and (b) a north-south cross section between 10°W and 524 

10°E with classical weather zones A-D. Shown are positions of the intertropical 525 

discontinuity (ITD, also known as the intertropical front (ITF)), upper-level jet 526 

steams (African Easterly Jet, AEJ), tropical easterly jet (TEJ)/ easterly jet (EJ), 527 

and subtropical jet (STJ)), the monsoon layer (ML) (as defined by westerly or 528 

positive zonal winds), streamlines, clouds, the freezing level (0°C isotherm), 529 

isentropes (theta), minimum (Tn), maximum (Tx), mean (T), and dewpoint 530 

(Td) temperatures, atmospheric pressure (p), and mean monthly rainfall totals 531 

(RR). The weather zones (A-D) denote regions of specific and very different 532 

weather across the WAM as described by Hamilton et al. in their 1945 533 

conceptual model. 534 

 535 

Fig. 2. Schematic of the various observable elements of an African Easterly Wave 536 

(AEW), and likely relationships between these. The left hand panels show a 537 

“normal” situation, as far as this exists, while the right hand panels show common 538 

alternatives  539 

 540 

 541 

Fig. 3. An example of the West African Synthetic Analysis and Forecast (WASA/F) 542 

Map developed in AMMA in 2006, and now used operationally at ACMAD. Ten key 543 

features included in the WASA/F are: (1) Inter-tropical Discontinuity (ITD); (2) Heat 544 

Low; (3) Subtropical Jet (STJ); (4) Trough from mid-latitude; (5) Tropical Easterly Jet 545 

(TEJ); (6) African Easterly Jet (AEJ); (7) Troughs and cyclonic centres associated to 546 

African Easterly Waves (AEW); (8) Midlevel dry intrusions; (9) Monsoon Trough 547 
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(MT); and (10) Convective Activity – (a) Suppressed Convection, and (b) Convection: 548 

Isolated, Mesoscale Convective Systems (MCSs) (e.g. Squall Lines(SL)) (for 549 

operational forecasting) 550 

551 
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Fig. 1. The West African Monsoon (WAM) in July, depicted in (a) a map 567 

showing the major climate features, and (b) a north-south meridional cross 568 

section between 10°W and 10°E with classical weather zones A-D. Shown are 569 

positions of the intertropical discontinuity (ITD, also known as the 570 

intertropical front (ITF)), upper-level jetsteams (African Easterly Jet, AEJ), 571 

tropical easterly jet (TEJ)/ easterly jet (EJ), and subtropical jet (STJ)), the 572 

monsoon layer (ML) (as defined by westerly or positive zonal winds), 573 

streamlines, clouds, the freezing level (0°C isotherm), isentropes (theta), 574 

minimum (Tn), maximum (Tx), mean (T), and dewpoint (Td) temperatures, 575 

atmospheric pressure (p), and mean monthly rainfall totals (RR). The weather 576 

zones (A-D) denote regions of specific and very different weather across the 577 
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WAM as described by Hamilton et al. in their 1945 conceptual model.   578 

 579 

  580 
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 581 

Fig. 2. Schematic of the various observable elements of an African Easterly 582 

Wave (AEW), and likely relationships between these. The left hand panels 583 

show a “normal” situation, as far as this exists, while the right hand panels 584 

show common alternatives.  585 

 586 

 587 
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Fig. 3. An example of the West African Synthetic Analysis and Forecast 604 

(WASA/F) Map developed in AMMA in 2006, and now used operationally at 605 

ACMAD. Ten key features included in the WASA/F are: (1) Inter-tropical 606 

Discontinuity (ITD); (2) Heat Low; (3) Subtropical Jet (STJ); (4) Trough from 607 

mid-latitude; (5) Tropical Easterly Jet (TEJ); (6) African Easterly Jet (AEJ); (7) 608 

Troughs and cyclonic centres (C) associated with African Easterly Waves 609 

(AEW); (8) Midlevel dry intrusions; (9) Monsoon Trough (MT); and (10) 610 

WASA D-1 (05-08-06) 1800Z 
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Convective Activity – (a) Suppressed Convection, and (b) Convection: Isolated, 611 

Mesoscale Convective Systems (MCSs) (e.g. Squall Lines(SL)). The pressure 612 

levels at which varying features reside are denoted, with for example, "C600" 613 

meaning the cyclonic centre associated with an AEW at 600 hPa, and "MT850" 614 

referring to the monsoon trough at 850 hPa. 615 

 616 
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TABLE 1: LIST OF CASE STUDIES  

CASE STUDY SUMMARY LINK 

Case study CS01: 

1-10 Aug 2012  

Life cycle, structure and passage 

over West Africa of a train of 

African Easterly Waves (AEWs), 

resulting in a breaking of the 

African Easterly Wave (AEJ) 

“Case studies” Website1. See 

also Ch. 2 

Case study CS02: 

13-16 Aug 2012 

Life cycle, structure and passage 

over West Africa of a canonical 

AEW) 

“Case studies” Website. 

Largely used to illustrate the 

WASA/F method in Ch. 11  

Case study CS03: 

5-19 Oct 2012 

Mid-latitude interaction case study “Case studies” Website. See 

also Ch. 2 

Case study CS04: 

28 Aug-3 Sept 2009 

THORPEX-Africa case study - 

Ouagadougou flood 

“Case studies” Website 

Case study CS05: 

15-18 Mar 2012 

Dust Storm driven by the Libya 

high pressure 

“Case studies” Website 

Case study CS06: 

4-7 Feb 2012 

Dust case II - Azores high 

pressure 

“Case studies” Website 

Case study CS09: 

24-26 Aug 2012 

Dakar flood and localised 

convection on Guinea Coast 

See “Nowcasting” Ch. 6 

Case study CS14: 

27 Sept 2014  

Squall line triggering by a cold 

pool  

Ch. 3 

                                                
1 http://www.umr-cnrm.fr/waf_handbook_casestudies. The case study website is open to 
all with English and French versions available. 
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Case study CS16: 

1-10 Sept 2014 

AEWs at the coast - Southern 

Vortex Configuration 

Ch.2, Section 2.2.2.3 

Case study CS17: 

21-24 July 2014 

AEWs at the coast -Northern 

Vortex Configuration 

Chapter 2, Section 2.2.2.3 
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