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University of Reading,Whiteknights, PO BOX 220, Reading, RG6 6AX,5

United Kingdom6

(Dated: 4 October 2016)7

Data assimilation means to find an (approximate) trajectory of a dynamical model

that (approximately) matches a given set of observations. A direct evaluation of the

trajectory against the available observations is likely to yield a too optimistic view of

performance, since the observations were already used to find the solution. A possible

remedy is presented which simply consists of estimating that optimism, thereby giving

a more realistic picture of the ‘out of sample’ performance. Our approach is inspired

by methods from statistical learning employed for model selection and assessment

purposes in statistics. Applying similar ideas to data assimilation algorithms yields an

operationally viable means of assessment. The approach can be used to improve the

performance of models or the data assimilation itself. This is illustrated by optimising

the feedback gain for data assimilation employing linear feedback.
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Data assimilation means to find an (approximate) trajectory of a dynamical8

model that (approximately) matches a given set of observations. A fundamental9

problem of data assimilation experiments in atmospheric contexts is that there10

is no possibility of replication, that is, truly “out of sample” observations from11

the same underlying flow pattern but with independent observational errors are12

typically not available. A direct evaluation against the available observations13

is likely to yield unrealistic results though, since the observations were already14

used to find the solution. A possible remedy is presented which simply consists15

of estimating that optimism, thereby giving a more realistic picture of the ‘out of16

sample’ performance. The approach is particularly simple when applied to data17

assimilation algorithms employing linear error feedback. A realistic performance18

assessment is obtained by comparing with the true trajectory. In addition this19

method provides a simple and efficient means to determine the optimal feedback20

gain operationally since it only requires known quantities to be calculated. The21

optimality of this gain is verified numerically. Further, we illustrate theoretical22

results which demonstrate that in linear systems with gaussian perturbations,23

the feedback thus determined will approach the optimal (Kalman) gain in the24

limit of large observational windows (the proof will be given elsewhere).25

I. INTRODUCTION26

Data Assimilation involves the incorporation of observational data into a numerical model27

to produce a model state that accurately describes the observed reality. This procedure28

uses an explicit dynamical model for the time evolution of the observed reality. The results29

produced by data assimilation must satisfy two requirements. Firstly they must be close to30

the observations up to a certain degree of accuracy and secondly they should be consistent31

with the dynamical model to a certain degree of accuracy. In other words, the trajectory32

produced by data assimilation must be close to the observations and it must be close to33

being an orbit of the model.34

Once the observations have been used to estimate these trajectories, they should not be35

used to evaluate the performance of the model (at least not without precaution) as this36
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might give unrealistic results. Simply comparing the observations with the output of the37

data assimilation scheme will provide an overly optimistic picture of performance. Moreover,38

assessing the performance using this tracking error could easily be cheated. An example is39

taking the output to be the observations themselves.40

As we will see in Section II, a more realistic evaluation of the performance needs to take41

into account that the output and the observation errors are correlated. To this end, we42

investigate the concept of out-of-sample error from statistics and adapt it to the problem of43

data assimilation. In statistics, estimates of the out-of-sample error are used to measure how44

well a statistical model, after fitting it to observations, generalises to unseen data1,2. Although45

the concept of the out-of-sample error is a very general one, actual implementations differ46

considerably depending on the structure of the estimation problem. Further, a fundamental47

assumption often made in statistics is that the observations (conditionally on the explanatory48

variables) are independent and identically distributed. In the case of linear regression models,49

a popular statistic for model selection in statistical learning is the Cp statistic3,4. Other50

examples are Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion51

(BIC). These concepts differ in terms of precise interpretation and range of applicability.52

The aim of this paper is to provide similar tools in the context of data assimilation.53

The underlying problem is essentially the same as in statistics. Suppose a time series of54

observations has been assimilated into a dynamical model. Then the output should be close55

to hypothetical observations from the same flow patterns but with independent errors. If56

the results are not close to these hypothetical observations, then this can only mean that57

the model is in fact not able to explain the dynamics underlying the observations. The58

out-of-sample error should be a measure of how close the output will be to such hypothetical59

observations. Although observations from the same flow pattern but with independent errors60

are typically not available in practice, we show that the out-of-sample error can be estimated61

using terms that are operationally available. Specifically we show that the out-of-sample62

error is the sum of the tracking error and a term which we call the optimism. This optimism63

gives us a representation of how the model and observations depend on each other and it64

quanties how much the tracking error misestimates the out-of-sample error. The derived65

expression is reminiscent of the Cp statistic used in model selection in statistical learning3,4.66

We show that the optimism takes a very simple form if we assume that the model employs a67

linear error feedback. There are many data assimilation algorithms that implement such a68
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feedback5. More details and references concerning such algorithms can be found in section II.69

Wahba et al. 6 apply the ideas of out-of-sample performance to data assimilation for linear70

systems. In this publication they use generalised cross validation to get an estimate of the71

true performance. The key equation in this paper is equation (2.11) which is similar to72

equation (7.46) in Hastie, Tibshirani, and Friedman 3 with the new aspect being the stochastic73

approximation to the denominator. The results presented in Wahba et al. 6 however, apply74

only in a linear context. As it will be shown, the analysis presented in our paper does not75

require linear models but merely linear error feedback.76

We stress that although in terms of the problem we are addressing there is a strong77

similarity between statistics and data assimilation, our analysis will be different. For instance,78

although the data assimilation uses linear error feedback, the dependence of the output79

on the observations as a whole is nonlinear, due to the nonlinearity of the dynamic model.80

Further, the observations are not independent. The derivation of the Cp statistic, AIC,81

BIC and many other related concepts used in statistics however assumes either linearity,82

independence or both (see Hastie, Tibshirani, and Friedman 3 , Sec 7.4).83

We demonstrate the usefulness of our approach with three numerical examples. In all84

three cases, we consider a simple data assimilation scheme by means of filtering with a85

linear error feedback. A persistent problem in practice is to find a suitable feedback. The86

feedback acts as a coupling between the true dynamics and the model. If the coupling is too87

weak the stability of the system cannot be guaranteed while if the coupling is too strong,88

results deteriorate because the noise will be overly attenuated. Striking the right balance89

requires a reliable assessment of the performance which is provided by our estimate of the90

out-of-sample performance. Note that this is relevant even in the case of linear systems91

with gaussian perturbations as computing the theoretically optimal Kalman Gain requires92

knowledge of the dynamical noise which is usually not available in practice. Our experiments93

demonstrate that the technique can be used in situations where the feedback gain matrix is94

completely unspecified and also in situations where it has a pre-determined structure but95

contains unknown parameters.96

In section II we define the tracking error, out-of-sample error and the optimism. These97

considerations are valid for any data assimilation algorithm in the case of additive observa-98

tional noise. We also consider general data assimilation algorithms which employ linear error99

feedback and determine an analytical expression for the optimism. Section III contains several100
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numerical experiments. In Section III A we apply the methodology to a linear system with101

gaussian perturbations. We minimise an estimate of the out-of-sample error to determine a102

feedback gain. We then compare this with the asymptotic Kalman Gain which is known to103

be optimal in this situation. Our experiments suggest that the gain determined numerically104

agrees with the optimal Kalman Gain in the limit of large observation windows. We discuss a105

theoretical result which confirms this finding. Next we consider a situation in which the data106

assimilation algorithm is constrained to have poles in certain locations which determines the107

gain up to a single parameter. This parameter is determined by minimising an estimate of108

the out-of-sample error.109

The remaining experiments consider non linear systems. In Section III B we consider110

a system in Lur’e form. These systems are special in that, despite being non linear, they111

permit observers with linear error dynamics. Again a linear feedback is used and we show112

how an estimate of the out-of-sample error can be used to determine the feedback. The113

performance of this feedback is assessed numerically by considering the error between the114

reconstructed and the true orbit. Our results indicate that this strategy of choosing the115

feedback gives close to optimal performance. Repeating the experiment with the Lorenz ’96116

system in Section III C confirm the results.117

II. TRACKING ERROR, OUTPUT ERROR AND OPTIMISM IN DATA118

ASSIMILATION119

Data assimilation is the procedure by which trajectories {zn ∈ RD, n = 1, . . . , N} (in some120

state space which we take to be RD) are computed with the help of a dynamical model and121

observations, {ηn, n = 1, . . . , N}. These trajectories should reproduce the observations up to122

some degree of accuracy for all n = 1, . . . , N . We express this latter part of the procedure123

formally as: The output yn = h(zn) is close to the observations {ηn, n = 1, . . . , N} up to124

some degree of accuracy, where h : RD → Rd is a function which maps the model’s state125

space into the observation space. This function is usually part of the problem specification.126

The exact structure of the model and of h is not important at this stage.127

Suppose we have observations {ηn ∈ Rd, n = 1, . . . , N} from some real world dynamical128

phenomenon. We assume ηn can be written as129

ηn = ζn + σrn (1)
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where {ζn, n = 1, . . . , N} are unknown quantities representing the desired signal, and σ ∈130

Rd×d is the observational error standard deviation. We assume that {ζn, n = 1, . . . , N} can131

be modelled as some stochastic process. The observation errors or noise, {rn, n = 1, . . . , N}132

are assumed to be independent with mean Ern = 0 and variance ErnrTn = 1 and they are133

independent of {ζn, n = 1, . . . , N}.134

Deviation of the output from the observations can be quantified by means of the tracking135

error,136

ET = E[yn − ηn]2. (2)

The tracking error though is not a very useful performance measure of data assimilation137

approaches. It is not difficult to design algorithms which achieve zero tracking error by138

simply using the observations as output, that is any DA algorithm which satisfies yn = ηn,139

n = 1, . . . , N achieves optimal performance with respect to ET as a performance measure.140

A performance measure which is much harder to hedge is the output error141

EO = E[yn − ζn]2. (3)

A useful relation between EO and ET can be established. Substituting the expression (1) for142

the observations into (2) and expanding, we get143

ET = E[yn − ηn]2 = E[yn − ζn]2 + tr(σTσ)− 2tr(σE[rny
T
n ]) (4)

since ζn and rn are independent. The notation ’tr’ denotes the trace of the matrix.144

We re-write this as145

EO + tr(σTσ) = E[yn − ηn]2 + 2tr(σE[rny
T
n ]). (5)

The term 2σE[rny
T
n ] is called the optimism. The optimism should be understood as a146

correlation between rn and yn, where yn depends on {rk, k = 1, . . . , N}. It is a measure147

of how much the tracking error misestimates the output error. We will argue that both148

the optimism and the tracking error (i.e the first term on the right hand side of (5) can149

be estimated using operationally available quantities. This will give us a handle on the150

output error which is, as we have argued, directly related to the true performance of the151

data assimilation.152

The quantity EO + σ2 can be interpreted as an ”Out-of-sample error” as follows: Define153

hypothetical observations154

η′n = ζn + r′n, n = 1, . . . , N (6)
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where {ζn, n = 1, . . . , N} is as before, {r′n, n = 1, . . . , N} is a process with the same155

distribution as {rn, n = 1, . . . , N} but independent from it. Then the out-of-sample error is156

the error between {yn, n = 1 . . . , N} and {η′n, n = 1, . . . , N}, which can be written as157

E[yn − η′n]2 = EO + σ2. (7)

The key difference between the tracking error and the out-of-sample error is the absence of158

correlation between {yn, n = 1 . . . , N} and {r′n, n = 1, . . . , N} in the latter, which is precisely159

the optimism.160

Equation (5) shows that the tracking error augmented with further terms, can be a useful161

measure of performance. Further the tracking error and optimism are relatively easy to162

estimate. In our experiments we will estimate the tracking error through an empirical average,163

namely164

ÊT =
1

N

N∑
k=1

(yk − ηk)2. (8)

Estimates of the optimism will be discussed next.165

We will first calculate a general expression for the optimism for data assimilation schemes166

which employ a linear error feedback. Most operational data assimilation schemes work in167

cycles over time. The background field, ẑn, is computed at the start of each cycle and usually168

it is based on information from previous cycles. Since any cycle uses observations available169

up to that point, the background field at time n only depends on η1, . . . , ηn−1. Nonetheless,170

the background field ẑn is supposed to be a first guess of the the state of the system at time171

n.172

In this paper we consider data assimilation algorithms which combine the new observation173

and background through a relationship of the form174

zn = ẑn + Kn(ηn − h(ẑn)) (9)

where Kn is a D × d matrix and can depend on η1, . . . , ηn−1 but not on ηn. As before, the175

mapping h : RD → Rd, maps points from model state space to observation space. The176

modified background, zn, is referred to as the analysis.177

The matrix Kn is the error feedback gain. Equation (9) tells us that the analysis has a178

linear dependence on the current observation, ηn and it depends on the previous observations179

through Kn and ẑn. Data assimilation schemes that fall into the presented approach include180
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Successive Correction Method (SCM)7,8; Optimal Interpolation (OI)9; 3D-Var10,11; Kalman181

Filter variants,12 and certain Synchronisation approaches. Synchronisation between dynamical182

systems has been studied for some time, see for example Pikovsky, Rosenblum, and Kurths 13 ;183

Huijberts, Nijmeijer, and Pogromsky 14 ; Boccaletti et al. 15 . Synchronisation in the setting of184

data assimilation has also been studied, see Bröcker and Szendro 16 ; Szendro, Rodr̀ıguez, and185

Lopez 17; Yang, Baker, and Li 18. These methods differ only on the approach they take to186

calculate the background ẑn and the matrix Kn
5.187

We now consider the optimism as in (5) in the context of DA scheme with linear feedback

as in (9). We assume that the function h(xn) is linear so that h(xn) = Hxn, where H is a

d×D matrix. Then,

E[rny
T
n ] = E[rn(Hzn)T ] = E[rnz

T
n ]HT (10)

= E[rn{(1−KnH)ẑn + Kn(ζn + σrn)}T ]HT (11)

= E[rn((1−KnH)ẑn)T ]HT

+ E[rn(Knζn)T ]HT + E[rn(HKnσrn)T ] (12)

= E[rnr
T
nσ

TKT
n ]HT (13)

= tr(E[rnr
T
n ]σTK

T

nHT ) (14)

where Kn = E[Kn]. The first two equalities, (10) and (11), are obtained by substituting the188

relevant information while (12) is obtained by simply expanding the previous equation. The189

derivation from (12) to (13) requires some explanation. Notice first that only the third term190

of (12) survives. The first term is equal to zero because ẑn and Kn are uncorrelated with191

rn. The second term is also equal to zero because ζn is independent of rn and because the192

coupling matrix Kn depends on the observations (η1 . . . ηn−1) and thus is uncorrelated with193

rn.194

Therefore, we are only left with the third term of (12) in (13). Since E(rnr
T
n ) = 1, (14)195

implies that196

2tr(σE[rny
T
n ]) = 2tr(σ · σTK

T

nHT ). (15)

In the case when d = 1, which is the case we consider in the numerical experiments later,197

this reduces to198

2σE[ynrn] = 2HKnσ
2. (16)
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We recall that the assumptions necessary to derive this formula are a linear observation199

operator, rn is independent of {η1, . . . , ηn−1}, Ern = 0, ErnrTn = 1 and Kn depends only on200

the observations (η1, . . . , ηn−1).201

In our numerical experiments we approximate the expected value of a random variable by202

the empirical mean. In particular ET is replaced by its empirical average in (5), resulting in203

the following estimate for EO for all subsequent numerical experiments (in which Kn is in204

fact constant):205

ÊO = ÊT +
1

N

N∑
n=1

2σ2tr(K
T

nHT )− σ2. (17)

Let us briefly digress on how the background ẑn and Kn might be calculated in the context206

of synchronisation, although this is in fact irrelevant for the optimism. Suppose that the207

reality is given by the non linear dynamical system208

xn+1 = f̃(xn)

ζn = h̃(xn)

ηn = ζn + σrn

(18)

where xn ∈ RD is referred to as the state and ζn ∈ Rd are the true observations. For this209

non linear dynamical system we construct a sequential scheme210

ẑn+1 = f(zn)

zn+1 = ẑn+1 −Kn(h(ẑn+1)− ηn+1)

yn = h(zn)

(19)

where Kn is a D × d coupling matrix which depends on the observations η1, . . . ηn but211

not on ηn+1; and yn is the model output where we hope that yn ∼= ζn. Here f and h are212

approximations to the functions f̃ and h̃, respectively. The coupling introduced in this213

scheme creates a linear feedback, in the sense that the error between yn = h(ẑn) and the214

observations ηn is fed back into the model.215

Synchronisation refers to a situation in which, due to coupling, the error yn − ηn becomes216

small asymptotically irrespective of the initial conditions for the model13. Often a control217

theoretic approach is taken to determine conditions which guarantee the model output,218

yn = h(zn), converging to the observations, ηn or even zn converging to xn (strictly speaking,219

the difference converging to zero; note that this can only be expected in case of noise free220

observations).221
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It has been highlighted above that the tracking error is not an ideal measure of performance;222

however the output error is and moreover, it can be calculated using terms that are readily223

available. An important question that arises in operational practice is to how to choose224

the gain matrix K. The numerical experiments detailed below consider different conditions225

under which to select the appropriate coupling matrix to use in the assimilation. For the226

first linear experiment we consider arbitrary candidates for the gain matrix, while for the227

second linear experiment we consider gains that guarantee a certain structure of the system228

matrix (or more specifically the poles thereof).229

III. NUMERICAL EXPERIMENTS230

We now demonstrate the usefulness of our approach with three numerical examples. In231

Section III A we present the methodology for a linear system with gaussian perturbations. We232

minimise an estimate of the out-of-sample error to determine a feedback gain and compare233

this with the asymptotic Kalman Gain which is known to be optimal in this situation.234

The remaining two experiments concern nonlinear systems. In Section III B we present235

numerical results for the Hénon Map and in Section III C results are established for the236

Lorenz’96 System. Again a linear feedback is used and we show how an estimate of the237

out-of-sample error can be used to determine the feedback.238

There is some repetition in the obtained results, however this repetition validates our239

approach across different experiments. The three systems we consider all use a data assimi-240

lation scheme that employs linear error feedback. However the underlying systems in each241

are different; one is linear, one is in Lur’e form and one is nonlinear. The similarities in the242

results confirm that our methodology applies to many different dynamical systems.243

A. Numerical Experiment 1: Linear Map244

In this first linear example the following experimental setup was used: The reality is given245

by246

xn+1 =

−1 10

0 0.5


︸ ︷︷ ︸

A

xn + ρqn+1 (20)
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with corresponding observations247

ηn = Hxn + σrn (21)

where H = [1 0], ζn = Hxn and ρ ∈ RD×D is the model error standard deviation. We assume248

that the model and observations are corrupted by random noise. For these experiments we249

have xn ∈ R2 and ηn ∈ R. The model errors, qn, are assumed to be serially independent250

errors with mean Eqn = 0 and variance EqnqTn = 1.251

We set up an observer analogous to our sequential scheme (19),252

zn+1 = ẑn+1 + Kn(ηn+1 −Hẑn+1), yn = Hzn (22)

where253

ẑn+1 =

−1 10

0 0.5


︸ ︷︷ ︸

A

zn. (23)

In this case the model is coupled to the observations through a linear coupling term which254

is dependent on the difference between the actual output and the expected output value255

based on the next estimate of the state. For these experiments we will take the coupling256

matrix Kn to be constant so from here on we write Kn = K.257

The error dynamics in this linear example are given by258

en+1 = xn+1 − zn+1

= (A−KHA)en + Krn+1 − (1−KH)qn+1.

(24)

Since the noisy part of the error dynamics (Eq. 24) is stationary, synchronisation can259

be guaranteed if the eigenvalues of the matrix (A −KHA) all lie within the unit circle.260

Synchronisation here means that the error dynamics is asymptotically stationary with finite261

covariance. To achieve this, we use a result from control theory, for which we need a few262

definitions. Let HA = C so that the error dynamics are described by the system matrix263

(A−KC). A pair of matrices (A,C) is called observable if the observability matrix264

O = [C CA CA2 . . . CAD−1]T (25)

has full rank. If this condition holds then the poles of the matrix (A−KC) can be placed265

anywhere in the complex plane by proper selection of K. In particular they can be placed266

within the unit circle19.267
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In our example, xn ∈ R2 so our observability matrix is268

O = [HA HA2]T . (26)

It is straightforward to check that the linear system we are working with here is observable269

even though A is not stable.270

It is well known in Kalman Filter theory (see for example Anderson and Moore 20) that271

the optimal gain matrix κn for a linear filter (in the sense of giving least error covariance) is272

the Kalman Gain which is defined by273

κn = ΣnH
T (HΣnH

T + σ2)−1 (27)

where Σn is the error covariance matrix defined by Σn = E[(ẑn−xn)(ẑn−xn)T ] and expressed274

by the following recursive equation,275

Σn = A(Σn − ΣnH
T (HΣnH

T + σ2)−1HΣn)AT + ρ2 · 1. (28)

Kalman Filter theory states that for n large, the error covariance Σn converges to Σ∞ which276

is the solution to277

Σ∞ = A[Σ∞ − Σ∞HT (HΣ∞HT + σ2)−1HΣ∞]AT + ρ2 · 1. (29)

This in turn implies that the Kalman Gain (27) converges to the asymptotic gain which is278

defined by279

κ∞ = Σ∞HT (HΣ∞HT + R)−1 (30)

The asymptotic gain, κ∞, is obtained by solving the Discrete Algebraic Riccati Equation280

(DARE) given by (29) and using the solution to calculate (30). Using Maple’s inbuilt DARE281

solver we were able to find the solution to this equation for the experimental setup described282

above. The Algebraic Riccati Equation is solved using the method described in Arnold III283

and Laub 21 .284

The aim of this experiment is to estimate the optimal gain matrix, κ∞ without referring285

to the DARE, in particular without knowledge of ρ. We do this by minimising the empirical286

out-of-sample error with respect to K. In other words, our estimate of κ∞ is the minimiser of287

ÊO for a large (but finite) set of observations (paragraph a. below). This strategy is motivated288

by our previous discussion about the out-of-sample error being an adequate measure of289

performance. In fact, in the context of linear systems, we can prove (see Appendix A for290
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details) that the out-of-sample error is equivalent (in a certain sense) to the asymptotic291

covariance of en as a measure of performance. We also stress that estimating the optimism292

only requires knowledge of A,H, σ but not ρ, the model noise. This is the term that is293

difficult to determine operationally, so estimating the optimism in an operational situation is294

possible as all the required terms are readily available. In paragraph b. we discuss a variant295

of this experiment where the gain matrix is supposed to be optimal under the constraint296

that the characteristic polynomial has a certain shape.297

a. Estimating optimal gain matrix The results obtained in this first experiment are298

shown in Figure 1. The model noise is iid with Eqn = 0, EqnqTn = 1 and ρ = 0.01 while299

for the observational noise, which was also iid with mean zero and variance one, we used300

σ = 0.1. We let n vary between zero and 3.5× 105. For each n the empirical out-of-sample301

error was minimised and the minimiser was recorded as an estimate of κ∞. The experiment302

was repeated for 100 realisations of the observational noise, rn so that the estimates were303

different every time. As a measure of accuracy, 90% confidence intervals were constructed.304

We expect that the estimates converge to the asymptotic gain κ∞ given by the solution of305

(29,30).306

The results obtained are shown in Figure 1. Figure 1(a) shows a plot in blue squares307

of the quantity ‖K− κ∞‖ / ‖κ∞‖ against n. The figure shows that the gain matrix that308

minimises the out-of-sample error converges exponentially to the asymptotic gain. Moreover,309

it is illustarted in Figure 1(c) that the eigenvalues of the matrix (A−KHA) for each gain310

minimising the out-of-sample error, converge to the eigenvalues of the matrix (A− κ∞HA).311

Figure 1(c) shows the quantity ‖λ− λ∞‖ / ‖λ∞‖ against n in blue diamonds, where λ312

represents the eigenvalues of the matrix (A−KHA). The convergence of the eigenvalues is313

also exponential. The values of these eigenvalues confirm that the minimising gains stabilise314

the system since all of then are within the unit circle.315

The remaining two figures in Figure 1 show a log plot of the same information outlined316

above. Figure 1(b) represents the convergence of the gain matrices while Figure 1(d) shows317

the same information for the eigenvalues. Both plots are almost straight lines as expected318

since the convergence has already been noted to be exponential. The addition to these plots319

are the 90% confidence intervals. As previously stated, the experiment was repeated for 100320

realisations of the observational noise and the plotted confidence intervals represents the321

uncertainty in the numerical experiment. The lower limit of the error bars was taken at the322
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FIG. 1. Figure 1(a) shows the convergence of the gain minimising the out-of-sample error to

the asymptotic gain for increasing n. We plot the quantity ‖K− κ∞‖ / ‖κ∞‖ against n in blue

squares. Figure 1(b) shows a log plot of the same information with 90% confidence intervals.

Figure 1(c) shows the quantity ‖λ− λ∞‖ / ‖λ∞‖ against n in blue diamonds, where λ = (λ1, λ2)

represents the eigenvalues of the matrix (A −KHA). It is evident that the eigenvalues of the

matrix (A−KHA) for each gain minimising the out-of-sample error, converge to the eigenvalues of

the matrix (A− κ∞HA), with n increasing. Figure 1(d) shows a log plot of the same information

with 90% confidence intervals.
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FIG. 2. Figure 2(a) shows a plot of the tracking error in blue squares and the out-of-sample error

in black diamonds. The errors are plotted against the inverse of α for σ = 0.1 and ρ = 0.01.

Figure 2(b) shows a plot of the out-of-sample error in black diamonds for 100 realisations of the

noise rn with σ = 0.1 as well as the state error in blue circles. They are displayed for the range of

α where the minimum occurs. The error bars in both curves represent 90% confidence intervals.

The black vertical line draws attention to the minimum of the out-of-sample error which coincides

with the minimum of the state error.

fifth percentile while the upper limit was taken at the 95th percentile thus creating the 90%323

confidence intervals.324

b. Gain Matrix with Symmetric Poles In this part of the linear numerical experiment,325

we want (A−KHA) to have a certain characteristic polynomial. Suppose that the desired326

characteristic equation is given by327

q(λ) = (λ+ α)(λ− α) (31)

so that λ1 = −λ2 and |λ1| = |λ2| = α. The appropriate K for a desired characteristic328

polynomial, q(λ) of the matrix (A−KHA) follows from Ackermann’s Formula19 which is329

given by330

K = q(A)O−1[0 . . . 1]T (32)

where O is the observability matrix defined in (26).331
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The results obtained from our numerical experiment to test the validity of (16) are shown332

in Figure 2. Figure 2(a) shows a plot of the tracking error in blue squares and the out-of-333

sample error in black diamonds. The out-of-sample error calculated via (16) is equivalent to334

calculating the out-of-sample error explicitly using the output error. We can see that the335

tracking error tends to zero with decreasing α. This is what we expected and is confirmed336

by using our analytical expression for the optimism.337

It is clear from Figure 2(a) that while the tracking error tends to zero, the out-of-sample338

error initially decreases and then increases resulting in a well-defined minimum. This is339

because as the coupling strength increases, the observations are tracked too closely and thus340

the output adapts too closely to the observations resulting in an increase of the out-of-sample341

error. On the other hand when α is large and the coupling strength is weak, the observations342

are tracked poorly resulting in large tracking and out-of-sample errors. In these experiments343

α was varied between 0 and 1 with the assimilation window taken to be N = 10000.344

The well defined minimum of the out-of-sample error is also shown in Figure 2(b).345

Figure 2(b) shows the out-of-sample error in black diamonds for the range of α where346

the minimum occurs. The figure shows the out-of-sample error for 100 realisations of the347

observation noise rn with σ = 0.1 so that the sample estimate is different each time. The348

error bars in the plot represent 90% confidence intervals for each value of α. The lower349

limit of the error bars is taken at the fifth percentile, while the upper limit is taken at the350

95th percentile, hence obtained 90% confidence intervals as a measure of accuracy. Some351

further experiments using different values of σ where carried out however the results are352

not included here. The results produced were the same as the ones presented in this paper;353

the only difference was the size of the error bars produced. A smaller value of σ resulted in354

smaller error bars.355

To quantify the variation of the parameter α in this experiment, we considered the356

following calculation. The mean value of the optimal α plus/minus one standard deviation357

in this case is358

ᾱ∗ ±
√

(α∗ − ᾱ∗)2 = 0.3698± 0.028. (33)

The second plot in Figure 2(b) illustrates the state error. This estimate of the state error359

is defined by360

ÊS =
1

N

N∑
n=1

(zn − xn)2. (34)
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This is the error that ultimately wants to be analysed and minimised in data assimilation361

experiments. However, because the model noise (ρqn) is difficult to determine, we cannot362

explicitly analyse the state error which is why we consider errors we can calculate, namely363

the tracking, output or out-of-sample errors. We can plot the state error ÊS in this example364

because we have access to it, however in general this is not possible. The vertical line in365

Figure 2(b) draws attention to the minimum of the out-of-sample error. It is evident that the366

state error also has a minimum and the plot suggests that the minima of the out-of-sample367

and the state error are the same. Again, we ran the experiment for 100 realisations and368

plotted the error bars with 90% confidence intervals.369

B. Numerical Experiment 2: Hénon Map370

In this experiment, the reality is given by371

xn+1 =

a b

1 0


︸ ︷︷ ︸

A

xn + c

(Hxn)2

0

+ d (35)

which for the values a = 0, b = 0.3, c=−1.4, d = [1 0]T is the chaotic Hénon Map with372

corresponding observations373

ηn = Hxn + σrn (36)

where H = [1 0], and ζn = Hxn. The model describing the reality is completely deterministic374

and we assume that the observations are corrupted by random noise. Notice that we now375

have a non linear term in the dynamical system. Such systems are said to be in Lur’e form.376

Once again we consider data assimilation by means of synchronisation so we set up an377

observer roughly analogous to our sequential scheme (19) with certain differences,378

zn+1 = ẑn+1 + Kn(ηn+1 −Hẑn+1), yn = Hzn (37)

where379

ẑn+1 =

a b

1 0


︸ ︷︷ ︸

A

zn + c

η2n
0

+ d (38)

where a, b, c, d are the same as for the reality. In this case as in the first example, the380

model is coupled to the observations through a linear coupling term which is dependent on381
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the difference between the actual output and the output value expected based on the next382

estimate of the state. However there is also a non linear coupling introduced here by the383

presence of η2n in the background term. Note that (16) is still valid nonetheless because ẑn+1384

is still uncorrelated with rn+1. For these experiments we will take the coupling matrix Kn to385

be constant so from here on in we write Kn = K.386

We need to choose the matrix K appropriately so that we can vary the coupling strength.387

For illustration purposes consider the error dynamics for the noise-free situation so that388

ηn = Hxn. The error dynamics in this case are given by389

en+1 = xn+1 − zn+1

= xn+1 − ẑn+1 −KH(xn+1 − ẑn+1)

= (1−KH)(xn+1 − ẑn+1)

= (A−KHA)(xn − zn)

= (A−KHA)en.

(39)

The matrix (A−KHA) is stable even if K = 0. This means that synchronisation occurs390

even if there is no linear coupling between the model output and observations because of391

the non linear coupling introduced in the model (38). The eigenvalues for such a case are392

λ1,2 = ±
√
b, where b is as in the matrix A. However, it might be that with noise, the393

out-of-sample error is not optimal for this coupling and can be improved by some additional394

linear coupling.395

It is straightforward to check that the system we are working with here is observable396

provided that b 6= 0. The appropriate K for a desired characteristic polynomial, q(λ) of the397

matrix (A−KHA) again follows from Ackermann’s Formula (32). Suppose that the desired398

characteristic equation is given by399

q(λ) = (λ+ α)(λ− α) (40)

so that λ1 = −λ2 and |λ1| = |λ2| = α. Then by Ackermann’s formula we get400

K =

1− α2/b

aα2/b2

 ⇒ HK = 1− α2

b
(41)
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where a = 0 and b = 0.3 as in the matrix A. From (41) we see that HK = 1 if α = 0. Thus,401

yn = Hzn = (1−HK)Hẑn + HKηn → ηn, (42)

meaning that our data assimilation scheme simply replaces yn with ηn, implying that the402

tracking error is zero. In other words, in this example, it is possible to render the eigenvalues403

of the error dynamics exactly zero and also to obtain zero tracking error. However, the data404

assimilation is not perfect and the out-of-sample and state errors will not necessarily be405

small.406

Therefore, from (16) we know that407

ÊO = ÊT − 2σ2

(
1− α2

b

)
− σ2. (43)

Recall that the aim of this work is to find a way to estimate the out-of-sample error to get a408

more realistic picture of model performance. We have already determined that when there409

is no linear coupling (i.e. K = 0) the system is stable and synchronisation occurs. We can410

see from (43) that this happens when α = ±
√
b. There are two further cases to consider.411

When α2 > b the feedback, due to the linear coupling, is negative. Therefore, in this case412

we will not be able to improve the out-of-sample error. However as α tends to zero the413

optimism will increase and be bounded by 2σ2. Therefore when α2 < b it may be possible to414

improve the out-of-sample error and determine a coupling matrix K 6= 0, that minimises the415

out-of-sample error, to be used in the model. We calculate the errors as we did for the linear416

numerical example in Section III A.417

The results obtained from our numerical experiment to test the validity of (16) are shown418

in Figure 3. Figure 3(a) shows the tracking error in blue squares and the out-of-sample error419

in black diamonds. We can see that the tracking error tends to zero with decreasing α. This420

is what we expected and is confirmed by using our analytical expression for the optimism.421

In these experiments α was varied between 0 and 1 with the assimilation window taken to422

be N = 10000.423

By analysing the expression for the optimism in this case, we see that there is a point424

where the tracking and out-of-sample errors meet. This happens when α2 = b. To the left of425

this, when α2 > b, the tracking error is greater than the out-of-sample error. To the right,426

when α2 < b, the tracking error is smaller than the out-of-sample error. In fact the tracking427

error tends to zero while the out-of-sample error decreases and then starts to increase again428

resulting in a well defined minimum.429

19



0 5 10

1/

0

0.2

0.4

0.6

0.8

1
T

ra
ck

in
g 

an
d

O
ut

-o
f-

sa
m

pl
e 

er
ro

rs

10-3

(a)

2 4 6 8 10

1/,

2

2.5

3

3.5

S
ta

te
 a

nd
O

ut
-o

f-
sa

m
pl

e 
er

ro
rs

#10-4

(b)

FIG. 3. Figure 3(a) shows a plot of the tracking error in blue squares and the out-of-sample error

in black diamonds. The errors are plotted against the inverse of α for σ = 0.01. Figure 3(b)

shows a plot of the out-of-sample error in black diamonds for 100 realisations of the noise rn with

σ = 0.01. It is displayed for the range of α where the minimum occurs. The error bars represent

90% confidence intervals. The state error is show in blue circles also for 100 realisations of the

observation noise with 90% confidence intervals. The vertical line draws attention to the minimum

of both curves.

The well defined minimum of the out-of-sample error is shown more clearly in Figure 3(b).430

Figure 3(b) shows the out-of-sample error in black diamonds for the range of α where the431

minimum occurs. The figure shows the out-of-sample error for 100 realisations of the noise432

rn for σ = 0.01. The error bars represent 90% confidence intervals for each α. Once again we433

would like to quantify the variation of the parameter α. The mean value of the optimal α434

plus/minus one standard deviation in this case is435

ᾱ∗ ±
√

(α∗ − ᾱ∗)2 = 0.2238± 0.0079. (44)

Figure 3(b) also shows a plot of the state error in blue circles for 100 realisations. The436

black, vertical line draws attention to the minimum of both curves. We can see that the437

minimising gain is the same for both errors. When running data assimilation schemes, the438

state error is the error we are interested in minimising, however we only have access to the439

error in observation space. Even though this is the case, we have shown numerically that the440
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minimising gain is the same for both errors, even in this non linear situation.441

As with the linear numerical experiment presented in Section III A, further experiments442

using different values of σ where carried out. The results produced were the same as the443

ones presented here; the only difference was the size of the error bars produced. A smaller444

value of σ resulted in smaller error bars much like it did for the linear numerical example.445

What is particularly of interest here is that even though the dynamical system included446

a non linear term, the methodology still applies, provided that the matrix (A−KHA) is447

stable. As an aside, the experiment suggests that the eigenvalues of the linear part of the448

error dynamics have to be < 1− ε with some small but non-zero ε in order to stabilise the449

error dynamics.450

C. Numerical Experiment 3: Lorenz ’96451

For this third numerical experiment, the reality is given by the Lorenz’96 model which is452

governed by the following equations453

ẋi = −xi−1(xi−2 − xi+1)− xi + F (45)

and exhibits chaotic behaviour for F = 8. By integrating the above differential equation with454

a time step δ = 1.5× 10−2, we obtain a discrete model for our reality which we denote by455

xn+1 = Φ(xn). (46)

We take corresponding observations of the form456

ηn = Hxn + σrn (47)

where H is the observation operator and rn is iid noise. We shall take the state dimension to457

be D = 12, the observation space to be d = 4 and we define the observation operator so that458

we observe every third element of the state; that is (x1, x4, x7, x10). The system we construct459

here is fully non-linear with linear observations.460

The assimilating model will use the Lorenz’96 model coupled to the observations through461

a simple linear coupling term, as done in the the previous numerical experiments. We set462

the coupling matrix K, to be defined by463

K = κHT (48)
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FIG. 4. Figure 4(a) presents the out-of-sample error (black diamonds) and the tracking error (blue

squares). Figure 4(b) illustrates the out-of-sample error (black diamonds) and the state error (blue

circles) with the error bars representing 90% confidence intervals. The black vertical line draws

attention to the minimum of the out-of-sample error.

where κ is a coupling parameter taken to be between 0 and 1. With this information, the464

assimilating model is defined by the following equations465

ẑn+1 = Φ(zn); zn+1 = ẑn+1 + κHT (ηn+1 −Hẑn+1). (49)

Once again we will vary the coupling strength in the observer by adjusting the coupling466

parameter κ. If the coupling is too strong, the observations will be tracked too rigorously and467

so the observational noise will not be filtered out. If the coupling is too weak the observations468

are tracked poorly; so once again we expect the out-of-sample error to take a minimum at469

some non-trivial value of κ.470

As always we are interested in the behaviour of the state error and, ultimately, this is the471

error we want to be minimal. We saw in Section III B that the minimiser for the out-of-sample472

error was the same as for the state error. We investigate this here too.473

The results obtained are shown in Figure 4. Once again the observational noise is iid with474

Ern = 0, ErnrTn = 1 and σ = 0.01. Since the gain is given by equation (48), the optimism475

reduces to 8σ2κ. To see this note that the observation operator, H, was defined so that476

every third element of the state was observed. It follows then that HHT = 1, the identity477
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matrix. Since we are observing four states, the trace of HHT is equal to four. Thus, since478

the optimism is defined by 2σ2tr(HK) and K is given by equation (48), it follows that the479

optimism reduces to 8σ2κ.480

To calculate the the errors, a transient time was ignored to give the system time to481

synchronise. In Figure 4(a) the out-of-sample error (black diamonds) is presented together482

with the tracking error (blue squares). The black vertical line draws the eye to the minimum483

of the out-of-sample error. As in the previous experiments, the tracking error reduces to zero484

while the out-of-sample error increases eventually with increasing coupling strength.485

Figure 4(b) presents the out-of-sample error (black diamonds) and the state error (blue486

circles). The figure shows the errors for 100 realisations of the observational noise, rn. The487

error bars represent 90% confidence intervals for each value of κ with the lower limit of the488

error bars taken at the fifth percentile and the upper limit taken at the 95th. The mean489

value of the optimal κ plus/minus one standard deviation in this case is490

κ̄∗ ±
√

(κ∗ − κ̄∗)2 = 0.3050± 0.1184. (50)

The black line draws attention to the minimum of the out-of-sample error and we once491

again see that the minima of the state and out-of-sample errors coincide. It is evident here492

that these results support the results determined previously in the numerical experiments.493

Further experiments using different values of σ where also carried out for this non linear494

system. The results produced were the same as the ones presented here; the only difference495

was the size of the error bars produced. Again, as with the results in the previous two496

experiments, a smaller value of σ resulted in smaller error bars.497

The flatness of the curves and the uncertainty shown in the figures are rather deceptive in498

the plots presented in this paper. By looking at these figures, one might expect that the499

errors in the estimate of κ∗ are in fact quite large. However this is not the case as it is the500

correlation between the errors in the plots that matters.501

IV. CONCLUSIONS502

A fundamental problem of data assimilation experiments in atmospheric contexts is that503

there is no possibility of replication, that is, truly “out of sample” observations from the504

same underlying flow pattern but with independent observational errors are typically not505
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available. A direct evaluation of assimilated trajectories against the available observations is506

likely to yield optimistic results though, since the observations were already used to find the507

solution.508

A possible remedy was presented which simply consists of estimating that optimism,509

thereby giving a more realistic picture of the ‘out of sample’ performance. The optimism510

represents the correlation between the observations and the output of the data assimilation511

scheme. This estimate depends on the observational noise, the observation operator and the512

feedback gain matrix but not on the underlying dynamics or dynamical noise parameters.513

The model noise is the term that is difficult to determine operationally, so estimating the514

optimism in an operational situation is possible as all the required terms are readily available.515

In this paper, this approach was applied to data assimilation algorithms employing linear error516

feedback. Several numerical experiments concerning both linear and non-linear systems give517

evidence to the success of this method as it provides more realistic assessment of performance.518

This was demonstrated by comparing the out-of-sample performance with the true state519

error of the algorithm which was available in these numerical simulations.520

The approach outlined above also provides a simple and efficient means to determine the521

optimal feedback gain by optimising the out-of-sample error with respect to the gain matrix.522

Further, theoretical results demonstrate that in linear systems with gaussian perturbations,523

the feedback thus determined will approach the optimal (Kalman) gain in the limit of large524

observational windows. The numerical experiments presented in this paper support this525

result for linear systems.526

We cannot deduce the same thing for the non-linear systems since firstly, we do not have527

a candidate for the asymptotic error or gain since the Kalman Filter equations do not hold528

in these cases. Secondly, even if the existence of an optimal asymptotic gain could be proved,529

the sequence of minimisers might not converge to it.530

As an outlook for future work, it seems that the presence of dynamical noise in the531

underlying system is important when considering the convergence of the optimal gain matrix532

for non-linear systems. (Even in the linear case, the presence of nondegenerate dynamical533

noise is essential for the proof to work). If there is no model noise present, then we cannot534

expect the gain matrix to converge in a meaningful way as the optimal asymptotic gain may535

not be well defined. For example it is possible that the dynamics of both the underlying536

system and model enter a region of stability, resulting in a reduction of the error. In this537
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case it would make sense to reduce or completely eliminate the feedback gain matrix. This538

would need the gain matrix to be adaptive in some way; a concept not considered here.539
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Appendix A545

In this appendix, we want to clarify the relationship between the output error546

EO,n = E[(H(xn − zn))2] (A1)

(which we give an index n here as it depends on n) and the error covariance matrix547

Γn = E[(xn − zn)(xn − zn)T ] (A2)

in the context of linear systems (Section III A). Re-writing the output error we obtain548

EO,n = E{(H(xn − zn))T (H(xn − zn))}

= Etr{(H(xn − zn))TH(xn − zn)}

= Etr{H(xn − zn)(xn − zn)THT}

= tr{HΓnH
T}

(A3)

and if we assume real values observations (i.e d = 1), we get EO,n = HΓnH
T . This does not549

mean that EO,n carries the same information as Γn since H is not invertible.550

To investigate this further, introduce the mappings F : RD ×RD×D → R
D×D, (K,M)→551

(A−KHA)M(A−KHA)T and G : RD → RD×D; K→ σ2KKT + ρ2(1−KH)(1−KH)T552

and Φ(K,M) = F (K,M) +G(K). Note that F is linear in M, and we will write F (K) ·M553

to emphasize this. It follows from linear filter theory that554

Γn+1 = (A−KHA)Γn(A−KHA)T + σ2KKT + ρ2(1−KH)(1−KH)T

= F (K) · Γn +G(K) = Φ(K,Γn).
(A4)
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Suppose that K is stabilising, then Γn → Γ(K) which is a fixed point of (A4), i.e Γ(K) =555

F (K) · Γ(K) + G(K). Note that Γ(K) describes the asymptotic error performance of the556

feedback K.557

We will now show that the output error is able to distinguish (asymptotically) between558

better and worse feedbacks. For any two symmetric matrices M1,M2, we write M1 ≥M2 if559

M1−M2 is positive semi-definite but not zero. Let K1,K2 be two stabilising feedbacks so that560

Γ(K1) ≥ Γ(K2); that is K2 performs better than K1. Further, assume (1−HK1) 6= 0 which561

implies that (A−K1HA,H) is observable. (This condition might seem artificial but we will562

see later that it is in fact rather natural). We will now show that HΓ(K1)H
T > HΓ(K2)H

T .563

Note that because Γ(K1) ≥ Γ(K2) we have564

Mn = F n(K1){Γ(K1)− Γ(K2)} ≥ 0 (A5)

for any n since F (K1) preserves positive and negative semi-definiteness. Further, the sequence565

Mn is decreasing. To see this, note that it must be monotone since566

Mn+1 −Mn = F (K1){Mn −Mn−1} (A6)

and again F (K1) preserves definiteness. It cannot be increasing though since K1 is stabilising567

and hence Mn → 0. Therefore HMnH
T ≥ 0 and decreasing.568

Assuming HΓ(K1)H
T = HΓ(K2)H

T would then imply569

0 = HMnH
T = HF n(K1){Γ(K1)− Γ(K2)}HT

= H(A−K1HA)n(Γ(K1)− Γ(K2)) (A−K1HA)n T HT
(A7)

for all n. Now using the spectral decomposition of M0 = Γ(K1)− Γ(K2),570

M0 =
d∑

i=1

λiviv
T
i (A8)

where λi are the eigenvalues of M0 and vi are the corresponding eigenvectors, we see that571

0 = HMHT =
d∑

i=1

λi (H(A−K1HA)nvi)
2 (A9)

for all n. Since M0 6= 0, there is a λj > 0 and hence572

H(A−K1HA)nvj = 0 ∀n (A10)
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which contradicts the observability of (H,A−K1HA). This shows that M0 = 0 finishing573

the proof.574

From the preceding arguments, it follows that any minimiser of the output error must be575

the asymptotic Kalman gain. To see this, assume K2 is the Kalman gain while K1 optimises576

the output error HΓ(K)HT . By definition of the kalman gain, Γ(K1) ≥ Γ(K2), and the577

preceding discussion shows that Γ(K1) = Γ(K2) if (1−HK1) 6= 0.578

To check that this is true, use that the asymptotic output error satisfies579

HΓ(K)HT = (1−HK)2
{
HΓ(K)HT + ρ2HHT

}
+ σ2(HK)2. (A11)

Taking the derivative with respect to K at K1 and using the optimality yields the condition580

HK1 =
HΓ(K1)H

T + HHTρ2

HΓ(K1)HT + HHTρ2 + σ2
(A12)

so 1 = HK1 > 0. As a final remark, 1−HK = 0 implies that yn = ηn (check example (22)581

for constant K), that is the data assimilation simply reports back the observations.582

REFERENCES583

1C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press Inc.,584

1995).585

2B. Efron, “How biased is the apparent error rate of a prediction rule?” Journal of the586

American Statistical Association 81, 461–470 (1986).587

3T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data588

Mining, Inference and Prediction (Second Edition) (Springer-Verlag, 2009).589

4B. Efron, “The estimation of prediction error: Covariance penalties and cross-validation,”590

Journal of the American Statistical Association 99 (2004).591

5E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, 1st ed. (Cambridge592

University Press, 2001).593

6G. Wahba, D. R. Johnson, F. Gao, and J. Gong, “Adaptive tuning of numerical weather594

prediction models: Randomized GCV in three- and Four-Dimensional data assimilation,”595

Monthly Weather Review (1995).596

7G. P. Cressman, “An operational objective analysis system,” Monthly Weather Review 87,597

367–374 (1959).598

27



8S. L. Barnes, “A technique for maximizing details in numerical weather map analysis,”599

Journal of Applied Meteorology 3, 396–409 (1964).600

9W. Lahoz, B. Khattatov, and R. Menard, Data Assimilation: Making Sense of Observations601

(Springer-Verlag, 2010).602

10Y. Sasaki, “Some basic formalisms in numerical variational analysis,” Monthly Weather603

Review 98, 875–883 (1970).604

11A. Lorenc, “A global three-dimensional multivariate statistical interpolation scheme,”605

Monthly Weather Review 109, 701–721 (1981).606

12A. H. Jazwinski, Stochastic Processes and Filtering Theory Volume 64 (Academic Press607

Inc., 1970).608

13A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Univeral Concept in609

Nonlinear Sciences (Cambridge University Press, 2001).610

14H. J. C. Huijberts, H. Nijmeijer, and A. Y. Pogromsky, “Discrete-time observers and611

synchronization,” Controlling chaos and bifurcations in engineering systems , 439–455612

(1999).613

15S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, “The synchronization of614

chaotic systems,” Physics Reports 366, 1–101 (2002).615
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