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Data assimilation means to find an (approximate) trajectory of a dynamical model
that (approximately) matches a given set of observations. A direct evaluation of the
trajectory against the available observations is likely to yield a too optimistic view of
performance, since the observations were already used to find the solution. A possible
remedy is presented which simply consists of estimating that optimism, thereby giving
a more realistic picture of the ‘out of sample’ performance. Our approach is inspired
by methods from statistical learning employed for model selection and assessment
purposes in statistics. Applying similar ideas to data assimilation algorithms yields an
operationally viable means of assessment. The approach can be used to improve the
performance of models or the data assimilation itself. This is illustrated by optimising

the feedback gain for data assimilation employing linear feedback.



s Data assimilation means to find an (approximate) trajectory of a dynamical
o model that (approximately) matches a given set of observations. A fundamental
10 problem of data assimilation experiments in atmospheric contexts is that there
n is no possibility of replication, that is, truly “out of sample” observations from
12 the same underlying flow pattern but with independent observational errors are
13 typically not available. A direct evaluation against the available observations
1 is likely to yield unrealistic results though, since the observations were already
15 used to find the solution. A possible remedy is presented which simply consists
16 of estimating that optimism, thereby giving a more realistic picture of the ‘out of
1w sample’ performance. The approach is particularly simple when applied to data
18 assimilation algorithms employing linear error feedback. A realistic performance
10 assessment is obtained by comparing with the true trajectory. In addition this
2 method provides a simple and efficient means to determine the optimal feedback
21 gain operationally since it only requires known quantities to be calculated. The
» optimality of this gain is verified numerically. Further, we illustrate theoretical
23 results which demonstrate that in linear systems with gaussian perturbations,
2 the feedback thus determined will approach the optimal (Kalman) gain in the

» limit of large observational windows (the proof will be given elsewhere).

% I. INTRODUCTION

o7 Data Assimilation involves the incorporation of observational data into a numerical model
2 to produce a model state that accurately describes the observed reality. This procedure
20 uses an explicit dynamical model for the time evolution of the observed reality. The results
30 produced by data assimilation must satisfy two requirements. Firstly they must be close to
a1 the observations up to a certain degree of accuracy and secondly they should be consistent
» with the dynamical model to a certain degree of accuracy. In other words, the trajectory
;3 produced by data assimilation must be close to the observations and it must be close to
u being an orbit of the model.

55 Once the observations have been used to estimate these trajectories, they should not be

s used to evaluate the performance of the model (at least not without precaution) as this
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s might give unrealistic results. Simply comparing the observations with the output of the
;s data assimilation scheme will provide an overly optimistic picture of performance. Moreover,
30 assessing the performance using this tracking error could easily be cheated. An example is

s taking the output to be the observations themselves.

n  As we will see in Section II, a more realistic evaluation of the performance needs to take
22 into account that the output and the observation errors are correlated. To this end, we
a3 investigate the concept of out-of-sample error from statistics and adapt it to the problem of
« data assimilation. In statistics, estimates of the out-of-sample error are used to measure how
s well a statistical model, after fitting it to observations, generalises to unseen data!?. Although
s the concept of the out-of-sample error is a very general one, actual implementations differ
s considerably depending on the structure of the estimation problem. Further, a fundamental
s assumption often made in statistics is that the observations (conditionally on the explanatory
s variables) are independent and identically distributed. In the case of linear regression models,
s0 a popular statistic for model selection in statistical learning is the Cp statistic®*. Other
si examples are Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion

s2 (BIC). These concepts differ in terms of precise interpretation and range of applicability.

53 The aim of this paper is to provide similar tools in the context of data assimilation.
s« The underlying problem is essentially the same as in statistics. Suppose a time series of
ss observations has been assimilated into a dynamical model. Then the output should be close
ss to hypothetical observations from the same flow patterns but with independent errors. If
s7 the results are not close to these hypothetical observations, then this can only mean that
ss the model is in fact not able to explain the dynamics underlying the observations. The
so out-of-sample error should be a measure of how close the output will be to such hypothetical
s0 observations. Although observations from the same flow pattern but with independent errors
e1 are typically not available in practice, we show that the out-of-sample error can be estimated
s using terms that are operationally available. Specifically we show that the out-of-sample
63 error is the sum of the tracking error and a term which we call the optimism. This optimism
s gives us a representation of how the model and observations depend on each other and it
s quanties how much the tracking error misestimates the out-of-sample error. The derived
s expression is reminiscent of the Cp statistic used in model selection in statistical learning®*.
s We show that the optimism takes a very simple form if we assume that the model employs a

s¢ linear error feedback. There are many data assimilation algorithms that implement such a



oo feedback®. More details and references concerning such algorithms can be found in section I1I.
o Wahba et al.® apply the ideas of out-of-sample performance to data assimilation for linear
71 systems. In this publication they use generalised cross validation to get an estimate of the
2 true performance. The key equation in this paper is equation (2.11) which is similar to
73 equation (7.46) in Hastie, Tibshirani, and Friedman?® with the new aspect being the stochastic
74 approximation to the denominator. The results presented in Wahba et al.® however, apply
75 only in a linear context. As it will be shown, the analysis presented in our paper does not
76 require linear models but merely linear error feedback.

77 We stress that although in terms of the problem we are addressing there is a strong
7 similarity between statistics and data assimilation, our analysis will be different. For instance,
70 although the data assimilation uses linear error feedback, the dependence of the output
g0 on the observations as a whole is nonlinear, due to the nonlinearity of the dynamic model.
&1 Further, the observations are not independent. The derivation of the Cp statistic, AIC,
&2 BIC and many other related concepts used in statistics however assumes either linearity,
s3 independence or both (see Hastie, Tibshirani, and Friedman?®, Sec 7.4).

s« We demonstrate the usefulness of our approach with three numerical examples. In all
ss three cases, we consider a simple data assimilation scheme by means of filtering with a
s linear error feedback. A persistent problem in practice is to find a suitable feedback. The
s7 feedback acts as a coupling between the true dynamics and the model. If the coupling is too
ss weak the stability of the system cannot be guaranteed while if the coupling is too strong,
so results deteriorate because the noise will be overly attenuated. Striking the right balance
o requires a reliable assessment of the performance which is provided by our estimate of the
a1 out-of-sample performance. Note that this is relevant even in the case of linear systems
e with gaussian perturbations as computing the theoretically optimal Kalman Gain requires
o3 knowledge of the dynamical noise which is usually not available in practice. Our experiments
o demonstrate that the technique can be used in situations where the feedback gain matrix is
s completely unspecified and also in situations where it has a pre-determined structure but
s contains unknown parameters.

o7 In section II we define the tracking error, out-of-sample error and the optimism. These
e considerations are valid for any data assimilation algorithm in the case of additive observa-
o tional noise. We also consider general data assimilation algorithms which employ linear error

1o feedback and determine an analytical expression for the optimism. Section III contains several
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101 numerical experiments. In Section III A we apply the methodology to a linear system with
102 gaussian perturbations. We minimise an estimate of the out-of-sample error to determine a
103 feedback gain. We then compare this with the asymptotic Kalman Gain which is known to
104 be optimal in this situation. Our experiments suggest that the gain determined numerically
105 agrees with the optimal Kalman Gain in the limit of large observation windows. We discuss a
s theoretical result which confirms this finding. Next we consider a situation in which the data
17 assimilation algorithm is constrained to have poles in certain locations which determines the
108 gain up to a single parameter. This parameter is determined by minimising an estimate of
19 the out-of-sample error.

mwo  The remaining experiments consider non linear systems. In Section IIIB we consider
m a system in Lur’e form. These systems are special in that, despite being non linear, they
12 permit observers with linear error dynamics. Again a linear feedback is used and we show
3 how an estimate of the out-of-sample error can be used to determine the feedback. The
s performance of this feedback is assessed numerically by considering the error between the
us reconstructed and the true orbit. Our results indicate that this strategy of choosing the
us feedback gives close to optimal performance. Repeating the experiment with the Lorenz "96

uz system in Section IIT C confirm the results.

us II.  TRACKING ERROR, OUTPUT ERROR AND OPTIMISM IN DATA
19 ASSIMILATION

120 Data assimilation is the procedure by which trajectories {z, € RP? n=1,..., N} (in some
121 state space which we take to be R”) are computed with the help of a dynamical model and
122 observations, {n,,n = 1,..., N}. These trajectories should reproduce the observations up to
123 some degree of accuracy for all n =1,..., N. We express this latter part of the procedure
14 formally as: The output y, = h(z,) is close to the observations {n,,n = 1,..., N} up to
125 some degree of accuracy, where h : R? — R? is a function which maps the model’s state
126 space into the observation space. This function is usually part of the problem specification.
127 The exact structure of the model and of h is not important at this stage.

s Suppose we have observations {n, € R4, n =1,..., N} from some real world dynamical

120 phenomenon. We assume 7,, can be written as

T = Cn +orn (].)



130 where {(,,n = 1,..., N} are unknown quantities representing the desired signal, and o €
151 R%*4 is the observational error standard deviation. We assume that {(,,n = 1,..., N} can
132 be modelled as some stochastic process. The observation errors or noise, {r,,n=1,..., N}
133 are assumed to be independent with mean Er,, = 0 and variance Er,rl = 1 and they are
1 independent of {(,,n=1,...,N}.
135 Deviation of the output from the observations can be quantified by means of the tracking
136 €ITOT,

Er = Ely, — 1. (2)
137 The tracking error though is not a very useful performance measure of data assimilation
s approaches. It is not difficult to design algorithms which achieve zero tracking error by
130 simply using the observations as output, that is any DA algorithm which satisfies vy, = n,,
wn =1,..., N achieves optimal performance with respect to Er as a performance measure.

w A performance measure which is much harder to hedge is the output error
EO - E[yn - Cn]Q (3)

12 A useful relation between Ep and Ep can be established. Substituting the expression (1) for

13 the observations into (2) and expanding, we get
Er =Ely, — %]2 = Ely, — Cn]Q + tr(UTU) - Qtr(aE[Tnyrj;]) (4)

s since (, and 7, are independent. The notation ’tr’ denotes the trace of the matrix.

145 We re-write this as
Eo + tr(aTa) =Ely, — nn]2 + 2tr(aE[7’nyg]). (5)

s The term 20E[r,yl] is called the optimism. The optimism should be understood as a
17 correlation between r, and y,, where y, depends on {ry,k = 1,...,N}. It is a measure
us of how much the tracking error misestimates the output error. We will argue that both
e the optimism and the tracking error (i.e the first term on the right hand side of (5) can
150 be estimated using operationally available quantities. This will give us a handle on the
151 output error which is, as we have argued, directly related to the true performance of the
152 data assimilation.

155 The quantity Ep + o2 can be interpreted as an ” Qut-of-sample error” as follows: Define
14 hypothetical observations

n =C+r, n=1...,N (6)
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155 where {(,,n = 1,...,N} is as before, {r/,n = 1,...,N} is a process with the same
156 distribution as {r,,n =1,..., N} but independent from it. Then the out-of-sample error is

157 the error between {y,,n=1...,N} and {n/,,n =1,..., N}, which can be written as
Ely, —m,)* = Eo +0”. (7)

158 The key difference between the tracking error and the out-of-sample error is the absence of
150 correlation between {y,,n=1...,N} and {r/,,n =1,..., N} in the latter, which is precisely
160 the optimism.

61 Equation (5) shows that the tracking error augmented with further terms, can be a useful

o

12 measure of performance. Further the tracking error and optimism are relatively easy to

163 estimate. In our experiments we will estimate the tracking error through an empirical average,

o

164 namely
N
~ 1
Tzﬁzyk_nk : (8)

165 Estimates of the optimism will be discussed next.

16 We will first calculate a general expression for the optimism for data assimilation schemes

o

1

o

7 which employ a linear error feedback. Most operational data assimilation schemes work in
168 cycles over time. The background field, z,, is computed at the start of each cycle and usually

160 it is based on information from previous cycles. Since any cycle uses observations available

=Y

7o up to that point, the background field at time n only depends on ny,...,n,_1. Nonetheless,
1 the background field Z,, is supposed to be a first guess of the the state of the system at time
72 N.

3 In this paper we consider data assimilation algorithms which combine the new observation

s and background through a relationship of the form
zn = Zn + Ku(nn — h(2,)) (9)

s where K, is a D X d matrix and can depend on 7, ...,n,_1 but not on 7,. As before, the
176 mapping h : RP? — R? maps points from model state space to observation space. The
17 modified background, z,, is referred to as the analysis.

s The matrix K, is the error feedback gain. Equation (9) tells us that the analysis has a
179 linear dependence on the current observation, 7, and it depends on the previous observations

180 through K,, and Z,,. Data assimilation schemes that fall into the presented approach include
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11 Successive Correction Method (SCM)7#; Optimal Interpolation (OI)?; 3D-Var!®!!; Kalman
1e2 Filter variants,'? and certain Synchronisation approaches. Synchronisation between dynamical
153 systems has been studied for some time, see for example Pikovsky, Rosenblum, and Kurths ?;
1z« Huijberts, Nijmeijer, and Pogromsky '*; Boccaletti et al.'®. Synchronisation in the setting of
15 data assimilation has also been studied, see Brocker and Szendro!®; Szendro, Rodriguez, and
15 Lopez !”; Yang, Baker, and Li'®. These methods differ only on the approach they take to
17 calculate the background 2, and the matrix K,,°.
We now consider the optimism as in (5) in the context of DA scheme with linear feedback
as in (9). We assume that the function h(x,) is linear so that h(z,) = Hz,,, where H is a

d x D matrix. Then,

Elrnyy ] = Elra(Hz,)"] = E[r,2, JH" (10)

=E[r {(1 - K,H)z, + K, (¢, + or,) Y JH” (11)

=E[r,((1 - K,H)2,)"H"

+ E[ro(K,.¢)'HY + E[r,(HK ,07,,) 7] (12)
= E[r,rl o’ KIJH" (13)
= tr(E[r,r)o K, HY) (14)

18s where K,, = E[K,,]. The first two equalities, (10) and (11), are obtained by substituting the
150 relevant information while (12) is obtained by simply expanding the previous equation. The
1o derivation from (12) to (13) requires some explanation. Notice first that only the third term
1 of (12) survives. The first term is equal to zero because Z, and K,, are uncorrelated with
12 7,. The second term is also equal to zero because (, is independent of r,, and because the
103 coupling matrix K,, depends on the observations (7; ...7n,_1) and thus is uncorrelated with

194 Ty .

s Therefore, we are only left with the third term of (12) in (13). Since E(r,rl) = 1, (14)
196 implies that

2tr(oE[r,y’]) = 2tr(o - 'K, HY). (15)

17 In the case when d = 1, which is the case we consider in the numerical experiments later,
198 this reduces to

20E[y,r,] = 2HK,,0%. (16)
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19 We recall that the assumptions necessary to derive this formula are a linear observation
200 Operator, 7, is independent of {n,..., 7, 1}, Er, =0, Er,rl = 1 and K,, depends only on
201 the observations (71, ..., 7,-1)-

22 In our numerical experiments we approximate the expected value of a random variable by
203 the empirical mean. In particular Er is replaced by its empirical average in (5), resulting in
200 the following estimate for Eg for all subsequent numerical experiments (in which K,, is in

20s fact constant):
N
A A 1 —T
Eo = Er+ + ; 20%tr(K, H) — o2, (17)
206 Let us briefly digress on how the background Z,, and K,, might be calculated in the context

207 of synchronisation, although this is in fact irrelevant for the optimism. Suppose that the

208 Teality is given by the non linear dynamical system

Tnt1 = f(xn)
M = Cn + 0T,

200 where ,, € RP is referred to as the state and ¢, € R? are the true observations. For this

210 non linear dynamical system we construct a sequential scheme

én—l-l - f(zn)

Zn+1 = én—l-l - Kn(h(2n+1) - 77n+1) (19)
au where K, is a D x d coupling matrix which depends on the observations 7;,...n, but

212 not on 7,41; and y, is the model output where we hope that y, = (,. Here f and h are
213 approximations to the functions f and ;L, respectively. The coupling introduced in this
21 scheme creates a linear feedback, in the sense that the error between y, = h(Z,) and the
215 observations 7, is fed back into the model.

216 Synchronisation refers to a situation in which, due to coupling, the error y,, — 1, becomes
217 small asymptotically irrespective of the initial conditions for the model!3. Often a control
218 theoretic approach is taken to determine conditions which guarantee the model output,
210 Y, = h(z,), converging to the observations, n, or even z, converging to x,, (strictly speaking,
20 the difference converging to zero; note that this can only be expected in case of noise free

21 Observations).



22 It has been highlighted above that the tracking error is not an ideal measure of performance;
223 however the output error is and moreover, it can be calculated using terms that are readily
24 available. An important question that arises in operational practice is to how to choose
25 the gain matrix K. The numerical experiments detailed below consider different conditions
26 under which to select the appropriate coupling matrix to use in the assimilation. For the
27 first linear experiment we consider arbitrary candidates for the gain matrix, while for the
208 second linear experiment we consider gains that guarantee a certain structure of the system

20 matrix (or more specifically the poles thereof).

20 III.  NUMERICAL EXPERIMENTS

an We now demonstrate the usefulness of our approach with three numerical examples. In
21 Section I1T A we present the methodology for a linear system with gaussian perturbations. We
233 Minimise an estimate of the out-of-sample error to determine a feedback gain and compare
234 this with the asymptotic Kalman Gain which is known to be optimal in this situation.

25 The remaining two experiments concern nonlinear systems. In Section III B we present
236 numerical results for the Hénon Map and in Section III C results are established for the
27 Lorenz’96 System. Again a linear feedback is used and we show how an estimate of the
238 out-of-sample error can be used to determine the feedback.

230 There is some repetition in the obtained results, however this repetition validates our
20 approach across different experiments. The three systems we consider all use a data assimi-
2a lation scheme that employs linear error feedback. However the underlying systems in each
a2 are different; one is linear, one is in Lur’e form and one is nonlinear. The similarities in the

213 Tesults confirm that our methodology applies to many different dynamical systems.

24 A. Numerical Experiment 1: Linear Map

25 In this first linear example the following experimental setup was used: The reality is given
246 by

-1 10
Tpt+1 = Typ + PAn+1 (20)
0 0.5

—_———
A

10



27 With corresponding observations

n, = Hx,, + or, (21)

us where H = [1 0], ¢, = Hz,, and p € RP* is the model error standard deviation. We assume
a9 that the model and observations are corrupted by random noise. For these experiments we
20 have x,, € R? and 1, € R. The model errors, g,, are assumed to be serially independent
21 errors with mean Eq, = 0 and variance Eq,ql = 1.

22 We set up an observer analogous to our sequential scheme (19),

Zn+l = 2n+1 + Kn(nnJrl - HénJrl)a Yn = Hzn (22)
253 where
—1 10
2n+1 = Zn- (23)
0 0.5
A

4 In this case the model is coupled to the observations through a linear coupling term which
25 is dependent on the difference between the actual output and the expected output value
256 based on the next estimate of the state. For these experiments we will take the coupling
257 matrix K, to be constant so from here on we write K,, = K.

s The error dynamics in this linear example are given by

En+1 = Tp+1 — Rn+1l

(24)
= (A -KHA)e, + Kry1 — (1 — KH)gy11.

20 Since the noisy part of the error dynamics (Eq. 24) is stationary, synchronisation can
20 be guaranteed if the eigenvalues of the matrix (A — KHA) all lie within the unit circle.
261 Synchronisation here means that the error dynamics is asymptotically stationary with finite
2 covariance. To achieve this, we use a result from control theory, for which we need a few
23 definitions. Let HA = C so that the error dynamics are described by the system matrix
260 (A — KC). A pair of matrices (A, C) is called observable if the observability matrix

O=[C CA CA* ... CAPYT (25)

265 has full rank. If this condition holds then the poles of the matrix (A — KC) can be placed
x6 anywhere in the complex plane by proper selection of K. In particular they can be placed

267 within the unit circle!®.
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26  In our example, z,, € R? so our observability matrix is
O =[HA HA?*". (26)

0 It is straightforward to check that the linear system we are working with here is observable
70 even though A is not stable.

on It is well known in Kalman Filter theory (see for example Anderson and Moore?°) that
22 the optimal gain matrix &, for a linear filter (in the sense of giving least error covariance) is

213 the Kalman Gain which is defined by
kn = L, H(HY,HT + 02)7! (27)

o where Y3, is the error covariance matrix defined by ¥, = E[(2, — x,,)(2, — x,,)T] and expressed

a5 by the following recursive equation,
Y, =A%, - S, H HS,H +0%)'HY,)AT + p* - 1. (28)

a6 Kalman Filter theory states that for n large, the error covariance ¥, converges to ¥, which

277 1S the solution to
Yo = A2y — S H (HE HT + o) 'HE JAT + o7 - 1. (29)

zs This in turn implies that the Kalman Gain (27) converges to the asymptotic gain which is
279 defined by
Koo = Yoo HT(HE HT + R)™! (30)

20  The asymptotic gain, K, is obtained by solving the Discrete Algebraic Riccati Equation
21 (DARE) given by (29) and using the solution to calculate (30). Using Maple’s inbuilt DARE
282 solver we were able to find the solution to this equation for the experimental setup described
283 above. The Algebraic Riccati Equation is solved using the method described in Arnold ITI
2 and Laub?!.

255 The aim of this experiment is to estimate the optimal gain matrix, K., without referring
286 t0 the DARE, in particular without knowledge of p. We do this by minimising the empirical
287 out-of-sample error with respect to K. In other words, our estimate of k., is the minimiser of
28 Eo for a large (but finite) set of observations (paragraph a. below). This strategy is motivated
280 by our previous discussion about the out-of-sample error being an adequate measure of

20 performance. In fact, in the context of linear systems, we can prove (see Appendix A for

12



21 details) that the out-of-sample error is equivalent (in a certain sense) to the asymptotic
202 covariance of e,, as a measure of performance. We also stress that estimating the optimism
203 only requires knowledge of A, H, o but not p, the model noise. This is the term that is
20a difficult to determine operationally, so estimating the optimism in an operational situation is
205 possible as all the required terms are readily available. In paragraph b. we discuss a variant
206 Of this experiment where the gain matrix is supposed to be optimal under the constraint
207 that the characteristic polynomial has a certain shape.

08 a. FEstimating optimal gain matrix The results obtained in this first experiment are
20 shown in Figure 1. The model noise is iid with Eq, = 0, Eg,¢. = 1 and p = 0.01 while
s00 for the observational noise, which was also iid with mean zero and variance one, we used
s 0 = 0.1. We let n vary between zero and 3.5 x 10°. For each n the empirical out-of-sample
302 error was minimised and the minimiser was recorded as an estimate of k. The experiment
s03 was repeated for 100 realisations of the observational noise, r,, so that the estimates were
s4 different every time. As a measure of accuracy, 90% confidence intervals were constructed.
35 We expect that the estimates converge to the asymptotic gain k., given by the solution of
206 (29,30).

w7 The results obtained are shown in Figure 1. Figure 1(a) shows a plot in blue squares
208 of the quantity | K — Kol / ||Koo|| against n. The figure shows that the gain matrix that
s00 minimises the out-of-sample error converges exponentially to the asymptotic gain. Moreover,
s0 it is illustarted in Figure 1(c) that the eigenvalues of the matrix (A — KHA) for each gain
su minimising the out-of-sample error, converge to the eigenvalues of the matrix (A — k. HA).
22 Figure 1(c) shows the quantity ||A — Aol /|| A=|| against n in blue diamonds, where A
a3 represents the eigenvalues of the matrix (A — KHA). The convergence of the eigenvalues is
su also exponential. The values of these eigenvalues confirm that the minimising gains stabilise
a5 the system since all of then are within the unit circle.

s The remaining two figures in Figure 1 show a log plot of the same information outlined
a7 above. Figure 1(b) represents the convergence of the gain matrices while Figure 1(d) shows
ais the same information for the eigenvalues. Both plots are almost straight lines as expected
319 since the convergence has already been noted to be exponential. The addition to these plots
20 are the 90% confidence intervals. As previously stated, the experiment was repeated for 100
321 realisations of the observational noise and the plotted confidence intervals represents the

322 uncertainty in the numerical experiment. The lower limit of the error bars was taken at the

13
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FIG. 1. Figure 1(a) shows the convergence of the gain minimising the out-of-sample error to
the asymptotic gain for increasing n. We plot the quantity |K — kool / ||Kooll against n in blue
squares. Figure 1(b) shows a log plot of the same information with 90% confidence intervals.
Figure 1(c) shows the quantity ||\ — Aol / |[Ao|| against n in blue diamonds, where A = (A1, A2)
represents the eigenvalues of the matrix (A — KHA). It is evident that the eigenvalues of the
matrix (A — KHA) for each gain minimising the out-of-sample error, converge to the eigenvalues of
the matrix (A — Koo HA), with n increasing. Figure 1(d) shows a log plot of the same information

with 90% confidence intervals.
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FIG. 2. Figure 2(a) shows a plot of the tracking error in blue squares and the out-of-sample error
in black diamonds. The errors are plotted against the inverse of a for ¢ = 0.1 and p = 0.01.
Figure 2(b) shows a plot of the out-of-sample error in black diamonds for 100 realisations of the
noise r, with ¢ = 0.1 as well as the state error in blue circles. They are displayed for the range of
o where the minimum occurs. The error bars in both curves represent 90% confidence intervals.
The black vertical line draws attention to the minimum of the out-of-sample error which coincides

with the minimum of the state error.

s3 fifth percentile while the upper limit was taken at the 95th percentile thus creating the 90%
24 confidence intervals.

2 b, Gain Matriz with Symmetric Poles In this part of the linear numerical experiment,
26 we want (A — KHA) to have a certain characteristic polynomial. Suppose that the desired

27 characteristic equation is given by
q(A) = A+ a)(A —a) (31)

28 80 that Ay = —Xg and |\| = |A\s] = a. The appropriate K for a desired characteristic
20 polynomial, q()\) of the matrix (A — KHA) follows from Ackermann’s Formula'® which is
330 given by

K =q(A)07'0...1)" (32)

s where O is the observability matrix defined in (26).
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32 The results obtained from our numerical experiment to test the validity of (16) are shown
333 in Figure 2. Figure 2(a) shows a plot of the tracking error in blue squares and the out-of-
3¢ sample error in black diamonds. The out-of-sample error calculated via (16) is equivalent to
135 calculating the out-of-sample error explicitly using the output error. We can see that the
136 tracking error tends to zero with decreasing a. This is what we expected and is confirmed
337 by using our analytical expression for the optimism.

13 It is clear from Figure 2(a) that while the tracking error tends to zero, the out-of-sample
339 error initially decreases and then increases resulting in a well-defined minimum. This is
a0 because as the coupling strength increases, the observations are tracked too closely and thus
sa the output adapts too closely to the observations resulting in an increase of the out-of-sample
s2 error. On the other hand when « is large and the coupling strength is weak, the observations
a3 are tracked poorly resulting in large tracking and out-of-sample errors. In these experiments
ss v was varied between 0 and 1 with the assimilation window taken to be N = 10000.

1s  The well defined minimum of the out-of-sample error is also shown in Figure 2(b).
us Figure 2(b) shows the out-of-sample error in black diamonds for the range of o where
w7 the minimum occurs. The figure shows the out-of-sample error for 100 realisations of the
us observation noise r,, with ¢ = 0.1 so that the sample estimate is different each time. The
.9 error bars in the plot represent 90% confidence intervals for each value of . The lower
ss0 limit of the error bars is taken at the fifth percentile, while the upper limit is taken at the
551 95th percentile, hence obtained 90% confidence intervals as a measure of accuracy. Some
ss2 further experiments using different values of ¢ where carried out however the results are
553 not included here. The results produced were the same as the ones presented in this paper;
54 the only difference was the size of the error bars produced. A smaller value of ¢ resulted in
35 smaller error bars.

6 1o quantify the variation of the parameter « in this experiment, we considered the
357 following calculation. The mean value of the optimal o plus/minus one standard deviation

358 in this case is

a* 4+ +/(a* — a*)? = 0.3698 + 0.028. (33)

30 The second plot in Figure 2(b) illustrates the state error. This estimate of the state error

30 1S defined by
N

Eg = %Z(zn —z,)>% (34)



ss1 This is the error that ultimately wants to be analysed and minimised in data assimilation
62 experiments. However, because the model noise (pg,) is difficult to determine, we cannot
363 explicitly analyse the state error which is why we consider errors we can calculate, namely
s6s the tracking, output or out-of-sample errors. We can plot the state error Eg in this example
365 because we have access to it, however in general this is not possible. The vertical line in
366 Figure 2(b) draws attention to the minimum of the out-of-sample error. It is evident that the
367 state error also has a minimum and the plot suggests that the minima of the out-of-sample
w8 and the state error are the same. Again, we ran the experiment for 100 realisations and

360 plotted the error bars with 90% confidence intervals.

s B, Numerical Experiment 2: Hénon Map

sn In this experiment, the reality is given by

ab (Hz,)?
Tyl = Tp+cC +d (35)
10 0

A

s which for the values a = 0, b = 0.3, c=—1.4, d = [1 0] is the chaotic Hénon Map with
a3 corresponding observations

N = Hxn +ory (36)

s where H = [1 0], and ¢,, = Hz,,. The model describing the reality is completely deterministic
sis and we assume that the observations are corrupted by random noise. Notice that we now
s have a non linear term in the dynamical system. Such systems are said to be in Lur’e form.
sz Once again we consider data assimilation by means of synchronisation so we set up an

w8 observer roughly analogous to our sequential scheme (19) with certain differences,

Zn+l = 2n+1 + Kn(nn—l—l - Hén—i—l)a Yn = Hzn (37)
370 where
a b -
én—H = Zp +C T +d (38)
10 0
A

;0 where a, b, c,d are the same as for the reality. In this case as in the first example, the

ss1 model is coupled to the observations through a linear coupling term which is dependent on
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2 the difference between the actual output and the output value expected based on the next
33 estimate of the state. However there is also a non linear coupling introduced here by the
s presence of 12 in the background term. Note that (16) is still valid nonetheless because 2,1
ses 18 still uncorrelated with r,, 1. For these experiments we will take the coupling matrix K,, to
s be constant so from here on in we write K,, = K.

ss7 We need to choose the matrix K appropriately so that we can vary the coupling strength.
38 For illustration purposes consider the error dynamics for the noise-free situation so that

80 ), = Hx,. The error dynamics in this case are given by

€ntl = Tnil — Zntl
= Tn+1 — Znt1 — KH(Zn1 — Z041)
= (1 - KH)(zp11 — 2n11) (39)
= (A — KHA)(z, — z,)
= (A —KHA)e,.

300 The matrix (A — KHA) is stable even if K = 0. This means that synchronisation occurs
sa1 even if there is no linear coupling between the model output and observations because of
32 the non linear coupling introduced in the model (38). The eigenvalues for such a case are
33 A\j g = ++/b, where b is as in the matrix A. However, it might be that with noise, the
304 out-of-sample error is not optimal for this coupling and can be improved by some additional
s0s linear coupling.

we It is straightforward to check that the system we are working with here is observable
207 provided that b # 0. The appropriate K for a desired characteristic polynomial, g(A) of the
308 matrix (A — KHA) again follows from Ackermann’s Formula (32). Suppose that the desired

300 characteristic equation is given by

g(A) = A+ a)(A - a) (40)
a0 80 that A\ = —Ag and || = |\2] = @. Then by Ackermann’s formula we get
1—a?/b 2
K = I (41)
ac®/b? b
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a1 where a = 0 and b = 0.3 as in the matrix A. From (41) we see that HK = 1 if & = 0. Thus,
Yy, = Hz, = (1 - HK)HZ, + HKn,, — n,, (42)

w02 Meaning that our data assimilation scheme simply replaces y, with 7,, implying that the
a03 tracking error is zero. In other words, in this example, it is possible to render the eigenvalues
s Of the error dynamics exactly zero and also to obtain zero tracking error. However, the data

w05 assimilation is not perfect and the out-of-sample and state errors will not necessarily be

o

406 sStall.

w7 Therefore, from (16) we know that

b

s Recall that the aim of this work is to find a way to estimate the out-of-sample error to get a

2
Eo = By — 202 <1 - O‘—) — o2 (43)

4

o

w00 more realistic picture of model performance. We have already determined that when there
a0 18 no linear coupling (i.e. K = 0) the system is stable and synchronisation occurs. We can

1 see from (43) that this happens when o@ = £+/b. There are two further cases to consider.

4

s

sz When o? > b the feedback, due to the linear coupling, is negative. Therefore, in this case
a3 we will not be able to improve the out-of-sample error. However as o tends to zero the
s1a optimism will increase and be bounded by 202. Therefore when o < b it may be possible to
a5 improve the out-of-sample error and determine a coupling matrix K # 0, that minimises the
a6 out-of-sample error, to be used in the model. We calculate the errors as we did for the linear
a7 numerical example in Section IITA.

ms  The results obtained from our numerical experiment to test the validity of (16) are shown
a9 in Figure 3. Figure 3(a) shows the tracking error in blue squares and the out-of-sample error

4

)

o in black diamonds. We can see that the tracking error tends to zero with decreasing . This
w1 is what we expected and is confirmed by using our analytical expression for the optimism.
222 In these experiments « was varied between 0 and 1 with the assimilation window taken to
223 be N = 10000.

«2¢ By analysing the expression for the optimism in this case, we see that there is a point
s2s where the tracking and out-of-sample errors meet. This happens when o = b. To the left of
w6 this, when o? > b, the tracking error is greater than the out-of-sample error. To the right,
27 when a? < b, the tracking error is smaller than the out-of-sample error. In fact the tracking
a8 error tends to zero while the out-of-sample error decreases and then starts to increase again

a0 resulting in a well defined minimum.

19



- -4
1 x10 35 x10
ﬂ}
0 08 "
= f ’é 3t
T 5 o
8 006 2w
o Q T o
€ E v E ?
25 g3
S 204 5 5os| |
F 2 @
5 \ 5
O @]
0.2
2 HW+
O 1 1 1
0 5 10 2 4 6 8 10
1/« 1/

FIG. 3. Figure 3(a) shows a plot of the tracking error in blue squares and the out-of-sample error
in black diamonds. The errors are plotted against the inverse of «a for o = 0.01. Figure 3(b)
shows a plot of the out-of-sample error in black diamonds for 100 realisations of the noise r,, with
o = 0.01. It is displayed for the range of o where the minimum occurs. The error bars represent
90% confidence intervals. The state error is show in blue circles also for 100 realisations of the
observation noise with 90% confidence intervals. The vertical line draws attention to the minimum

of both curves.

a0  The well defined minimum of the out-of-sample error is shown more clearly in Figure 3(b).
s Figure 3(b) shows the out-of-sample error in black diamonds for the range of o where the
s3> minimum occurs. The figure shows the out-of-sample error for 100 realisations of the noise
a3 T, for 0 = 0.01. The error bars represent 90% confidence intervals for each o. Once again we
s would like to quantify the variation of the parameter a. The mean value of the optimal o

435 plus/minus one standard deviation in this case is
a* ++/(a* —a@*)? = 0.2238 £ 0.0079. (44)

ss  Figure 3(b) also shows a plot of the state error in blue circles for 100 realisations. The
a7 black, vertical line draws attention to the minimum of both curves. We can see that the
s3s Minimising gain is the same for both errors. When running data assimilation schemes, the
a3 state error is the error we are interested in minimising, however we only have access to the

ao error in observation space. Even though this is the case, we have shown numerically that the
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w1 Minimising gain is the same for both errors, even in this non linear situation.

kS

a2 As with the linear numerical experiment presented in Section III A, further experiments
a3 using different values of ¢ where carried out. The results produced were the same as the
ws ones presented here; the only difference was the size of the error bars produced. A smaller
ws value of ¢ resulted in smaller error bars much like it did for the linear numerical example.

uas  What is particularly of interest here is that even though the dynamical system included
w7 a non linear term, the methodology still applies, provided that the matrix (A — KHA) is
us stable. As an aside, the experiment suggests that the eigenvalues of the linear part of the
a0 error dynamics have to be < 1 — ¢ with some small but non-zero € in order to stabilise the

ss0 error dynamics.

s C. Numerical Experiment 3: Lorenz 96

ss2 For this third numerical experiment, the reality is given by the Lorenz’96 model which is

a3 governed by the following equations
Jf‘i = —xifl(.fifg — $i+1) — T + F (45)

a2 and exhibits chaotic behaviour for F' = 8. By integrating the above differential equation with

w5 a time step 0 = 1.5 x 1072, we obtain a discrete model for our reality which we denote by
Tpy1 = (). (46)
56 We take corresponding observations of the form
N = Hx), + o1y, (47)

«s7 where H is the observation operator and r,, is iid noise. We shall take the state dimension to
w8 be D = 12, the observation space to be d = 4 and we define the observation operator so that
450 we observe every third element of the state; that is (1, x4, 7, 210). The system we construct
w0 here is fully non-linear with linear observations.

w61 The assimilating model will use the Lorenz’96 model coupled to the observations through
w2 a simple linear coupling term, as done in the the previous numerical experiments. We set

a3 the coupling matrix K, to be defined by
K = xH” (48)
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FIG. 4. Figure 4(a) presents the out-of-sample error (black diamonds) and the tracking error (blue
squares). Figure 4(b) illustrates the out-of-sample error (black diamonds) and the state error (blue
circles) with the error bars representing 90% confidence intervals. The black vertical line draws

attention to the minimum of the out-of-sample error.

ss where K is a coupling parameter taken to be between 0 and 1. With this information, the

a5 assimilating model is defined by the following equations
2ot = ®(2,); Zng1 = g1 + KH (Doy1 — HZ,p0). (49)

w6 Once again we will vary the coupling strength in the observer by adjusting the coupling
w7 parameter k. If the coupling is too strong, the observations will be tracked too rigorously and
ass 50 the observational noise will not be filtered out. If the coupling is too weak the observations
w0 are tracked poorly; so once again we expect the out-of-sample error to take a minimum at
a0 some non-trivial value of k.

a As always we are interested in the behaviour of the state error and, ultimately, this is the
a2 error we want to be minimal. We saw in Section III B that the minimiser for the out-of-sample
a3 error was the same as for the state error. We investigate this here too.

a2 The results obtained are shown in Figure 4. Once again the observational noise is iid with
ws Er, =0, Er,rl =1 and 0 = 0.01. Since the gain is given by equation (48), the optimism
w6 reduces to 80?k. To see this note that the observation operator, H, was defined so that

a7 every third element of the state was observed. It follows then that HH” = 1, the identity
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w5 matrix. Since we are observing four states, the trace of HH” is equal to four. Thus, since
w0 the optimism is defined by 2¢%tr(HK) and K is given by equation (48), it follows that the
40 optimism reduces to 802k.

w1 To calculate the the errors, a transient time was ignored to give the system time to
s2 synchronise. In Figure 4(a) the out-of-sample error (black diamonds) is presented together
483 with the tracking error (blue squares). The black vertical line draws the eye to the minimum
asa of the out-of-sample error. As in the previous experiments, the tracking error reduces to zero
sss while the out-of-sample error increases eventually with increasing coupling strength.

w6 Figure 4(b) presents the out-of-sample error (black diamonds) and the state error (blue
sg7 circles). The figure shows the errors for 100 realisations of the observational noise, r,,. The
s error bars represent 90% confidence intervals for each value of x with the lower limit of the
w0 error bars taken at the fifth percentile and the upper limit taken at the 95th. The mean

a0 value of the optimal x plus/minus one standard deviation in this case is
R £/ (k* — F*)? = 0.3050 £ 0.1184. (50)

w1 The black line draws attention to the minimum of the out-of-sample error and we once
02 again see that the minima of the state and out-of-sample errors coincide. It is evident here
w03 that these results support the results determined previously in the numerical experiments.
s0a Further experiments using different values of ¢ where also carried out for this non linear
a0s system. The results produced were the same as the ones presented here; the only difference
w6 was the size of the error bars produced. Again, as with the results in the previous two
w07 experiments, a smaller value of ¢ resulted in smaller error bars.

ws  The flatness of the curves and the uncertainty shown in the figures are rather deceptive in
a0 the plots presented in this paper. By looking at these figures, one might expect that the
so0 errors in the estimate of kK* are in fact quite large. However this is not the case as it is the

so1 correlation between the errors in the plots that matters.

s2 IV.  CONCLUSIONS

s A fundamental problem of data assimilation experiments in atmospheric contexts is that
soa there is no possibility of replication, that is, truly “out of sample” observations from the

sos same underlying flow pattern but with independent observational errors are typically not
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so6 available. A direct evaluation of assimilated trajectories against the available observations is
so7 likely to yield optimistic results though, since the observations were already used to find the
s08 solution.

so0 A possible remedy was presented which simply consists of estimating that optimism,
s10 thereby giving a more realistic picture of the ‘out of sample’ performance. The optimism
s represents the correlation between the observations and the output of the data assimilation
s12 scheme. This estimate depends on the observational noise, the observation operator and the
s13 feedback gain matrix but not on the underlying dynamics or dynamical noise parameters.
s1 The model noise is the term that is difficult to determine operationally, so estimating the
s15 optimism in an operational situation is possible as all the required terms are readily available.
s16 In this paper, this approach was applied to data assimilation algorithms employing linear error
s17 feedback. Several numerical experiments concerning both linear and non-linear systems give
s18 evidence to the success of this method as it provides more realistic assessment of performance.
s19 This was demonstrated by comparing the out-of-sample performance with the true state
s20 error of the algorithm which was available in these numerical simulations.

sz The approach outlined above also provides a simple and efficient means to determine the
s22 optimal feedback gain by optimising the out-of-sample error with respect to the gain matrix.
s23 Further, theoretical results demonstrate that in linear systems with gaussian perturbations,
s2¢ the feedback thus determined will approach the optimal (Kalman) gain in the limit of large
s2s observational windows. The numerical experiments presented in this paper support this
s26 result for linear systems.

s27 We cannot deduce the same thing for the non-linear systems since firstly, we do not have
s2s a candidate for the asymptotic error or gain since the Kalman Filter equations do not hold
s20 in these cases. Secondly, even if the existence of an optimal asymptotic gain could be proved,
s3 the sequence of minimisers might not converge to it.

s As an outlook for future work, it seems that the presence of dynamical noise in the

5!

@

> underlying system is important when considering the convergence of the optimal gain matrix
s313 for non-linear systems. (Even in the linear case, the presence of nondegenerate dynamical
s3¢ noise is essential for the proof to work). If there is no model noise present, then we cannot

s35 expect the gain matrix to converge in a meaningful way as the optimal asymptotic gain may

@

s3 not be well defined. For example it is possible that the dynamics of both the underlying

s37 system and model enter a region of stability, resulting in a reduction of the error. In this
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s3 case it would make sense to reduce or completely eliminate the feedback gain matrix. This

s3 would need the gain matrix to be adaptive in some way; a concept not considered here.
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ss Appendix A

ss  In this appendix, we want to clarify the relationship between the output error
Eon = E[(H(z, — 2))"] (A1)
s (which we give an index n here as it depends on n) and the error covariance matrix
Ln=E[(x, — 20)(zn — 20)"] (A2)
sa3 in the context of linear systems (Section IITA). Re-writing the output error we obtain

Eon =E{(H(z, — 2,))" (H(z, — 20))}
= Etr{(H(z,, — 2,,))TH(x,, — 2,)}
= Etr{H(z, — 2,)(z, — 2,)TH?}
= tr{H[,H"}

ss0 and if we assume real values observations (i.e d = 1), we get Ep, = HI,,H”. This does not
sso mean that Fp,, carries the same information as I',, since H is not invertible.

50 To investigate this further, introduce the mappings F : RP? x RP*P — RP*P (K, M) —
s2 (A — KHA)M(A — KHA)T and G : RP? — RP*P: K — 0?2KK? + p*(1 — KH)(1 — KH)”
ss3 and (K, M) = F(K, M) + G(K). Note that F is linear in M, and we will write F/(K) - M

ssa to emphasize this. It follows from linear filter theory that

Tni1 = (A —KHA), (A — KHA)T + 02KK” + p2(1 — KH)(1 — KH)”

(Ad)
= F(K) T, + GK) = ®(K,T,).
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sss Suppose that K is stabilising, then I', — I'(K) which is a fixed point of (A4), i.e I'(K) =
s F(K) - T'(K) + G(K). Note that I'(K) describes the asymptotic error performance of the
ss7 feedback K.

555 We will now show that the output error is able to distinguish (asymptotically) between
sso better and worse feedbacks. For any two symmetric matrices My, My, we write M; > M, if
ss0 IVI; — M is positive semi-definite but not zero. Let K;, Ky be two stabilising feedbacks so that
se. ['(K1) > I'(Ky); that is Ky performs better than K;. Further, assume (1 — HK;) # 0 which
s2 implies that (A — K;HA, H) is observable. (This condition might seem artificial but we will
53 see later that it is in fact rather natural). We will now show that HI'(K;)H” > HI'(K,)H".
se« Note that because I'(K;) > I'(Kj) we have

M, = F"(Ky){T'(Ky) —T'(Kz2)} > 0 (AD)

ses for any n since F'(K;) preserves positive and negative semi-definiteness. Further, the sequence

ses VI, is decreasing. To see this, note that it must be monotone since
Mn—i—l - Mn - F(Kl){Mn - Mn—l} (A6)

se7 and again F'(K;) preserves definiteness. It cannot be increasing though since K; is stabilising
ses and hence M,, — 0. Therefore HM,,H” > 0 and decreasing.
0 Assuming HI'(K;)H” = HI'(K,)H? would then imply

0=HM,H" = HF"(K,{T'(K,;) — I'(K,)}H”

(A7)
= H(A - K;HA)"(I'(K;) — I'(K))) (A — K;HA)"" H”
s0 for all n. Now using the spectral decomposition of My = I'(K;) — I'(K»),
d
MO = Z )\iUiUZ»T (A8)
i=1

s1 where \; are the eigenvalues of M and v; are the corresponding eigenvectors, we see that
d
0=HMH" =) "\ (H(A — K;HA)";)° (A9)
i=1
s for all n. Since My # 0, there is a A; > 0 and hence

H(A - K;HA)"w; =0 Vn (A10)
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s3 which contradicts the observability of (H, A — K;HA). This shows that My = 0 finishing
sz the proof.

sts  From the preceding arguments, it follows that any minimiser of the output error must be
s76 the asymptotic Kalman gain. To see this, assume K, is the Kalman gain while K; optimises
s7 the output error HI'(K)H?. By definition of the kalman gain, I'(K;) > I'(Kj), and the
ss preceding discussion shows that ['(K;) = I'(Ky) if (1 — HK;) # 0.

s To check that this is true, use that the asymptotic output error satisfies
HI'(K)H" = (1 — HK)* {H[(K)H" + p"HH" } + ¢°(HK)". (A11)

ss0 Taking the derivative with respect to K at K; and using the optimality yields the condition

_ HI'(K,)H" + HH"p?
- HI'(K,)HT + HHTp? + o2

HK, (A12)

s SO 1 = HK; > 0. As a final remark, 1 — HK = 0 implies that y, = 7, (check example (22)

se2 for constant K), that is the data assimilation simply reports back the observations.
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