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Abstract: We construct different equivalent non-equilibrium statistical
ensembles in a simple yet instructive N -degrees of freedom model of atmo-
spheric turbulence, introduced by Lorenz in 1996. The vector field can be
decomposed into an energy-conserving, time-reversible part, plus a non-time
reversible part, including forcing and dissipation. We construct a modified
version of the model where viscosity varies with time, in such a way that
energy is conserved, and the resulting dynamics is fully time-reversible. For
each value of the forcing, the statistical properties of the irreversible and re-
versible model are in excellent agreement, if in the latter the energy is kept
constant at a value equal to the time-average realized with the irreversible
model. In particular, the average contraction rate of the phase space of
the time-reversible model agrees with that of the irreversible model, where
instead it is constant by construction. We also show that the phase space
contraction rate obeys the fluctuation relation, and we relate its finite time
corrections to the characteristic time scales of the system. A local version
of the fluctuation relation is explored and successfully checked. The equiv-
alence between the two non-equilibrium ensembles extends to dynamical
properties such as the Lyapunov exponents, which are shown to obey to a
good degree of approximation a pairing rule. These results have relevance
in motivating the importance of the chaotic hypothesis. in explaining that
we have the freedom to model non-equilibrium systems using different but
equivalent approaches, and, in particular, that using a model of a fluid where
viscosity is kept constant is just one option, and not necessarily the only op-
tion, for describing accurately its statistical and dynamical properties.

Key words: Equivalent Equations, Turbulence, Chaotic Hypothesis, Fluctu-
ation Theorem, Geophysical Flows, Parametrization, Lyapunov Exponents
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1 Introduction

Non-equilibrium statistical mechanical systems reach a steady state, after
transients have died out, with a statistical balance between forcing and
dissipation. The forcing is typically performed by an external field, while
the dissipation is taken care of by a suitably defined thermostat, which
has the role of removing the excess of energy accumulated in the system
as a result of the work due to the external field and the related processes
cascading from there.

When considering a macroscopic description of a physical system, fric-
tion plays the role of the thermostat. The most common way of introducing
it is phenomelogically described by a force opposing motion proportional to
a friction constant ν. The introduction of friction in this form leads to a
fundamental change in the equation of motion of the system, as the time
reversal symmetry is broken. This cannot be a fundamental model of the
process of thermostatting because the basic equations of Physics are time re-
versal invariant, i.e. invariant under a transformation I which anticommutes
with the time evolution map x→ Stx, in the sense that StIx = IS−tx (which
usually is just a velocity reversal, but might be more involved, [12].

Hence, it is worth investigating whether the statistical, macroscopic
properties of a physical system whose microscopic dynamics obeys a simple
phenomenological friction law of the kind described above can be equiva-
lently described by different microscopic equations, constructed in such a
way that fundamental time reversal symmetry is preserved [11, 10, 14]. The
main reason for studying this is not the hope for simpler equations, but
rather the possibility of having an alternative view of the dynamics, which
could reveal certain features of the problem.

A compelling analogy can be found with equilibrium statistical mechan-
ics, and in particular with the concept of equivalence of the ensembles, which
suggests, e.g. that the same system can be equivalently described by the
microcanonical or canonical ensembles. Obviously, the equivalence does not
extend to all properties: If one is interested in energy (temperature) fluctua-
tions, it would be futile, by construction, to use the microcanonical (canon-
ical) ensemble. A similar discussion has not yet been systematically carried
over in the context of nonequilibrium. An early attempt at a check of the
ideas in the works cited above can be found in [21]. For instance if inter-
est focuses on dissipation fluctuations a model in which the dissipation is
a fixed constant may affect deeply dissipation itself (obviously), and other
observables.

Since reasonable Physics will not dismiss dissipative equations, like the
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Navier-Stokes (NS) equations, the approach that should be taken is to regard
the stationary states reached in models with equations in which friction is
constant as ensembles whose properties can also be described by equivalent
ensembles, which are stationary states of other equations. In particular, our
goal is to construct such ensembles from evolution equations obeying time
reversal symmetry.

In this paper a detailed investigation is pursued on a specific model and
the result suggest a very general picture, whose foundation was laid out in
[11, 10]. The conceptual frame is the chaotic hypothesis which leads to the
emergence of various properties making use of the general theory of chaotic
motions initiated in [25, 38] and allows deriving parameter free predictions
on various fluctuations like the fluctuation theorem [19].

It is important to keep in mind that the representation of dissipative
processes in e.g. fluids, except in the rare cases where direct numerical
simulation down to the Kolmogorov scale is feasible and one can use molec-
ular diffusivities and viscosities, requires considerable theoretical efforts. In
fact, one must find simplified yet accurate methods for dealing with the un-
resolved scales of motion and for representing correctly complex cascades
of quantities like energy and enstrophy. The formulation of methods for
performing large eddy simulations [42, 39, 7], and, more in general, for pro-
viding a closure to Reynolds stresses [33] provide prototypical examples in
this direction. The aim of our work is, however, to study in a simple exam-
ple the fundamental role of time reversibility in dissipative phenomena, and
shows, at least in the model considered, how to avoid using equations break-
ing time reversal invariance without loss of information. Hence it addresses
specifically time reversal symmetry (and possibly other symmetry proper-
ties), unlike the previous literature in the field, as the just works cited above,
which model dissipation phenomenologically with irreversible equations. A
notable exception to this approach in the existing literature can be found in
[40] where it is shown, for the first time, that is possible to reproduce the
properties of a dynamical system where a constant friction plays a key role
using a model obeying time reversibility.

1.1 Equivalence of Ensembles

Let us consider a dynamical system with N degrees of freedom

ẋj = fj(x) + Fj − ν(Lx)j , ν > 0, j = 1, . . . , N (1.1)

where L is a positive definite dissipation matrix: e.g. in many interesting
cases and (Lx)j = xj and ν > 0, and f(x) = −f(−x) (time reversibility).
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Let E(x) be an observable such that
∑N
j=1 ∂jE(x)(Lx)j = M(x) is

positive for x 6= 0. In the simple case where L is the identity, taking
E(x) = 1

2

∑
j x

2
j ≡ x2, we have M(x) = x2; then the equation

ẋj = fj(x) + Fj − α(x)(Lx)j , α(x)
def
=

∑N
j=1 Fj∂jE

M(x)
, (1.2)

will admit E(x) as an exact constant of motion, and, if E(x) = E(−x), it will
be time-reversible with time reversal x → −x, t → −t. The quantity α(x)
will fluctuate in time and, in general, will not have a definite sign. We say
that the stationary distributions of the Eq.(1.1),(1.2) define corresponding
ensembles of statistical distributions.

A natural generalization to cases with several friction constants is ob-
tained if Lν is a positive matrix depending linearly on k positive friction
constants ν = (ν1, . . . , νk), (Lνx)j =

∑N
j′=1

∑k
s=1 νsL

s
j,j′xj′ : then the sta-

tionary distributions for the equations

ẋj = fj(x) + Fj − (Lνx)j , and ẋj = fj(x) + Fj − (Lαx)j , (1.3)

will be said to form two corresponding ensembles of statistical distributions
with dissipation balanced on k observables E(x) = (E1(x), . . . , Ek(x)), with
Ej(x) = Ej(−x), if the k × k matrices

Mr,s(x)
def
=

N∑
j,j′=1

∂jEr(x)Lsj,j′xj′ (1.4)

are positive definite for x 6= 0, and if the coefficientsα(x) = (α1(x), . . . , αk(x))
are defined as

αr(x) =
k∑
s=1

M(x)−1
rs

N∑
j=1

∂jEs(x)fj(x),

α = M(x)−1Φ(x), Φr(x) = (F(x) · ∂Er(x))

(1.5)

The key property of the equations (1.5) is that E(x) are k exact constants
of motion; furthermore the equation is time reversal invariant (with time
reversal symmetry given by I : x→ −x, t→ −t), as opposed to Eq.(1.1).

The equations Eq.(1.3) will be said to have ‘dissipation balanced on the
observables E’.

A simple class of equations with dissipation balanced on E(x) is obtained
in the cases in which E(x) are quadratic positive definite constants of motion
for the inviscid, not forced equation ẋ = f(x) and the viscous equations are
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ẋj = fj(x) + Fj(x)−
k∑
r=1

νr∂jEr(x) (1.6)

In this case the Φ(x) does not depend explicitly on f . However the balanced
dissipation equations are more general.

In [11, 15], it was proposed, in special cases and for strong forcing, that
given a dissipative equation, the constant friction vector ν could be re-
placed by the corresponding time reversible equations with a variable vector
α = (α1, . . . , αk) as defined above which obeys time reversal symmetry, as
opposed to the original dissipative-balanced system.

As a notable example, the incompressible 2-dimensional Navier-Stokes
(NS) equation in a periodic container can interpreted, according to Eq.(1.1),
as describing a dissipative-balanced system:

u̇ + (u · ∂)u = −∂p+ g + ν∆u = 0, ∂ · u = 0 (1.7)

because E(u) = 1
2

∫
(∂u)2(x)dx, being the dissipation of kinetic energy

(apart from a factor 1/ν), is a constant of motion in 2D incompressible

fluids with periodic boundary conditions and δE(u)
δuj(x)

=
∫ ∑

rk ∂rukδjk∂rδ(y−
x) dx ≡ −∆uj(x). The equivalent model is then:

u̇ + (u · ∂)u = −∂p+ g + α(u)∆u, ∂ · u = 0

α(u)
def
=
−
∫

g ·∆u dx +
∫

∆u ·
(
(u˜ · ∂˜ )u

)
dx∫

(∆u)2

(1.8)

which via the spatial Fourier decomposition of the velocity field u becomes:

α(u)
def
=

∑
k k2 gk · u−k∑

k k4|uk|2
, D = 2 (1.9)

In dimension 3 the same fluid with dissipation balanced on the vorticity
observable E(u) cannot be regarded as an element of the special class given
in Eq. 1.6 where the observables E are constants of motion and the vis-
cous term contains their derivatives, because in this case E(u) in absence of
friction E(u) is not conserved. If one considers instead as conserved quan-
tity for the unviscid flow K(u) =

∫
u(x)2dx, the corresponding irreversible

equations (both in 2 and 3 dimensions) of the form given in Eq. 1.6 are the
the so-called Ekman friction equations, where the dissipative term ∆u of
the Navier-Stokes equations is substituted by a term of the form −u.
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The 3D fluid can nevertheless be considered to have dissipation balanced
on the vorticity as in Eq.(1.8): in this case the inertial term will appear
explicitly in the definition of α(x), so that α(x) will be given by Eq.(1.8)
and it will not be as simple as Eq.(1.9). It will be

α(u)
def
=

∑
k k2 gk · u−k + k2u−k ·

∑
h(u˜ k−h · ih˜ )uh∑

k k4|uk|2
, D = 3 (1.10)

The equations Eq.(1.8),(1.9) have the property of having Ej(x) ∀j = 1, . . . , k,
or, respectively, E(u), exactly constant.

The proposed equivalence between the balanced dissipative equations
and the corresponding reversible equations is articulated in several proper-
ties of their stationary distributions, reminiscent of the equivalence state-
ments between different ensembles in statistical mechanics.

Let µiν be the stationary distribution for the irreversible balanced dissi-
pative system with friction coefficients ν and µr

E
the stationary distribution

for the reversible equation with E as a constant of motion vector with value
E. Then µiν will be said to correspond to µr

E
if µiν(E) = E or (equivalently,

as we shall argue) if µr
E

(α) = ν.
The correspondence that we discuss will be interpreted to imply equiva-

lence: i.e. that setting the value of the viscosity coefficient ν is conceptually
equivalent to setting the value of the physical quantities E, at least in the
limit of large forcing. Therefore, it will become possible, at least in the
cases and under the assumptions discussed in the following, to take two dif-
ferent, but equally effective, points of view for studying the properties of the
considered system in the same sense in which different equilibrium ensem-
bles become equivalent in the thermodynamic limit (which in most cases is
reached already in not too large systems, as shown by the simulations with
few degrees of freedom).

The two viewpoints differ microscopically in term of the representation
of reversibility, but provide the same statistical mechanical picture.

More precisely some among the equivalence properties that we consider
are:

(1) If µE(α) = ν then µν(E) = E: the equivalence is reflexive.
(2) If g(x) is a smooth observable in a large class (for instance in the case of
the NS equations if its Fourier transform can be expressed in terms of few

low Fourier modes), the statistics of γ
def
= 1

T

∫ T
0 g(Stx)dt is the same in the

two systems for T large
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(3) The fluctuation relation, [19], holds for the dissipation function

σ(x)
def
=
∑
j

∂j [(∂jE(x)) ·M−1(x)Φ(x)] (1.11)

which in the example of Eq.(1.8) and for gk 6= 0 only for few small k (i.e.
for large scale forcing) is

σ(u) =2(
∑
k

k2)α(u) +

∑
k k4gk · u−k∑
k k4|uk|2

− 2
(
∑

k k2gk · u−k)(
∑

k k6|uk|2)
(
∑

k k4|uk|2)2
' 2(

∑
k

k2)α(u)

(1.12)

where the sum over k is over the modes below the ultraviolet cut-off used.1

This means that if σ denotes the average value of the dissipation func-
tion in the stationary states µi

E
and if p = 1

τ

∫ τ
0
σ(Stx)
σ then the probability

Pτ (p)dp of the event p ∈ dp in the distribution µE is multifractal and

1

τ
log

Pτ (p)

Pτ (−p)
= σ p+O(τ−1) (1.13)

A more mathematical statement is that the rate function γ(p) describing
the multifractal distribution2 of the random variable p with respect to µE
has the symmetry property γ(−p) = γ(p) − σ p for |p| < p∗ where p∗ is a
quantity depending on the system, however p∗ ≥ 1, for details see [9].
(4) The Lyapunov spectra of the two distributions coincide.

1.2 Our Model

The goal of this paper is to substantiate the conjecture of equivalence be-
tween an irreversible dissipative-balanced model and the corresponding re-
versible model, constructed as detailed above. We consider the so-called
Lorenz ’96 model, proposed by E. Lorenz in a series of papers [27, 26]:

ẋj = xj−1(xj+1 − xj−2) + F − νxj , j = 0, . . . , N − 1 (1.14)

1In 3 dimensions the natural cut-off would be the Kolmogorov scale; in 2 dimen-
sions the cascade is inverse and the interpretation is more subtle, see [11].

2This is a function γ(p) such that the probability the p ∈ ∆ is asymtpotic as
τ → ∞ to const eτ maxp∈∆ γ(p): in Anosov systems it is analytic, [41, 18], in p for
|p| < p∗ for some p∗; in time reversal symmetric Anosov systems p∗ ≥ 1.
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and periodic conditions xk = xN+k, ∀k. The r.h.s. of the equations has
the typical structure of a sum of an energy conserving and time reversal
invariant part plus a forcing part plus a dissipation violating time reversal

(which in this case is the map (Ix)j
def
= − xj).

The variables xj of the model 1.14 have been originally interpreted as
the value of a generic meteorological quantity measured around a latitudinal
circle at a regular longitudinal interval.

The system shows chaotic motions, with a substantial fraction of positive
Lyapunov exponents, already at moderate forcing i.e. at values of R = F

ν2
≥

8: via the scaling xj(t) = νXj(νt) the equation acquires the dimensionless
form

Ẋj = Xj−1(Xj+1 −Xj−2) +R−Xj , j = 0, . . . , N − 1 (1.15)

The model is has become standard test-bed for predictability studies [32], for
devising advanced data assimilation techniques [44, 43] and for constructing
new parametrizations [45], so that today it has become the toy-model for
studies of the nonlinear properties of geophysical flows.

Moreover, such a model has been extensively studied for constructing
response operators to perturbations [1] and for testing accurately Ruelle’s
response theory [31, 30].The applicability, up to an extremely high degree of
precision of the Ruelle theory, described in [31] for R = 8 supports the idea
that the system features Axiom A-like properties i.e. - is sufficiently chaotic
- already at moderate forcings.

Assuming the chaotic hypothesis, [20, 17], the system will reach a sta-
tionary state µiR and E = 1

2

∑N
j=1X

2
j will be a fluctuating variable with

average value E
i
R =

∫
E(x)dµ(x)iR. We will consider as relevant macro-

scopic observable the momentum of the system, defined as M =
∑N
j=1Xj ,

which will fluctuate around its average value M
i
R =

∫
M(x)dµ(x)iR.

The rescaled model Eq.((1.15)) fits into the general dissipation balanced
form given in Eq.(1.1) when taking k = 1, E(X) = 1

2

∑
j X

2
j , Fj = R, ν = 1.

We will test the four equivalence properties described in the previous
section on the irreversible and reversible versions of the Lorenz ’96 model
for a large range of value of R in the turbulent regime. We want to emphasize
that all the computations presented in this paper have ben performed on a
regular laptop computer equipped with MATLAB R© V. 7.9 using a net total
of about 10 days of CPU time.

The paper is organized as follows. In Sec.2 we describe some basic prop-
erties of the irreversible Lorenz ’96 model, in particular confirming simple
scaling laws describing the statistical properties of M , E, and showing new
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scaling laws for the spectrum of Lyapunov exponents. In Section 3 we de-
scribe the properties of the reversible Lorenz ’96 model, showing that the
conjectured equivalence holds to a very high precision, and in particular
we discuss the validity of the fluctuation relation. In Sec. 4 we draw our
conclusions. Finally, in the two Appendices we provide the scripts used to
perform the computations presented in this paper.

2 Properties of the Irreversible Lorenz ’96 Model

A good starting point in the investigation of the model given in Eq.(1.15) is
to consider the time evolution of E:

Ė = −2E +RM (2.1)

which implies that at steady state E
i
R = 1

2RM
i
R.

The properties of Eq.(1.15) have been studied in detail in a number of
papers. We consider the case where N is sufficiently large (e.g. N ≥ 20), so
that it is possible to define stable (with respect to N) intensive properties
(see e.g. [23]). Unless otherwise stated, all presented results refer to the
case N = 32. It is found that for R < 8/9 the system features as unique
attractor the fixed point Xj = R, ∀j, while for larger values of R (<∼ 5)
periodic motions due to nonlinearly equilibrated waves are observed. For
R ≥ 5, the system is in a turbulent regime, featuring multiple positive
Lyapunov exponents. We will focus on the turbulent regime, and consider
in the rest of our analysis R ≥ 8. Our simulations have been run for R = 2p,
p = 3, . . . , 11. The statistics have been collected on 104 time units after
discarding an initial transient. The equations have been integrated using
the MATLAB R© V. 7.9 routine ode45, which allows for imposing a given
relative and absolute precision in the integration through adaptive steps. A
template for the MATLAB R© scripts used for investigating the statistical
properties of E and M for the Lorenz ’96 system is given in Appendix
A. With small modifications, the scripts can be used also in Gnu-Octave
(3.6.4-3). We have selected a relative and absolute precision of 10−8, which
ensures extremely high precision in the simulation. As already observed by

Lorenz [26], in such a regime the long term average of the energy E
i
R obeys

accurately a scaling law as follows:

E
i
R

N
∼ cER4/3 cE = 0.59± 0.01. (2.2)
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Considering Eq. (2.1), we derive:

M
i
R

N
∼ 2cER

1/3. (2.3)

We have detected numerically several other scaling laws of considerable in-
terest when studying higher order moments of the distribution of E and
M . The first significant result refers to the standard deviation of the energy

std(E)iR =
(
E2i

R − (E
i
R)2

)1/2
:

std(E)iR
N

= c̃ER
4/3, c̃E ∼ 0.2cE . (2.4)

The distribution of E is to a good approximation Gaussian, and for each
value of F its standard deviation is proportional to the mean value. The
standard deviation of M can be described for R ≥ 200 as

std(M)iR
N

= c̃MR
2/3, c̃M ∼ 0.046± 0.001. (2.5)

so that in this regime std(M)iR/M
i
R ∼ 0.039± 0.001 R1/3. Therefore, as R

grows, the relative size of the fluctuations of M increases, so that it is more
and more likely to observe negative fluctuations of M . As soon as R ≥ 2000,
the standard deviation of M is larger than half of its mean value, and larger
than the mean value itself when R ≥ 20000. This will become relevant when
studying in the next section the fluctuation relation for the reversible model.
As a last diagnostic property of the system, we note that the decorrelation
time of M , i.e. the time needed for the value of its autocorrelation function
to reduce by a factor e, obeys the following scaling relation:

tdec,M ∼ ct,MR−2/3 ct,M = 1.28± 0.01 (2.6)

Quite naturally, the stronger the forcing, the more intense the turbulence,
the faster the loss of memory of the system. In order to provide a syn-
thetic picture of the dynamical properties of the system, we next analyze
its spectrum of Lyapunov exponents [8], obtained using the classical Benet-
tin et al. [2] algorithm. A template for the MATLAB R© scripts used for
studying the Lyapunov exponents of the Lorenz ’96 system is given in Ap-
pendix B. Also in this case, with small modifications, the scripts can be
used also in Gnu-Octave (3.6.4-3). In Fig. 1, we present the spectrum of
Lyapunov exponents for R = 256 and R = 2048 and plot also the value of
π(j) = (λj + λN+1−j)/2. The confidence intervals shown in Fig. 1 indicate
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2 4 6 8 10 12 14 16
−150

−100

−50

0

50

100

150

N/2 + 1/2 − |N/2 + 1/2 − j |

1 4 7 10 13 16
−3

−2

−1

0

Figure 1: Black line: Lyapunov exponents for R = 2048 arranged pairwise.
Magenta line: corresponding value of π(j) = (λj + λN−j+1)/2. Blue line:
Lyapunov exponents for R = 256 arranged pairwise. Red line: correspond-
ing value of π(j) = (λj + λN−j+1)/2. Irreversible model.

the 3σ-uncertainty range around the expectation value. For each λj and
π(j), σ is computed as standard deviation of n = 10 estimates of obtained
running the model at steady state for 1000 tdec,M time units starting from
different initial conditions, divided by the square root of n. The expectation
value is computed, instead, as average of the n estimates. As expected, the
Lyapunov exponents increase with R, and, remarkably, each couple of Lya-
punov exponents sums up to a value smaller in absolute value than each of
them, and smaller than zero. Let’s investigate this further.

It is known that the Lyapunov exponents λj of a system consisting of
a Hamiltonian evolution plus a constant forcing plus a linear dissipation
with constant coefficient ν have the property λj = −λN+1−j), [6, 5]. The
time translations of the inviscid and unforced dynamics in the r.h.s. Eq.
(1.15) are reversible (hence have at least a common property with the usual
Hamiltonian evolutions), and the friction coefficient and the forcing are in-
dependent of X, it is tempting to interpret Fig. 1 using such framework.
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Some remarks need to be made. In [3] it is explained that the inviscid and
unforced dynamics is not Hamiltonian. As a result, the Jacobian matrices
along the trajectories (which live on the spherical shell with energy set by
the initial conditions) are not simplectic. Nonetheless, for such dynamics,
we discover that the infinite time (but not the local) Lyapunov exponents
obey a Hamiltonian-like pairing rule for any given value of the initial energy,
so that λj = −λN+1−j (not shown).

Results are presented in Fig. 2, where we plot π(j) for R = 22q+1, q =
1, . . . , 5, excluding the other considered values of R for reasons of readability.
We observe an emerging rule of pairing to a quite well defined R-independent
curve over a large range of values of R, 8 ≤ R ≤ 2048.3 The figure shows
that for all j’s the width of the confidence interval increases with R, basically
because π(j) is constructed as algebraic sum of two quantities of opposite
sign, whose average values and fluctuations increase in magnitude with R.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−3

−2.5

−2

−1.5

−1

−0.5

0

j

π
(j
)

 

 

R = 2048
R = 512
R = 128
R = 32
R = 8

Figure 2: Pairing rule π(j) = (λj + λN−j+1)/2 for selected values of R.
Irreversible model.

While the fact that observables such as ER/N andMR/N weakly depend

3Also featuring modest deviations , compared to the size of the strongly R-dependent
Lyapunov exponents, from what we would have obtained (a constant -1 value) had the
inviscid, unforced dynamics been Hamiltonian.
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on N is quite intuitive, we want to substantiate the fact that the spectrum
of the Lyapunov exponents of the system does not depend asymptotically
on the value of N , so that as limN → ∞ one expects, see e.g. [24], to
find a density of Lyapunov exponents. We report in Fig. 3 the spectrum
of Lyapunov exponents obtained for R = 256 and N = 256, which is very
similar to what reported in Fig. 1 for the corresponding value of R once we
rescale j to j/N + 1. While the confidence intervals do not overlap, we are
confident that convergence is obtained with increasing values ofN . In Fig. 3,

0 0.1 0.2 0.3 0.4 0.5
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1/2 − |1/2 − j/(N + 1)|

0 0.5
−3
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−1

0

Figure 3: R = 256: Lyapunov exponents λj for N = 256 (blue line) and
N = 32 (black markers). Values of π(j) = (λj+λN−j+1)/2 for N = 256 (red
line) and N = 32 (red marker); a zoom is provided in the insert. Irreversible
model.

we also report π(j) for R = 256 andN = 256, which is in excellent agreement
with what reported in Fig. 1, with overlapping confidence intervals. In the
following, we will refer to the thermodynamic limit N → ∞, where the
discrete set of the Lyapunov exponents indices j = 1, . . . , N is replaced by
the continuous variable x ∈ [0, 1].

Accurate scaling laws can be found also for the Lyapunov exponents,
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Figure 4: Blue lines: |λj + 1|/(cλR2/3) for different R (growing as in-
dicated with the arrows from 8 to 2048 as powers of 2). Black line:

|2j/(N + 1)− 1|5/3. Irreversible model. See Eq. 2.8

so that it is possible to provide an extremely simple expression for the full
spectrum. We find stringent numerical evidence that

|λ(x) + π(x)| ∼ cλ |2x− 1|5/3R2/3 (2.7)

where π(x) is depicted in Fig. 2 or Fig. 3 once we interpret the index j as
(N + 1)x. The scaling relation given in Eq.(2.7) can be safely approximated
for large values of R as:

|λ(x) + 1| ∼ cλ |2x− 1|5/3R2/3 (2.8)

Remark: In this case the largest Lyapunov exponent scales independently of
N : a property that has been debated and is in agreement with [24].

In Fig. 4 we provide a graphical evidence of Eq.(2.8) ; we do not plot
the confidence intervals of the rescaled λ’s as their width is comparable to or
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smaller than the width of the lines. Note that our results seem to disagree
with [23], where very different empirical scaling laws are reported and tested
on a much more limited range of values of R (up to about 30). While in the
common range of R the results agree with what reported in [23], we believe
that the scaling laws given here are more general because they provide an
excellent model for the obtained values of λ’s in a much wider range of values
of R. Moreover, it is clear that the expressions given in [23] cannot be used
for studying the limit of R going to infinity. The knowledge of λ(x) allows
one to compute several relevant properties of the invariant measure of the
system. We first find the position x0 of the vanishing Lyapunov exponent:

λ(x0) = 0→ x = x0 =
1

2
− R−2/3

2c
3/5
λ

(2.9)

Obviously, if our system has N degrees of freedom, we expect that λj = 0 for
j = dNx0 − 0.5e. It is then straightforward to derive the expression metric
entropy, estimated as the sum of the positive Lyapunov exponents [35]:

η

N
=

∫ x0

0
dyλ(y) =

3

16
cλR

2/3 − 1

2
+

5

16
R−2/5c

−3/5
λ , (2.10)

where the expression is valid in the limit of N → ∞, and finally one can
derive a closed expression for the Kaplan-Yorke dimension dKY defined as:

dKY
N

= ỹ with

∫ ỹ

0
dyλ(y) = 0 (2.11)

In our case, since in our parametric range one can see that ỹ ≥ 1/2, we
derive:∫ 1/2

0
dy
(
cλ (1− 2y)5/3R2/3 − 1

)
+

∫ ỹ

1/2
dy
(
−cλ (2y − 1)5/3R2/3 − 1

)
= 0

(2.12)
We derive: ∫ 1

ỹ
cλ (2y − 1)5/3R2/3 = ỹ (2.13)

solving the integral we obtain:

3

16
cλR

2/3
(
1− (2ỹ − 1)8/3

)
= ỹ (2.14)

This is an implicit formula for the Kaplan-Yorke dimension. Let’s explore
the limit where ỹ ∼ 1. Assuming 1− ỹ � 1 we derive:

cλR
2/3(1− ỹ) = ỹ (2.15)
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So that:

ỹ = 1− 1

1 + cλR2/3
(2.16)

Therefore, if we have:

N − dKY < 1→ N

1 + cλR2/3
< 1 (2.17)

the attractor has a dimension virtually indistinguishable from that of the
full phase space. If R is very large, the system’s attractor occupies a phase
space volume close to the one ergodically visited in the inviscid, not forced
system or, equivalently, one could say the system is weakly damped. Note
that the last inequality can be read as N < |λN |, which agrees with what
would be obtained without resorting to the continuous variable x, except for
a term of order 1 (N − 1 instead of N in the l.h.s.).

3 Equivalence between the Reversible and Irre-
versible Versions of the Lorenz ’96 Model

Following the indications given in Eq.(1.2)-(1.4), we construct the candidate
equivalent time-reversible model as follows:

Ẋj = Xj−1(Xj+1 −Xj−2) +R− α(X)Xj , j = 0, . . . , N − 1

α(X) = R

∑
j Xj∑
j X

2
j

=
RM

2E
,

(3.1)

plus the imposed periodic conditions Xk = XN+k ∀k. The model conserves
exactly the energy E =

∑N
j=1X

2
j /2. Following the procedure described in

Sec. 1, we initiate each simulation with a given R using initial conditions

Xj(0) j = 1, . . . , N , such that E(0) = E
i
R, which makes sure that the energy

of the flow realized by the reversible model has constant energy equal to the
average energy observed in the corresponding irreversible model forced with
the same value of R.

Geometrically, the motion of the reversible model is constrained to the
spherical surface defined by the initial conditions and will reach a station-
ary state defined by the measure dµ(x)rR. In order to simulate accurately
such a delicately constrained dynamics it is extremely important to use an
integrator of ordinary differential equations able to use adaptive step and
allowing for pre-defined relative and absolute error in the integration. Using
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the MATLAB R©V. 7.9 routine ode45 proved crucial for obtaining accurate
results, because we could keep the same standard of accuracy in the ir-
reversible and reversible runs. See Appendix A. As a result of numerical
errors, a very small amount of energy is lost with time in the runs of the
reversible model. Such spurious loss increases with R but we have managed
to limit it in relative terms to less than 10−6 with respect to the initial value
between the beginning and the end of the simulations.

Clearly, for a given value of R, the support of the invariant measures dµiR
and dµrR of the irreversible model (see Eq.(1.15)) and of the corresponding
reversible model (see Eq.(3.1)), respectively, are substantially different, be-
cause E in the irreversible model fluctuates by 20 − 40% (see Eq.(2.4)).
Despite the fact that the two attractors are clearly not coincident, the con-
jectured equivalence holds to a very high degree of approximation.

The first observation is that for all considered values of R the expectation
value of α(X) is 1 within 1%, in agreement with property (1) in Sec. 1.1.
As for point (2), we consider as natural test observable g(x) the quantity

M . Also in this case, we observe that M
i
R and M

r
R agree within 1%, and

the applies same when comparing M2i
R and M2r

R. In Fig. 5 we show the
probability distribution of M for R = 512 in order to give a feeling of
the strong similarity between the probability distribution functions (pdfs)
of M for two long R = 256 integrations performed using the reversible and
irreversible model. Another finding is that, for the same R, the decorrelation
time of M in the reversible and irreversible models agree accurately, so that
also for the reversible model we can write tdec,M = ct,MR

−2/3.
We now would like to address property (3) in Sec. 1.1. The goal is to

investigate the fluctuations at different time scales of the quantity σ(X) =
(N − 1)α(x). For this purpose, at a given value of R, we define:

pxτ,R =
1

τ

∫ τ

0

σ(Stx)

σR
(3.2)

as the τ−averaged value of the contraction of the phase space evaluated
starting from point x initially chosen at random uniformly on the energy
surface and, therefore, with statistical properties that with probability 1
coincide with those of a typical point on the attractor, described by the
invariant SRB measure of the system defined by the parameter R, and con-
sider that σR ∼ N − 1 within 1%, ∀R. Let’s define PRτ (p)dp the probability
(constructed according to the invariant measure of the system) of observing
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Figure 5: Black line: pdf for M/N in the reversible model, R = 2048. Blue
line: opposite of the pdf for M/N in the irreversible mode, for the same
value R = 2048. Red line: sum of the black and blue line. Note the different
vertical scale in the insert.

pxτ,R ∈ [p, p+ dp]. We want to test whether the FR holds, namely, whether:

1

τ
log

[
PRτ (p)

PRτ (−p)

]
= σRp+O(τ−1), (3.3)

and we want to study also which is the rate of convergence of the FR to its
τ →∞ limit, in order to substantiate the extent to which the FR can be
verified, and be useful, when finite times (in the macroscopic time scales of
the system) are considered.

We construct from the original time series of σ(t) given as output of the
reversible model the corresponding τ−coarse grained time series. We then
construct the Pτ probability distributions by either using non-parametric
estimators such as histograms (tested for numerical stability) or, instead,
Gaussian kernel smoothers [4].

The results presented here are weakly dependent on the statistical model
used for estimating probability density, but using histograms it is easier to
construct confidence intervals for the left hand side of Eq. 3.3. Therefore,



3: Properties of the Irreversible Lorenz ’96 Model August 4, 2017 19

we present findings obtained with histograms. We have that, since σ = RM
2E ,

σ/σR and M/M
r
R are identical, so that, tRdec,σ = tRdec,M , where we have

added explicit reference to R. From what discussed in Sec. 2, it is more
likely to find negative fluctuations for the τ -time averaged values of σ when
high values of R are considered. We present results relative to R = 512 and
R = 2048 in Figs. 6-7, respectively. We plot:

1

τσR
log

[
PRτ (p)

PRτ (−p)

]
(3.4)

against p. The 3σ confidence intervals are computed by suitably perform-
ing bootstrap on the results obtained on steady state trajectories of length
106tRdec,σ. Three main observations can be made:

• For both values of R, the FR is obeyed to a good degree of accuracy
for large - to be defined later - values of τ ;

• Before the asymptotic result is obtained, the quantity given in Eq.
(3.4) is proportional to p via a constant c(τ), which converges to 1 as
τ becomes large;

• The larger R, the faster is the convergence to the FR with τ .

The first observations basically provides a verification for point (3) of
the conjecture proposed in Sec. 1.1. The second observation does not derive
trivially from the FR given in Eq.(3.3), because it implies that the O(τ−1)
correction is, in fact, proportional to p. Since p is of order one, this result is
anyway consistent with the FR. One can show that O(τ−1) ∝ p in the case
of gaussian process, which, in fact, PRτ conforms to with a high degree of
accuracy. It is possible to infer from numerical experiments a very simple
expression for the corrective factor c(τ):

c(τ) = 1 +

(
tRdec,σ
τ

)4/3

= 1 +

(
ct,σ
τ

)4/3

R−8/9, (3.5)

where ct,σ = ct,M , which explains the third observation above. Equation
(3.5) is crucial for understanding the speed of convergence of the limit im-
plied by the FR, and, conversely, for estimating how large τ must be in order
to find good agreement with the FR. Interestingly, the time scale appearing
in the formula is the decorrelation time of σ itself, which is extremely easy to
estimate and which we have observed to coincide with that of M . Roughly,
as long as τ is larger than such time scale by a factor of say 10, we observe
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Figure 6: Fluctuation Relation for R = 512, approaching slope 1 as τ in-
creases. See Eq. 3.3.

small deviations from the FR. Moreover, the corrective factor convergences
to 1 with R−8/9, indicating that as the forcing to the system becomes more
intense, the FR relation can be observed for smaller and smaller averaging
times τ , going to 0 in the limit R→∞.

The FR is indeed signature of the a) time-reversible nature of the flow
and b) of the compatibility with the chaotic hypothesis. Given the equiv-
alence discussed above, it makes sense to check whether in the irreversible
system one can find quantities obeying the FR.

We construct as obvious candidate is σ̃R = NRM/(2E
i
R). The first

moments of this quantity, as discussed above referring to M , are almost
identical to those of σR in the reversible system. Nonetheless, when testing
whether the FR holds even in this irreversible case, we find deviations with
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Figure 7: Fluctuation Relation for R = 2048, with slope approaching 1 as
τ increases beyond the decorrelation time. See Eq.(3.3). Note that the red
line is hidden below the blue line.

respect to what obtained in the reversible case. In particular, we find that
cτ does not converge to 1, with discrepancies of the order of 20%−30%. The
presence of such - not too large - departure from the FR might explain why
some experimental and numerical attempts at verifying FR in irreversible
systems, and so outside its realm of validity, have encountered some degree
of success.

Following a suggestion first discussed in [13, 16], we have also attempted
the verification of a local version of the FR, which amounts to studying
the large fluctuations of some measure of the local contraction of the phase
space. Therefore, we define ([13, Eq.(6.2)],[14, Eq.(9.2)])

σβ(X) = NR

∑N0
j=1Xj∑N
j=1X

2
j

. (3.6)

where the summation in the numerator is performed over N0 nearby points,
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covering a portion β = N0/N of the total volume of the system (note that
the system is invariant to discrete translation). In [13] it is proposed that
(a) the expectation value of σβR = βσR; and

(b) the quantity p = σβ

σβ
obeys FR, so that, defining as usual pxτ,R =

1
τ

∫ τ
0
σβ(Stx)
σR

, and PRτ (p)dp the probability of observing pxτ,R ∈ [p, p + dp].
we should have:

1

τ
log

[
PRτ (p)

PRτ (−p)

]
= σβRp+O(τ−1) = βσRp+O(τ−1) (3.7)

We have tested these predictions for R = 2048 by considering N = 32 and
N0 = 8.
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Figure 8: Local version of the Fluctuation Relation for R = 2048. See Eq.
3.7. Note that the red line is hidden below the blue line.

The verification of property (a) is rather easy. Figure 8 shows that the
local version of the FR proposed as property (b) is not perfectly obeyed
(we observe a deviation of 5-10%), possibly because of a finite size effect,
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Figure 9: Black line: Lyapunov exponents for R = 2048 arranged pairwise.
Magenta line: corresponding value of (λj +λN−j+1)/2. Blue line: Lyapunov
exponents for R = 256 arranged pairwise. Red line: corresponding value of
(λj + λN−j+1)/2. Reversible model (Compare with Fig. 1).

because in our experimental conditions we are far from the limits proposed
in the conjecture above β → 0, N0, N →∞.

As for addressing point (4) in the list of properties discussed in Sec.
1.1, we compute the spectrum of the Lyapunov exponents of the reversible
model given in Eq. 3.1. See Appendix B. It is important to note that, given
the integral nature of the fluctuating viscosity α(X), the Jacobian matrix
to be used in the Benettin et al. [2] algorithm is not anymore sparse, with
resulting increased computational costs in terms of memory.

Our result provide strong evidence that the spectrum of Lyapunov ex-
ponents in the reversible and irreversible cases are indeed the same within
statistical uncertainty (i.e. error bars overlap). In Fig. 9 we present the
Lyapunov spectrum obtained for R = 256 and R = 2048 and N = 32, which,
by visual inspection, have a very close correspondence to what shown in Fig.
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Figure 10: Blue lines: |λj + 1|/(cλF 2/3) for different F (growing as in-
dicated with the arrows from 8 to 2048 as powers of 2). Black line:

|2j/(N + 1)− 1|5/3. Reversible Model. See Eq. 2.8 and compare with Fig.
3.

1. Error bars are not reported in Fig. 9 to improve readability.
The quality of the agreement is clarified by the fact that also in the

reversible case the approximate scaling law λ(x) = cλ(2x−1)5/3R2/3 applies;
compare Fig. 10 with Fig. 3. The accuracy of the correspondence between
the Lyapunov exponents of the irreversible and reversible case is further
substantiated by the fact that we find virtually the same pairing rule π(x) for
all values of R (not shown) Since the scaling of the Lyapunov vectors agrees,
and the pairing rule, which is obtained as the difference between two large
numbers, is the same when comparing the irreversible and reversible case,
we are drawn to the conclusion that also property (4) is indeed accurately
obeyed.
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4 Summary and Conclusions

The possibility of providing macroscopically equivalent yet microscopically
non identical descriptions of many-particle systems endows equilibrium sta-
tistical mechanics with a great flexibility in terms of theoretical calculations,
and leads directly to a robust definition of thermodynamical properties. In
this paper we have examined the problem of constructing equivalent ensem-
bles for non-equilibrium statistical mechanical systems.

We have approached this problem by treating a case of irreversible dissi-
pative balanced systems, a class of systems which includes the NS equations,
characterized by a set of friction coefficients ν and a corresponding set of
quantities E which are conserved if forcing and dissipation are neglected,
and fluctuate in time when forcing and dissipation are considered and the
system reaches its invariant measure µiν .

The corresponding reversible systems are constructed by changing the
definition of constant friction into functions α(x) in such a way that the

quantities E are conserved (and set to the average values E
i
(ν) of the func-

tions E(x) in the distribution µiν).
The attractor of such a system is the support of the invariant measure

µr
E

. While the two invariant measures are indeed different, we can say that

µiν corresponds to µrE if µrE(α) = ν. We have proposed four criteria for
defining the equivalence of the irreversible and reversible dynamics, which
boils down to providing analogous information of the expectation values of
smooth observables, to featuring an equivalent description of the instabilities
of the system, and, in the spirit of the chaotic hypothesis, to featuring, in
the case of the reversible system, a phase space contraction rate fluctuating
in agreement with the FR.

While the long-term goal of this investigation is e.g. to study the equiv-
alence between the customary irreversible representation of fluid-dynamics
through the NS equations and its reversible version, in this paper we have
considered a simple yet dynamically rich model introduced by E. Lorenz
[27, 26]. Such a model describes advection, dissipation, forcing, in a ring of
N grid points, and has been the subject of extensive investigation in atmo-
spheric sciences (see, e.g. [32, 45, 44, 43] ) and, more recently, in statistical
physics (see, e.g. [1, 22, 31]). This model fits the paradigm of the irre-
versible dissipative balanced systems, so that, when forcing (described by
the parameter R) and dissipation (a normalized viscosity ν is set to 1) are
neglected, a quadratic quantity referred to as energy E is conserved.

The Lorenz ’96 system is strongly chaotic when the forcing parameter R
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is larger than 8 and its properties are extensive with the number of nodes
N . Our investigations have covered extensively the range R = 8 up to R =
2048, plus control runs performed at much higher value of R. Most of the
simulations have been performed considering N = 32, plus several additional
runs performed with N = 256 and N = 512 to check how properties scale
with N .

We have confirmed the existence of accurate scaling laws allowing to
express the energy E ∼ R4/3 of the system and a suitably linear quantity
referred to as momentum M ∼ R1/3. More interestingly, it is possible to
find evidence of a simple scaling relation for the Lyapunov vectors λ’s such
that |λ(x) +π(x)| ∼ (2x−1)5/3R2/3, where x refers to the normalized index
j/(N + 1) in the continuous limit, and π(x) is a R independent pairing
function, such that λ(x) + λ(1− x) = 2π(x) ∀x ∈ [0, 1] and (at least) for all
the R’s considered.

We have found numerical evidence for explicit expressions of the position
of the zero Lyapunov exponent, of the metric entropy, and of the Kaplan-
Yorke dimension. The Kaplan-Yorke dimension saturates the dimension of
the phase space as R→∞, as already observed by Lorenz [26], although the
statistical properties, both in the reversible and in the irreversible models,
are very different from those of the uniform distribution on the energy sur-
face, i.e. from the equilibrium statistics in spite of the choice of the initial
condition which are selected precisely with the latter distribution: a prop-
erty familiar, from SRB theory of chaotic motions, in SRB distributions.

In the irreversible model E fluctuates, while the contraction of the phase
space is fixed. We can think this as analogous to the canonical ensemble,
where the viscosity plays the role of temperature, while E plays the role of
energy.

Following the paradigm described above, we have constructed the (can-
didate) equivalent reversible system by introducing a fluctuating viscosity
allowing for energy conservation and defining a time-reversible dynamics.
Therefore, in this model the phase contraction fluctuates and energy is fixed,
as opposed to the traditional irreversible model. We have verified for ∀R
excellent agreement between the reversible and irreversible model on (1)
the average phase contraction rate; and (2) first moments of macroscopic
observables (here we have taken M as obvious candidate).

We have also verified (3) that the FR for the phase space contraction rate
σR is obeyed with good accuracy, and have highlighted that the convergence
to the asymptotic result is controlled by the ratio between the averaging time
τ over which the phase space contraction is evaluated and its e−folding time.

One finds that as long as τ is larger by a factor of say 5 − 10, the FR
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is obeyed to a very good approximation. For any finite value of τ , the
correction to the FR result → 0 ∼ R−8/9, so that for strong forcings the FR
can be observed over very short averaging times. Interestingly, the finite-
time correction to the asymptotic FR result appears as a multiplicative
tending to 1 rather than additive factor going to 0 with τ →∞, and can be
related, in the Gaussian case, to the scaling of the variance of the distribution
of τ−averaged values of σR. We have also for the first time verified the
validity of a local version of the FR proposed in [13] within a good degree
of approximation.

Finally, we have also compared (4) the instability properties of the ir-
reversible and reversible system by investigating the degree of agreement of
the spectrum of Lyapunov exponents. We find that an extremely satisfying
agreement, so that the same scaling laws and pairing rule are obeyed. When
R is very large, the system lives on an attractor whose closure is indistin-
guishable from the spherical shell defined by the initial value of the energy,
thus resembling a micro-canonical ensemble.

We conclude by stressing that while the support of the two invariant
measures µiR and µrR is indeed different, and the symmetries of the two
corresponding dynamical systems also are different, numerical evidence sup-
ports, in the Lorenz96 system, that their statistical mechanical properties
are virtually the same at all considered values of R where turbulence is
observed. For high R, we basically find an analog of the equivalence of
canonical and microcanonical ensembles in chaotic systems.

In other words one may naively think that for high values of R the con-
structed time-reversible system may, in fact, feature the same statistical
mechanical properties of the system where forcing and dissipation are ne-
glected altogether, if they live on the same energy shell. Note that value of
E
r
R and R are one-to-one related. This is, in fact, false. The first remark is

that while the expectation value M
r
R ∼ R1/3 in the time reversible system,

in the corresponding inviscid and unforced system the expectation value of
M is, by symmetry, zero. Moreover, as discussed before, the Lyapunov ex-
ponents of the inviscid and unforced dynamics and of the time-reversible
dynamics are indeed different (even if the difference is smaller and smaller
in relative terms as larger and larger energies are considered). Note that the
empirically defined pairing rule convergences for large values of R to π(x)
which is indeed non-vanishing. Therefore, the SRB measure is distinct from
the Gibbs measure also in the limit of R → ∞, even though the attract-
ing sets of the two measures become indistinguishable, with the sign of R
responsible for breaking the symmetry.

These results provide a strong motivation for considering the possibility
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of approaching the problem of modeling turbulent fluids using a radically
different point of view, where, instead of setting to a constant the rate of
contraction of the phase space, we keep constant some physical quantities
of interest. This approach is expected to work more effectively when the
nondimensional numbers describing the relative strength of forcing versus
dissipation (e.g. the Reynolds number) is very large. One can think of
applying this procedure only to specific regions of a fluid, as suggested by
the local result in Fig. 8.

This seems promising in the case we have a fluid with strong anisotropy
in one direction, like in the case of strong stratification, of special interest for
geophysical applications. Moreover, these results clarify the relevance of the
Chaotic Hypothesis for investigating turbulent fluid systems. In particular,
under the assumption that the Chaotic Hypothesis holds, one can use the
Ruelle response theory [36, 37] for studying the response of a system like the
climate to forcings (see discussions in [28, 29] and some results in [31, 30, 34]).

As next steps in the line of investigation of this paper, one can envisage
to approach the problem of studying the quasi-geostrophic turbulence in a
realistic Earth-like setting, trying to go from a point of view where diffusion,
Eckman friction, and viscosity are kept constant, to a point of view where
the total energy and potential enstrophy at various levels are kept constant.
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A Script - Part 1: Integrating the Lorenz 96 irre-
versible and reversible models

%%%%%%%%%%%%%%

%%%% PART 1: Integrating the equations for the Loren6 96

%%%% irreversible and reversible models

%%%%%%%%%% Script by V. Lucarini (valerio.lucarini@uni-hamburg.de)

%%%%%%%%%% Can be freely distributed according to GNU license.

%%%%%%%%% Companion Material to the paper

%%%%%%%%% Equivalence of Non-equilibrium Ensembles,

%%%%%%%%% and Representation of Friction in Turbulent Flows: the

%%%%%%%%% Lorenz 96 model, by G. Gallavotti and V. Lucarini, 2014

%%%%%%%%% Values given below for the parameters

%%%%%%%%% must be checked/optimized by the user

%%%%%%%%%%%%

% Lorenz 96 model - Irreversible version. Input parameters:

% N = number of modes ; R = R parameter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%save text below as lorenz96irr.m%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dy = lorenz96irr(t,y,R,N)

dy=zeros(N,1);

F=ones(N,1)*R;

dy(1)=(y(2)-y(N-1))*y(N)-y(1)+F(1);

dy(2)=(y(3)-y(N))*y(1)-y(2)+F(2);

dy(N)=(y(1)-y(N-2))*y(N-1)-y(N)+F(N);

for j=3:N-1

dy(j)=(y(j+1)-y(j-2))*y(j-1)-y(j)+F(j);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%save text above as lorenz96irr.m%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

odeset

% Defines options for ode integrator (we use the standard

% ode45 function)

% AbsTol: [ positive scalar or vector {1e-6} ]

% RelTol: [ positive scalar {1e-3} ]

% NormControl: [ on | {off} ]

% NonNegative: [ vector of integers ]
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% OutputFcn: [ function_handle ]

% OutputSel: [ vector of integers ]

% Refine: [ positive integer ]

% Stats: [ on | {off} ]

% InitialStep: [ positive scalar ]

% MaxStep: [ positive scalar ]

% BDF: [ on | {off} ]

% MaxOrder: [ 1 | 2 | 3 | 4 | {5} ]

% Nacobian: [ matrix | function_handle ]

% JPattern: [ sparse matrix ]

% Vectorized: [ on | {off} ]

% Mass: [ matrix | function_handle ]

% MStateDependence: [ none | {weak} | strong ]

% MvPattern: [ sparse matrix ]

% MassSingular: [ yes | no | {maybe} ]

% InitialSlope: [ vector ]

% Events: [ function_handle ]

options=odeset(’RelTol’,1e-8,’AbsTol’,1e-8);

% Our standard choice; a very good precision is enforced

N = 32;

% We consider the case of N = 32

F=2.^[3:11];

% Here is a vector of values of the forcing R

meanMirr=zeros(size(F));

% Initialization vector computing the mean values of M

meanEirr=zeros(size(F));

% Initialization vector computing the mean values of E

T=100;

% Final time

dt=0.001;

% Output is given at each dt

for j=1:max(size(F));

% For loop

j

% to keep track of things
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ci=randn(N,1);

% Random initial condition

tic;

%Start clock

[Tirr,Yirr]=ode45(@lorenz96irr,[0:dt:T-dt],ci,options,F(j),N);

% Integrates the function lorenz96irr above (to be saved in a

% separate file as lorenz96irr.m )

Yirr=Yirr(end/10:end,1:end);

% let’s remove some initial transient behavior

toc

% Says elapsed time; just to check how long the integration is

Mirr=sum(Yirr,2)/N;

% Momentum M (divided by N)

Eirr=sum(Yirr.^2/2,2)/N; % Energy (divided by N)

meanMirr(j)=mean(Mirr); % mean Momentum

meanEirr(j)=mean(Eirr); % mean Energy

end;

% end for loop; we have the statistics of the

% Lorenz 96 irreversible model.

%%%%%%%%%%%%%%% Now to the reversible case

% Lorenz 96 model - Reversible version.

% Input parameters: N = number of modes ; R = R parameter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%save text below as lorenz96rev.m%%%%%%%%%%%%%%%%%%%%%%

function dy = lorenz96rev(t,y,R,N)

dy=zeros(N,1);

F=ones(N,1)*R;

Fg2=ones(N,1)*f*sum(y)/sum(y.^2); % Note: this is the

% fluctuating viscosity

dy(1)=(y(2)-y(N-1))*y(N)-Fg2(1)*y(1)+F(1);

dy(2)=(y(3)-y(N))*y(1)-Fg2(2)*y(2)+F(2);

dy(N)=(y(1)-y(N-2))*y(N-1)-Fg2(N)*y(N)+F(N);

for j=3:N-1

dy(j)=(y(j+1)-y(j-2))*y(j-1)-Fg2(j)*y(j)+F(j);
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%save text above as lorenz96rev.m%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Now we start with the same loop as above

options=odeset(’RelTol’,1e-8,’AbsTol’,1e-8);

N =32;

% We consider the case of N = 32

F=2.^[3:11];

% Here is a vector of values of the forcing R

meanMrev=zeros(size(F));

% Initialization vector computing the mean values of M

meanErev=zeros(size(F));

% Initialization vector computing the mean values of E

T=1;

% Final time

dt=0.001

% Output is given at each dt

for j=1:max(size(F));

% For loop

j

% to keep track of things

ci=randn(N,1);

% Random initial condition: Step 1

nor=sum(ci.^2/2/N); ci=ci*sqrt(meanEirr(j))/sqrt(nor);

% Random initial condition: Step 2: the system is

% initializated from the energy shell E=meanEirr(j)

tic;

%Start clock

[Trev,Yrev]=ode45(@lorenz96rev,[0:dt:T-dt],ci,options,F(j),N);

% Integrates the function lorenz96rev above (to be saved in a

% separate file as lorenz96rev.m )
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Yrev=Yrev(end/10:end,1:end);

% let’s remove some initial transient behavior; not necessary

toc

% Says elapsed time; just to check how long the integration is

Mrev=sum(Yrev,2)/N;

% Momentum M (divided by N)

Erev=sum(Yrev.^2/2,2)/N;

% Energy (divided by N): note: the energy is constant

% to a very high degree of accuracy (controlled by options)

meanMrev(j)=mean(Mrev);

% mean Momentum

meanErev(j)=mean(Erev);

% mean Momentum

end;

% end for loop; we have the statistics of the

% Lorenz 96 reversible model. Go to Part 2 in Appendix B
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B Script - Part 2: Computing the Lyapunov ex-
ponents for the Lorenz 96 irreversible and re-
versible models

%%%%%%%%%%%%%%

%%%% PART 2: Computing the Lyapunov Exponents from the irreversible

%%%% and reversible models

%%%%

%%%%%%%%%% Script by V. Lucarini (valerio.lucarini@uni-hamburg.de)

%%%%%%%%%% Can be freely distributed according to GNU license.

%%%%%%%%% Companion Material to the paper

%%%%%%%%% Equivalence of Non-equilibrium Ensembles, and

%%%%%%%%% Representation of Friction in Turbulent Flows:

%%%%%%%%% the Lorenz 96 model, by G.

%%%%%%%%% Gallavotti and V. Lucarini, 2014

%%%%%%%%% Values given below for the parameters

%%%%%%%%% must be checked/optimized by the user

% Lorenz 96 extended model (trajectory and Jacobian) - Irreversible

% version. Input parameters: N = numbers of modes ; R = R parameter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%save text below as lorenz_ext96irr.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dy=lorenz_ext96irr(t,y,R,N)

%%%%%%%%% Same as lorenz96irr

dy = zeros(N*(N+1),1); % a column vector

F=ones(N,1)*R;

dy(1)=(y(2)-y(N-1))*y(N)-y(1)+F(1);

dy(2)=(y(3)-y(N))*y(1)-y(2)+F(2);

dy(N)=(y(1)-y(N-2))*y(N-1)-y(N)+F(N);

for j=3:N-1

dy(j)=(y(j+1)-y(j-2))*y(j-1)-y(j)+F(j);

end

%%% Initializing the Jacobian

Y=zeros(N,N);

for j=1:N;

for k=1:N;

Y(j,k)=y(N+j+(k-1)*N);
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end;

end;

% Linearized system

% We split the jacobian in two parts

Jac1=zeros(N,N);

Jac2=zeros(N,N);

Jac1=-eye(N); % Frictional part

% Now the rest,

Jac2(1,2)=y(N);

Jac2(1,N)=y(2);

Jac2(1,N-1)=-y(N);

Jac2(2,3)=y(1);

Jac2(2,N)=-y(1);

Jac2(2,1)=y(3)-y(N);

Jac2(N,1)=y(N-1);

Jac2(N,N-2)=-y(N-1);

Jac2(N,N-1)=y(1)-y(N-2);

for j=3:N-1

Jac2(j,j+1)=y(j-1);

Jac2(j,j-1)=y(j+1)-y(j-2);

Jac2(j,j-2)=-y(j-1);

end

Jac=Jac1+Jac2; %the Jacobian is now obtained

%Variational equation

dy(N+1:N*(N+1))=Jac*Y;

%Note: MATLAB rearranges correctly the matrix into a vector

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%save text above as lorenz_ext96irr.m%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Our standard choice; a very good precision is enforced

options=odeset(’RelTol’,1e-8,’AbsTol’,1e-8);

N =32;
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% We consider the case of N = 32

F=2.^[3:11];

% Here is a vector of values of the forcing R

meanLyap=zeros(max(size(F)),N);

% Initialization matrix containing our estimates of the

% Lyapunov exponents

T=100;

% Final time; Attention, may need to adapt it to values of R

% because integrations are more and more expensive as R grows

dt=0.1

% Step of the Grahm-Schmidt orthogonalization procedure;

% need to adapt is because for large R lower values are needed

% or we have no convergence. If so, please define a dt

% changing with j

n = 1

% We get an estimate of Lyapunov exponents every n GS

% orthogonalizations.

for j=1:max(size(F));

% For loop

j

% to keep track of things

ci=randn(N,1);

% Random initial condition

tic; %Start clock

[Texpirr,Lexpirr]=lyapunov_mod(N,@lorenz_ext96irr,@ode45,\

0,dt,T,ci,n,options,F(j),N);

% Computes the Lyapunov exponents for the Lorenz 96 irreversible

% model calling the function lorenz_ext96irr above (to be saved in a

% separate file as lorenz_ext96irr.m )

% We use a slightly modified version of the freely available

% lyapunov.m function due to Govorukhin V.N. (2004) see references.

% We accomodate for the possibily of reading two parameters (F and R

% in our case). The Benettin et al. (1980) algorithm is used.

% The routine lyapunov_mod.m is available on request
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Lexpirr=Lexpirr(end/2:end,1:end);

% Estimates of the LEs; let’s remove some initial transient behavior

toc

% Says elapsed time; just to check how long the integration is

meanLyapirr(j,:)=mean(Lexpirr);

% Mean values of the LEs

end;

% end for loop; We have the Lyapunov exponents of the Lorenz 96

% irreversible model.

%%%%%%%%%%%%%%%% Now to the reversible case

%%%%%%%%%%%%

% Lorenz 96 extended model (trajectory and Jacobian) -

% Reversible version. Input parameters: N = numbers of

% modes ; R = R parameter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%save text below as lorenz_ext96rev.m%%%%%%%%%%%%%%%%%%%%%%%%%

function dy=lorenz_ext96rev(t,y,R,N)

%%%%%%%%% Same as lorenz96rev

dy = zeros(N*(N+1),1); % a column vector

F=ones(N,1)*R;

Fg2=ones(N,1)*R*sum(y(1:N))/sum(y(1:N).^2)/gamma;

% Note: this is the fluctuating viscosity

dy(1)=(y(2)-y(N-1))*y(N)-Fg2(1)*y(1)+F(1);

dy(2)=(y(3)-y(N))*y(1)-Fg2(2)*y(2)+F(2);

dy(N)=(y(1)-y(N-2))*y(N-1)-Fg2(N)*y(N)+F(N);

for j=3:N-1

dy(j)=(y(j+1)-y(j-2))*y(j-1)-Fg2(j)*y(j)+F(j);

end

%%% Initializing the Jacobian

Y=zeros(N,N);

for j=1:N;

for k=1:N;
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Y(j,k)=y(N+j+(k-1)*N);

end;

end;

% Linearized system

% We split the jacobian in two parts

Jac1=zeros(N,N);

Jac2=zeros(N,N);

% Jac1 is itself split into two parts. We are considering the

% fluctuating viscosity

Jac1a=zeros(N,N);

Jac1b=zeros(N,N);

M=sum(y(1:N));

E=sum(y(1:N).^2)/2;

Jac1a=eye(N)*(-1)*R*M/(2*E);

for j=1:N;

for k=1:N;

Jac1b(j,k)=-R*y(j)/(2*E)+2*R*y(j)*y(k)*M/(2*E)^2;

end;

end;

Jac1=Jac1a+Jac1b;

Jac2(1,2)=y(N);

Jac2(1,N)=y(2);

Jac2(1,N-1)=-y(N);

Jac2(2,3)=y(1);

Jac2(2,N)=-y(1);

Jac2(2,1)=y(3)-y(N);

Jac2(N,1)=y(N-1);

Jac2(N,N-2)=-y(N-1);

Jac2(N,N-1)=y(1)-y(N-2);

for j=3:N-1

Jac2(j,j+1)=y(j-1);

Jac2(j,j-1)=y(j+1)-y(j-2);
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Jac2(j,j-2)=-y(j-1);

end

Jac=Jac1+Jac2; %the Jacobian is now obtained

%Variational equation

dy(N+1:N*(N+1))=Jac*Y;

%Note: MATLAB rearranges correctly the matrix into a vector

%%%save text above as lorenz_ext96rev.m%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Our standard choice; a very good precision is enforced

options=odeset(’RelTol’,1e-8,’AbsTol’,1e-8);

N =32;

% We consider the case of N = 32

F=2.^[3:11];

% Here is a vector of values of the forcing R

meanLyaprev=zeros(max(size(F)),N);

% Initialization matrix containing our estimates of the

% Lyapunov vectors

T=100;

% Final time; Attention, may need to adapt it to values of R

% because integrations are more and more expensive as R grows

dt=0.1

% Step of the Grahm-Schmidt orthogonalization procedure;

% need to adapt is because for large R lower values are needed

% or we have no convergence. If so, please define a dt

% changing with j

n = 1

% We get an estimate of Lyapunov exponents every n GS

% orthogonalizations.

for j=1:max(size(F));

% For loop

j

% to keep track of things
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ci=randn(N,1); % Random initial condition: Step 1

nor=sum(ci.^2/2/N); ci=ci*sqrt(meanEirr(j))/sqrt(nor);

% Random initial condition: Step 2: the system is initializated

% from the energy shell E=meanEirr(j); you must have used Part 1

% of this script

[Texprev,Lexprev]=\

lyapunov_mod(N,@lorenz_ext96rev,@ode45,0,dt,T,ci,n,options,F(j),N);

% Computes the finite-time estimates of the Lyapunov exponents

% calling the function lorenz_ext96rev above (to be saved in a

% separate file as lorenz_ext96rev.m )

% We use a slightly modified version of the freely available

% lyapunov.m function due to Govorukhin V.N. (2004) see references.

% We accomodate for the possibily of reading two parameters (F

% and R in our case). The Benettin et al (1980) algorithm is used.

% The routine lyapunov_mod.m is available on request

Lexprev=Lexprev(end/2:end,1:end);

% Estimates of the LEs; let’s remove some initial transient behavior

toc

% Says elapsed time; just to check how long the integration is

meanLyaprev(j,:)=mean(Lexprev);

% Mean values of the LEs

end;

% end for loop; We have the Lyapunov exponents of the Lorenz 96

% reversible model.
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