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Abstract The climate is a forced and dissipative nonlinear system featuring nontrivial dynamics on a vast
range of spatial and temporal scales. The understanding of the climate’s structural and multiscale
properties is crucial for the provision of a unifying picture of its dynamics and for the implementation

of accurate and efficient numerical models. We present some recent developments at the intersection
between climate science, mathematics, and physics, which may prove fruitful in the direction of
constructing a more comprehensive account of climate dynamics. We describe the Nambu formulation

of fluid dynamics and the potential of such a theory for constructing sophisticated numerical models of
geophysical fluids. Then, we focus on the statistical mechanics of quasi-equilibrium flows in a rotating
environment, which seems crucial for constructing a robust theory of geophysical turbulence. We then
discuss ideas and methods suited for approaching directly the nonequilibrium nature of the climate
system. First, we describe some recent findings on the thermodynamics of climate, characterize its energy
and entropy budgets, and discuss related methods for intercomparing climate models and for studying
tipping points. These ideas can also create a common ground between geophysics and astrophysics by
suggesting general tools for studying exoplanetary atmospheres. We conclude by focusing on
nonequilibrium statistical mechanics, which allows for a unified framing of problems as different as the
climate response to forcings, the effect of altering the boundary conditions or the coupling between
geophysical flows, and the derivation of parametrizations for numerical models.

1. Introduction

The Earth’s climate provides an outstanding example of a high-dimensional forced and dissipative complex
system. The dynamics of such system is chaotic, so that there is only a limited time horizon for skillful pre-
diction, and is nontrivial on a vast range of spatial and temporal scales, as a result of the different physical
and chemical properties of the various components of the climate system and of their coupling mechanisms
[Peixoto and Oort, 1992].

Thus, it is extremely challenging to construct satisfactory theories of climate dynamics and is virtually
impossible to develop numerical models able to describe accurately climatic processes over all scales. Typ-
ically, different classes of models and different phenomenological theories have been and are still being
developed by focusing on specific scales of motion [Holton, 2004; Vallis, 2006], and simplified parametriza-
tions are developed for taking into account at least approximately what cannot be directly represented
[Palmer and Williams, 2009; Franzke et al., 2014].

As a result of our limited understanding of and ability to represent the dynamics of the climate system,
it is hard to predict accurately its response to perturbations, such as changes in the opacity of the atmo-
sphere, in the solar irradiance, in the position of continents, and in the orbital parameters, which have
been present for our planet during all epochs [Saltzman, 2001]. The full understanding of slow- and
fast-onset climatic extremes, such as drought and flood events, respectively, and the assessment of the
processes behind tipping points responsible for the multistability of the climate system are also far from
being accomplished [Lenton et al., 2008].

Such limitations are extremely relevant for problems of paleoclimatological relevance such as the onset and
decay of ice ages or of snowball conditions, for contingent issues like anthropogenic global warming, and
for the perspective of developing a comprehensive knowledge on the dynamics and thermodynamics of
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general planetary atmospheres, which seems to be a major scientific challenge of the coming years, given
the extraordinary development of our abilities to observe exoplanets [Dvorak, 2008].

Climate science at large has always been extremely active in taking advantage of advances in basic math-
ematical and physical sciences and, in turn, in providing stimulations for addressing new fundamental
problems. The most prominent cases of such interaction are related to the development of stochastic and
chaotic dynamical systems, time series analysis, extreme value theory, radiative transfer, and fluid dynamics,
among others. At this regard, one must note that the year 2013 has seen a multitude of initiatives all around
the world dedicated to the theme Mathematics of Planet Earth (see http://mpe2013.org), and in this context,
climate-related activities have been of great relevance.

In this review we wish to present some interdisciplinary research lines at the intersection between climate
science, physics, and mathematics, which are extremely promising for advancing, on the one hand, our
ability to understand and model climate dynamics, and represent correctly climate variability and climate
response to forcings. On the other hand, the topics presented here provide examples of how problems of
climatic relevance may pave the way for new, wide-ranging investigations of more general nature.

The literature related to the scientific interface mentioned above is enormous, and the selection of the mate-
rial we present here is partial and nonexhaustive. We leave almost entirely out of this review very important
topics such as extreme value theory [Ghil et al., 2011], multiscale techniques [Klein, 2010], adjoint methods
and data assimilation [Wunsch, 2012], partial different equations [Cullen, 2006], linear and nonlinear stability
analysis [Vallis, 2006], general circulation of the atmosphere [Schneider, 2006], macroturbulence [Lovejoy and
Schertzer, 2013], network theory [Donges et al., 2009], and many relevant applications of dynamical systems
theory to geophysical fluid dynamical problems [Kalnay, 2003; Dijkstra, 2013].

Let us now mention what we are going to cover in this review and give a motivation to the specific perspec-
tive we have chosen. We are motivated by the desire of bridging the gap between some extremely relevant
results in mathematical physics, statistical mechanics, and theoretical physics, and open problems and issues
of climate science, hoping to stimulate further investigations and interdisciplinary activities. Our selection of
topics will focus on the concepts of energy, entropy, symmetry, coupling, fluctuations, and response.

We will first concentrate on the properties of inviscid and unforced flows relevant for geophysical fluid
dynamics (GFD). In section 2, we provide an overview of a very powerful formulation of hydrodynamics
based on the formalism introduced by Nambu [1973] and present its applications in a geophysical con-
text, suggesting how these ideas help clarifying somewhat hidden properties of fluid flows, and how the
Nambu formulation of GFD could lead to a new generation of numerical models, to be used in a variety of
weather and climate applications. In section 3, starting from the classical investigation by Onsager [1949] of
the dynamics of point vortices, we will show how to develop an equilibrium statistical mechanical theory
of turbulence for GFD flows and will discuss its relevance for interpreting observed climatic phenomena.

Equilibrium methods allow investigating many properties of GFD flows. Nonetheless, at this point we can-
not ignore anymore the elephant in the room, i.e., the fact that the dynamics of the climate system cannot be
assimilated to an inviscid and unforced GFD flow, because forcing and dissipative processes are of extreme
relevance. Thus, we move toward the paradigm of nonequilibrium systems. In section 4, taking inspiration
from the points of view of Prigogine [1961] and of Lorenz [1967], we explore how through classical nonequi-
librium thermodynamics one can construct tools for assessing the energy budget and transport of the
climate system, define and estimate the efficiency of the climate machine, and study the irreversible pro-
cesses by evaluating the climatic material entropy production. This allows for characterizing the large-scale
properties of climate, for developing tools for auditing climate models, for gathering information on tip-
ping points, and for exploring the properties of general planetary atmospheres. In section 5, we address
the nonquilibrium statistical mechanics formulation of climate dynamics and explore how the formalism of
response theory allows for addressing in a rigorous framework the climatic response to perturbations, tak-
ing inspiration from the work of Ruelle [1997]. We will show how it is possible to construct operators useful
for the prediction—in an ensemble sense—of climate change. A last aspect of GFD we want to discuss in

a statistical mechanical setting is the derivation of parametrizations providing a surrogate description of
the effect of fast, small-scale variables, which are hard to represent explicitly in numerical models, on the
larger scale, slow variables of more direct climatic relevance. Thus, in section 6, we present averaging and
homogenization techniques, describe how projector operator methods due to Mori [1965] and Zwanzig
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[1961] provide powerful tools for deriving parametrizations and firm ground to the inclusion of stochastic
terms and memory effects, and discuss how response theory can be used to derive similar results. Finally, in
section 7, we draw our conclusions and present some perspectives of future research.

2. Beyond the Hamiltonian Paradigm: Nambu Representation of Geophysical
Fluid Dynamics

Hamiltonian formalism constitutes the backbone of most physical theories. In the case of a discrete
autonomous system, the basic idea is to provide a full description of the degrees of freedom by defining a
set of canonical variables g and of the related momentap (g, p € R", i.e., they are N-dimensional vectors)
and by identifying the time evolution to a flow in phase space such that the canonical Hamiltonian function
H acts as a stream function, § = V,H,p = =V H, where H(qg, p) corresponds to the energy of the system,
whose value is constant in time. The flow is inherently divergence-free (solenoidal), so that the phase space
does not contract nor expands, as implied by the Liouville theorem [Landau and Lifshits, 1996]. The time
evolution of any function X(g, p) can be expressed as follows:

9X=X={XH} =VX-VH-VX-V,H M

dt ’ P q p p q’®
where {, }, are the so-called Poisson brackets and - indicates the usual scalar product. As suggested by
Noether’s theorem, the presence of symmetries in the system implies the existence of so-called physically
conserved quantities X;, such that X, = 0 = {X;, H},. An autonomous system possesses time invariance
and its energy is constant, while in a system possessing translational invariance, the total momentum M is
also constant. A system can possess many constants of motions, called Casimirs, apart from energy, but the
Hamiltonian plays a special role as it is the only function of phase space appearing explicitly in the definition
of the evolution of the system [Landau and Lifshits, 1996].

Nambu [1973] presented a generalization of canonical Hamiltonian theory for discrete systems. The dynam-
ical equations are constructed in order to satisfy Liouville’s theorem and are written in terms of two or more
conserved quantities. The Nambu approach has been extremely influential in various fields of mathemat-
ics and physics and is viable to extension to the case of continuum, so that it can be translated into a field
theory. The construction of a Nambu field theory for geophysical fluid dynamics went through two decisive
steps. The first was the discovery of a Nambu representation of 2-D and 3-D incompressible hydrodynamics
[Névir and Blender, 1993]. The second important step was the finding that the Nambu representation can be
used to design conservative numerical algorithms in geophysical models and that classical heuristic meth-
ods devised by Arakawa for constructing accurate numerical models actually reflected deep symmetries
coming from the Nambu structure of the underlying dynamics of the flow [Salmon, 2005].

The physical basis for the relevance of the Nambu theory for describing and simulating conservative geo-
physical fluid dynamics comes from the existence of relevant conserved quantities apart from energy when
forcing and dissipative terms are disregarded from the evolution equations. Such a property is found in sev-
eral models relevant for studying geophysical flows, is valid for 2-D and 3-D hydrodynamics, Rayleigh-Bénard
convection, quasi-geostrophy, and shallow water model, and extends to the fully baroclinic 3-D atmosphere.
In other terms, the Nambu representation provides the natural description of geophysical fluid dynam-

ics and is superior to the more traditional approaches based essentially on Euler equations, just like the
action-angle representation of the dynamics of a spring is superior to the simple description provided by
the second Newton’s law of motion.

2.1. Hydrodynamics in 2-D and 3-D

In incompressible hydrodynamics enstrophy (in 2-D) and helicity (3-D) are known as integral conserved
quantities besides energy [Kuroda, 1991]. Névir and Blender [1993] adapted Nambu'’s formalism to incom-
pressible nonviscous hydrodynamics by using enstrophy and helicity in the dynamical equations.

2.1.1. Two-Dimensional Hydrodynamics

The evolution of two-dimensional incompressible inviscid and unforced flows described by the velocity field
u is governed by the vorticity equation

ow

= =o%w=-u Vo, 2
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where customary symbols are used for indicating partial derivatives, the vorticity o can be expressed,

in Cartesian coordinates (x,y), as w = v, — u,, and incompressibility is described by V - u = 0, where

V -u = o,u, + d,u, is the divergence of the vector field U. As a result, we can write u = SVy = (=0,y, o, w),
where S is the symplectic matrix [0, —1; 1, 0], y is the stream function, and V¢ = (0,¢, 9,¢) is the gradient of
the function ¢. Note that w = V2. In this section, we consider a compact domain (e.g., a square of side L)
with periodic boundary conditions.

The Hamiltonian H is the kinetic energy is a functional of the velocity

1/, 1 1
= — A= — . A= —— A
H 2/ d Z/Vu/ Vyd 2/a)l,ud (3)

where we have used integration by parts. In general, a functional F[¢] maps a function ¢ of the phase space
into a number. The functional derivative §F /§¢ the change of the functional F with respect to a change in
the function ¢. The functional derivative can be defined by considering the first term in the expansion

Flp+ 641 - Flg] = 671 = / a0 @

The functional derivative §H /6w for (3) is explicitly calculated by
6H = / Vy - 6Vy dA = / V- (wéVy)dA — / wéw dA.

Since the first integral vanishes due to the boundary conditions, and since o = V2, we obtain

6H /6w = —y.

Equation (2) says that vorticity is transported across the domain by a nondivergent flow. One can prove
easily that any functional of the vorticity is conserved

C=/s(w)dA, (5)

where the integration is performed over the whole domain of the system. The most familiar of such
functional is the total enstrophy of the flow:

€= %/CDZdA. 6)

The functional derivative of the enstrophy is simply 6& /6w = w.

Since u = SVy = (—d,y, d,y), the 2-D vorticity equation can be expressed as

0w 6E 6H
L= Jw.o)=Jew =-T(5-.55). 7)
with the antisymmetric Jacobi operator
J(a,b)y=0,a0,b—9,ad,b=-J(b,a). (8)

Relating w and w to the functional derivatives of two conserved quantities amounts to expressing the
evolution equation in a Nambu form using the enstrophy £.

The time evolution of an arbitrary functional of vorticity F = F[w] is determined by

dF 6F 6 6H
— == =g (=55 )dA=(F.EH), 9
dt /awj(éw 6w> { ) ®)
which defines a Nambu bracket for the three functionals involved. The bracket is antisymmetric in all argu-
ments, {E, H,F} = —{H, &, F}, etc. Using rearrangements of these functionals and partial integration it
can be shown that the Nambu bracket is cyclic

(F.EH})={E,H,F}={H,F,&}. (10)

The cyclicity of this bracket is a main ingredient in Salmon’s application of Nambu mechanics [Salmon, 2005]
to construct conservative numerical codes (see section 2.2.2).

LUCARINI ET AL.
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In the following the relationship between Nambu mechanics and Hamiltonian theory of two-dimensional
flows is briefly summarized. As mentioned above, a Hamiltonian description of the dynamics is obtained
when we can write

dF

— ={FP,H 11

a { 1p (1
with an antisymmetric Poisson bracket, to be seen in general as an antisymmetric map in the space of func-
tionals, such that {A, B}, = —{B, A},. Deriving such a bracket amounts to defining the dynamics of

the system.

The Poisson bracket for 2-D hydrodynamics [Salmon, 1988; Shepherd, 1990] is easily obtained from the
Nambu bracket if the dependency 6€ /6w = w is evaluated

(F.H}p = {F,E,H) =/wJ (F,.H,) dA, (12)

where we indicate H,, = 6H/éw; here cyclicity is used (see equation (10)).

The Poisson bracket used in Eulerian hydrodynamics is degenerate because of the presence of an infinite
number of so-called Casimirs, i.e., the functionals defined in equation (5), which are automatically conserved
so that {C, H}, = 0. In this case, we talk about noncanonical Hamiltonian mechanics.

The relationship (12) demonstrates that noncanonical Hamiltonian mechanics is embedded in Nambu
mechanics. The main extension is that in Nambu mechanics two functionals acting as an Hamiltonian,

the enstrophy, and the energy are used (7) and that the Nambu bracket (9) is nondegenerate and void of
Casimir functionals.

2.1.2. Three-Dimensional Incompressible Hydrodynamics

The dynamics of incompressible unforced and inviscid fluid flows in three dimensions is determined by the

vorticity @ = V X u evolution equation:
a—wzco'Vu—wVa), (13)
ot

where u is the velocity field and V-u = 0. Note that in Cartesian coordinates we have that the curl of u (Vxu)
can be expressed as (V x u); = €0y, where e is the standard totally antisymmetric Levi-Civita symbol
and V - u = du, + d,u, + 9,u, is the divergence in three dimensions. Similarly to the two-dimensional case,

the total energy
Hzl/ude=—l/a)-AdV (14)
2 2

is conserved, where we have introduced A as the vector potential such that u = —V xA. Note that in deriving
the second identity we use integration by parts and consider periodic boundary conditions. It is important
to note that the total helicity

h=%/m.udv (15)

is also conserved, while, e.g., the enstrophy is not. Following the procedure detailed in equation (4), we
derive that the functional derivative of the energy with respect to the vorticity is given by §H /60 = —A and
for helicity 6h/6@ = u (compare the 2-D version (5)).

The Nambu form of the vorticity equation is
i) 6h 6H
— =K|—,— ) =—-KW,A 1
ot (5m’ 5m) A (16)
with

Ku,v) = -V X [(VXxu)x(VxV)]. (17)

Considering that @ = V x u and using some standard vector calculus identities, we obtain that equation (16)
agrees with equation (13). We can derive the evolution equations for functional 7 = F[®] as follows:
ar _ _ (Vx£>x<v><ﬁ>-<v><ﬂ> dv
dt Sw Sw Sw
={F,h,H}, (18)
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where the last equation defines the Nambu bracket for 3-D incompressible hydrodynamics based on the
vorticity equation. Helicity is no longer a hidden conserved quantity but enters the dynamics on the same
level as the Hamiltonian. Therefore, the Nambu mechanics is able to account explicitly for conservation laws
of the system and correspondingly to its symmetries.

2.2, Geophysical Fluid Dynamics

A Nambu representation can be constructed also for some of the most important mathematical models
relevant for geophysical fluid dynamics on large scales: the quasi-geostrophic potential vorticity equation
[Névir and Sommer, 2009], the shallow water model [Salmon, 2005; Sommer and Névir, 2009], and the baro-
clinic stratified atmosphere [Névir and Sommer, 2009]. Other models of geophysical relevance can also be
treated in this way, as, most notably, the Rayleigh-Bénard equations for two-dimensional convection, which
have been studied in detail in Bihlo [2008] and Salazar and Kurgansky [2010]. We will not treat this latter case
in this review.

2.2.1. Quasi-Geostrophic Approximation

Quasi-geostrophic (QG) theory is one of the most important and most studied pieces of geophysical fluid
dynamics and is of crucial relevance for studying the large-scale dynamics of the Earth’s atmosphere and
ocean, and, more recently, of planetary atmospheres [Holton, 2004; Pedlosky, 1987; Klein, 2010]. QG dynam-
ics is relevant when, within a good approximation, the fluid motions are (1) hydrostatic and (2) the Coriolis
acceleration balances the horizontal pressure gradients. This is typically realized, e.g., in the atmospheric
midlatitudes. In the absence of dissipative processes and of forcings, QG dynamics is described by the mate-
rial conservation of the QG potential vorticity. We consider customary Cartesian coordinates plus time
(x,y,z,t), where x indicates the zonal direction, y the meridional direction, and z the vertical direction as
defined by gravity as in Holton [2004]. The evolution equation reads as follows:

0Q
¢ D, 19
= J( Q= (19)
where J is the Jacobian (8). Q is the QG apprOX|mat|on of Ertel’s potential vorticity
fo 0’®
Q=w N2 el +f (20)

with the geostrophic vorticity w, = 1/f0Vﬁ<I>, geopotential @, Vf, is the Laplacian operator limited to the
x and y directions, Brunt-Vaiséla frequency N, and Coriolis parameter f = f, + py, where the effect of
latitude-dependent planetary vorticity (beta effect) is included taking the beta-plane approximation. The
geostrophic velocity u, has nonzero components only along the x and y directions, so that we can write
ug = (ug, O), where u’; = 1/{,5Vy® = 1/fo(—0,®, 9,P), where V, is the gradient operator limited to the x
and y directions.

The first conserved integral is the total energy of the system

1 v, 2\* /100
H=1 =) +(5 ) dv, 21
2 _/ < fy ) * N oz @
where the first term is the density of kinetic energy and the second term is the density of potential energy.
At each level z the geopotential acts as a stream function in defining the geostrophic velocity field, while the

vertical derivative of the geopotential is proportional to the temperature fluctuations of the system [Holton,
2004]. The second conserved integral is the potential enstrophy

/ Q?dv, (22)

which is defined similarly to the enstrophy in equation (6). One can prove that QG dynamics can be written
in a Nambu form as follows:

0Q _ (& sH
9t J(ao 50) @3)

Thus, the mathematical structure is analogous to the two-dimensional vorticity equation (9). Moreover, we
can construct the evolution of any functional F[Q] by defining the Nambu bracket as follows:

dF __ [ 67 (6 5H)y,

with 6€/6Q = Qand 6H /6Q = —®/f,.
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2.2.2. Shallow Water Model

Roughly speaking, shallow water equations are useful two-dimensional approximations of Navier-Stokes
equations often used for describing some fluid motions where the horizontal scale of motion is much larger
than its vertical extent, such as in the case of tidal waves or tsunami in the ocean, or Rossby and Kelvin waves
in the atmosphere. Here the single-layer model is summarized [Sommer and Névir, 2009]. The dynamics is
given by the evolution of the vorticity w and the divergence y = V - u of the horizontal velocity u

0w ==V - (w,u) (25)
Ot = k - V X (w,u) — V2(U?/2 + ghy) (26)
d.hy = =V - (hyu), (27)

where p is the density and h; is the total height of the fluid and w, = w + f is the absolute vorticity. The
shallow water model possesses two conserved integrals, the total energy, given by the sum of kinetic and
potential energy

H = %/p (hyu? +gh?) dA (28)

and potential enstrophy

&= % / pg?h,dA (29)

with the absolute potential vorticity g=w,/h;. The functional derivatives of the conserved integrals are
SH /6w = —py, SH [65u = —py, 5H /Sh; = p¥, 8E 6w = pq, € /6 = 0, and 6€ /5h; = —(1/2)pq?, where
w is the stream function, y is the velocity potential for hu = SVy + Vy,and ¥ = (1/2)u? + gh; is the
specific energy.

The Nambu representation of the shallow water model was derived by Salmon [2005] and is a bit more cum-
bersome than in, e.g., QG case. Sommer and Névir [2009] present a numerical simulation of these equations
on a spherical grid, and Névir and Sommer [2009] published the multilayer shallow water equations. In the
case of a single-layer shallow water equations, the dynamics of any functional 7 is determined by the sum
of three Nambu brackets

d

—F={F.H.&}

5 v+ (FHLE) + {FHLE)

(30)

,p,hr

The first bracket is

(PoH.E) o = / JF,,, H,)E, dA 31)
where X, = 6X /éw. Such first bracket is analogous to the 2-D Nambu bracket (9) (apart from the sign). For
the other brackets we refer to Salmon [2005] and Sommer and Névir [2009]. Salmon [2007] calculated the
Nambu brackets based on the velocities instead of vorticity.

2.2.3. Baroclinic Atmosphere

Névir and Sommer [2009] published the equations determining the dynamics of a baroclinic dry atmosphere
in Nambu form (denoted as energy-vorticity theory of ideal fluid mechanics). The Nambu representation
encompasses the Eulerian equation of motion in a rotating frame, the continuity equation, and the first
law of thermodynamics. The Nambu dynamics uses three brackets for energy, helicity, energy-mass, and
energy-entropy. Due to its special role in all three brackets, the integral of Ertel’s potential enstrophy is
coined as a super-Casimir.

The Nambu form shows an elegant structure where fundamental processes are combined by additive
terms. Incompressible, barotropic, or baroclinic atmospheres are associated to additive contributions. Thus,
approximations are simply attained by the neglect of terms.

LUCARINI ET AL.
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In the absence of forcings and of dissipative processes, the momentum equation, the continuity equation,
and the first law of thermodynamics equation are [Peixoto and Oort, 1992]

0,u=—u-Vu—2§2><u—le—Vd> (32)
p

op ==V - (pu) (33)

0;s=—U-Vs, (34)

where u is velocity, Q is the angular velocity of the Earth, @ is the sum of the gravitational and centrifugal
potential of the Earth, p is density, and s is the specific entropy per unit mass, determined by the equation of
state of the gas.

These equations possess four conservation laws. The first is the total energy
H= /pedV e=lu +i+ D, (35)
where e is the specific total energy and i is its internal energy component. The absolute helicity is
h, = /ua -w,dV, (36)

where the absolute velocity isu, = u+ Q X rand o, = V X u + 2Q, with the angular velocity of the Earth Q,
and r is the position vector. The total mass and entropy are given by

M =/pdV, Sz/pst, (37)

and the total potential enstrophy is defined starting from Ertel’s potential vorticity IT

w, - Vs
£, =/pH2dV, nm=-—-<2-, (38)
p

analogously to the definition in the QG context given in equation (22). The functional derivatives of the
conservation laws are §H /éu = pu, 5H /5p = (1/2)u?+i+p/p—Ts+¢p, 6H /66 =T, 5M/6u = 0,8M/5p =1,
6M/éc = 0,65/6u =0,65/6p =5,65/60 = 1,6h,/éu = @, 6h,/6p = 0,and 6h,/60 = 0, where T is
temperature and ¢ = ps.

An arbitrary functional F of u, p, and o evolves according to the sum of three brackets which are

defined below

d

d ={F,h,,H}, +{F.M,H} , +{F,5, H},. (39)

The three brackets are defined below. The first one is the so-called helicity bracket,

16F 67—[
{F.h,, H}p, = /[p 50 < 5u)] dv; (40)

the second is the so-called mass bracket,

SM 6F 57‘[ oF SM O6H
F, H}, = V-
F M H = /[6p5u +5p <5p5>

dV + cyc(F, M, H); (41)

where cyc indicates permutations in cyclic order of the arguments. The third one is the so-called
entropy bracket,

5SSF oM 6F_ (58S 6H
F.S.H), = - oL oy dV + cye(F, S, H 42
{ Js / Spou 6o o <5p5 >] oyl ) (42)

For a barotropic flow the first law of thermodynamics is physically not relevant and the entropy bracket

is discarded in (39) because the functional derivatives with respect to ¢ vanish. The continuity equation
remains unapproximated, and the pressure gradient term is replaced by the gradient of enthalpy. Note the
different brackets for helicity (40) and vorticity (18) in 3-D hydrodynamics.
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2.3. Conservative Algorithms and Numerical Models

Salmon [2005, 2007] recognized that the existence of a Nambu bracket with two conserved integrals allows
the design of high-precision numerical algorithms for studying geophysical flows. The idea is in fact simple:
just like in the usual case we aim at writing numerical codes able to conserve energy when dissipation and
forcing are neglected; Nambu mechanism provides encouragement and conceptual support for expand-
ing this point of view by encompassing other important physical quantities. The approach is useful in

GFD turbulence simulations because these flows are characterized by the existence of conservation laws
besides total energy. In particular, the conservation of enstrophy inhibits spurious accumulation of energy at
small scales.

For the numerical design of conservative codes based on a Nambu structure, the following remarks
are noted:

1. A Nambu form of the continuous physical system is required.

2. The quantities used in the Nambu bracket are conserved.

3. The discrete form of the Jacobian needs to preserve its antisymmetry.

4.The approach is applicable to any kind of discretization, e.g., for finite differences, finite volumes, or
spectral models.

5. Arbitrary approximations of the conservation laws are possible; these approximations are
conserved exactly.

6. For the barotropic vorticity equation the classic Arakawa Jacobian could be retrieved by equally weight-
ing the cyclic permutations of the Nambu bracket. In other terms, Arakawa found heuristically a discrete
Nambu representation of barotropic dynamics [Dubinkina and Frank, 2007].

In recent years, various authors have provided promising examples of actual implementations of GFD codes
which take into explicit consideration the underlying Nambu dynamics of the unforced and inviscid case.
Salmon [2007] presents the first numerical simulation of a shallow water model derived from the Nambu
brackets formalism. The simulation is on a square rectangular grid, and the design on an unstructured
triangular mesh is outlined.

Sommer and Névir [2009] report the first simulation of a shallow water atmosphere using Nambu brack-
ets. The authors use an isosahedric grid (as in the Icosahedric Nonhydrostatic (ICON) model of the German
Weather Service and the Max Planck Institute for Meteorology, Hamburg). The construction of the algorithm
is as follows [Sommer and Névir, 2009]:

1. First, the continuous versions of the Nambu brackets and conservation laws need to be obtained.

2. On the grid, the following expressions need to be calculated: functional derivatives, discrete operators
(div and curl), and discretization of the Jacobian and the Nambu brackets.

3. Finally, the prognostic equations are obtained by inserting the variables in the brackets. Various options
are available for the time stepping is arbitrary; Sommer and Névir [2009] use a leapfrog with Robert-
Asselin filter.

The authors find quasi-constant enstrophy and energy compared to a standard numerical design (Figure 1).

Along these lines, Gassmann and Herzog [2008] suggest a radically new concept for a global numerical
simulation of the nonhydrostatic atmosphere using the Nambu representation for the energy-helicity
bracket {F, h,, H} given in equation (40) [Névir, 1998]. Their suggestion incorporates a careful description
of Reynolds averaged subscale processes and budgets. Gassmann [2013] describes a global nonhydrostatic
dynamical core based on an icosahedral nonhydrostatic model on a hexagonal C-grid. The model conserves
mass and energy in a noncanonical Hamiltonian framework, even if some still unsolved numerical problems
occur when the non-hydrostatic compressible equations are in a Nambu bracket form. The use of dynami-
cal cores constructed according to the sophisticated version of fluid dynamics discussed here might provide
crucial for improving the ability of atmospheric models in representing correctly the global budgets of phys-
ically relevant quantities also in the case when forcing and dissipative processes are taken into account. As
discussed by Lucarini and Ragone [2011] for the case of energy, this is far from being a trivial task.

2.4. Perspectives
Like Hamiltonian mechanics, the Nambu approach is a versatile tool for the analysis and simulation of
dynamical systems. Here some possible research directions are outlined.
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Neévir [2009] (courtesy of Matthias Sommer, Ludwig-Maximilians- associated with approximations [Névir
Universitit Miinchen). Note that the tendency in the Nambu model ~ and Sommer, 2009]. Composition allows a
is of the order of the numerical accuracy. process-oriented model design.

Statistical Mechanics. The statistical mechanics of fluids is characterized by the existence of conservation
laws besides total energy [Bouchet and Venaille, 2012] (see also section 3 in this review). Thus, these con-
servation laws have a twofold impact: They determine the dynamics in a Nambu bracket and the canonical
probability distribution in equilibrium.

Dynamics of Casimirs. Casimir functions of a conservative system are ideal observables to characterize the
dynamics in the presence of forcing and dissipation. This might prove especially interesting when studying
the response of a system to perturbations in the context of the Response theory proposed by Ruelle [1997,
1998a, 1998b, 2009] and recently used in a geophysical context by various authors with promising results
[Eyink et al., 2004; Abramov and Majda, 2008; Lucarini, 2009; Lucarini and Sarno, 2011] (see also section 5 in
this review).

As illuminating example, we mention the recent work of Pelino and Maimone [2007] and Gianfelice et al.
[2012], who have used recurrence maps of extremes of energy and a Casimir in a Lorenz-like map to assess
predictability of the system and study the properties of the invariant measure.

3. Equilibrium Statistical Mechanics for Geophysical Flows

We have seen in the previous section that different models of geophysical flows have a specific mathe-
matical structure: they are Hamiltonian systems and have an infinite number of conserved quantities—the
Casimirs. The previous section has shown how one could take advantage of these features and construct
theoretically rich representation of the dynamics and provide proposals for constructing new numerical
codes of GFD flows. This section goes in the direction of constructing a probabilistic description of GFD
flows, basically taking the point of view that due to the large amount of degrees of freedom involved, one
can consider the state of the atmosphere and the ocean as random variables. Here we shall review the
progress that has been made by using the simplest class of possible probability distributions: the equilib-
rium distributions depending only on the conserved quantities. However, most of the standard applications
of equilibrium statistical mechanics deal with dynamics on a finite dimensional phase space (e.g., a gas
with a finite number of molecules), with a finite number of dynamical invariants (often just the energy). The
equations describing the dynamics of geophysical flows violate both these constraints. Several solutions
have thus been proposed: they are reviewed briefly in the next sections, going from the main fundamental
ideas to selected geophysical applications.

3.1. Finite-Dimensional Models: Point Vortices
3.1.1. Negative Temperature States and Clustering of Vortices

Onsager [1949] was the first to understand that the coherent structures and persistent circulations that
appear ubiquitously in planetary atmospheres and in the Earth’s oceans could be explained on statistical
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=0 =64 =128 grounds. His work focused on 2-D
incompressible, inviscid fluids given in
equation (2). To make the system tractable,
he introduced an approximation of the
vorticity field in terms of N point vor-

tices with circulation y; and position r;(t):
w(r,t) = ZL 7:6(r;(t) — r), where 5(x) is
the usual Dirac’s delta distribution. Introduc-
ing the Hamiltonian H = — ¥, 7;7,G(r;, vy),
R ) where G is the Green function of the

-R R Laplacian (the response to an impulse
source: AG(r;, ) =6(r;— 1)), the dynamics
reads simply

Figure 2. Time evolution for a numerical simulation of two-sign
point vortices (shown in red and blue), for (top row) positive tem-
peratures and (bottom row) negative temperatures. For negative dx, oM dy; oM
temperatures, we observe the clustering of same-sign vortices, Yiso == VigT ="
while for positive temperatures, positive and negative vortices are de % dt ox;
distributed homogeneously in the domain. Reprinted with per- This is a canonical Hamiltonian system with
mission from Yatsuyanagi et al. [2005]. Copyright (2005) by the
American Physical Society.

(43)

a finite number of degrees of freedom, for
which the standard methods of statistical
mechanics apply directly. In particular, the
microcanonical probability measure, acting as invariant—i.e., unaltered by the dynamics—measure of the
system, assigning a uniform probability to all the configurations with a given energy, is given by

SN} <ien) — B)
Q(E) ’

p({rticicn) = (44)
where Q(E) is the structure function, which measures the volume in phase space occupied by configura-
tions with energy E. It is easily proved that, for a bounded domain, and hence a finite volume phase space,
this function reaches a maximum for a given value of the energy. Hence, the thermodynamic entropy

S(E) = kg In Q(E) decreases for a range of energies, and the statistical temperature 1/T = 05/0E becomes
negative. Negative temperatures, although counterintuitive, have since been commonly encountered in the
study of other systems with long-range interactions [Dauxois et al., 2002] and correspond to self-organized
states. Here the energy increases when two same-sign vortices move closer, while it decreases for opposite
signs. When the temperature is negative, configurations with maximum energy are favored. Hence, nega-
tive temperature equilibrium states exhibiting clusters of same-sign vortices are expected. This behavior has
been confirmed by numerical simulations with up to N = 6724 point vortices (see Figure 2).

3.1.2. Mean-Field Equation

The above argument is qualitative; to characterize the coherent structures which are expected to emerge
from the clustering of same-sign vortices, we introduce the probability density p;(r, t) for a vortex

with strength y; to be found at point r at time t. It satisfies the normalization / pi(r, t)dr=1. We define

a coarse-grained vorticity field w(r, t)=Y; 7;p;(r, t). This probability density is expected to converge

toward its statistical equilibrium: the equilibrium distribution maximizes the statistical entropy

S=-Y, [ pi(r)In p;(r)dr. The solution of this variational problem is given by p(r) = e?"¥®+4) / 7 where g
(inverse temperature) and fy; are the Lagrange parameters associated with conservation of global energy
and normalization of each p;, respectively, and y = A~'w is the coarse-grained stream function, while the
normalization factor Z is called the partition function. Averaging over this equilibrium distribution gives the
coarse-grained vorticity field, which satisfies the mean-field equation:

o(r) = % Z },ieﬁ(r@(r)ﬂt[)‘ (45)
i

This is an equation of the form w = F(y), characteristic of the steady states of the 2-D Euler equations. A
well-known particular case is that of N vortices with circulation 1/N and N vortices with circulation —1/N.In
that case, the mean-field equation can be recast as w = Asinh(¥), with ¥ = w — (u, — u_)/2 [Montgomery
and Joyce, 1974].

The theory can be generalized in a straightforward manner to quasi-geostrophic (QG) flows [Miyazaki et
al., 2011]. DiBattista and Majda [2001] have given solutions of the mean-field equation for a two-layer

LUCARINI ET AL.

©2014. American Geophysical Union. All Rights Reserved. 11



@AG U Reviews of Geophysics 10.1002/2013RG000446

model—i.e., a QG model where the stream function is defined only at two discrete values of the vertical
coordinate and the temperature is defined at the interface between such level [Holton, 2004]—where the
point vortices stand for hetons, introduced by Hogg and Stommel [1985] as a model of individual convec-
tive towers in the ocean. They have shown that a background barotropic current (the barotropic governor)
confines potential vorticity and temperature anomalies, thereby suppressing the baroclinic instability, in
agreement with numerical simulations [Legg and Marshall, 1993].

The point vortex model suffers from a number of limitations inherent to the approach. First of all, when
we let the number of vortices tend to infinity (the thermodynamic limit), we have to introduce an ad hoc
scaling of the Lagrange parameters to retain the organized, negative temperature states. Besides, there is
no unigue way to approximate a vortex patch by a finite number of vortices. A consequence is also that the
area of vorticity patches cannot be conserved in this singular formulation. We shall see in section 3.3 that
dealing directly with the vorticity field will solve these issues while predicting a relation between vorticity
and stream function very similar to the one obtained above.

3.2. Finite-Dimensional Models: Truncated Fourier Modes
3.2.1. Two-Dimensional Turbulence

Rather than a discretization in physical space, one may consider a finite number of modes in Fourier space,
as proposed by Lee [1952] and Kraichnan [1967] in the context of the Euler equations. For 2-D flows—for
simplicity, we consider here a rectangular geometry with periodic boundary conditions; the case of a spher-
ical geometry can be found in Frederiksen and Sawford [1980]—writing the vorticity field as a truncated
Fourier series w(x) = Y, @(k)e™®*, the evolution in time of the Fourier coefficients follows an equation of
the form 9,0(k) = Zp’q Akpq@(P)O(q), where the summation is restricted to a finite set of wave vectors

B = {k € 2r/L 73 Kyjn < k < Koy} and Ayp, takes care of the quadratic nonlinearity terms. This dynamics
preserves two quadratic quantities: the energy £ = Y |@(k)|? /(2k?) and the enstrophy I, =2 |ok)|2.
Kraichnan [1967] suggested to consider the canonical probability distribution:

. e—BE—al,
P oK) }yep) = Z (46)
In particular, the average energy at absolute equilibrium is given by
olnZ 1 1
By=—"==2) ———, 47
& op 2 kEZB p + 2ak? (47)

which corresponds to an equipartition spectrum for the general invariant SE + al'y: E(k) = zk/(B + 2ak?),
where E(k) is the energy of all the modes with wavenumber k. Inviscid numerical runs indeed relax to this
spectrum [Fox and Orszag, 1973; Basdevant and Sadourny, 1975]. Note that the Lagrange parameters a and
B cannot take arbitrary values; they are constrained by the realizability condition—for the Gaussian inte-
gral defining Z to converge. Here this condition reads g + 20:ernih > 0and g + Zakﬁ‘ax > 0. In particular,
when @ > 0, negative temperatures can be attained. In this regime, which corresponds to (I', ) /(2(E))
small enough [Kraichnan and Montgomery, 1980], the energy spectrum is a decreasing function of k. When
p— —2akr2nin, a singularity appears at k — k.,;,, which means that the energy is expected to concentrate in
the largest scales. Hence, statistical mechanics for the truncated system predicts that when the enstrophy is
small enough compared to the energy, we expect the energy to be transferred to the large scales. Kraichnan
[1967] gives other arguments to support and refine this view; in particular he shows the existence of two
inertial ranges, with a constant flux of energy and enstrophy, respectively, with the energy spectrum scaling
as E(k) ~ Ce2/3k=%/3 and E(k) ~ C'n*/3k3, respectively, where £ and 7 are the energy and enstrophy fluxes.
In particular, the equilibrium energy spectrum at large scales is shallower than the energy inertial range
spectrum. Assuming a tendency for the system to relax to equilibrium—although the equilibrium is never
attained in the presence of forcing and dissipation—we thus expect the flux of energy to be towards the
large scales; a process referred to as the inverse cascade of 2-D turbulence. Similarly, the transfer of enstrophy
in the corresponding inertial range should be towards the small scales. The dual cascade scenario has been
confirmed both by numerical simulations [Boffetta, 2007] and laboratory experiments [Paret and Tabeling,
19971.

3.2.2. Quasi-Geostrophic Turbulence

The dynamical equations of QG flow are very similar to the Euler equations, replacing vorticity by poten-
tial vorticity (see section 2.2.1). In particular, they conserve similar quadratic invariants, and the theory can
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Figure 3. Energy (solid arrows) and potential enstrophy (dashed arrows) flux diagram for two-layer quasi-geostrophic
turbulence, taking inspiration from Salmon [1978]. The energy injected in the baroclinic mode at large scales is cascaded
downscale until the deformation scale is reached, then it is transferred to the barotropic mode and cascaded upscale like
in 2-D turbulence, in agreement with the predictions of equilibrium statistical mechanics.

be extended in a straightforward manner [Holloway, 1986; Salmon, 1998]. We will discuss in this section
the effect of stratification and beta effect, resulting from the fact that the planetary vorticty depends on
the latitude.

Perhaps the simplest framework to consider the role of stratification is the two-layer QG case. As in
section 3.2.1, a canonical probability distribution can be constructed, taking into account the three invari-
ants: the total energy E and the potential enstrophies of each layer, Z, and Z,. The corresponding partition
function can be computed, and the spectrum studied in the various regimes, with similar results. In par-
ticular, negative temperature states are accessible, which correspond to condensation of the energy on
the largest horizontal scales and the Fofonoff [1954] solutions mentioned below. Maybe more interest-
ingly, although the various forms of energy (kinetic energy K, K, in each layer and potential energy P) are
not individually conserved, we can compute their average value at equilibrium, as Salmon et al. [1976] did.
Alternatively, the standard decomposition in terms of the barotropic and baroclinic modes (constructed by
taking the average and the difference of the stream functions in the two layers), with their kinetic energies
K; and K, can be used. As Salmon et al. [1976] highlighted, the Rossby deformation scale k, = 2z /R plays
an important role. R, = NH/f,, where H is the vertical extent of the domain and f, is the reference Coriolis
parameter, defines the typical horizontal scale of perturbations of vertical extent equal to H, with N/f, > 1
defining the typical geometric aspect ratio. At scales smaller than the deformation scale (k > kp), the two
layers behave essentially as two independent copies of 2-D turbulence; the energy spectrum in each layer
is the same as in the 2-D case, the correlation at statistical equilibrium is low, and there is about as much
energy in the barotropic mode and the baroclinic mode: (K (k))/(Kz(k)) ~ 1.Besides, the potential energy
is small compared to the kinetic energy: (P(k))/(K;(k)) = O(kp/k). At scales larger than the deformation
radius (k < kp), the system rather behaves as a unique barotropic layer: the amount of energy in the two
layers is about the same, but the energy is essentially in the barotropic mode, with negligible energy in the
baroclinic mode, and a statistical correlation between the two layers of order 1. This theoretical analysis
goes in strong support of the standard picture of two-layer QG turbulence, developed on phenomenologi-
cal grounds [Salmon, 1978; Rhines, 1979, see also Vallis, 2006, chapter 9] and is in agreement with numerical
simulations [Rhines, 1976]. See also Figure 3. These results have been extended to an arbitrary number of
layers and to continuously stratified flows by Merryfield [1998]. Although the equilibrium mean, vertically
integrated stream function remains similar to the two-layer case, the distribution of the statistics on the ver-
tical differs as higher-order moments are considered. The ratio of potential to kinetic energy, for instance,
can become significantly underestimated, especially in the limit of strong stratification (k, — 0) where
the two-layer model does not capture well the possibility that an important fraction of the energy may be
trapped near the bottom.

The second dominant effect in geophysical flows, in addition to stratification, is rotation. The Coriolis force
introduces a linear term in the equations, which does not affect directly the previous analysis of the nonlin-
ear energy transfers: the conserved quantities remain the same and the statistical theory is easily extended
by replacing relative vorticity with absolute vorticity. However, the variation of the Coriolis force with
latitude is responsible for the appearance of Rossby waves, which modify the physical interpretation of
the predicted cascade of energy. As anticipated by Rhines [1975] and verified numerically [e.g., Vallis and
Maltrud, 1993], the Rossby waves deflect the inverse energy cascade: they dominate over nonlinear effects
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in a part of Fourier space and prevent access to low wave numbers along one direction in Fourier space. This
leads to the preferential formation of zonal flows.

3.2.3. Beyond Balanced Motion

Although the large-scale motions of the atmosphere and oceans of the Earth are very close to geostrophic
and hydrostatic balance, these relations break up when moving down to the mesoscale, and the transfers of
energy due to turbulence, or the nonlinear interaction of inertia-gravity waves, might not follow the inverse
cascade scenario described in sections 3.2.1 and 3.2.2. As a matter of fact, a downscale transfer of energy is
needed in the ocean to feed enhanced vertical mixing [e.g., Ledwell et al., 2000] or small-scale dissipation in
the ocean interior [Nikurashin et al., 2013]. Such processes are necessary to close the energy budget of the
ocean [Wunsch and Ferrari, 2004]. It is therefore natural to ask how equilibrium statistical mechanics can help
understanding how energy is exchanged by nonlinear interactions between the slow, balanced motions and
the fast, wave motions.

Errico [1984] first observed a tendency for unforced inviscid flows described by hydrostatic primitive
equations to reach an energy equipartition state, in which the energy in the fast wave modes is compa-
rable to that in the slow balanced modes. The study by Warn [1986], in the context of the shallow water
equations, essentially confirms that QG flows are not equilibrium states and that a substantial part of the
energy may end up in the fast (surface) wave modes at statistical equilibrium, implying a direct cascade
of energy to the small scales. Bartello [1995] has obtained analytically the equilibrium energy spectrum
for the Boussinesq equations (neglecting the nonlinear part of potential vorticity), in the presence of rota-
tion, confirming the direct cascade of energy. In particular, there is no negative temperature states in this
case, due to the presence of the inertia-gravity waves. In fact, numerical simulations [Pouquet and Marino,
2013] indicate that turbulence with rotation and stratification might have at the same time an inverse and
a direct cascade of energy. A natural interpretation would be that vortical modes are responsible for the
inverse cascade while waves cascade energy downscale simultaneously. Bartello [1995] had discussed the
possibility of a wave-vortical mode decoupling on the basis of resonant triadic interactions. Without any
assumptions on the dynamics, another interpretation in the statistical mechanics framework uses an anal-
ogy with metastable states: restricting the equilibrium probability distribution to the slow manifold yields
an inverse cascade, while taking into account the whole phase space including the waves results in a direct
cascade [Herbert et al., 2014].

3.3. The Mean-Field Theory for the Continuous Vorticity Field
3.3.1. Mean-Field Theory

Above, we have considered finite-dimensional models conserving at most two quadratic quantities, the
energy and the enstrophy. In fact, the majority of the flows considered above—and in particular 2-D and
QG flows—conserve an infinite family of invariants, called Casimir invariants: for any function s, /" s(w)dr

is conserved (see equation (5)). The specific case s,(x) = x" corresponds to the moments of the vorticity
distribution. Instead, the conservation of s,(x) = 6(x — o) implies that the area y(c) where the vorticity
takes value o is conserved. This is due to the absence of a vortex stretching term, in contrast with full 3-D
flows; here the vorticity (or potential vorticity, in the QG case) patches are stirred in such a way that their
area remains conserved. The theory developed by Miller [1990] and Robert and Sommeria [1991] (see also
Bouchet and Venaille [2012] for a review) introduces a coarse-grained vorticity field w, which corresponds to
the macroscopic state of the flow. This coarse-grained vorticity field can be predicted based on the invari-
ants using statistical mechanics. To do so, we introduce p(o, r), the probability density for the vorticity field
to take value ¢ at point r. The coarse-grained vorticity field is given by w(r) = f_°; op(o,r)de. The invariants
of the system are the energy

Elpl = / drdr’ / dode’ o6’ G(r, ¥ )p(c,p(c’, 1), (48)
D2 RrR2

with G the Green function of the Laplacian, and the Casimir invariants

.ol = / dr/ doc"p(o, 1), (49)
D R
or equivalently, the vorticity levels
D ,[p] = / drp(o, 1). (50)
D
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The idea of the theory is to select the probability distribution p which maximizes a mixing entropy
Slpl =- /D fR drdop(o,r) In p(o, r), under the constraints of conservation of the invariants, and pointwise
normalization /" [p](r) = /R dop(o,r) = 1. Hence, we are interested in the variational problem:

SEAT,),) = max {S[p]| €lp] =EVneN, G, [p] =T,}, (51)
PN [pl(N=1
or equivalently,
S(E,yy= max {S[p]| E[p]l =E,Vo €R,D,[p] =7(0)}. (52)
.V [pl(N=1

The solutions of this variational problem correspond to the most probable states for a given set of
conserved quantities.

The critical points of the variational problem (52) are simply given by §§ — / drl(n)sAN (r) — f6E —
f doa(6)62,=0, where f and a(o) are the Lagrange multiplier associated with the conservation
constraints. One obtains the solution

plo.r) =z, (53)

so that the coarse-grained vorticity is given by

@=F@). with FG) = +2NZ
B oy

and Z(@:fR doefo¥ =) To compute the equilibrium states of the system, one should solve the
partial differential equation (54), referred to as the mean-field equation, and check afterward that the
obtained critical points are indeed maxima of the constrained variational problem by considering the sec-
ond derivatives. This will automatically ensure that the equilibrium states are nonlinearly stable steady states
[Chavanis, 2009].

3.3.2. Equilibrium States for 2-D and Barotropic Flows

The mean-field equation (54) is in general difficult to solve; one issue is that the w — y relation is in general
nonlinear. Most of the analytical solutions have been obtained in the linear case, by decomposing the
fields on a basis of eigenfunctions of the Laplacian on the domain D. This technique was first introduced

in a rectangular domain by Chavanis and Sommeria [1996], who showed that the statistical equilibrium is
either a monopole or a dipole, depending on the aspect ratio (Figure 4). The same method was extended
to the case of barotropic flows, replacing vorticity by potential vorticity. Taking into account the beta effect,
Fofonoff [1954] flows are obtained as statistical equilibria in a rectangular basin [Naso et al., 2011; Venaille
and Bouchet, 2011]. Such solutions correspond to flows with two gyres (anticyclonic in the northern basin,
cyclonic in the southern basin) in a rectangular basin (see Figure 5). The relative vorticity is confined to

a boundary layer, whose width decreases with the total energy or when the beta effect (i.e., the relative
strength of the gradient of the planetary vorticity) increases. The flow is westward in the interior of the basin,
with an eastward compensating flow near the boundaries.

Different geometries can be studied: in a rotating sphere, the equilibria, in the linear limit, can be either
solid-body rotations, dipole flows [Herbert et al., 2012], or quadrupoles, taking into account conservation
of angular momentum [Herbert, 2013]. In the latter case, a perturbative treatment of the nonlinearity in
the w-y relationship leads to the same flow topology, but sharper vortex cores [Qi and Marston, 2014].
Bouchet and Simonnet [2009] have also considered the role of a small nonlinearity in the @-y relationship
for a rectangular domain of aspect ratio close to 1, with periodic boundary conditions, thereby obtaining
two topologies for the equilibrium states: dipole and unidirectional flows. Adding a small stochastic forcing
generates transitions from one to the other equilibrium.

3.3.3. Stratified Flows

In addition to the 2-D and quasi-2-D cases mentioned above, the theory has also been applied to stratified
fluids (essentially in the quasi-geostrophic regime). Herbert [2014] has obtained and classified the statistical
equilibria of the two-layer QG model in the framework of the Robert-Miller-Sommeria theory, and updated
the discussion of the vertical distribution of energy at statistical equilibrium (see section 3.2.2): in particu-
lar, it is shown that even at statistical equilibrium, there will remain some residual energy in the baroclinic
mode, unless the initial vertical profile of fine-grained enstrophy is uniform. In the context of continuously
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Figure 4. Maximum entropy states as a function of the aspect ratio for a rectangular domain, in the linear (strong mix-
ing) w-y limit. For = < 7, the equilibrium is a monopole, while for = > 7, it is a dipole. Reprinted from Chavanis and
Sommeria [1996] with the permission of Cambridge University Press.

stratified flows, Venaille [2012] has taken up the thread initiated by Merryfield [1998] (see section 3.2.2) and
shown that bottom-trapped currents are indeed statistical equilibria of the Robert-Miller-Sommeria the-
ory. Still in the continuous case, Venaille et al. [2012] have also studied the vertical distribution of energy at
statistical equilibrium, focusing on the tendency to reach barotropic equilibrium states; as also observed

in the two-layer model, the constraint of conservation of fine-grained enstrophy prevents complete elimi-
nation of energy in the baroclinic mode. As the beta effect increases, barotropization is facilitated, until we
enter a regime dominated by waves. It is well known that baroclinic dynamics is hindered by strong rotation

[Holton, 2004].
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Figure 5. Convergence toward the statistical equilibrium in inviscid truncated barotropic flow on a beta-plane. (left)
Stream function. (right) Scatterplot of the g-y relation. Reprinted with permission from Wang and Vallis [1994].
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3.4. Subgrid-Scale Parameterization

Results from equilibrium statistical mechanics have found practical applications in the development of
parameterization methods. Holloway [1992] suggested to replace the usual subgrid-scale parameterizations
in ocean models, where, e.g., viscous forces are represented with terms of the form v, A(u), where v, is the
eddy viscosity. He proposed to replace such formula with v, A(u — u*), so that viscosity relaxes the system
toward the statistical equilibrium state u*. Such a parameterization has been implemented, tested, and com-
mented in a number of studies [e.g., Cummins and Holloway, 1994]. For more perspective on this type of
subgrid-scale parameterizations, the reader is referred to Holloway [2004] and Frederiksen and O’Kane [2008].

Along similar lines, Kazantsev et al. [1998] have proposed more generally to treat the subgrid scales

so as to maximize the entropy production, inspired by the relaxation equations formulated in the
Robert-Miller-Sommeria theory as an algorithm to construct equilibrium states [Chavanis and Sommeria,
1997]. Note also that it has been shown in direct numerical simulations of ideal 3-D turbulence that the
small scales thermalize progressively and act as a sort of effective viscosity in the ideal system, leading to the
appearance of transient Kolmogorov scaling laws [Cichowlas et al., 2005]. This seems to be consistent with
the above suggestions for subgrid-scale parameterizations.

4. Climate as a Forced-Dissipative Thermodynamic System

In the previous sections the focus has been on identifying symmetry properties and conservation laws of
GFD flows and relate these to dynamical features and statistical mechanical properties. Neglecting forcing
and dissipation has led us to study reversible equations whose statistical properties can be described using
equilibrium statistical mechanics.

Indeed, this provides the backbone of the properties of GFD flows and are of great relevance for studying
more realistic physical conditions. Nonetheless, at this stage, a reality check is necessary. The atmosphere
and the oceans are out-of-equilibrium systems, which exchange irreversibly matter and energy from their
surrounding environment and export it in a more degraded form at higher entropy. For example, Earth
absorbs short-wave radiation (low-entropy solar photons emitted at a temperature of ~6000 K), which

is then reemitted to space as infrared radiation (high-entropy thermal photons emitted at a temperature
of ~255 K). In addition to that, spatial gradients in chemical concentrations and temperature as well as
their associated internal matter and energy fluxes can be established and maintained for a long time within
nonequilibrium systems (e.g., the temperature contrast between the polar and equatorial regions and the
associated large-scale, atmospheric and oceanic circulation). In this and in the next sections we will take
such a point of view.

The basis of the physical theory of climate was established in a seminal paper by Lorenz [1955], who elu-
cidated how the mechanisms of energy forcing, conversion, and dissipation are related to the general
circulation of the atmosphere. Oceanic and atmospheric large-scale flows results from the conversion of
available potential energy—coming from the differential heating due to the inhomogeneity of the absorp-
tion of solar radiation—into kinetic energy through different mechanisms of instability due to the presence
of large temperature gradients [Charney, 1947; Eady, 1949]. Such instabilities create a negative feedback,

as they tend to reduce the temperature gradients they feed upon by favoring the mixing between masses
of fluids at different temperatures. Furthermore, in a forced and dissipative system like the Earth’s climate,
entropy is continuously produced by irreversible processes [Prigogine, 1961; de Groot and Mazur, 1984]. Con-
tributions to the total material entropy production, which is related to the nonradiative irreversible processes
[Goody, 2000; Kleidon, 2009], come from the following: dissipation of kinetic energy due to viscous pro-
cesses, turbulent diffusion of heat and chemical species, irreversible phase transitions associated to various
processes relevant for the hydrological cycle, and chemical reactions relevant for the biogeochemistry of
the planet.

It is important to note that the study of the climate entropics has been revitalized after Paltridge [1975, 1978]
proposed a principle of maximum entropy production (MEPP) as a constraint on the climate system. While
the scientific community disagrees on the validity of such a point of view—see, e.g., Goody [2007]—the
discussion revolving around MEPP has led the scientific community to refocus on the importance of a
thermodynamical approach—as complementary to the dynamical one—in providing physical insights for
studying the climate system. In this paper we will not discuss MEPP and other nonequilibrium variational
principles (for an updated review, see Dewar et al. [2013]).
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4.1. Climatic Energy Budget and Energy Flows
4.1.1. Energy Budget

We first focus on developing equations describing the energy budget of the climate system. The total spe-
cific (per unit mass) energy of a geophysical fluid is given by the sum of internal, potential, kinetic, and latent
energy. This can be expressed as e = u?/2 + i + ¢ + Lq for the atmosphere, where u is the velocity vector,
i = ¢,Tis the internal energy, with ¢, is the specific heat at constant volume for the gaseous atmospheric
mixture and T is its temperature, @ is the gravitational (plus centrifugal) potential, L is the latent heat of
evaporation, and q is the specific humidity. In this formula, we neglect the heat content of the liquid and
solid water and the heat associated to the phase transition between solid and liquid water. The approxi-
mate expression for the specific energy of the ocean reads e = u?/2 + i + ®, where i = ¢, T is the specific
heat at constant volume of water (we neglect the effects of salinity and of pressure), while we can consider
e = ¢;T + ¢ as the specific energy for solid earth or ice. The conservation of energy and the conservation of
mass imply that [Peixoto and Oort, 1992]:

dpe

5 =V -Uph+Fr+Fs+F)—-V(r-u, (55)

where p is the density; p is the pressure; J, = (pe + p)u is the total enthalpy transport; Fg, Fs, and F, are
the vectors of the radiative, turbulent sensible, and turbulent latent heat fluxes, respectively; and 7 is the
stress tensor. By expressing equation (55) in spherical coordinates (r, 4, @), and assuming the usual thin shell
approximationr = R + z,z/R < 1, where R is the Earth’s radius and z is the vertical coordinate of the fluid,
we have [Peixoto and Oort, 1992]

1 dTy

Flo 7 | 1gmon
[E]= Rcos @ d¢ + [ (56)

where [X](@.t) = [ X(A, @,t)d4, F;° is the net radiation at the top of the atmosphere (with the convention
that the value is positive when there is an excess of incoming over outgoing radiation) and the meridional
enthalpy transport has been defined as

T, t) = //Jh(p((p, 4,2z, t)R cos pdzdA. (57)

Equation (56) relates the rate of change of the vertically and zonally integrated total energy to the diver-
gence of the meridional transport by the atmosphere and oceans and the zonally integrated radiative
budget at the top of the atmosphere. Integrating along ¢ ({X} =f Xdg), the expression for the time
derivative of the net global energy balance is straightforwardly derived:

{[F>]} = {1 - (58)

Similar relationships can be written for the atmosphere, ocean, and land provided that energy fluxes of sen-
sible, latent heat as well as radiative fluxes are taken into account at the surface [Peixoto and Oort, 1992]. A
schematic view of the surface and TOA energy fluxes for present-day Earth [Trenberth and Fasullo, 2012] can
be seen in Figure 6. Under steady state conditions, the long-term average energy budget is zero: {[E]} = 0.
Therefore, from equation (58), the stationarity condition implies that

{[Frltoa} = 0. (59)

Equation (59) describes the basic fact that the climate system, at steady state, does not on the average
receive nor emit energy.

These constraints can be used for auditing climate models. At observational level nonzero energy balances
are found at TOA and at the surface [Trenberth and Fasullo, 2012; Wild et al., 2013], due to the fact that the
actual Earth is not at a stationary state, most notably because of the ongoing greenhouse gas forcing (see
Figure 6). However, a physically consistent climate model should feature a vanishing net energy balance
when its parameters are held fixed and statistical stationarity is eventually obtained. Lucarini and Ragone
[2011] analyzed the behavior of more than 20 atmosphere-ocean coupled climate models (Program For
Climate Model Diagnosis and Intercomparison (PCMDI)/Coupled Model Intercomparison Project Phase 3
(CMIP3), http://www-pcmdi.linl.gov/) under steady state conditions (preindustrial scenario) and found that
the various models feature average global balances ranging between —0.2 and 2 W m~2, with a few ones
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Figure 6. Global annual mean Earth’s energy budget for 2000-2005 (W m~2). Reprinted with permission from Trenberth
and Fasullo [2012].

featuring imbalances larger than 3 W m~=2, The analysis of similar budgets for the last generation of climate
models (Coupled Model Intercomparison Project Phase 5 (CMIP5) [Taylor et al., 2012]) does not show a sig-
nificant improvement (Figure 7). Spurious energy biases may be associated with nonconservation of water
in the atmospheric branch of the hydrological cycle [Liepert and Previdi, 2012; Liepert and Lo, 2013] and in
the water surface fluxes [Lucarini et al., 2008; Hasson et al., 2013], with the fact that dissipated kinetic energy
is not reinjected in the system as thermal energy [Becker, 2003; Lucarini and Fraedrich, 2009], as well as with
nonconservative numerical schemes [Gassmann, 2013].

4.1.2. Meridional Enthalpy Transport

The next step in constructing the energetics of the climate system is the study of the large-scale transport
of various forms of energy. The meridional distribution of the radiative fields at the top of the atmosphere
poses a strong constraint on the meridional general circulation [Stone, 1978]. As clear from equation (56),
the stationarity condition (59) leads to the following indirect relationship for T:

/2
T (@) = —271'/ R? cos @' (FR)ioa(@")- (60)
4

In other terms, the flux T; transports enthalpy from the low latitudes, which feature a positive imbalance
between the net input of solar radiation—determined by planetary albedo, determined mostly by clouds
[Donohoe and Battisti, 2012] and by surface properties—and the output of long-wave radiation, to the high
latitudes, where a corresponding negative imbalance is present. Atmospheric and oceanic circulations act
as responses needed to equilibrate such an imbalance [Peixoto and Oort, 1992].

The climatic meridional enthalpy transport T-(¢) reduces the temperature difference between the low- and
high-latitude regions with respect to what imposed by the radiative-convective equilibrium picture. Stone
[1978] showed that T; depends essentially on the mean planetary albedo and on the equator-to-pole con-
trast of the incoming solar forcing, while being mostly independent from dynamical details of atmospheric
and oceanic circulations. As emphasized by Enderton and Marshall [2009], if one assumes drastic changes

in the meridional distributions of planetary albedo differences emerge with respect to Stone’s theory. A
comprehensive thermodynamic theory of the climate system that is able to predict the peak location and
strength of the meridional transport, the partition between atmosphere and ocean [Rose and Ferreira, 2013],
and to accommodate the variety of processes contributing to it is still missing.

Besides theoretical difficulties, observational estimations of Ty, T,, and T, also poses nontrivial challenges.
For simplicity, we here refer to T;. There is still not an accurate estimate of such a fundamental quantity
for testing the output of climate models, despite the efforts of several authors [Trenberth and Caron, 2001;
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Figure 7. Mean and standard deviation of (a) globally
averaged top-of-the-atmosphere radiative budget, (b) atmo-
sphere energy budget, (c) ocean, and (d) land energy budget
for intercomparable CMIP3 (red) and CMIP5 (blue) climate
models control simulations (updated from Lucarini and
Ragone [2011]). See the model codes in Table 1.

Wunsch, 2005; Fasullo and Trenberth, 2008;
Trenberth and Fasullo, 2010; Mayer and Haimberger,
2012]. The precision of the estimates relies on the
knowledge of the boundary fluxes Fg, Fg, and F_
and on the reanalysis data sets. Wunsch [2005],

by using measurements of the radiative fluxes

at the top of the atmosphere and previous esti-
mates of the oceanic enthalpy transport, gave a
range of values of 3.0-5.2 PW (1 PW = 10"> W)

for the maximum of the total poleward transport
in the Northern Hemisphere (NH) and 4.0-6.7 PW
for the maximum of the total poleward transport
in the Southern Hemisphere (SH). Trenberth and
Fasullo [2010], by combining measurements of
top-of-the-atmosphere radiative fields with dif-
ferent reanalyses and ocean data sets, found the
range to be 4.7-5.1 PW for the SH peak transport
and 4.6-5.6 PW for NH peak transport. Mayer and
Haimberger [2012], using two reanalysis data sets
(ERA-40 and the more recent European Centre

for Medium-Range Weather Forecasts (ECMWF)
reanalysis ERA-Interim), constrained the two peaks
in narrower confidence intervals: 5.1-5.6 PW in the
SH (4.4-4.9 PW in the NH) for the ERA-40 data and
5.1-5.6 PW in the SH (4.4-4.9 PW in the NH) for the
ERA-Interim data. Unfortunately reanalysis data
sets are affected by mass and energy conservation
(e.g., +1.2 Wm™ at the top of the atmosphere and
+6.8 W m~2 over oceans in ERA-Interim [Mayer and
Haimberger, 2012]) problems that may potentially
bias the transport estimates. Furthermore, these
estimates are dependent on the analysis method
and the model used; Trenberth and Caron [2001],
using other reanalysis data set (National Centers
for Environmental Prediction), found a value of
the maxima 0.6 PW larger in the NH than those
found with the ECMWEF reanalysis. Estimates from
Trenberth and Caron [2001] are shown in Figure 8.

The use of numerical climate model does not nec-
essarily help reducing such uncertainties. Lucarini
and Ragone [2011] analyzed a large data set of
coupled climate models (PCMDI/CMIP3, http://
www-pcmdi.linl.gov/) and found a large spread

in the meridional enthalpy transports peaks with
discrepancies of the order of 15-20 % around a
typical value of about 5.5 PW. State-of-the-art cli-
mate models (CMIP5 see http://cmip-pcmdi.linl.
gov/cmip5/index.html, [Taylor et al., 2012]) show
little improvement in terms of mutual agreement
(Figure 9). Donohoe and Battisti [2012] attributed
such a large spread in T; to intermodel differences
in the meridional contrast of absorbed solar radia-
tion, which, in turn, is mainly due to the intermodel
difference in the short-wave optical properties of
the atmosphere. For an intercomparison of the
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Table 1. Numerical Codes of the GCMs Considered in Figures 7 and 92 cloud distribution in different climate
models, see Probst et al. [2012]. Figure 9

Sl SIS also shows that while the disagree-

1. CGCM3.1(T47) CanESM2 ment among models for the peak of the

2. CNRM-CM3 CNRM-CMS atmospheric transport is comparable to

3. CSIRO-MK3.0 CSIRO-MK6.0 P P P

4. GISS-EH GISS-E2H that for the peak of the total transport,

5. UKMO-HadGEM1 HadGEM1-AO  enormous differences emerge when

6. INM-CM3.0 INM-CM4 comparing oceanic transports.

7. MIROC3.2(medres) MIROC5 o .

8. ECHAMS5/MPI-OM MPI-ESM-MR Interesting information emerge when

9. MRI-CGCM2.3.2 MRI-CGCM3 looking at the position of the peaks of

10. Ccsma the transport. Stone [1978] predicted
aWe have used the official names of models given in the PCMDI/  that the position of the maximum of T is

CMIP3 and CMIP5 websites. See text. well constrained by the geometry of the

system and weakly dependent of longi-

tudinal homogeneities, and accordingly
in Figure 9, both CMIP3 and CMIP5 models feature small spread in the position of the peak of T;, with minute
differences between the two hemispheres, except one outlier. Similarly, the spread among models is small
with respect to the position of the peak of T, in both hemispheres and of T, in the Northern Hemispheres,
while a larger uncertainty exists in the position of the peak of T, in the Southern Hemisphere.

4.2. The Maintenance of Thermodynamical Disequilibrium

The basic understanding of the maintenance of the atmospheric general circulation was achieved nearly
60 years ago by Lorenz [1955, 1967] through the concepts of available potential energy and atmospheric
energy cycle. The concept of available potential energy, first introduced by Margules [1905] to study storms,
is defined as A= [ ¢,(T — T,)dV, where T, is the temperature field of the reference state, obtained by an
isentropic redistribution of the atmospheric mass so that the isentropic surfaces become horizontal and
the mass between the two isentropes remains the same. By its own definition, this state minimizes the total
potential energy at constant entropy. Such a definition is somewhat arbitrary, and different definitions lead
to different formulations of atmospheric energetics [Tailleux, 2013]. For example, the choice of a reference
state maximizing entropy at constant energy [Dutton, 1973] leads in a natural way to the concept of exergy.
Exergy is the part of the internal energy measuring the departure of the system from its thermodynamic
and mechanical equilibrium, i.e,, a state of maximum entropy at constant energy, and is a commonly used
concept in heat engines theory [Rant, 1956].

Lorenz [1967] proposed the following picture of the transformation of energy in the atmosphere. We define
E=P+K whereK = (1/2) / dVpu? represents the total kinetic energy and P = f dVp(c, T + @) represents
the dry static energy, and we integrate over the atmospheric domain V. Under hydrostatic approximation
one can show that [ dzp(c,T + gz) = [ dzp(c,T + RT) = [ dzpc,T [see, e.g., Lorenz, 1967]. In the Lorenz
framework one considers the hydrolog-

6: " R (eReE) L . ~' T T 7] ical cycle as a forcing to the atmospheric
- = = NCEP 0T 228 1 A ; : .
4L =+=+- NCEP AT (RT - OT) AN 1 circulation. This amounts to separating
v s R 1 the budget of the moist static energy
F L0 - g 1 and of the part related to the phase
o N
z | _,' % 1 changes of water [see Peixoto and
Z% ok - _ 7 e bl 1 Oort, 1992, chapter 13]. We obtain the
g Tteals 1 following:
3 -2f 7 ] _ .
=0 Y A ] P=-W(P,K)+ ¥ +D, 61)
e y ]
L \\ - f" : .
- ] K=-D+ W(P,K), (62)
—6 1 1 1 1 1 1 1 1 1 1 1 13 ) 1 L 1 Il
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dissipation of kinetic energy due to tur-
Figure 8. Annual meridional enthalpy transports of ocean (dashed), P 9y

atmosphere (dash-dotted), and total (solid) estimated from satellite bulent cascades to small scales and to
and reanalysis data (PW). Reprinted with permission from Trenberth and ~ the wind shear associated to falling
Caron [2001]. Copyright ©American Meteorological Society. hydrometeors, W(P,K) = _/ dVpu - Vp
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Figure 9. Value and position of the peak of the poleward meridional enthalpy transport in the preindustrial scenario for
(a) the whole climate, (b) atmosphere, and (c) ocean for the some of the CMIP3 (red) and CMIP5 (blue) general circulation
models (updated from Lucarini and Ragone [2011]). See the model codes in Table 1.

is the potential-to-kinetic energy conversion rate, and ¥ = [ dVpq, is the nonfrictional diabatic heating
due to the convergence of turbulent sensible heat fluxes, condensation/evaporation inside the atmosphere,
and convergence of radiative fluxes. The conversion term W can be interpreted as the instantaneous work
performed by the system. In this respect, equation (61) represents the statement of the first law of ther-
modynamics for the atmosphere. Equations (61) and (62) imply that E = P + K = W, and therefore, the
frictional heating D does not increase the total energy since it is just an internal conversion between kinetic
and potential energy. Stationarity implies that P = K = 0, and therefore, D = W, which is referred to as the
intensity of the Lorenz energy cycle. One has to note that the latter can be expressed as the average rate of
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generation of available potential energy, G = [ dVpg,(1 = T/T,), where T, is the temperature field of the
reference state [Lorenz, 1967].

The strength of the Lorenz energy cycle is a fundamental nonequilibrium property of the atmosphere,
which, just as the meridional enthalpy transport (section 4.1.2), is known with a certain degree of uncer-
tainty for the present climate. Reanalysis data sets (with all associated problems, see section 4.1.2) constrain
D in the range 1.5-2.9 Wm~=2 [Li et al., 2008]. On the other hand, general circulation models feature values
of D ranging from 2 to 3.5 Wm~2 [Marques et al., 2011]. Numerical simulations show that a CO, doubling
causes a decrease of G of nearly 10% [Lucarini et al., 2010a]. Warming patterns can alter G either by affect-
ing the gross static stability (stronger stability implies a weaker energy cycle, as clear from the theory of
baroclinic instability) or the meridional temperature/diabatic heating distribution. Hernandez-Deckers and
von Storch [2012] show that the decrease in G is mostly associated with changes in the gross static stability
changes rather than with meridional temperature gradient changes.

Another aspect to be considered is that the intensity of the Lorenz energy cycle is formulated assuming
hydrostatic conditions. Therefore, the Lorenz energy cycle in itself neglects any systematic transfer of poten-
tial into kinetic energy occurring through nonhydrostatic, small-scale motions [Steinheimer et al., 2008].
Along these lines, Pauluis and Dias [2012] suggest that small-scale processes such as precipitation may
significantly contribute to D, which might therefore be considerably underestimated when computed for
models that do not treat explicitly convection.

In the case of the ocean, available potential energy is generated through thermohaline forcings due to the
correlation of density inhomogeneities and density forcings (e.g., through heat and freshwater fluxes) at sur-
face. In addition to that, mechanical energy enters the ocean through direct transfer of kinetic energy by
surface winds (and though tidal effects). Kinetic energy is dissipated through a variety of frictional processes,
occurring mostly at the bottom of the ocean, and, similarly, available potential energy is lost through dif-
fusion mostly due to small-scale eddies [Wunsch and Ferrari, 2004]. The understanding of the details of the
oceanic Lorenz energy cycle is still at a relatively early stage. Estimates of dissipation and generation terms
range within (1-2) x 1072 Wm~2 [Oort et al., 1994; Storch et al., 2012; Tailleux, 2013].

4.2.1. Atmospheric Heat Engine and Efficiency

Johnson [2000] proposed an interesting construction for further elucidating the idea that the climate can
be seen as a heat engine. We define the total diabatic heating § = ¢,¢ + pe? and splitting the atmospheric
domain V into the subdomain V* in whichg = g* > 0,and V-, where § = g~ < 0. From equation (61)
we derive

W:/ ﬁdv+/ T dv =B + O, 63)
v+ —

where @+ > 0and ®- < 0 by definition. We underline that the domains V*+ and V- change with time.
Therefore, the atmosphere can be interpreted as a heat engine, in which @+ and @~ are the net average heat
gain and loss and W is the average mechanical work. The efficiency of the atmospheric heat engine, i.e,, the
capability of generating mechanical work given a certain heat input, can therefore be defined as

(F + d-)
n=—=

— (64)
(@)

&l

The analogy between the atmosphere and a (Carnot) heat engine can be pushed further if we introduce
the total rate of entropy change of the system, S = [ dVpg/T = $* + 5. In a steady state the following
expression holds
- ot b
5=,

o, 65
T T (65)

where T = E/ /vr dVpg* /T from which it follows thatn = 1 — T~ /T*. Johnson's approach pro-
vides a self-consistent treatment of the heat engine of a geophysical fluid and extends closely related
thermodynamical theories of hurricane dynamics [Emanuel, 1991].

In Emanuel’s theory a mature hurricane is depicted as an ideal Carnot engine driven by the thermal dis-
equilibrium between the sea surface temperature T, and the cooling temperature T, with an efficiency
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1-T,/T, = 1/3. A similar approach was extended also to moist convection [Emanuel and Bister, 1996; Rennd
and Ingersoll, 1996] for determining that the wind speed reached by the convective system for a certain rate
of heat input F,, from the sea, W = F,,(1—-T,/T,). Such an approach has been used to study large-scale, open
systems like the Hadley cell [Adams and Renno, 2005] and the monsoonal circulation [Johnson, 1989].

4.2.2. Entropy Production in the Climate System

We wish now to emphasize a different aspect of the climate’s thermodynamics, namely its irreversibility by
the investigation of its material entropy production, i.e., the entropy produced by the geophysical fluids
neglecting the change in the properties of the radiative fields [Goody, 2000; Ozawa et al., 2003]. The entropy
budget of the fluid can be rewritten as

. V-Fp
S:-/dV - R o St (66)

so that we separate the contribution coming from the absorption of the radiation from other effects related
to the other irreversible processes occurring in the fluid. Note that, in the previous formula, we refer to the
entropy budget of the whole climate, not of the atmosphere, as done, instead, in the previous section.

The material entropy production rate S, ., can be expressed as Sy + Sgic + Spyq, i.€., the sum of contribu-
tions associated with heat diffusion, frictional heating and the hydrological cycle (due to diffusion of water
and phase changes), respectively. Detailed estimates of the entropy budget of the climate system and of the
average material entropy production rate (5., & 50 MW m~2K-") can be found in Goody [2000] and Pascale
et al. [2011]. The oceanic entropy production due to small-scale mixing in the interior gives a small contri-
bution (x 1 mWm=2K~") to S, [Pascale et al.,, 2011]. Therefore, we will limit the discussion to processes
occurring in the interior and at the boundaries of the atmosphere.

The average entropy production rate due to heat diffusion Sy = — [ dVV - Jg/T is generally small

(2 mWm~2 K~ [Kleidon, 2009]) and associated mostly with dry atmospheric convection occurring nearby
the surface and with vertical mixing in the mixed layer of the ocean. The average entropy production rate
due to frictional heating — Sf,,-c = f deeZ_/T ~ 10 mW m~2 K~ [Fraedrich and Lunkeit, 2008; Pascale et al.,
2011] — is associated with turbulent energy cascades bringing kinetic energy from large scales down to
scales (millimeters or less for geophysical flows) where viscosity can efficiently operate. Finally, Shyd is related
to irreversible processes associated with the hydrological cycle—evaporation of liquid water in unsaturated
air, condensation of water vapor in supersaturated air, and molecular diffusion of water vapor [Pauluis and
Held, 2002a, 2002b]—and requires the knowledge of relative humidity H and the molecular fluxes of water
vaporJ, = F_/L:

Shyd = / dV(C-E)R(nH+J, - Vp,) — / dAJ,,RInH, (67)
z=surf

where C and E indicate condensation and evaporation, respectively, and p,, is the partial pressure of the
water vapor. The importance of S and Shyd in the context of thermodynamic theories of moist convection
is extensively discussed in Pauluis and Held [2002b] and Pauluis [2010]. The impact of water vapor on the
production of kinetic energy in deep convection can be described as a steam engine, and it is to lower the
maximum possible amount of work which can produced by an equivalent Carnot cycle [Emanuel and Bister,
1996; Renno and Ingersoll, 1996] acting between the same temperature reservoirs. An indirect estimate of
(67) can be obtained from the entropy budget for water

. ) g .
sw=/ deW5W=/ dew7W+Shyd
Vi Vi

as discussed in Pauluis and Held [2002b], where S, is the rate of change of entropy of water and gy, is the
neat heating amount of heat per time that the water substance receives from its environment (i.e., through
evaporation and condensation). At steady state $,, = 0and so S, 4 = '/VW dVpy Gy /T ~ 37 mWm=2 K
[Pascale et al., 2011]. Therefore, it is possible to compute the material entropy production by considering
exclusively the heat exchanges and the temperature at which such exchanges take place, thus bypassing
the need for looking into the complicated details of phase separation processes.

Furthermore, in climate models physical entropy sources due to diffusive/dispersive numerical advection
schemes and parameterizations are also present [Johnson, 1997; Egger, 1999]. In particular, Woollings and
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Thuburn [2006] showed that dispersive dynamical cores can lead to negative numerical entropy production.
More generally, it has been argued that parameterizations of subgrid turbulent fluxes of heat, water vapor
and momentum should conform to the second law of thermodynamics and therefore should lead to locally
positive definite entropy production, this being generally not the case [Gassmann, 2013].

4.3. Applications and Future Perspectives
4.3.1. Auditing Climate Models

At steady state, we have that § = 0. Hence, from equation (66) we derive

- V-F
o= / R TARLL] (68)

Usually, this is referred to as indirect formula for computing the material entropy production [Goody, 2000],
because it provides an alternative way for estimating the material entropy production of the geophysical
fluid by only looking at the correlation between radiative heating rates and temperature fields. Therefore,
this formula allows for computing the material entropy production due to fluid motions bypassing all the
complex fluid dynamical behavior of the system (see Lucarini and Pascale [2014] for an in-depth discus-
sion of different ways for computing the material entropy production and of the effect of coarse graining
the thermodynamic fields). Starting from equation (68), it is possible to derive for Earth conditions an
approximate formula for the long-term average of the material entropy production, and to disentangle the

contributions due to horizontal and vertical processes [Lucarini et al., 2011] as S, = SY,.. + S ., where
P v, Y FroA
h ot R
Smat_—/dA T _—/dA T (69)
A E A E

where Y = / dzply, is the vertically integrated atmospheric enthalpy flux introduced in equation (55), F;OA =

F;OA’SW - F;OA’LW, where SW and LW refer to the short- and long-wave contributions, respectively, and T; =

AR 1/4
F;OA’LW/G is the emission temperature at a given location. The contribution to the material entropy

production coming from vertical processes can instead be written as
o =/dA(W) 1_1 (70)
mat A R Ts TE

where £ = F;“'f’sw + F;“'f’LW is the net radiation at surface (defined as positive when the there is a net

incoming radiation into the atmosphere), SW and LW refer to the short- and long-wave components, and T,
1/4

is the surface skin temperature defined as T, = F;”’f‘LW/a ~ Tous [Lucarini et al., 2011]. Equations (69)

and (70) allow one to compute the material entropy production due to internal irreversible processes mak-
ing use only of 2-D radiative fields at the boundaries of the relevant planetary fluid envelope (surface and
top of the atmosphere). This makes equations (69) and (70) suitable for the postprocessing of data hosted in
publicly available archives of GCMs output, intercomparison studies, and studies of observational data sets
of the Earth and other planets (where radiative data are the only available source of information). Instead,
direct computations of Smat require the knowledge of the full 3-D time-dependent heating and temperature
fields, making their applicability nontrivial for numerical models and unfeasible for observations.

Figure 10 shows a scatterplot of the globally averaged annual mean values of the vertical and horizontal
components of the material entropy production computed from the outputs of several general circula-
tion models (GCMs) from the CMIP3 data set in preindustrial and postindustrial conditions (updated from
Lucarini et al. [2011], limiting to the models for which the data availability made possible the comparison).
The postindustrial case corresponds to the first 100 years after the stabilization of the CO, in the A1B climate
change scenario. Issues related to the effective nonstationarity of the system have been treated as in Lucarini
and Ragone [2011].

Comparing with the direct computation [Pascale et al., 2011] of Smat for the case of Had-CM3 (model 13)
in the preindustrial case shows that the relative error on the estimate is less than 5% [Lucarini et al., 2011].
The typical values of the annual material entropy production in preindustrial conditions range for most
models between 47 and 53 mW m~2 K-, matching well the approximate estimate by Ambaum [2010].
The contribution due to vertical processes is dominant by about 1 order of magnitude with respect to

the contribution
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Figure 10. (a) Scatterplot of contributions to the rate of material entropy duction. First, the integrand in equation

production due to horizontal (x axis) and vertical (y axis) processes. Each

point corresponds to a GCM from the CMIP3 data set in preindustrial (70) is positive everywhere, indicating
(black) and postindustrial (red) scenarios (updated from Lucarini et al. that vertical exchange processes lead
[2011)). (b) Difference between the SRESA1B scenario run (average of to irreversible mixing of the fluid prop-

the last 30 years of the 23rd century and the preindustrial climatology).

i erties. Small deviations can be found
Model codes as in the reference.

over Antarctica and Greenland, where
the approximations leading to equation (70) are not necessarily valid (see the discussion in Lucarini et al.
[2011]). Overall, the local material entropy production due to vertical processes seems to be a good indica-
tor of the geographical distribution of convective activity: the highest values are observed in the warm pool
of the western Pacific and Indian Ocean and in land areas characterized by warm and moist climates, while
relatively low values are instead observed in the cold tongue of the eastern Pacific, near western boundary
currents, and in the temperate and cold oceans, as well as on deserts and middle and high latitudes of ter-
restrial areas. Note that also in this case the role of latent heat releases is fundamental in determining the
characteristics of the system, showing how the hydrological cycle is a crucial aspect of thermodynamics of
the climate system.
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Figure 11. (a) Spatial distribution of the contribution to the rate of material entropy production due to vertical processes
in preindustrial scenario for Had-CM3 (model 13 in Figure 10). (b) Anomalies in the postindustrial scenario with respect
to the preindustrial case for the same model (updated from Lucarini et al. [2011]).

Figure 11b shows the difference between the postindustrial and preindustrial cases. The local vertical com-
ponent of material entropy production increases almost everywhere, with negative anomalies confined to
polar regions and to limited areas of the Southern Hemisphere, with very small values. The positive anoma-
lies are extremely high in the tropical regions, particularly in the eastern and western Pacific Ocean. Note
that the pattern of increase does not strictly follow the pattern of the absolute value in the preindustrial
case. In particular, the maximum of the increase is located eastward to the maximum of the entropy pro-
duction in the preindustrial case, a signature of a shifting of the warm pool and a modification of the Walker
circulation [Bayr et al., 2014; DiNezio et al., 2013; Intergovernmental Panel on Climate Change (IPCC), 2013].
High values are also found in the Indian Ocean, suggesting an increase of the convective activity connected
with the monsoon [Turner and Annamalai, 2012; IPCC, 2013]. Significant local maxima are also observed in
the Gulf of Mexico and along the Gulf Stream, and in the Mediterranean Sea.

The local entropy production due to vertical processes behaves as a robust indicator of the impact of the
climate change on large-scale features connected to convective activity. The pattern of increase is correlated
to the pattern of variation of the surface temperature only to a minor extent. The reason is that this indicator
contains in a synthetic way the information of the change in the surface temperature, in the vertical stability
of the atmosphere, and in the intensity of the energy fluxes connected to the vertical processes. Therefore,
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Figure 12. Material entropy production (MW m~2 K1) as a function of solar constant S* and the CO, concentration. The
transition SB—W and W—SB are marked with dashed arrows starting from the tipping point regions (courtesy of Robert
Boschi, Universitat Hamburg).

it could be used in order to define robust indexes for large-scale processes for which strong convection is an
important component. Moreover, the range of variation due to climate change of the local vertical entropy
production is rather high if compared to the range of variation of standard fields like surface temperature
or pressure. Therefore, one could expect a better signal-to-noise ratio and a more distinctive signature of
climate change from indicators based on this quantity compared with what obtained with indicators based
on simpler observables, similarly to what is discussed by Lucarini et al. [2010a, 2010b] and by Boschi et al.
[2013] in the context of the identification of multistable regimes of the climate system.

4.3.2. Bistabiliy and Tipping Points

Based on the evidence supported by Hoffman and Schrag [2002] and from numerical models [Budyko, 1969;
Sellers, 1969; Ghil, 1976], it is expected that the Earth is potentially capable of supporting multiple steady
states for the same values of some parameters such as, for example, the solar constant. Such states are the
presently observed warm state (W), and the entirely ice-covered Snowball Earth state (SB). This is due to the
presence of two disjoint strange (chaotic) attractors. The W—SB and SB—W transitions are due, mathemat-
ically, to the catastrophic disappearance of one of the two strange attractors [Arnold, 1992] and, physically,
to the positive ice-albedo feedback. The SB condition, which might be a common feature also of Earth-like
planets, hardly allows for the presence of life, so this issue is of extreme relevance for defining habitability
condition in extraterrestrial planets.

The Planet Simulator (PLASIM), a GCM of intermediate complexity [Fraedrich et al., 2005], was used by Boschi
et al. [2013] and by Lucarini et al. [2013] to reconstruct an extensive portion of the region of multistabil-

ity in the plane described by the parameters (5%, [CO,]). The surface temperature T,(5*,[CO,]) is shown in
Figure 12. The boundary of the domain in the parametric space where two states are admissible corresponds
to the tipping points of the system.

The thermodynamical and dynamical properties of the W and SB states are largely different. In the W states,
surface temperature is 40-60 K higher than in the corresponding SB state and the hydrological cycle domi-
nates the dynamics. This leads to a material entropy production (Figure 12) larger by a factor of 4—order of
(40-60) x 1073 Wm=2 K~ versus (10-15) x 1073 W m~2 K~'—with respect to the corresponding SB states
[Boschi et al., 2013]. The SB state is eminently a dry climate, with entropy production mostly due to sensible
heat fluxes and dissipation of kinetic energy.

The response to increasing temperatures of the two states is rather different: the W states feature a decrease
of the efficiency of the climate machine, as enhanced latent heat transports reduces energy availability by
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Figure 13. (a) Average rate of material entropy production (1073 W tion to a new state, where, in turn, the

m~2 K=1) versus emission temperature T¢(K) for Q = 0.5Qq,¢ (black) negative feedbacks are more efficient in

and for Q = Q¢ (purple). (b) As in Figure 13a but for efficiency (courtesy stabilizing the system [Boschi et al., 2013].
of Robert Boschi, Universitat Hamburg).

It is interesting to study the possibil-

ity of constructing empirical relations
between different thermodynamical quantities for a variety of parametric configurations. In Figure 13, using
the simulations used for constructing Figure 12, we show that one can find relate with a good degree of
approximation the globally averaged emission temperature T,=(LW,,,/5)'/4, to the average rate of material
entropy production (Figure 13a) and to the efficiency of the climate system (Figure 13b). Interestingly, the
empirical relations are only marginally changed when halving the rotation rate of the planet (black crosses)
with respect to the present-day value (purple circles), thus suggesting a good degree of robustness. If one
could provide convincing arguments and methods for constructing such relations, it would be possible to
express nonequilibrium thermodynamical properties of the system in terms of parameters which are more
directly accessible through measurements [Lucarini et al., 2013].
4.3.3. Applications to Planetary Sciences
The discovery of hundreds of planets outside the solar system (exoplanets) [Seager and Deming, 2010] is
extending the scope of planetary sciences toward the study of the so-called exoclimates [Heng, 2012al.
A large number of the exoplanets discovered so far are tidally locked to their parental star, experiencing
extreme stellar forcing on the dayside where temperature up to 2000 K can be reached. Starlight energy,
deposited within the atmosphere at the planet’s dayside, is then transported by atmospheric circulation to
the nightside. Such a system, similarly to the Earth’s climate, works like a heat engine (sections 4.1.2 and 4.2).

The strength of the day-to-night enthalpy flux controls the ratio of outgoing long-wave energy fluxes from

the nightside and dayside & = LW,y /LW,,, called efficiency of heat redistribution in the astrophysical
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literature. Observations through infrared light curves show that the hotter the planet, the more inefficient
the atmospheres are at redistributing stellar energy leading to larger day-night temperature differences.
Numerical simulations [Perna et al., 2012] show that & varies between 0.2 (low heat redistribution) and 1 (full
heat redistribution) and depends critically on the atmospheric optical properties and the intensity of the
stellar irradiance. Relating this definition of efficiency with the many different definitions used to charac-
terize global circulations [Johnson, 2000; Schubert and Mitchell, 2013; Perna et al., 2012; Ambaum, 2010] and
understanding their differences would be useful to provide a link between energy conversion and energy
transport in planetary atmospheres.

A thorough understanding of dissipative processes is fundamental for dealing with planetary atmospheres
[Goodman, 2009; Pascale et al., 2013]. Dissipative processes are poorly known on solar system planets and
on exoplanets. Let us make some examples. In hot Jupiters temperatures may be very high (>1500 K),
allowing for thermal ionization (governed by the Saha equation) and thus fast-moving (in hot Jupiters winds
~1 kms~) electric charges. This induces an electric current toward the interior of the planet, where energy
is then converted into heat by ohmic dissipation. Another dissipative mechanism believed to be a common
feature in planetary atmospheres is shock wave breaking [Batygin and Stevenson, 2010; Heng, 2012b]. Note
that the indirect method (equation (68)) could, in principle, be applied in order to infer information about
the dissipative processes in the interior of exoplanets [Schubert and Mitchell, 2013], where radiative fluxes
are the only piece of information we can access.

5. Climate Response and Prediction

In the previous section, we have investigated the climate as a nonequilibrium physical system and have
emphasized the intimate relation between forcing, dissipation, energy conversion, and irreversibility. The
same approach can be brought to a more theoretical level by taking the point of view of nonequilibrium
statistical mechanics.

Nonequilibrium statistical mechanics provides the natural setting for investigating the mathematical prop-
erties of forced and dissipative chaotic systems, which live in a nonequilibrium steady state (NESS). In this
state, typically, the phase space contracts, entropy is generated, and the predictability horizon is finite. Devi-
ations from this behavior are possible, but extremely unlikely. Conceptually, nonequilibrium steady states
are generated when a system is put in contact with reservoirs at different temperatures or chemical poten-
tials, and one disregards the transient behaviors responsible for the relaxation processes [Gallavotti, 2006].
This fits well the description of the nonequilibrium properties of the climate system given in section 4.

The science behind nonequilibrium statistical mechanical systems is still in its infancy, so that, as opposed to
the equilibrium case, we are not able to predict the properties of a system given the parameters describing
its internal dynamics and the boundary conditions, except in special cases where the dynamics is trivial.

It is then important to choose a suitable mathematical setting for being able to state some useful general
results and compare numerical experiments with theory. The mathematical paradigm we will consider is the
one of so-called Axiom A systems [Eckmann and Ruelle, 1985; Ruelle, 1989], which, according to the Chaotic
Hypothesis [Gallavotti, 1996], can be considered as good effective models of chaotic systems with many
degrees of freedom.

In general, we can say that an (time-continuous) Axiom A system [Eckmann and Ruelle, 1985; Ruelle, 1989]
obeys an evolution equation of the form x = F(x), x € R" and possesses an invariant measure p(dx) sup-
ported on its attractor, which is, roughly speaking, the set of points where the system is asymptotically
attracted to.

If forcing and dissipation are present, the attractor is strange, i.e., it does not look locally at all like a smooth
manifold, so that we cannot write p(dx) = p(x)dx, where p(x) is the density. Instead, in the very intuitive
language of Lorenz, it looks like the Cartesian product of a smooth manifold and a fractal set. The smooth
manifold corresponds to the unstable directions of the flow, which make the system chaotic, while the
Cantor set corresponds to the contracting directions, which result from dissipation. The invariant measure
p(dx) gives the weight to be used in phase space to compute the expectation of any observable A, which
agrees, thanks to ergodicity, to the long-time average, so that

)
(A = p(A) = / p(A0AC) = lim * / dtAx(D)
Tooo T 0
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with probability 1 with respect to the choice of the initial conditions.The invariant measure of an Axiom A
system is of Sinai-Ruelle-Bowen (SRB) type [Eckmann and Ruelle, 1985; Ruelle, 1989; Young, 2002]. This has

many consequences, including the fact that the measure is stable against weak stochastic forcing (see also
the discussion in Lucarini [2012]).

Ruelle [1997, 1998a, 1998b, 2009] recently proved that in the case of an Axiom A system, its SRB measure,
despite the geometrical complexity of the attractor supporting it, has also an extremely fascinating degree
of regularity. In fact, there is a smooth dependence of the SRB measure to small perturbations of the flow,
and it is possible to derive corresponding explicit formulas. This approach is especially useful for studying
the impact of changes in the internal parameters of a system or of small modulations to the external forcing,
and various studies have highlighted the practical relevance of Ruelle theory for studying what we may call
the sensitivity of the system to small perturbations. We will here recapitulate some features of the Ruelle
response theory and argue that it is a potentially useful tool for studying various classes of GFD problems,
and, most notably for addressing rigorously and in an unified perspective climate change prediction, climate
response, and climate sensitivity.

5.1. Response Formulas and Fluctuation-Dissipation Theorem

Let us consider an Axiom A dynamical system whose evolution equation can be written as x = F(x) and let
us assume that it possesses an invariant SRB measure p©(dx). Ruelle [1997, 1998a, 1998b, 2009] has shown
that if the system is weakly perturbed so that its evolution equation can be written as

X =Fx)+Y0)T(0), (71)

where ¥(x) is a weak time-independent forcing and T(t) is its time modulation, it is possible to write the
modification to the expectation value of a general smooth observable A as a perturbative series:

pAY = Y P (A, (72)
n=0

where p©@(A), = p@(A) is the expectation value of A according to the unpertubed invariant measure p°
related to the dynamics x = F(x), while p™(A), with n > 1 represents the contribution due to nth-order
processes [Lucarini, 2008].

Limiting our attention to the linear case we have

+oo
pVA), = / dr, G (eT(t - 1), (73)

[+5)

where the first-order Green function can be expressed as follows:
G(r)) = / PA(d0)O(r)P(x) - VAX(z))), (74)

where O is the usual Heaviside distribution (B(x) = 1ifx > 0,0(x) = 0if x < 0), whose derivative is the
Dirac’s delta. Equations (73) and (74) are key ingredients for studying climate response. Before continuing
in this direction, we want to use these equations to discuss the celebrated Fluctuation-Dissipation Theorem
(FDT) [Kubo, 1957].

In systems possessing a smooth invariant measure (which, as discussed above, is not typically the case for
Axiom A systems), like when equilibrium conditions apply or stochastic forcing is imposed, we can write
p°(dx) = p°(x)dx, where p°(x) is the so-called density. In this case, we can rewrite equation (74) as follows:

+o0
PV(A), = / dr,0(z;) X / dxp°()BOOAX (T )T (t — 7,), (75)
where B(x) = —V- (po(x)‘P(x)) /p°(x). In other terms, one can predict the response at any time horizon t from
the knowledge of the lagged correlation between the chosen observable A and the observable B, which
depends on the invariant measure p° and on the perturbation vector field ¥ (see Colangeli and Lucarini
[2014] for a detailed discussion on the physical meaning of B). Equation (75) provides a very general form
of the FDT [Ruelle, 1998a; Lacorata and Vulpiani, 20071, which extends the results by [Kubo, 1957]. Recently,
the FTD for system possessing a smooth invariant measure result has been extended to the nonlinear case
[Lucarini and Colangeli, 2012].
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The more common forms of the FDT can be obtained by taking one or more of the following assumptions:
(1) the perturbation flow is the form ¥(x) = e%; and (2) the observable is of the form A(x) = x;, where x, is
the kth component of the x vector and X, is the corresponding unit vector. In this case, equation (75) takes
the form:

+o0
PV, = —e / dr,0(r;) X / dxp°(x)9; log[p° (X)X (z)T(t — 7). (76)

If one takes the additional simplifying assumption that unperturbed invariant measure has a Gaussian form,
so that p%(x) = 1/Z exp(—p ,{11 sz/2), where g > 0 and Z is the partition function we obtain
+oo +oo
p(”(xj)t = eﬁ/ dr,0(z,) / prO(X)X,-)(j(T1)T(l' -7) = eﬁ/ dz,0(z,)C;(z)T(t = 77), (77)

where C;; is the lagged correlation between x; and x; in the unperturbed state.

Unfortunately, the link between linear response of the system to external perturbations and its internal fluc-
tuations seems more elusive when the unperturbed state has a singular invariant measure. Ruelle [2009]
shows that since the unperturbed invariant p@(dx) is singular, the response of the system contains two con-
tributions, such that the first may be expressed in terms of a correlation function evaluated with respect

to the unperturbed dynamics along the space tangent to the attractor (unstable manifold) and is formally
identical to what given in equation (75). This part of the response decays rapidly due to decay of correlations
due to chaos. On the other hand, the second term, which has no equilibrium counterpart, depends on the
dynamics along the stable manifold, and hence, it may not be determined from the unperturbed dynamics
and is also quite difficult to compute numerically. These properties suggest the basic fact, already suggested
heuristically by Lorenz [1979], that in the case of nonequilibrium systems internal and forced fluctuations of
the system are not equivalent, the former being restricted to the unstable manifold only.

Despite such a serious mathematical difficulty, the application of FDT, even in extremely simplified,
quasi-Gaussian, approximation, has enjoyed a good success in climate [Langen and Alexeev, 2005; Gritsun
and Branstator, 2007] even if it is clear that the ability of FDT in predicting the response to perturbation
depends critically on the choice of the observable of interest, on the length of the integrations needed
for constructing the approximation of the invariant measure, and, of course, on the validity of the linear
approximation [Cooper and Haynes, 2011; Cooper et al., 2013].

There are, in fact, various ways to circumvent the problem of the rigorous nonequivalence between forced
and free fluctuations. Apart from the obvious smoothing effect due to unavoidable physical or numerical
noise, when considering smooth, coarse-grained observables (like this of climatic interest), one expects to
see little influence of the fine structure of the invariant measure of chaotic deterministic systems, as pro-
jections from high-dimensional spaces to lower dimensional ones are involved [Marconi et al., 2008] and
coarse-graining effects can be invoked [Wouters and Lucarini, 2013]. One expects that the FDT will perform
better in predicting the response of the system if one considers as observable A quantities like the globally
averaged surface temperature rather than, e.g., the surface temperature in an individual grid point. Further
comments can be found at the end of section 6.

5.2. Computing the Response
5.2.1. Spectroscopic Method

If we select T(t) = e cos(wyt) = €/2(exp(—iwyt) + exp(iwyt))) as modulating factor of the perturbation field
¥(x), from equation (73) we derive

VA, = e/2 / dr,G{(z,) exp(—iwy(t — 7;)) + €/2 / dz, G (7)) explioy(t — 7))

—00 —00

+ +

= ¢/2 exp(=iwgt) x| (@,) + c.c., (78)

where )(;(\1)(‘”0) is the Fourier transform of G;”(t), usually referred to as linear susceptibility, evaluated at
frequency w = w,, and c.c. indicates complex conjugate. Therefore, under the hypothesis of linearity, by
performing an ensemble of experiments where the forcing is of the form T(t) = e cos(w,t), we can extract
the linear susceptibility at frequency w by selecting the w, component of the Fourier transform of the sig-
nal 5V (A), obtained by taking the ensemble average of the difference between the time series of A in the
perturbed and unperturbed case. By changing systematically the frequency w of the forcing, one can recon-
struct the susceptibility ;(/(4”(00) on a chosen interval of frequencies. It is useful to recapitulate some useful
features of the susceptibility:
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20 . . 1. Resonances in the susceptibility
function correspond to spec-

tral ranges where the system is
extremely sensitive to forcings. In
Figure 14 we show the real and imag-
1 inary parts of the susceptibility for z
variable of the Lorenz [1963] model

//—’ for the classical values of the param-

Re [x], Im[x]

] eters(m=1,0=10,r =28, =8/3)
and a given choice of the forcing
-10r 1 (P(x) = [0;x;0]7, T(t) = 2e cos(wt)).
sl ‘ We find that for w~8.3, a very
10° 10" 10° peaked spectral feature is appar-
w .
ent. Such a resonance is due to the

Figure 14. Measured real (blue line) and imaginary (red line) parts Unstable Periodic Orbits (UPO) of
of the susceptibility z variable of the Lorenz 63 model (data from
Lucarini [2009]).

the system with the correspond-

ing period [Eckhardt and Ott, 1994].
UPOs populate densely the attractors of chaotic systems and constitute the so-called skeleton of the
dynamics. In the case geophysical flows, UPOs have been associated to modes of low-frequency variability
[Gritsun, 2008]. One can, more qualitatively, associate resonance to positive feedbacks acting on time
scales corresponding to the resonant frequency.

2. While V;\U(w” measures the amplitude of the response of the system to perturbation at frequency o,

arctan(ﬁ{)(/(‘1)(w)}/9‘t{)(/(‘”(w)}) gives the phase delay between the forcing and the response, because
‘ﬁ{)(/(;)(w)} (3{){2”((0)}) gives the component of the response that is in phase (out of phase) with the
forcing. Depending on the forcing, on the system, and on the observable, this angle can vary significantly
even in a relatively small range of frequencies, as a result of resonances.

3. The two components J {;{f\”(w)} and R {;(;”(a))} are connected by integral equations, the so-called

Kramers-Kronig relations [Lucarini et al., 2005; Lucarini, 2008, 2009; Ruelle, 2009]. Such relations have their
foundation in the causality of the Green function (due to the presence of the Heaviside distribution in
equation (74)) and establish a fundamental connection between the response at different time scales:

r~cp L, (Do 1
R{y @)} = EP/dw'w; (79)
T = — W
'R My
3@ = -22p / dw’w- (80)
T w's — @

where P indicates that the integral is taken in principal part [Arfken et al., 2005]. In particular, one finds that

Ir ()} &

w

Ri7'O) = 2 / do

which provides a link between the static response—the sensitivity—and the out-of-phase response at all
frequencies. A large literature exists in optics, acoustics, condensed matter physics, particle physics, signal
processing on the theory and on the many applications of Kramers-Kronig relations, and on the related
sum rules, which provide integral constraints related to the asymptotic behavior of the susceptibility
[Lucarini et al., 2005].

In Figure 15 we present the real and imaginary parts of the susceptibility of the mean energy e of the
celebrated Lorenz [1996] model:

dx,

d_t, =X = X)) =X +F (82)
wherei = 1,2,...,N,and the index i is cyclic so that x;, y = x,_y = X, ande = 1/N Z}’L xj.2/2. The quadratic
term in the equations simulates advection, the linear one represents thermal or mechanical damping and
the constant one is an external forcing (see details on the experiments in Lucarini and Sarno [2011], per-

formed using N = 40 and F = 8). The system is perturbed by the vector field ¥(x) = [1;...; 1]T modulated
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2 . — . — by T(t) = 2e cos(wt). The resulting
: : real and imaginary parts of ;(é”(w) are
151 . reported in Figure 15, together with the
_ output of the data inversion performed
g 1F < via Kramers-Kronig relations. From the
~ susceptibility, as discussed in Lucarini
% 05k J and Sarno [2011], it is possible to derive
F the corresponding Green function by
ol J applying the inverse Fourier trans-
form. This has been the first application
05 ‘ - ‘ L of the Kramers-Kronig theory in a
107 107 wi 10° 10° wn 102 10°

geophysical context.

5.2.2. Broadband Forcing

If, instead, we select T(t) = &(t),
we derive from equation (74) that

w

Figure 15. Measured real (blue line) and imaginary (red line) part of the
susceptibility for the average energy of the Lorenz 96 model. The rig-
orous extrapolation of the susceptibility obtained via Kramers-Kronig
analysis is reported (real part: black line; imaginary part: magenta line) P(”(A)r = GS)(t): i.e., the Green func-
(data from Lucarini and Sarno [2011]). tion corresponds to the relaxation of an

ensemble of trajectories of the system
after a finite displacement along ¥(x). Obviously, we have that 5(4), = ;(f‘”(w), where the “~" symbol,
indicates, as customary, that a Fourier transform has been applied, so that the Fourier transform of the sig-
nal is the linear susceptibility. Therefore, using just one ensemble of experiments where the perturbation is
described by an impulsive forcing, we can gather the same information on the response of the system which
in the previous case required an accurate sampling of different frequencies.

Let us look at the problem from a slightly more general point of view. We apply the Fourier transform to
both sides of equation (73) and obtain

V@A), = 2, (@)T(); (83)

Choosing a sine or cosine function with argument w,t for the function T(t) amounts to selecting as T(w) the
sum of two §'s centered in w = +w,. Therefore, the input (forcing) allows only a small portion of the informa-
tion to derived on the system from the output (response). Let us assume that we choose the modulation T(t)
such that T(w) is not vanishing for any w, so that we have a broadband modulation, where, e.g., | T(w)| for
large values of w decreases like a power law. If we perform an ensemble of simulations of the forced system,
measure 5("(A),, we can invert equation (73) and readily derive

= (84)
T(w)

2 (@) =
Therefore, one single set of experiments is, in fact all we need to do to learn about the linear response prop-
erties of the system for the observable A. If we want to predict the response at finite and infinite time of
the system to forcing with the same spatial pattern ¥(x) but with different time modulation R(t), we can
derive G;”(t) from ;(j”(m) obtained via equation (84) and then plug it into equation (73). Alternatively, one
can write
o < R(w)
OB =V =, (85)
T(w)
where the upper indices R and T have been inserted for clarity and then compute the inverse Fourier trans-
form to derive the response at all times, or if we apply the inverse Fourier transform to equation (84), we can
compute the response to the R perturbation as:

+o0
pVAf = / dr,G{(z)R(t — 7). (86)
5.3. Prediction via Response Theory

The real test of the quality of an experimentally derived linear Green function G;” is the assessment of its
ability to support predictions about the system's response to any temporal pattern of forcing R(t). The real
benefit of the broadband approach described here relies on exploiting linearity, and so deriving G;” from
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3 just one ensemble of simulations, each
performed with the same modulation
257 T(t). Computing the Gf;) per se might
ol be in fact of little relevance.
= At this regard, we have performed addi-
5;5: 150 tional experiments on the Lorenz [1996]
.l model mirroring what presented in
section 5.2.1. In this case, we have cho-
o5k sen as time modulation T(t) = €O(t),
whose spectrum is indeed broadband
L T T E—— (T(w)/e = n8(w) + iP[1/w], where

P indicates the principal part). In this

. . . a case, we have
Figure 16. Linear Green function G, ’(t) for the average energy e of

the Lorenz [1996] model obtained by considering a step-like perturba-
tion and using equation (B7). Compare with Figure 4 in Lucarini and

=20, (67)
Sarno 2011. dt

Using about 1/100 of the computing time needed in Lucarini and Sarno [2011], we have produced an esti-
mate of the Green function of comparable quality (see Figure 16). Additionally, we decided to check the
predictive power of the reconstructed Green function given in Figure 16 by testing its performance in pre-
dicting, through equation (73), the response of the system to a perturbation having temporal pattern given
by T(t) = e sin(2xt) (¢ = 0.25). The results are presented in Figure 17. The agreement between the measured
value of p((e), and the value predicted using f erg)(r)T(t — 1) is remarkable. One must emphasize that

the agreement is comparable if one selects ¢ = 1, thus moving away from the linear regime.

5.4. Climate Response, Climate Change Prediction

Let us take inspiration from the previous example in order to get some results of stricter geophysical
relevance: we want to perform predictions on the impact of increases in the CO, concentration on the
globally averaged surface temperature as simulated by a climate model, the simplified yet Earth-like PLASIM
[Fraedrich et al., 2005]. In what follows we present some new results (see also discussion in Ragone et al.
[2014]), with the goal of proving the feasibility of the proposed methodology. Let us summarize the

main points:

0.8 T T T T T T T T T
—~ 06}
=
&‘\ 0.4
=
|
w 02f
~
=
3
— =02
o -04f
L 06}
-0.8

Figure 17. Prediction of finite-time response of the average

energy e of the Lorenz [1996] model to a forcing with modulation
T(t)=esin(2xt) (€=0.25). Observed response p(V(e), (blue line) versus
prediction obtained using the linear Green function Gg)(t) shown in
Figure 16.

1. We take x = F(x) as the system of
equations describing the discretized
version of a given model of the con-
tinuum partial differential equations
describing the evolution of the cli-
mate in a baseline scenario with set
boundary conditions and values
for, e.g., the CO, concentration and
the value of the solar constant. We
assume, for simplicity, that system
model does not feature daily or sea-
sonal variations in the radiative input
at the top of the atmosphere.

2. Let us choose for the observable
A the globally averaged surface
temperature of the planet Tg.

3. We study the perturbed system
X = F(x) + f(t)¥(x). Let us choose
as perturbation field ¥(x) the con-
vergence of radiative fluxes due
to change in the logarithm of the
atmospheric CO, concentration.
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9 . We want to be able to predict at finite and
infinite time the response of the system to

8 one of the standard CO, forcing scenario
7t given by the Intergovernmental Panel on
Climate Change (IPCC) by performing
6 an independent set of perturbed
g 5 = o | model integrations.
. 5 os 4. The test perturbation is modulated by the
g 4 S os - function f(t) = e©(t), where ¢ is such that we
al :0; 03 | double the amount of CO, concentration in
= 02 the atmosphere. A progressively increasing
2! 01 1 concentration of CO, from a baseline value
0 to a new stabilization concentration.
1 015 50 100 150 200 | 5. We perform 200 simulations, each lasting 200
0 . | time Grears) , years for both scenarios of CO, forcing. Our
0 50 100 150 200 experiments are performed using PLASIM
a) time (years)

[Fraedrich et al., 2005] with a T21 spatial res-
9 , ‘ ‘ olution, 10 vertical layers in the atmosphere,
and swamp ocean having depth of 50 m.

8
From the time series of the ensemble mean
n of the change of T,—p™"(T,),—resulting from
6 the sudden increase in the CO,, we derive
. the Green function G(Tl)(t) using equation (87)
§/ 5 (see Figure 18a). Climate sensitivity is, in fact,
AL al | defined by equation (81). Given the chosen
& pattern of forcing, we can rewrite is as follows:
3
J L =0 =2 [ i, .
(88)
1 ' : which relates climate response at all frequen-
o b_fel:pséglse theorj cies to its sensitivity.
b) 0 50 tim;?gcars) 150 200 In order to test the predictive power of the

response theory, we then convolute the Green

Figure 18. Studying climate change using response theory. (a) function with the temporal pattern of forcing of
Change in T after an instantaneous doubling of the CO, con- the second set of experiments.
centration. The lightly colored band indicates the two-standard

deviation range around the ensemble mean. Insert: Green func- We choose as test experiment the classical IPCC
tion of the Ts. (b) Comparison between GCM simulations (blue) scenario of 1% per year exponential increase
and response theory prediction (red) for 1% per year increase of  of CO, concentration up to doubling of the ini-
the CO, concentration up doubling. Lightly colored band as in tial concentration (realized in 7 ~70 years and
Figure 18a. constant concentration afterward). We select

as baseline CO, concentration 360 ppm. Since
our relevant control parameter is the logarithm of the CO, concentration, the second pattern of forcing g(t)
is, in fact, a ramp increasing linearly with time from 0 to € in 7 ~70 years, with constant value equal to ¢ for
larger times. The results are presented in Figure 18b, where we compare the predicted pattern of increase
(blue line), obtained using equation (86), with the measured one (black line). The agreement is remarkable,
both on the short and on the long time scales, while a some discrepancy exists between 20 and 50 years
lead time, where strong nonlinear effects due to ice-albedo feedback are dominant (not shown).

Apparently, despite all the nonlinear feedbacks of the climate model, the response to changes in the
logarithm of CO, concentration can be accurately described by linear response theory at all time scales.
Nonlinearity in the underlying equations and the presence of strong positive and negative feedbacks do not
rule out the possibility of constructing accurate methods for predicting the response. In fact, the methods
described here could be extended to the nonlinear case by looking at the response in the frequency domain
[Lucarini, 2008, 2009], even if the data quality requirements are obviously stricter.
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The result presented here suggests that many of the scenarios of greenhouse gases concentration included
in the IPCC reports [IPCC, 2001, 2007, 2013] may in fact be partly redundant, as for certain variables might
be accurately described by linear response theory starting from just one scenario. Equations (84) and (85)
constitute the basis for predicting climate response at all scales.

Obviously, with a given set of forced experiments, it is possible to derive the sensitivity to the given forc-
ing for as many climatic observables as desired. It is important to note that, for a given finite intensity € of
the forcing, the accuracy of the linear theory in describing the full response depends also on the observ-
able of interest. Moreover, the signal-to-noise ratio and, consequently, the time scales over which predictive
skill is good may change a lot from variable to variable. The results presented in this section extend to a
more general setting and with stronger foundation the excellent intuition by Hasselmann et al. [1993] on
the use of the linear response for addressing the problem of the so-called cold start of coupled atmosphere-
ocean models.

Here we have shown results from just one observable primary climatic interest. The analysis of other observ-
ables will shed light on the mechanisms determining the climate response to the forcing due to changes n
the atmospheric composition. As an example, the analysis of the response of large-scale meridional gradi-
ents of temperature at surface and in the middle troposphere will provide information on changes in the
midlatitude circulation. The existence of approximate functional relationship between the susceptibilities of
different observables [Lucarini, 2009] would provide the key for defining rigorously the so-called emergent
constraints [Bracegirdle and Stephenson, 2012].

In practical terms, the applicability of response theory corresponds to having smooth dependence of
climate properties with respect to some given parameters. Indeed, this is not the case in the vicinity
of tipping points (see Figure 12). Response theory, may, nonetheless, suggests rigorous ways for defin-
ing and detecting tipping points, because one expects that these are associated to a divergence of the
linear response.

Finally, in order to talk about predictability, we need to specify what are the time scales over which we
expect to have satisfactory predictive skills. In fact, linear response theory allows for deriving some scal-
ing laws for addressing this matter. The main obstacle for achieving a good degree of predictability is the
uncertainty on the estimate of response signal given in equation (83) from the outcomes of the numerical
experiments because of the finiteness of the ensemble and of the duration of each numerical simulation.
See a detailed discussion of this issue in Ragone et al. [2014].

6. Multiscale Systems and Parametrizations

The climate system features nontrivial behavior on a large range of temporal and spatial scales [Peixoto
and Oort, 1992; Vallis, 2006; Lucarini, 2013; Fraedrich and Bottger, 1978]. When representing such a com-
plex system in a numerical simulation, the ratio of smallest to largest time scale determines the number of
required time steps and the number of interactions between scales that have to be calculated at each step
can increase exponentially with the range of spatial variables. It is therefore clear that, no matter which are
the available computing resources, we are able to simulate explicitly only the variables relevant for the given
ranges of spatial and temporal scales. Different choices of such ranges correspond to different approximate
theories of geophysical fluid dynamics aimed at describing specific phenomenologies, a prominent case
being that of quasi-geostrophic theory [Klein, 2010].

A manifestation of the inability to treat ultraslow variability can be found in the usual practice in climate
modeling of choosing fixed or externally driven boundary conditions, such as done when assuming a
fixed mass or extent for the land-based glaciers, or imposing a specific path of CO, concentration for
the atmosphere. Instead, the impossibility of treating accurately fast processes requires the construction
of so-called parametrizations able to account, at least approximately, for the effect of the small scales
on the large scales, as a function of the properties of the large-scale variables. This is the case of sev-
eral important physical processes, such as, e.g., deep and shallow atmospheric convection, gravity wave
drag, clouds, and mixing in the ocean.
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15 E Parametrizing small-scale processes is important
e because such unresolved processes impact the
dynamics of larger scales in terms of error growth,
5 107 predictability, and climatic biases. Presently, most
;} of the parametrizations used in climate models are
-“g’ 5— deterministic; i.e., for a given state of the resolved
2 variables, the effect of the unresolved scales on the
% 0 resolved scales is uniquely determined. We often refer
g to these as bulk parametrizations. More recently, it has
= been emphasized that such a point of view should
= be modified for taking into account the fact that
T many different states of the unresolved variables are
-10 |' T T T compatible with a given state of the resolved vari-

-5 0 5 10 ables. This leads to considering the possibility of using
resolved variable, X . N L
stochastic parametrizations [Palmer and Williams,
Figure 19. Diagram describing how to parametrize the 2009; Franzke et al., 2014] which show promising
effect of the fast variables on the tendency of the slow abilities in reducing biases and reproducing more

variables X. The solid line U—see y axis—corresponds effectively the uncertainties associated to performin
to My in equation (90), while the variability associated Ively u nt ! p ing

to the cloud of points needs to be represented via a mode reduction.
stochastic term like # in equation (90). Reprinted with
permission from Wilks [2005]. Copyright ©2005 Royal
Meteorological Society.

When a large time scale separation exists between
the resolved and unresolved variables, the problem
of parametrization can be cast as follows. We consider
a system of the form Z = F(Z),Z € RN, and we divide the state vector Z = (X, Y), where X are the slow
components we are interested into and Y are the fast components we want to parametrize. We rewrite the
evolution equation as follows:

((jj_)t( = GX(X’ Y) = F)((X) + q)X(X7 Y)
‘3_’; =Gy(X,Y) = F (V) + ©y(X,Y), (89)

where we have split the dynamics of each set of variables into an autonomous part and into the coupling
terms. The basic goal is to be able to write as an equation of the form

dx

P Fx(X) + My (X) + n(X), (90)
where M, and # correspond to the deterministic and stochastic components of the parametrization, respec-
tively. A now classic example of empirical construction and of testing of stochastic parametrizations is given

by Wilks [2005] (see Figure 19).

It must be emphasized that many of the approaches used so far have been based on the existence of a time
scale separation between microscopic and macroscopic processes, following, conceptually, the pioneering
point of view proposed by Hasselmann [1976]. If one does assume such a vast time scale separation between
the slow variables X and the fast variables Y, averaging and homogenization methods [Arnold, 2001; Kifer,
2004; Pavliotis and Stuart, 2008] allow for deriving an effective autonomous dynamics for the X variables,
able to encompass the impact of the dynamics of the Y variables. The motivation most often stated for the
applicability of this theory to climate science is the setting considered by Hasselmann, where fast weather
systems influence slow climate dynamics.

Unfortunately, in many practical cases of interest in geophysical fluid dynamics, such a scale separation does
not exist—see, e.g., the classical study by Mitchell [1976]—so that there is no spectral gap able to support
univocally the identification of the X and Y variable. In fact, when the resolution of a numerical model is
changed, all the parametrizations have to be retuned, because the set of resolved variables has changed.

Here we will focus on analytical methods that allow one to derive reduced models from the dynamical
equations of a full model. Projector operator techniques have been introduced in statistical mechanics with
the goal of effectively removing the Y variables. In particular, considerable interest has been raised by the
Mori-Zwanzig approach, through which a formal—albeit practically inaccessible—solution for the evolution
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of the X variables is derived [Zwanzig, 1961; Mori, 1965; Zwanzig, 2001]. These equations in general contain
both a correlated noise term and a memory term. Some attempts have been made to make approximation
to the Mori-Zwanzig projected equations to obtain practically useful equations. In applications of stochas-
tic mode reduction in climate science, the memory term is usually not taken into account. This term could,
however, be very relevant in systems without a time scale separation, as, for example, in the parametriza-
tion of cloud formation in an atmospheric circulation model. The presence of memory in such systems has
been discussed by Bengtsson et al. [2013], Davies et al. [2009], and Piriou et al. [2007]. Note that, when we
consider coupled systems where asynchronous integration is used, memory effects are implicitly present in
the dynamics.

Besides considering the limit of infinite time scale separation, another point of view can be taken, namely
considering the limit of weak coupling between the dynamical processes occurring at different scales.

In this limit, the dynamics retains the correlated noise and memory dependence that appeared in the
Mori-Zwanzig reduced equations. The advantage of looking at this limit is, however, that the noise autocor-
relation function and memory kernel can now be written as simple correlation and response functions of
the unresolved dynamics.

6.1. Averaging and Homogenization

When applying averaging and homogenization techniques, one considers dynamical systems where a
small parameter e controls the time scale separation between a slow and fast evolution in the system. The
prototypical set of equations for such a problem is

dx

= Gy(X,Y
a = XY

dy P

— = X,Y)=-G,(X,Y).
a = oXN) =G Y)

The parameter ¢ controls the time scale separation between the variables X and Y, which becomes infinite
ase — 0.

As the time scale separation becomes large, on the typical time scale for the variable Y, the value of
X will remain almost constant. The fast variable Y will obey an evolution defined by (X, Y) for the cur-
rent fixed value of X. On the much longer time scale connected to the slow system, the evolution of X
integrates out the rapid fluctuation of Y. As in the law of large numbers, the overall effect of all these
integrated fluctuations can be substituted by one single value. It can be shown that for finite time T, the
following applies
1. the trajectory X(t) converges to a solution of:
dX -~ ¢
= =Gy(X),
ar %(X)
where GX()_() = pg(Gx(X, Y)) is the averaged value of the tendency; and
2. the average is taken over the invariant measure py of the Y variable of the dynamical system

dy c
— =G,X,Y
a y(X,Y)

resulting when X is considered as a fixed forcing parameter.

Let us consider a simple example system.

dx ,
— =(1=YX
ar ( )
ﬁ—_ly+ Zd_W
dt ~ e e dt’

The Y system is here independent of X. The invariant measure of the fast Y system is a Gaussian distribution
with zero mean and unit variance. Taking the average of Gy (X, Y) = (1 — Y?)X under the invariant measure of
Y, we see that the averaged equation in this case is the uninteresting equation X = 0.

This simple example immediately motivates the use of homogenization methods. Here one scales the
equation to a longer time scale 8 = et, the so-called diffusive time scale and then performs an asymptotic
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expansion. Similarly to how correctly rescaling the sums of the law of large number leads to the more inter-
esting central limit theorem, which describes the fluctuations around the average value, in the setting of
time scale-separated systems we get stochastic behavior on the diffusive time scale. For the example con-
sidered above, we get a weak convergence to a reduced stochastic differential equation for the X variable
instead of the trivial dynamical system obtained before [Pavliotis and Stuart, 2008].

The theory for averaging and homogenization in time scale-separated stochastic differential equations is
well understood, with results for both one-way and two-way couplings between the levels [Bakhtin and
Kifer, 2004]. As usual, the theory is more complicated for deterministic systems. Examples of dynamical sys-
tems can be constructed where for a large set of initial conditions of Y, the solution for X does not converge
to the averaged solution [Kifer, 2008]. Furthermore, if the Y system has long time correlations, such asin a
system with regime behavior, the homogenized system may converge badly and an extension based on a
truncation of the transfer operator has been proposed [Schilitte et al., 2004].

Abramov [2012] has recently presented a study of uncertainty and predictability of the slow dynamics for

a system of geophysical relevance. A study of averaging and homogenization for idealized climate models,
with a range of examples, can be found in Monahan and Culina [2011]. Another rather successful attempt in
this direction is given in Majda et al. [2001]. In Strounine et al. [2010] stochastic mode reduction is applied to
a three-level quasi-geostrophic model, whereas in Arnold et al. [2003] the authors perform mode reduction
on a simple coupled atmosphere-ocean model. Another application of homogenization to a toy model for
the large-scale dynamics of the atmosphere can be found in Frank and Gottwald [2013]. Averaging for the
case where one deals with partial differential equations, as is relevant for climate modeling, is discussed by
Dymnikov and Filatov [1997].

A study of homogenization for geophysical flows was performed in Bouchet et al. [2013]. The slow system is
considered to be the evolution of zonal jets of a barotropic flow, which is forced by noise. The fast degrees
of freedom are those representing the fast nonzonal turbulence. Homogenization has also been applied in
Dolaptchiev et al. [2013] to the Burgers’ equation, where the slow variables are taken to be averages over
large grid boxes and the fast variables are the subgrid variables.

When one wants to consider very large time scales (for example, times of the order of exp(1/¢)), one needs
to look beyond the central limit type theorems of homogenization and consider so-called large devia-
tion results. These describe, for example, the transitions between disconnected attractors of the averaged
equations [Kifer, 2009] and are of great relevance for studying tipping points [Lenton et al., 2008], going
beyond simple one-dimensional approximate theories (see, e.g., discussion in Lucarini et al. [2012]).

6.2. Projection Operator Techniques

Projection operator techniques do not constitute a mode reduction per se but are a way to rewrite the
dynamical equation of a multilevel equations to depend only on a subset of variables. A projection is carried
out on the level of the observables to remove unwanted, irrelevant, and usually fast degrees of freedom. The
price one has to pay for this apparent reduction is the appearance of additional terms that are as difficult to
compute as the original system. It can, however, be a useful starting point for further approximations. These
techniques are also known as the Mori-Zwanzig approach [Zwanzig, 1960, 1961; Mori et al., 1974].

If a dynamical system is defined on a manifold M, one defines a projection P from the space of observable
functions on the full-phase space M to a space of observables which are considered to contain only the
interesting dynamics. Many different choices are possible; if the manifold M consists, for example, of a prod-
uct of submanifolds K of relevant and L of irrelevant variables, one can take a conditional expectation with
respect to a measure on M, given the value of the relevant variables X € K:

Ly A Y)p(X, V)dY

(PAX) =
[ pX, V)dY

Another possible choice is a projection onto a set of functions on M, such as linear functions of
the coordinates in a Euclidean phase space. In general, one can think at various ways of performing
coarse graining.

Let us go back to our general formulation of a dynamical system of the form Z = F(Z), Z € RN. The evolution
of an observable A(Z) can be written as A(Z) = F(Z) - V,A(Z), which can be written as A = LA, often referred
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T to as the Liouville equation. The evolution operator L
is split into its projection PL onto the relevant space of
> > X observables and the complement QL := (1 — P)L. As

described by Zwanzig [2001], a generalized Langevin
equation can then be derived based on Dyson’s formula
for operator exponentials

t
A et =t + / eIt pLesdtds. 91
0

We write the Liouville equation for an observable A as

o Y GO _ 1A = LA = e PLA + € QLA
dt

Figure 20. Diagram describing the mean field effect .
of the Y variables on the X variables. Term M in The factor exp(tL) in the second term can be further

equation (94). expanded by making use of equation (91). This gives the
following equation
t
% =e"PLA+ (e + / ds e PLe QLA
0

Zwanzig [2001] proposes the following interpretation of this equation. The first term on the right-hand side
corresponds to the regular, deterministic dynamics of the system. The second term can be seen as describ-
ing a contribution from correlated noise, dependent on the initial conditions of the irrelevant degrees of
freedom. The third term (under the integral) represents the memory of the system due to the presence of
irrelevant variables that have interacted with the relevant ones in the past. In other terms, the price we pay
by separating somewhat arbitrarily relevant from irrelevant degrees of freedom is that the irrelevant degrees
of freedom act as a stochastic component and, somewhat counterintuitively, as proxies for the past state of
the relevant degrees of freedom. Note that we have done nothing more than manipulating the original evo-
lution equation A = LA. Correspondingly, the Mori-Zwanzig equation in itself does not simplify the problem.
In order to derive a set of equations that are useful for numerical simulations, assumptions need to be made
about the dynamical system.

Several approximations to the Mori-Zwanzig equations have been proposed in the literature. There are the
short- and long-memory approximations made in the method of optimal prediction [Chorin and Hald, 2013;
Hald and Kupferman, 2001; Chorin et al., 2006; Chorin and Stinis, 2006; Chorin et al., 2000; Park et al., 2007;
Chorin et al., 1998; Bernstein, 2007; Chorin et al., 2002].

In the limit of an infinite time scale separation between the relevant and irrelevant variables, the stochastic
component of the parametrization can be represented as a white noise term, while the memory (also known
as non-Markovian) term vanishes, as the irrelevant variables decorrelate quickly. Therefore, in such a limit
the Mori-Zwanzig decomposition is equivalent to the homogenization method of section 6.1. For a compar-
ison of the short-memory approximation of Mori-Zwanzig to homogenization for climate-relevant models,
see Stinis [2006]. We also refer the reader to recent results of Chekroun et al. [2013a, 2013b], where general
mathematical results for the procedure of mode reduction, with thorough geometrical and dynamical
interpretations, are given.

T2 T1 Applications of the Mori-Zwanzig approach to
> > X fluid dynamics can be found in Stinis [2007],
Chandy and Frankel [2009], Hald and Stinis
[2007], and Hou [2007]. A simple approxima-
tion to Mori-Zwanzig has been applied to jet
A formation on a beta plane in Tobias and
Marston [2013].

6.3. Weakly Coupled Systems

Y We now consider dynamical systems consisting
Figure 21. Diagram describing the impact of fluctuations of the ~ Of two systems with a weak coupling. In this
Y variables on the X variables. Term o in equation (94). case an expansion of the dynamics can be
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made in orders of the coupling, giving insight
X into what properties of the coupled systems

determines the memory kernel and corre-

lated noise that appeared in the Mori-Zwanzig

approach [Wouters and Lucarini, 2012, 2013],
A because no assumptions are taken regarding
time scale separation.

T2

y o

A possible application of this theory in cli-
> Y mate science can be found in the interaction
Figure 22. Diagram describing the non-Markovian effect of the ~ between cloud formation and large-scale
X variables on themselves, mediated by the Y variables. Term h  atmospheric flow, where there is no distinct
in equation (94). time scale separation, but instead the cou-

pling could be considered as weak. The weak

coupling limit of a tropical ocean-atmosphere model has also been considered in the literature [Neelin and
Jin, 1993].

Let us go back to equation (89). In this setting, the background vector field F consists of a Cartesian product
(Fy, Fy)T of the vector fields F, and F, defining the autonomous X and Y dynamics. The perturbing vector
field 5F is a coupling (¥y, P,)T between the two systems. We rewrite the full dynamical system as

dx

a = FX(X) + STX(X, Y)

dy

i Fy(Y)+ePy(X,Y), (92)

where ¢ is added in order to clarify what kind of perturbative expansion we consider. For simplicity of pre-
sentation, for now we consider the case where ¥, (X, Y) = ¥,(Y) and ¥, (X, Y) = ¥,(X). We will come back
to the general case later.

Given that the coupling term ¢¥ can be seen as a small perturbation to the uncoupled system, one can
make use of response theory to study the change of long time means under a change in the coupling
parameter e. We can therefore use the response formalism described in section 5. After lengthy calculations,
one obtains the explicit expression for

p(A), = p°(A), + pV(A), + pP(A), + O(P>). (93)

As shown by Wouters and Lucarini [2012], if one collects these first- and second-order responses to the cou-
pling ¥, an identical change in expectation values from the unperturbed p, up to third order in ¥ can be
obtained by adding a Y independent forcing to the tendency of the X variables as follows:

dx(t)

o - Fy(X() + M+ o(t) + /°° dzh(z, X(t — 7)), (94)
0

where M = p, (W) is an averaged version of the Y to X coupling, ¢ is a stochastic term, mimicking the
two time correlation properties of the unresolved variables, and h is a memory kernel that introduces the
non-Markovianity. A diagrammatic representation of processes responsible that these three additional
terms are parametrizing is given in Figures 20-22. Figure 20 refers to the mean-field effect, which is captured
by the first-order correction, and corresponds to the deterministic parametrization. Figure 21 describes the
effect of the fluctuations of the unresolved variables, which results into an effective stochastic term in the
parametrization. Finally, Figure 22 clarifies how memory effects enter into the picture of the parametriza-
tion: the resolved variables at a given time impact the resolved variables at a later time through a transfer
of information mediated by the unresolved variables. The memory effect is present due to the finite time
scale difference between resolved and unresolved variables, which also ensures that the stochastic con-
tribution shown in Figure 21 cannot be represented by a white noise process. In Wouters and Lucarini
[2013] this reduced equation was shown to be related to an expansion in the coupling strength of a Mori-
Zwanzig equation.

If the coupling functions ¥y and ¥y are allowed to be dependent on both X and Y, the above analysis can
still be carried out. In practical terms, this accounts for the possibility that the coupling terms are function of

LUCARINI ET AL.

©2014. American Geophysical Union. All Rights Reserved. 42



@AG U Reviews of Geophysics 10.1002/2013RG000446

both the variables we want to parametrize and of those we want to keep explicitly represented in our model.
For the case of separable couplings Wy (X, Y) = ¥y ;(X)¥y (V) and ¥, (X, Y) = ¥, ;(X)¥y,(Y), the average
term becomes X dependent and the noise term becomes multiplicative instead of additive. An expression
for more general couplings can be derived by decomposing the coupling functions into a basis of separable
functions and then the same procedure can be applied. See Wouters and Lucarini [2012].

7. Summary and Conclusions

The goal of this review paper is the provision of an overview of some ideas emerging at the interface
between climate science, physics, and mathematics, with the objective of contributing to bridging the gap
between different scientific communities. The topics have been selected by the authors with the goal of
covering (at least partially) relevant aspects of the deep symmetries of geophysical flows, of the processes
by which they convert and transport energy, and generate entropy, and of constructing relevant statistical
mechanical models able to address fundamental issues like the response of the climate system to forcings,
the representation of the interaction across scales, the definition of relevant physical quantities able to
describe succinctly the dynamics of the system. This review also informs the development and testing of cli-
mate models of various degrees of complexity, by analyzing their physical and mathematical well-posedness
and for constructing parametrizations of unresolved processes, and by putting the basis for constructing
diagnostic tools that able to capture the most relevant climate processes.

The Nambu formulation of geophysical fluid dynamics explored in section 2 emphasizes the existence, in
the inviscid and unforced case, of nontrivial conserved quantities that are embedded in the equations of
motion. Such quantities play a fundamental role, analogous to the role of energy, in the description of the
state and of the dynamics of the system, and can be regarded as observables of great relevance also in
the case where dissipation and forcing are present. Moreover, the Nambu formalism suggests us ways for
devising very accurate numerical schemes, which do not have spurious diffusive behavior.

The symmetry properties of the flow in the inviscid limit allow the construction of the ensembles describing
the equilibrium statistical mechanical properties of the geophysical flows (section 3), where the vorticity—in
the two-dimensional case—plays the role of the most important physical quantity. Starting from the classi-
cal construction due to Onsager of the gas of interacting vortices, the theory leads us to construct a theory
of barotropic and baroclinic QG turbulence.

Taking the point of view of nonequilibrium systems, we have that thanks to the presence of gradients of
physical quantities like temperature and chemical concentrations—in first instance due to the inhomogene-
ity of the incoming solar radiation, of the optical properties of the geophysical fluids, and of the boundary
conditions—the climate system can transform available potential energy into kinetic energy via internal
instabilities, resulting in organized fluid motions. In section 4 the analysis of the energy and entropy bud-
gets of the climate system is shown to provide a comprehensive picture of climate dynamics, new tools for
testing and auditing climate models and measuring climate change, for investigating of the climate tipping
points, and for studying the properties of general planetary atmospheres.

Section 5 introduces some basic concepts of nonequilibrium statistical mechanics, connecting the macro-
scopic properties described in the previous section to the features of the family of chaotic dynamical
systems which constitute the backbone of the mathematical description of nonequilibrium systems. For
such systems, the relationship between internal fluctuations and response to forcings is studied with the
goal of developing methods for predicting climate change. After clarifying the conditions under which the
FDT is valid, we present some new results such as a successful climate prediction for decadal and longer
time scales. In this sense, we show that the problem of climate change is mathematically well posed.

Nonequilibrium statistical mechanics is also the subject of section 6, where we show how the Mori-Zwanzig
formalism supports the provision of rigorous methods for constructing parametrizations of unresolved
processes. It is possible to derive a surrogate dynamics for the coarse-grained variable of interest for cli-
matic purposes, incorporating, as result of the coupling with the small-scale, fast variables, a deterministic,
a stochastic, and a non-Markovian contribution, corresponding to memory effects, which add to the unper-
turbed dynamics. The same results can be obtained using the response theory described in section 5,
thus showing that the construction of parametrizations for weather and for climate models should have
common ground.
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Among the many topics and aspects left out of this review, we need to mention recent developments aimed
at connecting the complementary, rather than opposing Lorenz [1963] and Hasselmann [1976] perspec-
tives on complex dynamics, which focus on deterministic chaos and stochastic perturbations to dynamical
systems, respectively. We refer in particular to the idea of constructing time-dependent measures for nonau-
tonomous dynamical systems [Chekroun et al., 2011] through the introduction of the so-called pullback
attractor, which is the geometrical object the trajectories initialized in a distant past tend to at time t with
probability 1 as a result of the contracting dynamics. Such an object is not invariant with time, as a result

of the time-dependent forcing, but, under suitable conditions on the properties of the dynamical system,
the supported measure has at each instant properties similar to those of the (invariant) SRB measure one
can construct for, e.g., autonomous Axiom A dynamical [Ruelle, 1989]. Such an approach allows for treat-
ing in a coherent way the presence of modulations in the dynamics of the system, without the need of
applying response formulas or of assuming time scale separations, and in particular allows for analyzing
the case where the forcing is stochastic, leading to the concept of random attractor [Arnold, 1988]. On a
different line of research, it is instead possible to use Ruelle response theory for computing the impact of
adding stochastic noise on chaotic dynamical systems [Lucarini, 2012]. One finds the rate of convergence of
the stochastically perturbed measure to the unperturbed one and discovers the general result that adding
noise enhances the power spectrum of any given observables at all frequencies. The difference between the
power spectrum of the perturbed and unperturbed system can be used, mirroring an FDT, for computing
the response of the system to deterministic perturbations.

The methods, the ideas, and the perspectives presented in this paper are partially overlapping, partially
complementary, partly in contrast. In particular, it is not obvious, as of today, whether it is more efficient
to approach the problem of constructing a theory of climate dynamics starting from the framework of
Hamiltonian mechanics and quasi-equilibrium statistical mechanics or taking the point of view of dissipa-
tive chaotic dynamical systems and of nonequilibrium statistical mechanics, and even the authors of this
review disagree. The former approach can rely on much more powerful mathematical tools, while the latter
is more realistic and epistemologically more correct, because, obviously, the climate is, indeed, a nonequi-
librium system. Nonetheless, the experience accumulated in many other scientific branches (chemistry,
acoustics, material science, optics, etc.) has shown that by suitably applying perturbation theory to equilib-
rium systems one can provide an extremely accurate description of nonequilibrium properties. Such a lack
of unified perspective, of well-established paradigms, should be seen as sign of the vitality of many research
perspectives in climate dynamics.

Appendix A: Glossary

For the benefit of the reader, we report here the most relevant symbols used in this paper, indicating if the
same symbol is used with different meaning.

H Hamiltonian functional

{e,0}p Standard Poisson brackets

u Velocity vector (two- or three-dimensional)

u, Absolute velocity vector (including planetary rotation)

V- Divergence operator (two- or three-dimensional)

V- Horizontal divergence operator for three-dimensional vectors
\Y Gradient operator (two- or three-dimensional)

v, Horizontal gradient operator for three-dimensional fields
v Stream function

10} Vorticity function (two-dimensional dynamics)

@ Vorticity vector (three-dimensional dynamics)

@, Absolute vorticity vector (including planetary vorticity)

S Symplectic matrix [0, —1; 1, 0];

J Jacobian operator

X Generic functional

6X/éa Functional derivative of X with respect to the function a.
{o,0,0 Nambu brackets

U Horizontal divergence of the velocity field
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Total thickness of the fluid (shallow water equations)

Helicity

Absolute helicity (including planetary rotation)

Planetary vorticity in beta plane approximation (y indicates the south-north coordinate)
Geopotential

Quasi-geostrophic potential vorticity

Potential vorticity for shallow water equations (section 2); specific humidity (section 4)
Brunt-Vaisala frequency

Density of the fluid (sections 2 and 4); invariant measure of the system (sections 3, 5, and 6).
Earth’s angular velocity vector

Ertel’s potential vorticity

Enstrophy functional

Inverse temperature

Potential enstrophy functional

Entropy functional

Mass functional

Partition function

Rossby deformation radius

Mixing entropy

Specific energy per unit mass

Specific internal energy per unit mass

Relative humidity

Gravity

Temperature

Specific heat at constant volume

Specific entropy per unit mass (per unit volume)

Structure function

Latent heat of vaporization (section 4); Liouville operator (section 6)

Vector of radiative flux

Vector of turbulent sensible heat flux

Vector of turbulent latent heat flux

Surface stress tensor

Total energy

Total static potential energy

Total kinetic energy

Conversion rate between potential and kinetic energy

Rate of dissipation of the kinetic energy

Net positive heating rate taking place at average temperature T+

Net negative heating rate taking place at average temperature T~

Climate efficiency

Rate of material entropy production of the climate system

Rate of material entropy production due to friction

Rate of material entropy production due to diffusion

Rate of material entropy production due to the hydrological cycle

Rate of material entropy production of the climate system due to vertical processes
Rate of material entropy production of the climate system due to horizontal processes
First-order correction to the expectation value of the observable A

First-order Green function for the observable A

First-order susceptibility function for the observable A

Climate sensitivity

Projection operator performing coarse graining on the dynamics and eliminates irrelevant
degrees of freedom; Q is the complementary operator
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