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ABSTRACT 16 

1. It is widely accepted that the fossil record suffers from various sampling 17 

biases – diversity signals through time may partly or largely reflect the 18 

rock record – and many methods have been devised to deal with this 19 

problem. One widely used method, the ‘residual diversity’ method, uses 20 

residuals from a modelled relationship between palaeodiversity and 21 

sampling (sampling-driven diversity model) as ‘corrected’ diversity 22 

estimates, but the unorthodox way in which these residuals are generated 23 

presents serious statistical problems; the response and predictor 24 

variables are decoupled through independent sorting, rendering the new 25 

bivariate relationship meaningless. 26 

2. Here, we use simple simulations to demonstrate the detrimental 27 

consequences of independent sorting, through assessing error rates and 28 

biases in regression model coefficients. 29 

3. Regression models based on independently sorted data result in 30 

unacceptably high rates of incorrect and systematically, directionally 31 

biased estimates, when the true parameter values are known. The large 32 

number of recent papers that used the method are likely to have 33 

produced misleading results and their implications should be reassessed. 34 

4. We note that the ‘residuals’ approach based on the sampling-driven 35 

diversity model cannot be used to ‘correct’ for sampling bias, and instead 36 

advocate the use of phylogenetic multiple regression models that can 37 

include various confounding factors, including sampling bias, while 38 

simultaneously accounting for statistical non-independence owing to 39 

shared ancestry. Evolutionary dynamics such as speciation are inherently 40 
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a phylogenetic process, and only an explicitly phylogenetic approach will 41 

correctly model this process. 42 

KEY WORDS 43 

Palaeodiversity; residuals; modeling; sampling bias; fossil record; independent 44 

sorting  45 
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INTRODUCTION 46 

It has been well known since the time of Darwin that the fossil record is largely 47 

incomplete (Darwin 1859), prompting generations of macroevolutionary 48 

researchers to take a cautious approach when interpreting patterns of 49 

palaeodiversity through time (Raup 1972; Raup 1976; Raup 1991; Prothero 50 

1999; Smith & McGowan 2007; Alroy 2010b). There have been many attempts to 51 

account for this sampling bias (Raup 1972; Raup 1976; Smith & McGowan 2007; 52 

Alroy 2010b), but one approach in particular, often referred to as the ‘residual 53 

diversity’ method, devised by Smith and McGowan (2007) (and modified by 54 

Lloyd (2012)), has been widely used (citation count  ~215 to Aug 2016; Google-55 

Scholar). 56 

 57 

Using regression residuals as data ‘corrected’ for confounding factors is a widely 58 

used method in biology, social sciences, economics (King 1986; Freckleton 59 

2002), and even in palaeodiversity studies (Raup 1976). However, Smith and 60 

McGowan’s (2007) approach differs from these classical residuals approaches in 61 

one key way: the ‘residuals’ are generated not as regression residuals (ε = y - ŷ) 62 

from a simple regression of diversity (y) on a proxy of sampling (x), but from “a 63 

model in which rock area at outcrop was a perfect predictor of sampled diversity” 64 

(Smith & McGowan 2007), here referred to as the sampling-driven diversity 65 

model (SDDM). The SDDM is constructed as a regression model between y sorted 66 

from low to high values (y’) and x sorted from low to high values (x’), where the 67 

relationship between these two independently sorted variables y’ and x’ is 68 

assumed to represent the SDD generating process – though there is no reason to 69 

assume as such. ‘Residuals’ are obtained as the difference between the SDDM 70 
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predictions ŷ’ and the observed values y, which are then treated as the ‘residual 71 

diversity estimates’ (figure 1). 72 

 73 

However, independently sorting y and x as outlined above decouples a paired, 74 

bivariate dataset, and is obviously problematic in statistics. Model fitting on 75 

decoupled data (e.g. y’ and x’) will lead to spurious predictions and ‘residuals’ as 76 

the estimated regression coefficients will be based on a forced (false) linear 77 

relationship (figure 1b). However, owing to continued wide use of the SDDM as a 78 

preferred method for identifying supposedly ‘true’ palaeodiversity signals (as 79 

recently as (Grossnickle & Newham 2016)), it appears that this basic statistical 80 

concept is somehow overlooked. While it has been suggested that the use of 81 

formation counts (the number of fossiliferous geological formations – a 82 

mappable unit of rock that represents a particular time and set of environments 83 

in a particular location – in a given time interval (Benton et al. 2011)) to ‘correct’ 84 

palaeodiversity time series data is unlikely to be meaningful because of 85 

substantial redundancy of the two metrics (Benton et al. 2011; Benton 2015), 86 

and a recent study has scrutinized the performance of SDDM residuals in 87 

accurately predicting true simulated biodiversity signals (Brocklehurst 2015), 88 

the performance of the SDDM itself has never been assessed. Here, we 89 

demonstrate the detrimental effects of decoupling data in regression modelling 90 

using simple simulations. 91 

 92 

 93 

MATERIAL AND METHODS 94 
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We first generated random deviates, x, sampling from a normal distribution (μ = 95 

0, σ = 1), at a sample size n = 100 (see SI for other sample sizes n = 30 and 1000). 96 

We then calculated y using a linear relationship in the form of y = a + bx + e, 97 

where a is the intercept, b is the slope and e is Gaussian noise. For simplicity, we 98 

fixed a = 0.4 and b = 0.6, while varying e (μe = 0, σe = 0.05, 0.1, 0.25, 0.5) – other 99 

values of a and b should return similar if not identical results (though, b = 1 100 

would be meaningless). Following Smith and McGowan (2007), we sorted y and x 101 

independently of each other to generate y’ and x’, and fitted an ordinary least 102 

squares (OLS) regression model to y’ on x’ (SDDM). For comparison, we fitted an 103 

OLS regression model to y on x in their original paired bivariate relationship (the 104 

standard regression model, SRM), the performance of which serves as a 105 

benchmark. 106 

 107 

To test Smith and McGowan’s (2007) assertion that the SDDM is indeed “a model 108 

in which rock area at outcrop was a perfect predictor of sampled diversity”, we 109 

evaluated whether the estimated regression coefficients α and β significantly 110 

differed from the true regression parameters, a and b, using a t-test. We repeated 111 

the procedure over 5000 simulations and calculated the percentage of times the 112 

estimated coefficients differed significantly from the true parameters. We would 113 

expect about 5% of the simulations to result in regression coefficients 114 

significantly different from the true parameters by chance alone; anything 115 

substantially above this threshold would indicate that the model has 116 

unacceptably high Type I error rates or falsely rejecting a true null hypothesis, 117 

where our null hypothesis is that the SDDM can correctly estimate the ‘true’ 118 

model parameters. 119 
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 120 

In addition, we tested for bias in the estimated regression slopes, i.e. whether the 121 

estimates systematically deviated from the simulation parameter b = 0.6. The 122 

mean of the 5000 slopes was subjected to a t-test against a fixed value of 0.6. If 123 

deviations were random, then we would not expect to find any significant 124 

differences between the mean slope and thew theoretical value, with all slopes 125 

randomly distributed around it. 126 

 127 

 128 

RESULTS 129 

SRM coefficients were significantly different from the true model parameters in 130 

only ~5% of the 5000 iterations across σe (figure 2a; table 1; SI), within 131 

acceptable levels of randomly detecting a statistical significance. Variation in 132 

regression lines across 5000 iterations are distributed randomly about the 133 

simulated line (figure 3a), with no significant difference between the mean 134 

regression slope and the simulation parameter b=0.6 (table 2; SI).  In contrast, 135 

SDDM coefficients were significantly different from the true parameters (figure 136 

2b) at a rate much higher than the conventionally accepted 5% (table 1; SI). The 137 

mean slope of the regression models significantly differed from the simulation 138 

parameter b, in a systematically and directional manner (figure 3b; table 2; SI) – 139 

SDDM regression coefficients are not only incorrect but grossly misleading. This 140 

systematic bias increases with increased noise in the data (table 2) – the more 141 

noise there is in the data, the more positive the relationship between y’ and x’ 142 

becomes. 143 

 144 



 8 

 145 

DISCUSSION 146 

By establishing  “a model in which rock area at outcrop was a perfect predictor of 147 

sampled diversity”, Smith and McGowan (2007) attempted to create a sampling-148 

driven diversity model. However, their SDDM is not based on any hypothesized 149 

or empirical relationship between diversity and sampling, or formulated from 150 

first principles. This is in contrast to other well-formulated biological models 151 

such as various scaling models where the parameter of interest (i.e. scaling 152 

coefficient or the slope of the bivariate relationship) is founded on first-principle 153 

theories, e.g. the 2/3 rule for the scaling of area with mass. Rather, the SDDM is 154 

based on the assumption that y’ and x’ (y and x sorted independently of each 155 

other) form the expected theoretical bivariate relationship between y and x, 156 

which this study shows to be incorrect (figures 2, 3), as one would expect since 157 

there is no reason to assume such a thing.  158 

 159 

A further and perhaps more serious problem with using a forced pairing of y’ and 160 

x’ is that each data point (pair of y’i and x’i) does not represent a natural pairing 161 

and has no meaning; the new pairing is actually yi and xj, where the ith and jth 162 

orders are independent of each other. For instance, using the marine generic 163 

diversity and rock area data of Smith and McGowan (2007) (figure 4), the lowest 164 

marine generic diversity is in the Cambrian, Tommotian Stage (529 – 521 million 165 

years ago [Ma]; genus count = 309), while the smallest marine rock outcrop area 166 

(after removing 0 valued data (Smith & McGowan 2007)) is from the Early 167 

Permian, Asselian/Sakmarian Stage (299 – 290 Ma; rock area = 1). Similarly, the 168 

highest diversity is recorded for the Pliocene (5.3 – 2.58 Ma; genus count = 3911) 169 
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while the largest rock area is found in the Cenomanian (100 – 94 Ma; rock area = 170 

373). These two extreme points alone demonstrate that the paired diversity and 171 

rock area values are millions of years apart, and are independent of each other 172 

(figure 4). 173 

 174 

This may be obvious, but independently sorting y and x has serious statistical 175 

consequences. For instance, in Smith and McGowan’s (2007) data, log10 marine 176 

generic diversity has no significant relationship with log10 rock area in their 177 

original paired bivariate data (figure 4; r2 = 0.0398; p = 0.0979), but once sorted, 178 

has a significantly strong positive relationship with log10 rock area sorted 179 

independently of log10 diversity (figure 4; r2 = 0.903; p < 0.001). This general 180 

pattern is true in at least two more datasets (Benson et al. 2010; Benson & 181 

Upchurch 2013) (figures S1 and S2). The independent sorting procedure has 182 

forced a strong but false linear relationship between two variables that 183 

otherwise do not show any significant (or if significant, a very weak) 184 

relationship. In fact, two randomly generated deviates (e.g. sampled from a 185 

normal distribution) that have no relationship with each other (figure 5a), once 186 

sorted independently from lowest to highest will inevitably have a significant 187 

and strong relationship (r2 = ~1; figure 5b). Perhaps more detrimental, is the fact 188 

that the independently sorted bivariate relationship will always be strongly 189 

positive – a simulated negative relationship between x and y (figure 5c) will have 190 

a strong and positive relationship once they are sorted independently (figure 191 

5d). 192 

 193 
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In some clades (namely Mesozoic dinosaurs), diversity measures can have very 194 

strongly positive relationships with some sampling metrics, such as geological 195 

formation counts (β  = 0.868; r2 = 0.85; p < 0.001 (Barrett, McGowan & Page 196 

2009)) or fossil collection counts (β  = 0.865; r2 = 0.79; p < 0.001 (Butler et al. 197 

2011)) , which would justify correcting for such confounding factors, if the 198 

sampling metrics were indeed non-redundant with diversity (Benton et al. 2011; 199 

Benton et al. 2013). However, even in such cases, it does not change the fact that 200 

the modelled relationship obtained from the SDDM will still be systematically 201 

biased (figure 3), and alternative methods should be considered. 202 

 203 

It is problematic to stipulate that this forced relationship is the ‘true’ relationship 204 

between sampled palaeodiversity and the rock record. Our simulations show 205 

that regression models fitted on independently sorted data have unacceptably 206 

high Type I error rates when the data generation processes are known, meaning 207 

that Smith and McGowan’s (2007) approach is not statistically viable. In 208 

particular, that the slopes are incorrectly estimated at very high rates (~100% 209 

when σe = 0.5) has severe consequences in that SDDM predictions are 210 

systematically biased (figures 2b, 3b), leading to erroneous ‘residuals’. 211 

Inferences made from such problematic ‘residuals’ (Smith & McGowan 2007; 212 

Barrett, McGowan & Page 2009; Benson et al. 2010; Butler et al. 2011; Benson & 213 

Upchurch 2013) will inevitably be misleading (Brocklehurst 2015), lacking any 214 

biological or geological meaning. 215 

 216 

Given our simulations, we strongly recommend against using the SDDM 217 

approach in modelling the relationship between palaeodiversity and rock record 218 
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data; the standard regression using unsorted data is a sensible option. However, 219 

using the residuals of a regression model as data for subsequent analyses has 220 

also long been known to introduce biased statistical estimates (King 1986; 221 

Freckleton 2002). Successive series of modelling removes variance and degrees 222 

of freedom from subsequent model parameter estimation, so the final models 223 

and statistical analyses do not account for the removed errors appropriately 224 

(King 1986). Instead, one can directly model the confounding effects along with 225 

effects of interest (e.g. environment, climate, etc) through multiple regressions 226 

(OLS, GLMs or generalized least squares [GLS]). In the context of palaeodiversity 227 

studies, one can fit a multiple regression model using some diversity metric as 228 

the response variable and sampling proxy as a confounding covariate, alongside 229 

additional predictor variables such as sea level, temperature, etc. The resulting 230 

model coefficients for the environmental predictors would be the effects of 231 

interest after accounting for the undesired effects of rock availability. Since 232 

diversity measures are frequently taken as counts, it is advisable to use models 233 

that appropriately account for errors in count data, such as the Poisson or 234 

negative binomial models (O'Hara & Kotze 2010). Whether or not to include time 235 

series terms (e.g. autoregressive [AR] terms) depends on the level of serial 236 

autocorrelation in the time series data and on sample size; palaeontological time 237 

series tend to be short, with 30 time bins or fewer being fairly typical (Mesozoic 238 

dinosaurs only span a maximum of 26 geological stages (Butler et al. 2011; 239 

Benson & Mannion 2012)), in which case complex models face the risks of over-240 

parameterisation. Model selection procedures using the Akaike Information 241 

Criterion (Akaike 1973) or similar indices can help make this decision (Burnham 242 

& Anderson 2002). However, we do not lightly advocate the use of time series 243 
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modelling, especially if the dependent variable, sampled diversity, is in the form 244 

of counts, in which case appropriate time series methods are severely under-245 

developed (but see generalised linear autoregressive moving average [GLARMA] 246 

models (Dunsmuir & Scott 2015) or Poisson exponentially weighted moving 247 

average [PEWMA] models (Brandt et al. 2000)), but more importantly since 248 

there are more appropriate alternative methods, i.e. phylogenetic approaches 249 

(Sakamoto, Benton & Venditti 2016). 250 

 251 

Fundamentally, macroevolutionary studies aim to increase our understanding of 252 

evolutionary processes (speciation and extinction through time), rather than the 253 

resulting patterns or phenomena (sampled diversity, e.g. richness). Thus, we 254 

should seek to characterize the process using biologically meaningful and 255 

interpretable models instead of describing the patterns. Further, simply 256 

exploring error in the fossil record in itself seems rather fruitless because 257 

uncertainty depends on the questions being posed; palaeontological studies of 258 

macroevolution should be no different than other statistical approaches in the 259 

natural sciences in that uncertainty is assessed while exploring the phenomena 260 

of interest (Benton 2015). Explicitly phylogenetic approaches (e.g. (Lloyd et al. 261 

2008; Didier, Royer-Carenzi & Laurin 2012; Stadler 2013; Stadler et al. 2013; 262 

Sakamoto, Benton & Venditti 2016) offer the best and most appropriate means to 263 

tackle questions of evolutionary processes. Especially when extrinsic causal 264 

mechanisms for changes in biodiversity are tested using regression models, 265 

ignoring phylogeny is in serious violation of statistical independence 266 

(Felsenstein 1985; Harvey & Pagel 1991). It is also worth noting that 267 

subsampling approaches (e.g. Alroy’s SQS (Alroy 2010a; Alroy 2010b; Alroy 268 
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2010c)) are gaining wide popularity as modern methods to account for sampling 269 

bias, they are not without problems (Hannisdal et al. 2016), and certainly do not 270 

take shared ancestry described by phylogeny into account, thus also suffering 271 

statistical non-independence (Felsenstein 1985; Harvey & Pagel 1991), and can 272 

frequently result in incorrect interpretation of the data. For instance, while 273 

recent studies using binned time series approaches (including SDDM and SQS) 274 

have led to mixed conclusions regarding the long-term demise of dinosaurs 275 

before their final extinction at the Cretaceous-Paleogene (K-Pg) boundary 66 276 

million years ago (Ma) (Barrett, McGowan & Page 2009; Lloyd 2012; Brusatte et 277 

al. 2015), an explicitly phylogenetic Bayesian analysis has strongly suggested 278 

that dinosaurs were indeed in a long-term decline tens of millions of years prior 279 

to the K-Pg mass extinction event, in which speciation rate was exceeded by 280 

extinction rate and dinosaurs were increasingly incapable of replacing extinct 281 

taxa with new ones (Sakamoto, Benton & Venditti 2016). Such evolutionary 282 

dynamics cannot be identified using time-binned (tabulated) data. Phylogenetic 283 

mixed modelling approaches (Hadfield 2010) further allow the incorporation of 284 

confounding variables such as sampling but also environmental effects 285 

(Sakamoto, Benton & Venditti 2016). Therefore, in order to advance our 286 

understanding of the evolutionary dynamics of biodiversity, speciation and 287 

extinction through time (or the underlying process generating the observed 288 

patterns in sampled diversity, e.g. taxon richness), while accounting for sampling 289 

and phylogenetic non-independence, it is imperative that we have an abundance 290 

of large-scale comprehensive phylogenetic trees of fossil (and extant) taxa. 291 

 292 

 293 
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SUPPORTING INFORMATION 414 
SI-text. Supporting information and results pertaining to the effects of sample 415 
size (Tables S1 and S2) as well as examples of discrepancies between original 416 
paired bivariate relationship and the independently sorted relationship from the 417 
literature (Figs S1 and S2).  418 
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TABLES 419 
Table 1. Type I error rates (%) for SRM (Standard Regression Model) and SDDM 420 
(Sampling-Driven Diversity Model) estimates (intercept α and slope β) across 421 
residual error (σe). 422 
 423 

σe 
SRM SDDM 

α β α β 

0.05 5.34 4.90 26.1 28.5 
0.10 4.84 4.92 40.2 48.4 
0.25 4.82 4.78 57.3 91.3 
0.50 5.48 5.14 68.7 100.0 

  424 
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Table 2. t-test results between mean regression slopes of 5000 iterations and the 425 
theoretical slope b = 0.6, for SRM (Standard Regression Model) and SDDM 426 
(Sampling-Driven Diversity Model) across residual error (σe). 427 
 428 

σe 
SRM SDDM 

mean-slope t-value p-value mean-slope t-value p-value 

0.05 0.6 1.230 0.220 0.602 20.9 0 
0.10 0.6 -1.790 0.073 0.607 46.0 0 
0.25 0.6 -0.042 0.967 0.646 131.0 0 
0.50 0.6 0.685 0.493 0.775 244.0 0 

  429 
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FIGURES 430 

 431 
Figure 1. Procedure for generating ‘residuals’ from a sampling-driven diversity 432 

model. (a) A paired, bivariate dataset x (sampling proxy) and y (sampled 433 

diversity) was simulated so that x is randomly drawn from a normal distribution 434 

(μ = 0, σ = 1) and y is calculated as y = a + bx + e where a = 0.4, b = 0.6 and e is 435 

noise (μ = 0, σ = 0.5). The thick black line is the expected relationship Y = a + bx. 436 

Vertical lines represent the true residuals or deviations in y from the thick line. 437 

(b) Following Smith and McGowan (2007) x and y are sorted from low to high 438 

values independent of each other (x’ and y’ respectively), and an ordinary least 439 

squares (OLS) regression model (pink line) is fitted to y’ on x’. Despite the pink 440 

line supposedly representing the data generating process, it is clear that it is not 441 

a good estimator of the true known generating process, the thick line. (c) The 442 

OLS model from (b) is used as the sampling-driven diversity model (SDDM) or 443 

the expected relationship between y and x, from which ‘residuals’ are computed 444 

as the deviations in y from the pink line (vertical pink dotted lines). It is 445 

immediately clear that there is a substantial difference between the true 446 

residuals (a) and the SDDM ‘residuals’ (c). 447 
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 449 

Figure 2. Regression modelling on a decoupled bivariate dataset fails to estimate 450 

the simulation slope parameter. (a) A bivariate dataset (y and x) was generated 451 

so as to follow a theoretical relationship (thick line) with intercept a = 0.4, slope 452 

b = 0.6 and noise (e [μe = 0, σe = 0.5]). The best-fit regression line (blue) is not 453 

significantly different from the theoretical line (dashed 95% confidence intervals 454 

encompass the thick line; see table 1 for Type I error rates over 5000 455 

simulations), with y and x forming a moderately strong relationship (r2 = 0.526) 456 

appropriate for the degree of e modelled. Regression model residuals (vertical 457 

lines) show no structure, as expected. (b) The bivariate data in (a) were sorted 458 

independently of each other (y’ and x’), to which a regression model was fitted. 459 

The best-fit sampling-driven diversity model (SDDM) regression line (pink) 460 

deviates strongly from the theoretical relationship (dashed 95% confidence 461 

intervals do not encompass the thick line; table 1), and y’ and x’ form a very 462 

strong (but false) linear relationship (r2 = 0.973). Regression residuals (vertical 463 

lines) show clear structure. One pair of model comparison out of 5000 464 

simulations is shown. 465 

  466 
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 467 

Figure 3. SDDM regression predictions are systematically biased. (a) Standard 468 

regression lines (blue) for 5000 simulated datasets at σe = 0.5 deviate randomly 469 

around the theoretical relationship (thick line) with the mean slope showing no 470 

significant difference from the theoretical slope b = 0.6 (table 2). (b) SDDM 471 

regression lines on decoupled datasets (pink) deviate systematically away from 472 

the theoretical relationship (thick line), with a significant difference between the 473 

mean regression slope and the theoretical slope (table 2). 474 

  475 
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 476 

Figure 4. The difference between the original paired, bivariate relationship (a) 477 

and the forced, false relationship (b) shown using the data from Smith and 478 

McGowan (2007). Log-transformed marine generic diversity has a non-479 

significant and weak relationship with log-transformed rock area (β = 0.105; r2 = 480 

0.0398; p = 0.0979; a). However, once diversity and rock area are sorted 481 

independently of each other following Smith and McGowan (2007), then the 482 

relationship becomes significant and strong (β = 0.499; r2 = 0.903; p < 0.001; b). 483 

Points are coloured according to their geological age with cooler colours on the 484 

older and warmer colours on the younger ends of the time scale. Filled and 485 

outline colours in (b) correspond to the ages of the rock record and diversity 486 

respectively, and demonstrate visually the mismatch between y’ and x’. Dashed 487 

lines are confidence intervals, while dotted lines are prediction intervals. 488 
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 490 

Figure 5. Independently sorting any two variables results in a forced positive 491 

relationship. (a) Two randomly generated variables y and x show no significant 492 

relationships across 1000 simulations, with the slopes of the regression lines 493 

(blue) distributed around the expected slope of zero. (b) When regression 494 

models are fitted on independently sorted datasets (y’ and x’), estimated slopes 495 

are significantly different from the expected value of zero, and result in a strong 496 

positive relationship (r2 = ~1; inset pink) despite the unrelated nature of the 497 

original datasets (r2 = ~0; inset blue). (c) A bivariate dataset (y and x) was 498 

generated so as to follow a theoretical relationship (thick line) with intercept a = 499 

0.4, slope b = -0.6 and noise (e [μe = 0, σe = 0.5]). Standard regression lines (blue) 500 
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deviate randomly around the theoretical relationship with the mean slope 501 

showing no significant difference from the theoretical slope b = -0.6. (d) However 502 

once sorted independently, regression lines (pink) deviate systematically away 503 

from the theoretical relationship, with all estimated slopes being positive. Thus 504 

SDDM slope estimates are systematically and directionally biased. 505 
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