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summer monsoon shift, but they overestimate the precipi-
tation; especially during the JJA and SON seasons. Clus-
ter II models simulate weaker seasonal migration than 
observed, and the maximum rainfall position stays closer to 
the equator throughout the year. The tropics-wide proper-
ties of these clusters suggest a connection between the skill 
of simulating global properties of the monsoon circulation 
and the skill of simulating the regional scale of Maritime 
Continent precipitation.

Keywords Cluster analysis · Resolution · Hadley 
circulation · Monsoon · Maritime Continent · CMIP5

1 Introduction

Societies in the Maritime Continent depend on their water 
supply from monsoon rainfall, generated as part of large-
scale movement of the Intertropical Convergence Zone 
(ITCZ) in its passage from the Southern to Northern Hemi-
spheres and back. It is therefore crucial that General Cir-
culation Models (GCMs) are able to correctly simulate 
mean climate and its variability in the Maritime Continent. 
In particular, the Coupled Model Intercomparison Project 
phase 5 (CMIP5) simulations are used in the Intergovern-
mental Panel on Climate Change (IPCC) Fifth Assessment 
Report for future climate projection (Flato et  al. 2013). 
However, the ability of GCMs to simulate the mean cli-
mate and climate variability over the Maritime Conti-
nent remains a modeling challenge (Jourdain et al. 2013). 
As one of the main diabatic heat sources for regional and 
global circulation, biases in the mean state simulations of 
the Maritime Continent also affect tropical and extratropi-
cal variability and teleconnections (Neale and Slingo 2003; 
Wang et al. 2014). In order to have confidence in the future 

Abstract The fidelity of 28 Coupled Model Intercompar-
ison Project phase 5 (CMIP5) models in simulating mean 
climate over the Maritime Continent in the Atmospheric 
Model Intercomparison Project (AMIP) experiment is eval-
uated in this study. The performance of AMIP models var-
ies greatly in reproducing seasonal mean climate and the 
seasonal cycle. The multi-model mean has better skill at 
reproducing the observed mean climate than the individual 
models. The spatial pattern of 850 hPa wind is better simu-
lated than the precipitation in all four seasons. We found 
that model horizontal resolution is not a good indicator 
of model performance. Instead, a model’s local Maritime 
Continent biases are somewhat related to its biases in the 
local Hadley circulation and global monsoon. The com-
parison with coupled models in CMIP5 shows that AMIP 
models generally performed better than coupled models 
in the simulation of the global monsoon and local Hadley 
circulation but less well at simulating the Maritime Con-
tinent annual cycle of precipitation. To characterize model 
systematic biases in the AMIP runs, we performed cluster 
analysis on Maritime Continent annual cycle precipita-
tion. Our analysis resulted in two distinct clusters. Cluster 
I models are able to capture both the winter monsoon and 
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projections made by models, the models should be able to 
correctly simulate characteristics of the current climate on 
regional (Maritime Continent) and global scales.

Previous studies mentioning the Maritime Continent in 
CMIP5 are largely focussed on the topic of nearby mon-
soon regions. Several studies have evaluated the fidelity 
of CMIP5 models in simulating the Australian monsoon 
(Jourdain et  al. 2013; Ackerley et  al. 2014), the western 
Pacific monsoon (Brown et  al. 2013) and the Asian sum-
mer monsoon (Sperber et  al. 2013). These studies found 
that different models show varying ability at each aspect 
of monsoon simulation. However, no single model in the 
CMIP5 ensemble best represents all aspects of the mon-
soon, either in an individual subregion or when considering 
all characteristics of the monsoon as a whole. Comparison 
studies between different phases of the CMIP multi-model 
ensemble found that generally there are improvements in 
the performance of CMIP5 over CMIP3 (Sperber et  al. 
2013; Jourdain et al. 2013) possibly due to increased hori-
zontal and vertical resolution in the atmosphere and ocean, 
parameterization development and the improved represen-
tation of Earth-system processes in CMIP5 models. How-
ever, considerable systematic errors exist, suggesting that 
the models are still lacking good representations of the nec-
essary physical mechanisms involved.

Atmospheric general circulation models (AGCMs) have 
prescribed sea surface temperature (SST); they therefore 
lack SST biases and could possibly have smaller errors 
in the large-scale circulation when compared to coupled 
GCMs. Atmospheric Model Intercomparison Project 
(AMIP) integrations using standardized lower boundary 
conditions enable the identification of atmospheric model 
deficiencies and common features. However, the lack of 
air-sea coupling in AGCM experiments may also introduce 
new systematic biases in some regions, with further feed-
backs on circulation patterns. Wang et al. (2005) show that 
ocean-atmosphere coupling is important to the simulation 
of Asian-Pacific summer monsoon rainfall variability. The 
comparison between coupled and atmosphere-only simula-
tions suggests that AMIP models simulate the wind better 
in the western Pacific monsoon (Brown et al. 2013). Li and 
Xie (2014) suggest that the equatorial Pacific cold tongue 
bias in coupled models arises from wind biases resulting 
from interaction with the ocean via Bjerknes feedback. 
However, both coupled and uncoupled model simulations 
fail in reproducing observed precipitation over the tropics, 
suggesting that the representation of convection is likely 
to be a key source of error (Brown et al. 2013; Li and Xie 
2014; Ackerley et al. 2014).

In this paper, we evaluate the CMIP5 model perfor-
mance in reproducing the observed seasonal climate over 
the Maritime Continent, focusing mainly on the AMIP 
experiment. We quantify the model performance using 

two metrics that measure the magnitude of simulation 
errors and the degree of similarity between the observed 
and simulated field. To determine what aspects of the 
models are most important for correctly representing the 
Maritime Continent precipitation, our study investigates 
three potential sources of model systematic errors: the 
role of horizontal resolution, the relationship to errors in 
the mean meridional circulation and global monsoon, and 
the impact of air-sea coupling. This reveals a possible con-
nection between global biases and local Maritime Conti-
nent biases. Next, we performed clustering analysis on the 
annual cycle of precipitation in the AMIP experiment of 
CMIP5 to group together models with common systematic 
errors and to determine if they are connected to particular 
features at the large scale.

The paper is organized as follows. We first describe the 
CMIP5 models and observational (reanalysis) data used in 
this study in Sect. 2. In Sect. 3, we assess the atmosphere-
only model simulations of seasonal precipitation and low-
level wind in the Maritime Continent. Section  4 inves-
tigates the possible sources of model bias. In Sect.  5, we 
present clustering analysis on the annual cycle climatology 
of precipitation. Discussion is given in Sect. 6, followed by 
conclusions.

2  Data and methods

2.1  Models

The 30-year period (1979–2008) of AMIP from 28 CMIP5 
models is analyzed in this study. These AMIP experiments 
are forced by the same prescribed SSTs and sea ice. The 
original horizontal resolution of the prescribed SST bound-
ary conditions created by Program For Climate Model 
Diagnosis and Intercomparison (PCMDI) is 1◦  longitude × 
1◦  latitude. These underlying SST data are interpolated by 
individual modelling groups to a model’s own resolution for 
performing the AMIP experiments. A general description of 
the AMIP boundary condition is presented in Taylor et al. 
(2012). Only models that submitted precipitation, zonal (u), 
meridional (v) and vertical (omega) components of wind 
to the database were selected for this study. The Maritime 
Continent domain in this study is defined covering ranges of 
latitude 20◦S–20◦N and longitude 80◦E–160◦E.

The AMIP simulations are often used to identify defi-
ciencies of the atmospheric model that are unaffected by 
the systematic SST biases present in coupled models. 
However, the lack of two-way ocean-atmosphere cou-
pling and SST response to the atmospheric forcing in 
these atmosphere-only models may also introduce new 
biases in some regions (Wu and Kirtman 2005; Wang 
et al. 2005). To determine the impact of SST biases and 
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air-sea coupling on model performance in the Maritime 
Continent, we make a comparison between 22 coupled 
CMIP5 simulations and their corresponding AMIP simu-
lations in Sect.  4.3. We also examine the fidelity of all 
46 coupled GCMs in CMIP5 in simulating the Mari-
time Continent mean climate from 1979–2005 (the part 
of the coupled experiment that overlaps AMIP). These 
historical runs (coupled ocean-atmosphere) are forced 
by observed atmospheric composition changes in both 
anthropogenic and natural sources, and also include land 
use change (Taylor et  al. 2012). For brevity, the cou-
pled simulations in CMIP5 will be denoted as “CMIP5” 
while the AMIP simulations with prescribed SST will be 
denoted as “AMIP5” hereafter.

Table  1 lists the model name, modeling center, 
experiment type and horizontal resolution of these mod-
els. Detailed documentation of the CMIP5 models and 
experiments can be found at http://cmip-pcmdi.llnl.gov/
cmip5. The monthly model data were bi-linearly interpo-
lated to a common 3.75◦  longitude × 3◦  latitude grid for 
comparison with each other and with respect to observa-
tions and to enable computation of error statistics.

The multi-model mean (MMM) is obtained by tak-
ing a simple arithmetic average of climate variables 
among the 28 AMIP5 models. We have also calculated 
the 46 CMIP5 model MMM as well as the MMM of the 
22 overlapping AMIP5 and CMIP5 models respectively 
for comparison in Sect. 4.3. The overall performance of 
AMIP5 and CMIP5 models is determined based on the 
MMM skill scores (see Sect. 2.3).

2.2  Observations

Precipitation data from the Global Precipitation Clima-
tology Project (GPCP) of the 30-year period from 1979 
to 2008 are used in this study to validate the models. 
This dataset consists of a combination of rain gauges, 
satellites and sounding observations that have been 
merged to estimate monthly rainfall on a 2.5-degree 
global grid (Adler et al. 2003).

The zonal, meridional and vertical components of 
wind data on a 0.7-degree grid for the same period were 
obtained from the ERA-Interim reanalysis data produced 
by the European Centre for Medium-Range Weather 
Forecasts (ECMWF) (Dee et al. 2011) for validation on 
various pressure levels.

These monthly precipitation and wind observations 
(reanalysis) data were bi-linearly interpolated to the 
common 3.75◦  longitude × 3◦  latitude grid for compari-
son with the model simulations.

2.3  Skill scores and correlation analyses

We have used two metrics to evaluate the model perfor-
mance in simulating the Maritime Continent seasonal 
climate. The pattern correlation coefficient (PCC) is cal-
culated to measure the degree of similarity in the spatial 
patterns between the observed and simulated fields. The 
root mean square error (RMSE) is used to measure the 
magnitude of simulation errors.

Correlation analyses are used to assess the relation-
ship between different biases, for example between local 
(Maritime Continent) precipitation biases and biases in 
the global monsoon and circulation. We computed the 
Pearson correlation coefficient (r) to measure the strength 
of the association and the direction of a linear relation-
ship between the two biases in the set of models. How-
ever, as the Pearson correlation is sensitive to outliers, 
we have also calculated the Spearman’s rank correlation 
coefficient which is more robust. The Spearman’s rank 
is the non-parametric version of the Pearson correlation 
calculated using the ranks of data. The correlation coef-
ficients from the two methods show some differences. 
However, only results from Spearman’s rank correlation 
are shown except in Figs.  3 and 13 where both coeffi-
cients are shown.

2.4  Global monsoon metric

In Sect. 4.2.2, we will examine two annual cycle modes 
of the climatological monthly mean precipitation using 
an approach adapted from Wang and Ding (2008). In 
their study, Wang and Ding (2008) identified two lead-
ing empirical orthogonal function (EOF) modes that 
can represent the annual cycle of tropical precipitation 
and global monsoons. The first EOF is in phase with 
the annual cycle and shows the boreal summer and win-
ter monsoon rainfall regimes (off-equatorial ITCZ posi-
tions) while the second EOF represents the location of 
the spring and autumn ITCZ, closer to the equator. Wang 
and Ding (2008) showed that the first EOF (solsticial 
mode) is equivalent to the difference between solsticial 
seasons (JJAS minus DJFM) and the second EOF (equi-
noctial mode) can be depicted by the difference between 
equinoctial seasons (AM minus ON). These seasonal dif-
ferences can be used as simple metrics of the seasonal 
cycle of global monsoon precipitation. In this study, for 
consistency with the seasons used in other aspect of our 
analyses, the solsticial mode of the annual cycle is calcu-
lated by taking the JJA mean minus DJF mean precipita-
tion and the equinoctial mode is calculated by taking the 
MAM mean minus the SON mean precipitation over the 
domain 45◦S–45◦N and 0◦–360◦E.

http://cmip-pcmdi.llnl.gov/cmip5
http://cmip-pcmdi.llnl.gov/cmip5
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Table 1  CMIP5 model name, modeling center, atmosphere horizontal resolution, experiment type and key references

Modeling center Model name Atmosphere horizontal 
resolution (◦  lon. × ◦  lat.)

Experiment References

BCC BCC-CSM1.1 2.8 × 2.8 AMIP5 and CMIP5 Wu et al. (2010)
BCC BCC-CSM1.1(m) 1.1 × 1.1 AMIP5 and CMIP5 Wu et al. (2010)
BNU BNU-ESM 2.8 × 2.8 AMIP5 and CMIP5 Ji et al. (2014)
CCCma CanAM4 2.8 × 2.8 AMIP5 von Salzen et al. (2013)
CCCma CanESM2 2.8 × 2.8 CMIP5 von Salzen et al. (2013)
CMCC CMCC-CESM 3.75 × 3.7 CMIP5 Scoccimarro et al. (2011)
CMCC CMCC-CM 0.75 × 0.7 AMIP5 and CMIP5 Scoccimarro et al. (2011)
CMCC CMCC-CMS 1.875 × 1.8 CMIP5 Scoccimarro et al. (2011)
CNRM-CERFACS CNRM-CM5 1.4 × 1.4 AMIP5 and CMIP5 Voldoire et al. (2013)
CNRM-CERFACS CNRM-CM5-2 1.4 × 1.4 CMIP5 Voldoire et al. (2013)
CSIRO-BOM ACCESS1-0 1.875 × 1.25 AMIP5 and CMIP5 Bi et al. (2013), Dix et al. (2013)
CSIRO-BOM ACCESS1-3 1.875 × 1.25 AMIP5 and CMIP5 Bi et al. (2013), Dix et al. (2013)
CSIRO-QCCCE CSIRO-Mk3-6-0 1.9 × 1.9 AMIP5 and CMIP5 Gordon et al. (2010), Rotstayn et al. (2012)
FIO FIO-ESM 2.8 × 2.8 CMIP5
ICHEC EC-EARTH 1.1 × 1.1 CMIP5 Hazeleger et al. (2010)
INM INM-CM4 2.0 × 1.5 AMIP5 and CMIP5 Volodin et al. (2010)
IPSL IPSL-CM5A-LR 3.75 × 1.875 AMIP5 and CMIP5 Dufresne et al. (2013)
IPSL IPSL-CM5A-MR 2.5 × 1.25 AMIP5 and CMIP5 Dufresne et al. (2013)
IPSL IPSL-CM5B-LR 3.75 × 1.875 AMIP5 and CMIP5 Dufresne et al. (2013), Hourdin et al. (2013)
LASG-IAP FGOALS-s2 2.8 × 1.7 AMIP5 Bao et al. (2013)
LASG-CESS FGOALS-g2 2.8 × 2.8 AMIP5 and CMIP5 Li et al. (2013)
MIROC MIROC4h 0.56 × 0.56 CMIP5 Sakamoto et al. (2012)
MIROC MIROC5 1.4 × 1.4 AMIP5 and CMIP5 Watanabe et al. (2011)
MIROC MIROC-ESM 2.8 × 2.8 CMIP5 Watanabe et al. (2011)
MIROC MIROC-ESM-CHEM 2.8 × 2.8 CMIP5 Watanabe et al. (2011)
MOHC HadCM3 3.7 × 2.5 CMIP5 Collins et al. (2001)
MOHC HadGEM2-A 1.875 × 1.25 AMIP5 Collins et al. (2008)
MOHC HadGEM2-ES 1.875 × 1.25 CMIP5 Collins et al. (2011)
MPI-M MPI-ESM-LR 1.9 × 1.9 AMIP5 and CMIP5 Stevens et al. (2013), Raddatz et al. (2007)
MPI-M MPI-ESM-MR 1.9 × 1.9 AMIP5 and CMIP5 Stevens et al. (2013), Raddatz et al. (2007)
MPI-M MPI-ESM-P 1.9 × 1.9 CMIP5 Stevens et al. (2013), Raddatz et al. (2007)
MRI MRI-AGCM3-2H 0.6 × 0.6 AMIP5 Mizuta et al. (2012)
MRI MRI-AGCM3-2S 0.2 × 0.2 AMIP5 Mizuta et al. (2012)
MRI MRI-CGCM3 1.1 × 1.1 AMIP5 and CMIP5 Yukimoto et al. (2012)
MRI MRI-ESM1 1.1 × 1.1 CMIP5 Yukimoto et al. (2012)
NASA-GISS GISS-E2-H 2.5 × 2.0 CMIP5 Schmidt et al. (2006)
NASA-GISS GISS-E2-H-CC 2.5 × 2.0 CMIP5 Schmidt et al. (2006)
NASA-GISS GISS-E2-R 2.5 × 2.0 AMIP5 and CMIP5 Schmidt et al. (2006)
NASA-GISS GISS-E2-R-CC 2.5 × 2.0 CMIP5 Schmidt et al. (2006)
NCAR CCSM4 1.25 × 0.9 AMIP5 and CMIP5 Gent et al. (2011)
NCC NorESM1-M 2.5 × 1.9 AMIP5 and CMIP5 Bentsen et al. (2013)
NCC NorESM1-ME 2.5 × 1.9 CMIP5 Bentsen et al. (2013)
NIMR-KMA HadGEM2-AO 1.875 × 1.25 CMIP5 Martin et al. (2011)
NOAA-GFDL GFDL-CM2p1 2.5 × 2.0 CMIP5 Donner et al. (2011)
NOAA-GFDL GFDL-CM3 2.5 × 2.0 AMIP5 and CMIP5 Donner et al. (2011)
NOAA-GFDL GFDL-ESM2G 2.5 × 2.0 CMIP5 Donner et al. (2011)
NOAA-GFDL GFDL-ESM2M 2.5 × 2.0 CMIP5 Donner et al. (2011)
NOAA-GFDL GFDL-HIRAM-C180 0.625 × 0.5 AMIP5 Zhao et al. (2009)
NOAA-GFDL GFDL-HIRAM-C360 0.3 × 0.3 AMIP5 Zhao et al. (2009)
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2.5  Cluster analysis

Hierarchical clustering analysis of Maritime Continent 
annual cycle precipitation was performed to character-
ize the model systematic biases in AMIP5 by grouping 
together models that are similar, in Sect.  5. From the 
clustering analysis, we investigate the biases in groups of 
models to see if they pertain to common features in the 
large-scale atmosphere. We used the Euclidean distance 
metric (the square root of the sum of square distances) 
to measure the similarity between each model using 
the time-latitude mean precipitation, zonally averaged 
between 80◦E and 160◦E (refer to Fig. 7). The Euclidean 
distance between two models A and B is defined as:

where i and j are the latitude and month respectively (Wilks 
2011).

The two models with closest similarity in Maritime 
Continent annual cycle precipitation averaged between 
80◦E and 160◦E are merged to form a new cluster based 
on a defined criterion and linkage method. The process is 
repeated until all models are merged into one cluster. The 
optimum number of clusters is chosen based on a cut-off 
point (threshold value) when there is a sudden increase 
in the distance value which reflects that the clusters that 
were joined were relatively far apart.

To ensure the robustness of the results, we have tested 
six linkage methods (not shown) to cluster the similarity 
between the 28 models. The six methods are single, com-
plete, average, centroid, Ward’s and weighted linkage. 
We chose complete linkage for our analysis in this study 
based on the agreement of its results with other methods, 
and it also produced a better cluster around the central 
value with smaller variance. In complete linkage, the dis-
tance between two clusters is defined as the maximum 
distance between any two models when one model is cho-
sen from each cluster and all possible pairs are compared 
(Wilks 2011).

(1)d(A,B) =

√

∑

i

∑

j

(Ai,j − Bi,j)
2

3  AMIP5 model evaluation

In this section, we examine the AMIP5 model performance 
in reproducing the seasonal climate, particularly focusing 
on the winter (DJF) and summer monsoons (JJA).

Maritime Continent domain seasonal mean GPCP pre-
cipitation and ERA-Interim mean 850 hPa wind are shown 
in Figs.  1a and 2a. The Maritime Continent receives an 
abundance of rainfall throughout the year. However, there 
are pronounced seasonal variations in precipitation and 
wind patterns. The Intertropical Convergence Zone (ITCZ), 
where the trade winds from the Northern Hemisphere con-
verge with those from the Southern Hemisphere throughout 
the year, moves northward in boreal summer and shifts to 
the south in boreal winter. The annual cycle of monsoons is 
generated as part of the large-scale movement of the ITCZ 
in its passage from the Southern to Northern Hemisphere 
and back. The GPCP observed seasonal precipitation shows 
that the central and southern part of the Maritime Conti-
nent receives substantial precipitation during the (boreal) 
winter monsoon and less rainfall during the summer mon-
soon. In contrast, the Maritime Continent region north of 
10◦N (Myanmar, Thailand, Laos, Vietnam, Cambodia and 
the Philippines) experiences a dry season during the winter 
monsoon and a wet season during the summer monsoon. 
The seasons between the summer monsoon and winter 
monsoon are known as intermonsoon seasons (not shown).

In DJF, most models exhibit wet biases over the West 
Pacific Ocean except for four models: BCC-CSM1-1 
(Fig.  1e), BCC-CSM1-1m (Fig.  1f), IPSL-CM5B-LR 
(Fig.  1w) and MRI-CGCM3 (Fig.  1ac). About two-thirds 
of the models underestimate the precipitation over the land. 
This can be seen from the MMM (Fig. 1b) whereby most of 
the land has dry biases except for the islands of Sulawesi, 
New Guinea and the Philippines. The dry biases over land 
are associated with easterly wind biases over the region. 
This easterly wind bias and its associated dry bias is a com-
mon error in the atmosphere-only models. Models are able 
to capture the reversal of Australian monsoonal circulation 
from low-level westerly winds in DJF (Fig.  1) to easter-
lies in JJA (Fig. 2) over northern Australia. However, most 
of the models simulate weaker westerlies over northern 

Table 1  (continued)

Modeling center Model name Atmosphere horizontal 
resolution (◦  lon. × ◦  lat.)

Experiment References

NSF-DOE-NCAR CESM1-BGC 1.2 × 0.9 CMIP5 Vertenstein et al. (2013)
NSF-DOE-NCAR CESM1-CAM5 1.2 × 0.9 CMIP5 Vertenstein et al. (2013)
NSF-DOE-NCAR CESM1-FASTCHEM 1.2 × 0.9 CMIP5 Vertenstein et al. (2013)
NSF-DOE-NCAR CESM1-WACCM 2.5 × 1.9 CMIP5 Vertenstein et al. (2013)
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Fig. 1  DJF precipitation (mm/day) and 850 hPa wind (m s−1) for a GPCP and ERA-interim, b MMM biases and c–ad AMIP5 biases for 1979–
2008 over the Maritime Continent region (20◦S–20◦N, 80◦E–160◦E). Third panel shows the Maritime Continent domain and land-sea mask
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Fig. 2  JJA precipitation (mm/day) and 850 hPa wind (m s−1) for a GPCP and ERA-interim, b MMM biases and c–ad AMIP5 biases for 1979–
2008 over the Maritime Continent region (20◦S–20◦N, 80◦E–160◦E). Third panel shows the Maritime Continent domain and land-sea mask
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Australia in DJF, while a few models such as CCSM4 
(Fig.  1i), CSIRO-Mk3-6-0 (Fig.  1l), GFDL-HIRAM-360 
(Fig. 1q), MIROC5 (Fig. 1x) and NorESM1-M (Fig. 1ad), 
simulate stronger westerlies and wet biases over northern 
Australia.

Biases in JJA aren’t very consistent, i.e. the MMM bias 
is small compared to individual model biases. Models are 
more consistent in DJF, especially over the southern Mari-
time Continent. A notable difference between DJF and JJA 
seasons is the more common presence of large biases of 
precipitation over the Maritime Continent north of 10◦N in 
JJA (Fig. 2) as compared to DJF, indicating that the models 
simulate the monsoonal precipitation poorly. In JJA, BNU-
ESM (Fig.  2g), CSIRO-Mk3-6-0 (Fig.  2l), IPSL-CM5A-
LR (Fig. 2u), IPSL-CM5A-MR (Fig. 2v) and NorESM1-m 
(Fig. 2ad) models simulate weaker westerlies over the Mar-
itime Continent north of 10◦N whereas other models simu-
late overly strong westerlies that extend too far east into the 
West Pacific Ocean as shown in Fig.  2. These biases are 
consistent with precipitation biases, with weak westerlies 
associated with underestimation of the precipitation while 
strong westerlies increase the moisture supply and lead to 
overestimation of precipitation over the Maritime Conti-
nent north of 10◦N and West Pacific. This also implies that 
stronger westerlies to the north in JJA are also a response to 
a stronger monsoon.

Our result agrees with Ackerley et al. (2014), who found 
that the summer precipitation biases over northern Aus-
tralia in AMIP5 simulations are linked to the low-level 
winds. Models that overestimate the northern Australian 
precipitation have mean northerly flow between 120◦ and 
150◦E, which transports moisture from the ocean, whereas 
other models that underestimate the precipitation have 
mean southerly flow across the same range of longitudes. 
We next use correlation analyses to determine the relation-
ship between the PCC of precipitation and 850 hPa wind 
across the suite of models, as well as the RMSE.

The PCC and RMSE are calculated with respect to 
GPCP precipitation and ERA-Interim 850 hPa winds over 
the Maritime Continent domain of latitude 20◦S–20◦N and 
longitude 80◦E–160◦E in winter and summer seasons and 
are listed in Table  2. The text in bold highlights the best 
performing models showing either highest PCC or lowest 
RMSE. Three models (MRI-AGCM3-2S, MRI-AGCM3-
2H and MRI-CGCM3) from the same centre capture the 
spatial pattern of the precipitation in DJF with PCC higher 
than 0.8 as shown in Table 2. In JJA, five models (CCSM4, 
IPSL-CM5B-LR, MRI-AGCM3-2S, MRI-AGCM3-2H 
and MRI-CGCM3) capture the spatial pattern of the pre-
cipitation (PCC > 0.8). A few models such as CMCC-CM 
and F-GOALS-g2 have a substantial RMSE of more than 
5 mm/day with particularly large precipitation errors over 
the region north of 10◦N in JJA. For the 850 hPa wind, 

most models can adequately simulate the spatial pattern 
of low-level winds, with nearly half of the models having 
PCC scores higher than 0.9 in DJF and only two models 
(FGOALS-g2 and MRI-CGCM3) having PCC scores less 
than 0.9 in JJA. In terms of magnitude of simulation errors, 
only the MMM and MRI-AGCM3-2H have RMSE less 
than 2 m  s−1 in DJF. Most models have higher RMSE in 
JJA compared to DJF.

The MMMs for precipitation have higher PCC and 
lower RMSE scores than almost all individual models for 
all seasons. The MMMs also have PCC above 0.8 for both 
precipitation and low-level wind in all seasons. The bet-
ter performance of the MMM in reproducing the observed 
mean precipitation is in agreement with other CMIP5 stud-
ies (Colman et al. 2011; Jourdain et al. 2013; Sperber et al. 
2013; Feng et al. 2014) which found that the MMM outper-
forms individual models at reproducing the observed mon-
soon climate.

To condense the information from the spatial perfor-
mance skill scores of all the models and compare them 
for different fields, we plot scatter diagrams of precipita-
tion PCC and 850 hPa wind PCC in Fig.  3a and also the 
RMSE skill scores for the same fields in Fig. 3b (in other 
words, we generate scatter plots using pairs of columns 
from Table 2). The Pearson correlation coefficients (r) and 
Spearman’s rank correlation coefficients (sr) in the scatter 
plot of precipitation and 850 hPa wind in Fig. 3 suggest that 
the modeled precipitation biases are somewhat linked to 
the meridional circulation at 850 hPa, consistent with Sper-
ber et  al. (2013) for the Asian monsoon region. The two 
correlation coefficient types are comparable except for JJA 
and SON RMSE. This is because JJA and SON precipita-
tion RMSE scores feature a number of model outliers with 
substantial biases of more than 4mm/day and the Pearson 
correlation is sensitive to outliers. We will therefore use 
Spearman’s rank correlation in the remaining sections. The 
PCC values correlate better (>0.45) than the RMSE except 
for MAM season, which is low for both. The positive lin-
ear relationship reflects the intrinsic moisture transport link 
between precipitation and winds in the tropics.

The PCC in Fig. 3a also shows that the 850 hPa wind is 
better simulated than the precipitation in all four seasons, 
as found by Brown et  al. (2013) over the Western Pacific 
monsoon region and Sperber et  al. (2013) over the Asian 
monsoon region. This makes sense, since one might expect 
the large-scale flow, which is resolved, to be represented 
better than rainfall, which is parameterized.

Both the RMSE and PCC in Fig.  3 and Table  2 also 
show that the magnitude and spatial distribution of the 
biases vary in each model according to season, i.e, the poor 
models in one season do not necessarily poorly represent 
other seasons. For example FGOALS-g2 captures the DJF 
and MAM precipitation but poorly simulates the JJA and 
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SON precipitation. GISS-E2-R performs poorly in simu-
lating DJF (PCC 0.540) precipitation over the Maritime 
Continent but simulates other seasons well (PCC > 0.7). 
MRI-AGCM3-2S and MRI-AGCM3-2H capture both the 
precipitation and low-level winds in all seasons.

4  Investigating potential sources of model biases

In this section, we will analyse how the performance of 
models over the Maritime Continent depends on model 
characteristics, such as resolution, or on the representa-
tion of the global monsoon. This may give us clues as to 
what aspects of the models are most important in order to 

correctly represent the climate of the Maritime Continent. 
We focus on three possible sources of the Maritime Conti-
nent precipitation biases: the role of horizontal resolution, 
the relationship to biases in the local Hadley circulation 
and global monsoon, and the presence or lack of air-sea 
coupling.

4.1  Sensitivity of simulated mean climate to AMIP5 
model resolution

Current GCMs still exhibit large precipitation biases over 
the Maritime Continent region. Qian (2008) suggests that 
insufficient representation of land-sea breezes associated 
with the under-representation of the islands and orography 

Table 2  PCC and RMSE skill scores for annual cycle climatology of precipitation, DJF and JJA seasonal mean precipitation and 850 hPa wind

All PCCs are statistically significant with a p value less than 0.01. The AMIP5 models are sorted in alphabetical order. The top 5 models with 
the highest PCC and lowest RMSE are highlighted in bold. The MMM is highlighted in italic bold on the last row and also has higher PCC and 
lower RMSE than the individual models. The models are ranked approximately in terms of horizontal resolution (from highest to lowest) as 
shown in the first column

Resolution 
ranking number

Model name Annual cycle 
precipitation

DJF precipitation DJF 850 hPa wind JJA precipitation JJA 850 hPa 
wind

PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE

11 ACCESS1-0 0.923 1.156 0.678 2.888 0.885 1.705 0.715 3.316 0.914 1.680
12 ACCESS1-3 0.923 1.466 0.764 2.695 0.894 1.869 0.664 3.518 0.903 1.323
25 bcc-csm1-1 0.843 2.147 0.735 3.214 0.848 1.922 0.646 4.707 0.841 1.406
7 bcc-csm1-1-m 0.930 1.174 0.751 2.646 0.921 1.546 0.686 3.623 0.911 1.496
26 BNU-ESM 0.908 1.209 0.761 2.418 0.875 2.062 0.712 2.480 0.938 1.747
27 CanAM4 0.933 1.097 0.697 2.703 0.941 1.319 0.816 2.130 0.952 1.638
6 CCSM4 0.911 1.305 0.646 3.115 0.886 2.414 0.818 2.042 0.969 1.331
5 CMCC-CM 0.889 2.102 0.677 2.961 0.938 1.069 0.683 5.563 0.947 1.636
9 CNRM-CM5 0.811 1.720 0.487 2.801 0.820 2.168 0.683 2.802 0.938 2.311
16 CSIRO-Mk3-6-0 0.876 1.417 0.740 2.934 0.907 1.647 0.674 2.738 0.934 1.730
28 FGOALS-g2 0.770 3.231 0.790 2.272 0.928 1.357 0.612 8.062 0.855 3.019
20 FGOALS-s2 0.818 1.952 0.560 3.094 0.888 2.068 0.744 3.306 0.920 1.858
22 GFDL-CM3 0.912 1.532 0.734 2.581 0.877 2.129 0.753 2.721 0.962 1.521
3 GFDL-HIRAM-C180 0.937 1.136 0.753 2.294 0.945 1.331 0.736 3.320 0.949 1.128
2 GFDL-HIRAM-C360 0.938 1.050 0.727 2.523 0.958 1.195 0.727 2.961 0.970 1.094
21 GISS-E2-R 0.879 1.832 0.540 3.422 0.803 1.874 0.789 3.345 0.952 1.599
13 HadGEM2-A 0.918 1.183 0.660 3.005 0.872 1.819 0.694 3.313 0.902 1.789
14 inmcm4 0.919 2.014 0.696 2.768 0.873 1.825 0.766 3.424 0.941 1.447
23 IPSL-CM5A-LR 0.897 1.435 0.727 2.585 0.794 2.251 0.642 2.971 0.907 1.921
15 IPSL-CM5A-MR 0.893 1.349 0.724 2.372 0.846 1.901 0.630 2.933 0.920 1.857
24 IPSL-CM5B-LR 0.934 1.932 0.730 3.550 0.876 1.612 0.843 2.985 0.912 1.370
10 MIROC5 0.765 2.001 0.516 3.638 0.907 1.626 0.521 3.750 0.918 1.419
17 MPI-ESM-LR 0.960 1.196 0.715 2.846 0.940 1.073 0.780 3.083 0.971 0.876
18 MPI-ESM-MR 0.951 1.320 0.698 2.726 0.938 1.052 0.790 3.012 0.966 0.934
4 MRI-AGCM3-2H 0.953 1.235 0.858 1.792 0.967 0.900 0.862 2.987 0.966 0.857
1 MRI-AGCM3-2S 0.953 1.191 0.801 2.134 0.958 1.027 0.838 3.400 0.976 0.653
8 MRI-CGCM3 0.931 2.390 0.816 3.251 0.941 1.162 0.824 4.633 0.868 1.649
19 NorESM1-M 0.884 1.575 0.657 3.427 0.859 2.899 0.772 2.243 0.955 1.784

MMM 0.968 0.960 0.845 1.811 0.956 1.051 0.901 1.829 0.973 0.950
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in the Maritime Continent in coarse-resolution global cir-
culation models leads to the underestimation of precipita-
tion over the Maritime Continent.

Neale and Slingo (2003) found that a decrease in grid 
spacing from about 350–110 km does not reduce the pre-
cipitation biases in the Maritime Continent whereas other 
more recent studies (Schiemann et al. 2014; Johnson et al. 
2015) suggest increasing resolution improves the precipi-
tation simulations. Schiemann et  al. (2014) attributed the 
improvement of Maritime Continent precipitation to the 
better resolved boundary conditions (land-sea mask, soil 
and vegetation parameters) when the resolution increased 
from approximately 350–110 km. Johnson et  al. (2015) 
showed that better representation of the orography over 
the Maritime Continent at high resolution (approximately 
40 km) improves precipitation over the islands compared 
to coarse resolution (approximately 200 km). However, 
Neale and Slingo (2003) used the older version of the Met 
Office model (HadAM3), whereas Schiemann et al. (2014) 
and Johnson et al. (2015) used the newer version of the Met 
Office Unified Model (MetUM). Despite different conclu-
sions, these studies highlight the Maritime Continent as a 
region where the simulated mean climate has some sensi-
tivity to resolution.

In this section, we will now assess the sensitivity of 
Maritime Continent precipitation to climate model resolu-
tion. Among the 28 AMIP5 models in this study, the high-
est horizontal resolution is 0.2◦ × 0.2◦, while the lowest res-
olutions are as coarse as 3.7◦ × 1.9◦ and 2.8◦ × 2.8◦ (refer 
to Table 1). The monthly Maritime Continent precipitation 

values were bi-linearly interpolated to a common 3.75◦ × 3◦ 
grid for the calculation of model skill scores.

More than half of the highlighted top 5 models with 
the highest PCC and lowest RMSE scores in Table  2 are 
from the higher resolution models, which are models with 
ranking number 1–6 in horizontal resolution, sorted from 
highest to lowest in Table 2. This suggests that the highest 
resolution models have lower biases on average, although 
these models may also have other advantages independent 
of resolution.

We assess the sensitivity of Maritime Continent precipi-
tation to climate model resolution by dividing the models 
into 3 categories, which are the 6 models with the highest 
resolutions (blue lines), the 6 models with the lowest res-
olutions (red lines) and the remaining 16 models at inter-
mediate resolutions (grey lines), as shown in Fig. 4a. The 
individual model monthly precipitation PCCs in Fig.  4a 
suggest that not all high resolution models produce better 
precipitation simulations and vice-versa. The same cal-
culations performed over the land-only precipitation and 
sea-only precipitation model skill scores (both PCC and 
RMSE) also show no clear relationship between resolu-
tion and model performance (not shown). A comparison 
between model pairs from the same institution with differ-
ent resolutions in Fig. 4b shows that only the BCC-CSM1-
1m model with higher resolution performs better than its 
corresponding lower resolution model, whereas the other 
lower resolution models perform better than their corre-
sponding higher resolution models in most months. This 
suggests that the cause of deficiencies is largely unrelated 

Fig. 3  Scatter plot of the AMIP5 seasonal mean a PCC and b RMSE 
of Maritime Continent (20◦S–20◦N, 80◦E–160◦E) precipitation ver-
sus 850 hPa winds for each season. The Pearson correlation coeffi-
cient (r) and Spearman’s rank correlation coefficient (sr) for each 
season are shown in the yellow box on the top left corner. Both corre-

lation coefficients for PCC and r for RMSE are statistically significant 
with a p-value less than 0.05 for most seasons except for MAM. For 
RMSE Spearman’s-rank correlation, only JJA sr is statistically signif-
icant with a p-value less than 0.05
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to resolution, although these model pairs may have other 
differences in addition to resolution.

4.2  Mean meridional circulation and the global 
monsoon

Wang et  al. (2014) found that ascent in the tropics also 
influences subsidence over the subtropics in the Hadley 
circulation and suggest that remote biases are linked with 
regional biases. To investigate if errors in the local scale 
over the Maritime Continent are related to errors in the 
large-scale movement of the ITCZ, we will assess local 
Hadley circulation and the global monsoon biases and their 
relationship with Maritime Continent precipitation biases.

4.2.1  Mean meridional circulation

The ERA-Interim mean meridional circulation in Fig.  5a, 
d shows seasonal variability in the intensities and locations 
of the ascending and descending branches of the local Had-
ley cell. In winter, the ascending branch is located around 
5◦S while during summer, a broader ascending branch is 
located around 15◦N. In general, most of the models pro-
duce a similar structure and location of the local Hadley 
circulation with respect to ERA-Interim in all four seasons. 
The model with lowest RMSE, MPI-ESM-LR, is able to 
reproduce the Hadley Circulation with PCC above 0.9 for 
winter (Fig. 5b) and summer (Fig. 5e) monsoons.

The location of the ascending branch of the local Hadley 
circulation is consistent with the seasonal shift of the ITCZ 

and maximum precipitation. The reduced ascent over the 
Maritime Continent in CNRM-CM5 (Fig. 5c) is connected 
with dry biases over the Maritime Continent in DJF. The 
overly strong ascent around 15◦N simulated in FGOALS-
g2 (Fig. 5f) in JJA is associated with strong overestimation 
of rainfall over the region.

The correlation between RMSE skill scores of local 
Hadley circulation and precipitation in Table  3 also sug-
gests that the seasonal mean rainfall biases over the Mari-
time Continent are linked to the local Hadley Circulation 
biases. The RMSE correlates better than the PCC except 
for the MAM season, which is low for both. The Spear-
man’s rank correlation coefficients for RMSE are above 
0.35 and statistically significant (p < 0.05) for all seasons 
except for MAM. Thus there is some connection between 
errors at the relatively small scale of the Maritime Conti-
nent and the larger global-scale circulation.

4.2.2  Global monsoon

Next, we investigate if the models that have a better rep-
resentation of the monsoons on the global scale (solsti-
cial and equinoctial modes using the metrics defined in 
Sect.  2.4) have a better representation of the seasonal 
mean and annual cycle of precipitation over the Maritime 
Continent.

The global solsticial mode (JJA minus DJF) in Fig.  6b 
and equinoctial mode (MAM minus SON) in Fig. 6e for a 
selected model with the lowest RMSE (MRI-AGCM3-2H) 
are in good agreement with observations (Fig.  6a, d), but 

Fig. 4  Maritime Continent monthly precipitation a PCC for all 28 
models divided into high (blue lines), medium (grey lines) and low 
resolution (red lines) groups and b PCC for eight models, where each 

pair of models belong to the same institution and solid lines represent 
the higher resolution models while dashed lines represent the lower 
resolution models



 Y. Y. Toh et al.

1 3

the model generally overestimates the overall amplitude of 
the solsticial and equinoctial precipitation signal. The PCCs 
are comparable for both solsticial and equinoctial modes 
but the RMSE scores are slightly larger for the solsticial 
mode. The model with the highest RMSE bias, FGOALs-
g2, simulates an overly strong precipitation amplitude for 
both solsticial (Fig.  6c) and equinoctial (Fig.  6f) modes, 
especially over the tropical Indian and western Pacific 
Oceans.

Next we plot the local annual cycle of precipitation 
in these examples, as a time-latitude diagram averaged 

Fig. 5  DJF mean meridional circulation averaged over the Mari-
time Continent region (80◦E–160◦E) using omega (shading and 
arrow, Pa  s−1) and v (arrow, m  s−1) from a ERA-Interim and b the 

AMIP5 model with lowest RMSE and c the AMIP5 model with 
highest RMSE. d–f are as in a–c but for JJA season. RMSE between 
observed and simulated local Hadley Circulation is above each panel

Table 3  Spearman’s rank correlation between AMIP5 model skill 
scores at simulating the local Hadley circulation and skill scores for 
simulation of Maritime Continent (20◦ S–20◦N, 80◦E–160◦E) precip-
itation for the seasons indicated

A choice of PCC and RMSE skill scores is shown. Bold text indicates 
a statistically significant correlation with a p-value less than 0.05

DJF MAM JJA SON

PCC 0.19 −0.1 0.23 0.51
RMSE 0.39 0.24 0.39 0.53

Fig. 6  Comparison of the spatial pattern of the solsticial mode (JJA 
minus DJF) between a GPCP, b the AMIP5 model with the lowest 
RMSE and c the AMIP5 model with the highest RMSE. d–f are as 

in a–c but for equinoctial mode (MAM minus SON). The PCC and 
RMSE calculated between observed and simulated patterns (in the 
domain 45◦S–45◦N and 0◦–360◦E) are above each panel
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between 80◦E and 160◦E in Fig.  7. We can see that both 
MRI-AGCM3-2H and FGOALS-g2 also simulate overly 
strong monsoon precipitation, especially in summer and 
autumn seasons, which is consistent with the solsticial 
and equinoctial biases in Fig.  6. This suggests that Mari-
time Continent precipitation biases are related to global 
monsoon biases. This also indicates how closely the sea-
sonal movement of the global-scale ITCZ is related to local 
precipitation over the Maritime Continent. The PCC and 
RMSE of Maritime Continent annual cycle precipitation 
with respect to GPCP for all AMIP5 models are listed in 
Table 2.

To explore this further beyond the two models shown in 
Fig. 7, Table 4 shows the Spearman’s rank correlations of 
scores representing skill at simulating the solsticial mode 
or equinoctial mode with scores at simulating local Hadley 
circulation and Maritime Continent precipitation. Most of 
the correlation coefficient values are above 0.4 (p < 0.05) 

suggesting that those models having a better representation 
of the global monsoons (solsticial and equinoctial modes) 
will also have a better representation of the mean meridi-
onal circulation and precipitation pattern over the Maritime 
Continent region. Thus our analysis demonstrates a connec-
tion all the way from the skill at simulating the global-scale 
circulation down to the regional scale of Maritime Conti-
nent precipitation in the AMIP5 models.

4.3  Sensitivity of simulated mean climate 
to ocean‑atmosphere coupling

Ocean-atmosphere coupling is important for monsoon sim-
ulation. Song and Zhou (2014) compared the coupled and 
uncoupled simulations from CMIP5 and found that air-sea 
coupling improves the East Asian Summer Monsoon simu-
lation in CMIP5 models. On the other hand, while many 
errors arise from cloud and convective parameterizations 

Fig. 7  Latitude-time plot of precipitation zonally averaged between 
80◦E and 160◦E for a GPCP, b MRI-AGCM3-2H and c FGOALS-g2. 
White dashed line shows the position of the maximum precipitation 

each month. Precipitation biases with respect to GPCP are shown for 
this same temporal-spatial averaging for d MRI-AGCM3-2H and e 
FGOALS-g2

Table 4  Spearman’s rank 
correlation between skill 
scores at simulating the global 
monsoon (solsticial mode and 
equinoctial mode) and both the 
local Hadley circulation and 
precipitation over the Maritime 
Continent respectively

Bold text indicates a statistically significant correlation with a p-value less than 0.05

Hadley Circulation Maritime Continent Precipi-
tation

Solsticial DJF JJA DJF JJA

PCC 0.30 0.66 0.34 0.53
RMSE 0.30 0.68 0.55 0.51

Hadley Circulation Maritime Continent Precipi-
tation

Equinoctial MAM SON MAM SON

PCC 0.42 0.56 −0.01 0.30
RMSE 0.18 0.45 0.52 0.60
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affecting coupled and atmosphere-only models alike, other 
errors arise through coupled feedbacks. Li and Xie (2014) 
attributed the double ITCZ problems in CMIP5 to cloud 
simulation errors in the atmospheric model, while the equa-
torial Pacific cold tongue errors were attributed to ocean-
atmosphere feedbacks.

In this section, the analysis in Sect. 3 was first repeated 
for 46 coupled versions of CMIP5 models and summarised 
briefly: we found some similarities between CMIP5 and 
AMIP5. For instance, the MMM has better skill at repro-
ducing the observed mean climate than individual models. 
The 850 hPa wind is better simulated than the precipitation 
in all four seasons in terms of its pattern correlation. The 
coupled versions of CMIP5 also have a significant spread 
in model performance. The good models in one season do 
not necessarily represent other seasons well.

To determine the potential impact of SST biases in sim-
ulating Maritime Continent precipitation, we made a com-
parison between 22 coupled CMIP5 model simulations and 
their corresponding AMIP simulations, which are a subset 
of the 28 models analysed in the previous section above. 
This is because modelling groups often run several differ-
ent versions of their models, whereas not all coupled and 
atmosphere models from a given group are directly equiva-
lent. The mean-state climate and biases of these 22 CMIP5 
models are almost identical to the 46 CMIP5 models (not 
shown). The same result holds for AMIP5, whereby the 
22 models have similar mean state biases to those of the 
28 AMIP5 models. The MMMs shown in the remainder 
of this section consist of 22 corresponding CMIP5 and 
AMIP5 models respectively.

In Fig.  8a, the comparison between 22 AMIP5 and 
CMIP5 models PCCs in reproducing the annual cycle 
(time-latitude) precipitation shows that most CMIP5 mod-
els from a given modelling group perform better than their 

corresponding AMIP5 models. AMIP5 and CMIP5 MMMs 
have very similar values of PCC with observations (0.968 
and 0.969) and RMSE (0.99 and 0.98 mm/day, not shown). 
However, the PCCs (as well as RMSE) for individual mod-
els from CMIP5 and AMIP5 vary greatly, and 14 of the 
22 CMIP5 models have higher PCC scores than their cor-
responding AMIP5 models. This seems to suggests that 
air-sea coupling improves the simulation of the Maritime 
Continent annual cycle precipitation despite the inevitable 
SST biases. However, AMIP5 models generally outperform 
CMIP5 models in the simulation of solsticial (Fig. 8b) and 
equinoctial (Fig. 8c) modes. This opposite result suggests 
that SST biases and ocean-atmosphere feedback errors 
introduce larger biases in the coupled models at the large 
scale. Fig. 8 also indicates that there is a clear lack of cor-
relation between a model’s performance at simulating the 
annual cycle of precipitation in atmosphere-only mode and 
in coupled mode. This is also the case for the patterns of 
the equinoctial and solsticial modes.

Although most AMIP5 models simulate the seasonal 
mean local Hadley circulations better than CMIP5 for all 
seasons (figure not shown), we also found mixed results 
for model skill at reproducing the seasonal precipitation 
and 850 hPa wind patterns over the Maritime Continent. 
CMIP5 better simulates both JJA and SON precipitation 
and low-level winds, whereas AMIP5 shows better simula-
tion of the DJF and MAM seasonal mean climate. This sug-
gests that air-sea coupling can be important for Maritime 
Continent climate simulation but its impact is complex.

CMIP5 (coupled) models show a weaker correlation 
between skill scores for simulating Maritime Continent 
precipitation and skill scores for simulating local Hadley 
Circulation than in AMIP5. The correlation coefficients 
of skill scores for simulating Maritime Continent precipi-
tation with skill scores for simulating the low-level wind 

Fig. 8  Comparison between CMIP5 and AMIP PCC of a Maritime Continent annual cycle precipitation averaged between 80◦E and 160◦E, b 
solsticial mode, c equinoctial mode. MMMs are plotted in black color
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is also lower in CMIP5 than in AMIP5. However, CMIP5 
skill scores for simulating Maritime Continent precipita-
tion has stronger correlation with skill scores for simulat-
ing global monsoon solsticial mode compared with AMIP5 
(see Table 5).

Coupling adds extra complexity, which will be a focus of 
later work when we will look at SST bias, but it is beyond 
the scope of this paper.

5  Clustering of the AMIP5 Maritime Continent 
annual cycle precipitation

Cluster analysis is used for classification of homogeneous 
climate patterns and weather regimes in climate studies 
(Unal et al. 2003; Bao and Wallace 2015). Apart from that, 
cluster analysis can be used to group ensemble members 
for operational forecasting purposes (Molteni et  al. 1996; 
Legg et  al. 2002) and classifying CMIP5 climate change 
projections (Masson and Knutti 2011; Mizuta et al. 2014).

In this study, hierarchical clustering analysis of Mari-
time Continent annual cycle precipitation was performed 
to characterize model systematic biases in the AMIP5 runs 
and determine if these biases are related to common fac-
tors elsewhere in the tropics. We chose to perform the clus-
tering analysis on the annual cycle time-latitude diagram 
since it is a single map which contains information from a 
range of seasons. The annual cycle diagnostic captures the 
seasonal movement of the ITCZ in the Maritime Continent 
domain, so it is a diagnostic at the intersection of global 
and local scale.

In cluster analysis, the models that are similar are 
grouped together based on minimizing the Euclidean dis-
tance of the Maritime Continent annual cycle precipita-
tion between each pair of models or model clusters using 
the complete linkage method as described in Sect. 2.5. The 
dendogram in Fig. 9a shows that the clustering resulted in 
five clusters with 13, 8, 4, 2 and 1 model(s) in each of the 
clusters.

To ensure that the clustering analysis is robust and mod-
els that are similar are grouped together, we calculated the 

PCCs between AMIP5 simulations and GPCP observa-
tions and plotted these in a box-and-whisker plot in Fig. 9b 
according to each cluster. Clusters I and II are quite distinct 
in terms of their PCC scores. Almost all of the models in 
Cluster I perform better than Cluster II models in simu-
lating the annual cycle of precipitation. Cluster III only 
consists of four models and has a large spread in PCC val-
ues. Clusters IV and V consist of only two and one model 
respectively, which are also outliers from the overall sam-
ple. Consequently, for the remainder of the composite anal-
ysis in Sect.  5.1, we will only consider Clusters I and II. 
Although there is one outlier each in Clusters I and II, we 
have also examined the Euclidean distances between each 
of the AMIP5 simulations and the GPCP observations as 
well as the Euclidean distances between each of the mod-
els with other models in all clusters (figure not shown) to 
ensure that the models that are most similar are clustered 
together. We found that all the models have smaller dis-
tances between the models in the same cluster and bigger 
distances between models of different clusters. This shows 
that the clustering analysis is able to successfully group 
together models that are most similar.

The dendogram in Fig. 9a also shows that models from 
the same institution mostly belong to the same clusters 
(Masson and Knutti 2011; Mizuta et al. 2014). For exam-
ple, the models from the same institutions such as MRI 
(AGCM3.2 models), GFDL (HIRAM models), CSIRO-
BOM (ACCESS models), IPSL (CM5A models) and MPI 
(ESM models) are in the same cluster. The models that 
shared the same atmospheric model also tend to cluster. 
The ACCESS models are based on the UK Met Office 
HadGEM atmospheric component and are in the same clus-
ter with the HadGEM2-A model. The NorESM1-M model 
uses the same atmospheric model as CCSM4 (Bentsen 
et  al. 2013), and BNU-ESM also uses the similar Com-
munity Atmospheric Model version 4 (CAM4) atmos-
phere. Both models are in the same cluster as CCSM4. On 
the other hand, MRI-CGCM3 is an Earth System Model, 
with its atmosphere component interactively coupled to an 

Table 5  Spearman’s 
rank correlation of skill at 
simulating Maritime Continent 
precipitation with skill at 
simulating each of the four 
listed fields for the 22 CMIP5 
models

Bold text indicates a statistically significant correlation with a p-value less than 0.05. Italics indicates a 
larger CMIP5 Spearman’s rank correlation coefficient compared to the 28 AMIP5 model correlation coef-
ficient scores in the previous section

PCC RMSE

DJF MAM JJA SON DJF MAM JJA SON

Low-level wind 0.41 0.44 0.58 0.18 −0.11 0.19 0.39 −0.33
Hadley circulation −0.23 −0.02 0.15 0.07 0.16 0.54 0.20 0.30
Solsticial 0.17 0.60 0.74 0.79
Equinoctial 0.25 0.35 0.71 0.56
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Fig. 9  a Hierarchical clustering dendrogram. The models in the same 
colors are in the same clustering group while the distances greater 
than or equal to the threshold are colored black. b Box-and-whisker 
plot of PCC between AMIP5 simulations and GPCP observations of 
Maritime Continent annual cycle precipitation averaged between 80◦

E and 160◦E. Green dots are models’ PCC; magenta lines indicate the 
median; red dots represent the mean and blue boxes indicate the inter-
quartile range (IQR). The plus signs are the outliers, which are PCC 
scores smaller than the lower quartile by at least 1.5 times the IQR

Fig. 10  Cluster I a latitude-time plot of precipitation averaged 
between 80◦E and 160◦E, the white dashed line indicates the position 
of maximum precipitation for each month, roughly illustrating the 
ITCZ. b Precipitation biases with respect to GPCP. Cluster I zonal 

mean meridional circulation omega (shading and arrow, Pa s−1) and v 
(arrow, m s−1) biases with respect to ERA-Interim averaged between 
80◦E and 160◦E for c DJF and d JJA. e–h are as in a–d but for Cluster 
II. PCC and RMSE are shown above each panel
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aerosol model, and it is in a different cluster from the less 
complex MRI-AGCM3.2H and MRI-AGCM3.2S models.

5.1  Composites of mean climate simulation biases 
for the leading two clusters of the AMIP5 models

In this section, the composites of Clusters I and II are 
obtained by taking the average of all models in each cluster. 
Firstly, we looked at the latitude-time plot of precipitation 
averaged between 80◦E and 160◦E in Fig. 10 (first column), 
the metric on which the models are clustered, which shows 
the transitions of precipitation during the course of the 
annual cycle. Cluster I simulates a similar seasonal migra-
tion of precipitation over the Maritime Continent (Fig. 10a) 
to GPCP (Fig.  7a). Cluster I is also able to capture both 
the winter monsoon and summer monsoon shift and also 
the movement of the ITCZ, but it overestimates the pre-
cipitation, especially during the JJA and SON seasons 
(Fig. 10b). Cluster II simulates less seasonal migration and 
the position of maximum rainfall stays closer to the equator 
throughout the year (Fig. 10e, f). The PCC and RMSE for 
the composites of the two clusters show that Cluster I has 
better skill than Cluster II at simulating the annual cycle 
climatology of precipitation.

To see if these errors in Maritime Continent ITCZ posi-
tion are related to the larger-scale overturning circulation, 
we next investigate the relationship between precipitation 
biases and local Hadley circulation biases during DJF and 
JJA seasons in the two clusters. We can see from Fig. 10b, 
f that Cluster II has larger precipitation biases than Cluster 
I in DJF. The Cluster I dry biases correspond to local Had-
ley circulation subsidence biases in the southern Maritime 
Continent. Cluster II wet biases over the northern Maritime 

Continent and dry biases over the southern Maritime Con-
tinent are consistent with the ascent and descent biases in 
Fig. 10g.

During JJA, the clusters show different biases in precipi-
tation. Cluster I has the correct pattern but too large mag-
nitude of precipitation in the observed wet regions of the 
Maritime Continent. There is a slight discrepancy between 
the wet biases and ascent biases. Note that, for regions 
with near-zero rainfall biases or small positive precipita-
tion biases, there are sometimes downward motion biases 
(Fig.  10d, ≃7 ◦N). This discrepancy may occur because 
GPCP observations are used for precipitation and ERA-
Interim for vertical motion in this study. Cluster II has dry 
biases north of the equator and wet biases to the south. 
These biases are consistent with the biases in ascent and 
descent of the local Hadley circulations in Fig. 10h. Clus-
ter II simulates the ascending branch too far south, which 
results in overestimation of rainfall in the southern Mari-
time Continent and underestimation in the northern Mari-
time Continent. This shows that the precipitation biases 
in the Maritime Continent are linked closely to the (local) 
Hadley circulation.

Examining the tropics-wide properties of the clusters, 
we find that the mean precipitation averaged over the whole 
tropics between 0◦ and 360◦E in Fig. 11d, e shows similar 
biases to the precipitation biases averaged between 80◦E 
and 160◦E in Fig. 10b, f when accounting for the tropics-
wide mean wet biases of both clusters. This confirms what 
we saw earlier for individual model analysis, that Maritime 
Continent precipitation biases are closely related to global 
monsoon biases. The errors in movement of the ITCZ over 
the Maritime Continent are thus related to global ITCZ 
errors. A separation of land-only and sea-only grid points 

Fig. 11  Zonal mean precipitation in the global domain (averaged 
between 0◦ and 360◦E) for a GPCP, b Cluster I and c Cluster II, the 
white dashed line indicates the position of maximum precipitation 

for each month, roughly illustrating the ITCZ. Biases with respect to 
GPCP for d Cluster I and e Cluster II. PCC and RMSE are shown 
above each panel
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precipitation biases (figure not shown) shows that the wet 
biases over sea-only grid points dominate the tropics-wide 
errors.

Figure 12 shows the DJF and JJA seasonal mean GPCP 
precipitation and 850 hPa winds over the tropics along with 
Cluster I and Cluster II mean biases. Clusters I and Clus-
ter II have somewhat similar biases over the Indian Ocean 
in DJF season and also in JJA season. In DJF, Cluster I 
(Fig. 12c) simulates an overly strong South Pacific Conver-
gence Zone (SPCZ) whereas Cluster II (Fig. 12e) underes-
timates the SPCZ. In JJA, Cluster I (Fig. 12d) simulates an 
overly wet Western North Pacific (WNP) while Cluster II 
(Fig. 12f) underestimates the precipitation over the region. 
Bush et  al. (2015) highlighted the WNP as a region with 
too much rainfall in the MetUM, a more recent version of 
the MOHC HadGEM2-A model from CMIP5, which is evi-
dent in Cluster I.

Cluster I shows dry biases over India in JJA (Fig. 12d), 
and it shows wet biases over the east-central equatorial 
Pacific and dry biases in the Maritime Continent, Australia 
and northern South America in both seasons (Fig. 12c, d). 
For Cluster II, DJF biases in Fig. 12e are associated with a 
mean shift in the global monsoon whereby Cluster II simu-
lates maximum precipitation further north than GPCP.

Figure  13 shows scatter plots of AMIP5 Cluster I 
and Cluster II seasonal mean skill scores at simulating 
Maritime Continent precipitation versus skill scores at 
simulating the global monsoon solsticial and equinoctial 
modes. The MMMs in each cluster outperform the indi-
vidual models in their cluster for all seasons. Although 
the individual model skill scores vary greatly, the Cluster 

I MMMs perform better than the Cluster II MMMs in 
simulating almost all of the local and global proper-
ties. This is consistent with our earlier results suggest-
ing Cluster I simulates a realistic movement of the ITCZ, 
capturing the rainfall pattern but overestimating the rain-
fall, whereas in Cluster II, the ITCZ does not move as 
observed, giving an unrealistic pattern of rainfall which 
impacts both the PCC and RMSE scores. The only excep-
tion is Maritime Continent precipitation RMSE in SON, 
indicating that Cluster II has a slightly more realistic 
representation of the autumn rainfall, when the ITCZ is 
close to the equator anyway.

The RMSE of seasonal mean precipitation of both clus-
ters has a strong significant correlation with the RMSE of 
solsticial (Fig.  13b, d) and equinoctial modes (Fig.  13f, 
h), except for Cluster II JJA RMSE. This indicates that the 
amplitude of the particular global monsoon and Maritime 
Continent biases singled out by these clusters are linked, 
just as the global monsoon biases and Maritime Continent 
biases are linked for all models (Sect. 4.2.2).

In Fig.  13a, c, Cluster I, which is able to capture both 
the winter monsoon and summer monsoon patterns, shows 
a significant positive correlation with the solsticial mode, 
whereas Cluster II, which has less similarity in the spa-
tial patterns with GPCP and simulates the position of 
maximum rainfall too close to the equator, shows no cor-
relation with the solsticial mode (off-equatorial monsoon) 
PCCs. However, Cluster II Maritime Continent precipita-
tion shows a stronger correlation with the equinoctial mode 
(Fig. 13e, g), perhaps because the location of the ITCZ in 
spring and autumn seasons is closer to the equator.

Fig. 12  GPCP precipitation and ERA-Interim 850 hPa wind for a DJF and b JJA seasons, and biases for Cluster I in c DJF and d JJA seasons 
and Cluster II in e DJF and f JJA seasons. PCC and RMSE are shown above each panel
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The results of the cluster analysis are in good agree-
ment with the analysis in the previous section stating that 
Maritime Continent precipitation biases are closely related 
to local Hadley circulation biases and biases in the global 
monsoon. These relationship are stronger for the solsticial 
mode in Cluster I and the equinoctial mode in Cluster II.

6  Discussion

This study evaluates the AMIP5 model performance in 
simulating the mean climate over the Maritime Continent 
and investigates the model characteristics that may be 
potential sources of bias.

Our results in Sect.  4.1 agree with Neale and Slingo 
(2003) that model performance is largely unrelated to reso-
lution. Although the range of resolutions in AMIP5 is com-
parable to the size of several typical Maritime Continent 
islands, even the higher resolution models in AMIP5 insuf-
ficiently resolve some of the smaller islands and steeper 
orography in the Maritime Continent. The re-gridding 
of monthly Maritime Continent precipitation to a com-
mon lower 3.75◦ × 3◦   resolution in this analysis may also 

obscure some of the benefit of high resolution. The model 
performance perhaps does not improve as resolution is 
increased because these models all still rely on convective 
parameterisations.

Our analysis of the relationship between local Hadley 
circulation biases and precipitation biases in the Maritime 
Continent suggests that the seasonal mean biases in the 
region are linked to the local Hadley Circulation biases. 
The correlations between the global monsoon (solsticial 
and equinoctial modes) and the Maritime Continent precip-
itation show some connection of errors at the regional scale 
of the Maritime Continent with errors at the larger global 
circulation scale. The same results hold for both Cluster I 
and Cluster II in Sect. 5.

On the other hand, ocean-atmosphere coupling impacts 
are more complex, with mixed results found in this study 
when analysing model skill at reproducing the mean cli-
mate over the Maritime Continent and the global mon-
soon and circulation. Our results seem to suggest that 
air-sea coupling improves the simulation of Maritime Con-
tinent annual cycle precipitation despite the inevitable SST 
biases. However, SST biases and ocean-atmosphere feed-
back errors introduce larger biases in the coupled models at 

Fig. 13  Scatter plots of the AMIP5 Cluster I (blue) and Cluster II 
(red) seasonal mean a DJF PCC, b DJF RMSE, c JJA PCC and d JJA 
RMSE of Maritime Continent precipitation versus skill scores at sim-
ulating the solsticial mode; and e MAM PCC, f MAM RMSE, g SON 
PCC and h SON RMSE of Maritime Continent precipitation versus 
skill scores at simulating the equinoctial mode. The Maritime Con-
tinent domain is 20◦S–20◦N and 80◦E–160◦E, whereas solsticial and 

equinoctial modes domains are 45◦S–45◦N and 0◦–360◦E. The Pear-
son correlation coefficient (r) and Spearman’s rank correlation coef-
ficient (sr) for each season are shown in the yellow box on the top left 
corner. All correlation coefficients for PCC and RMSE are statisti-
cally significant with a p-value less than 0.05 for most seasons except 
for Cluster II DJF PCC, Cluster I MAM PCC, Cluster II JJA PCC and 
Cluster I SON PCC
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larger scales. Hendon (2003) suggests that the SST changes 
feed back on the surface winds and thus affect the Walker 
circulation and precipitation. Future work will look at SST 
biases over the Maritime Continent and investigate their 
relationship with precipitation and circulation biases.

Apart from the three potential sources of bias discussed 
in Sect. 4, i.e. the role of horizontal resolution, the relation-
ship to biases in the local Hadley circulation and global 
monsoon, and the presence or lack of air-sea coupling, 
there are also other factors. One possible source of com-
mon error between global monsoon biases and local Mari-
time Continent biases are errors associated with the para-
metrization of cumulus convection. Studies have shown 
that tropical precipitation simulation is highly sensitive to 
the convection scheme (Sherwood et al. 2014; Bush et al. 
2015). Ackerley et al. (2014) suggest that wet biases over 

Australia in summer in the BNU-ESM, NorESM1-M and 
CCSM4 models might be related to the convection schemes 
that are used in these models. Here we briefly examine 
the relationship between the convection scheme and the 
model biases. Table  6 shows the convection scheme and 
type of convective closure for each of the AMIP5 models, 
arranged by cluster group. Although the cluster members 
in the same cluster use different convection schemes and 
closures, the models from the same institution that use dif-
ferent convection schemes do not cluster. This includes 
GFDL-HIRAM and GFDL-CM3; IPSL-CM5A and 
IPSL-CM5B; FGOALS-s2 and FGOALS-g2. The IPSL-
5A-LR and IPSL-5A-MR atmospheric models, which dif-
fer only in resolution, are in the same cluster, whereas the 
IPSL-CM5B models that involved substantial changes in 
the atmospheric model including convection scheme and 

Table 6  CMIP5 models convection scheme and closure

Cluster Model Convection scheme Closure

I MRI-AGCM3.2H Yoshimura (Yukimoto et al. 2011); Tiedtke (1993) CAPE
MRI-AGCM3.2S
GFDL-HIRAM-C180 Moorthi and Suarez (1992) CAPE
GFDL-HIRAM-C360
BCC-CSM1.1(m) Modified Zhang and McFarlane (1995), Zhang and Mu (2005) CAPE
ACCESS1.0 Modified Gregory and Rowntree (1990) CAPE
ACCESS1.3
HadGEM2-A Modified Gregory and Rowntree (1990); Adaptive Detrainment 

(Derbyshire et al. 2011)
CAPE

INM-CM4 Betts (1986) CAPE
MPI-ESM-MR Tiedtke (1989), Nordeng (1994) CAPE
MPI-ESM-LR
GISS-E2-R DelGenio and Yao (1993) A cloud base neutral buoyancy
CanAM4 Zhang and McFarlane (1995) CAPE

II CCSM4 modified Zhang and McFarlane (1995), Richter and Rasch (2008), 
Neale et al. (2008)

CAPE

CNRM-CM5 Bougeault (1985) Kuo
IPSL-CM5A-LR Modified Emanuel (1991), Bony and Emanuel (2001) CAPE
IPSL-CM5A-MR
CSIRO-Mk3.6.0 Modified Gregory and Rowntree (1990) Stability-dependent mass-flux
NorESM1-M Zhang and McFarlane (1995) CAPE
GFDL-CM3 Donner (1993), Donner et al. (2001), Wilcox and Donner (2007) CAPE
BNU-ESM modified Zhang and McFarlane (1995), Zhang (2002), Zhang and 

Mu (2005)
Closure scheme couples convection to the 

large-scale forcing in the free tropo-
sphere

III CMCC-CM Tiedtke (1989), Nordeng (1994) CAPE
MRI-CGCM3 Yoshimura (Yukimoto et al. 2011), Tiedtke (1993) CAPE
IPSL-CM5B-LR Modified Emanuel (1991), Bony and Emanuel (2001), Grandpeix 

et al. (2004)
Available lifting power

BCC-CSM1.1(m) modified Zhang and McFarlane (1995), Zhang and Mu (2005) CAPE
IV MIROC5 Chikira and Sugiyama (2010) Prognostic convective kinetic energy

FGOALS-s2 Tiedtke (1989), Nordeng (1994) CAPE
V FGOALS-g2 Zhang and McFarlane (1995), Zhang and Mu (2005) CAPE
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closure (Dufresne et al. 2013) are in different clusters. On 
the other hand, the BCC-CSM models are the only ones 
which use the same convection scheme, and differ only in 
resolution, but are not in the same cluster.

These results suggest that the convection scheme can be 
important for model simulation of the annual cycle precipi-
tation in the Maritime Continent, but further work would 
be necessary to characterize the biases according to con-
vection scheme, which is beyond the scope of this paper.

7  Conclusions

This paper examines the fidelity of CMIP5 models in 
simulating mean climate over the Maritime Continent, 
focusing mainly on the uncoupled versions of the models. 
The 28 CMIP5 model simulations for the 30-year period 
(1979–2008) in AMIP configuration with prescribed SSTs 
and sea ice (AMIP5) are compared with observational 
datasets. We quantify the model performance based on the 
pattern correlation coefficient (PCC) and root mean square 
error (RMSE) skill scores. We find that there is a consider-
able spread in the performance of the 28 AMIP5 models in 
reproducing the seasonal mean climate and seasonal cycle 
over the Maritime Continent region. Model performance 
is not necessarily consistent across seasons. A model with 
high skill in one season does not necessarily represent other 
seasons well. The multi-model mean (MMM) has better 
skill at reproducing the observed climate than individual 
models, in common with other studies of monsoon regions 
(e.g. Colman et al. 2011; Jourdain et al. 2013; Sperber et al. 
2013; Feng et al. 2014). The PCC comparison also shows 
that models have higher skill at simulating the Maritime 
Continent 850 hPa wind than the precipitation in all four 
seasons.

We also investigated the possible sources of the model 
biases. Our assessment of the sensitivity of Maritime Con-
tinent precipitation to climate model resolution suggests 
that, at the resolutions typical of AMIP5, the model perfor-
mance is largely unrelated to model horizontal resolution. 
Instead, our analyses show that the local Maritime Conti-
nent biases are somewhat related to global circulation and 
global monsoon biases. The models that have a better rep-
resentation of the local Hadley Circulation and global mon-
soons have a better representation of the seasonal means of 
precipitation and winds over the Maritime Continent.

The analysis was repeated for 46 coupled versions of 
CMIP5 models, which we called “CMIP5”, and we found 
similar results as in AMIP5. For instance, the MMM has 
better skill at reproducing the observed mean climate than 
the individual CMIP5 models. The 850 hPa wind is bet-
ter simulated than the precipitation in all four seasons. 
CMIP5 models also showed significant spread in model 

performance. The comparison between 22 pairs of CMIP5-
AMIP5 simulations shows that most CMIP5 models per-
form better than their AMIP5 counterpart in reproducing 
the annual cycle of Maritime Continent precipitation. How-
ever, AMIP5 models generally outperform CMIP5 models 
in simulating the global monsoon. Although most AMIP5 
models simulate the seasonal mean local Hadley circulation 
better for all seasons compared to CMIP5, we found mixed 
results for model skill at reproducing the seasonal mean 
precipitation and 850 hPa winds over the Maritime Conti-
nent. Besides that, CMIP5 models show weaker correlation 
between the Maritime Continent precipitation biases and 
both the local Hadley Circulation biases and the low-level 
wind biases but stronger correlation with the global mon-
soon solsticial mode biases compared to AMIP5.

Hierarchical clustering analysis of Maritime Continent 
annual cycle precipitation was performed to characterize 
model systematic biases in the AMIP5 runs and determine 
if these biases are related to common factors elsewhere 
in the tropics. Our analysis resulted in two distinct clus-
ters. Cluster I is able to reproduce the observed seasonal 
migration of Maritime Continent precipitation, but it over-
estimates the precipitation, especially during the JJA and 
SON seasons. On the other hand, in Cluster II the maxi-
mum rainfall position is too close to the equator throughout 
the year. The tropics-wide properties of these clusters also 
indicate a connection all the way from the skill of simu-
lating the global properties down to skill at simulating the 
regional scale of Maritime Continent precipitation.

The present study therefore highlights the importance 
of global monsoon and circulation simulations in AMIP5, 
which are significantly associated with the mean climate 
simulation biases at Maritime Continent. On the other 
hand, ocean-atmosphere coupling impacts are more com-
plex, and these will be the focus of future work to look at 
SST biases over the Maritime Continent and investigate 
their relationship with precipitation and circulation biases.
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