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Abstract 11 

Wind fields in the atmospheric surface layer (ASL) are highly three-dimensional and 12 

characterized by strong spatial and temporal variability. For various applications such as 13 

wind comfort assessments and structural design, an understanding of potentially hazardous 14 

wind extremes is important. Statistical models are designed to facilitate conclusions about the 15 

occurrence probability of wind speeds based on the knowledge of low-order flow statistics. 16 

Being particularly interested in the upper tail regions we show that the statistical behavior of 17 

near-surface wind speeds is adequately represented by the Beta distribution. By using the 18 

properties of the Beta probability density function in combination with a model for estimating 19 

extreme values based on readily available turbulence statistics, it is demonstrated that this 20 

novel modelling approach reliably predicts the upper margins of encountered wind speeds. 21 

The model’s basic parameter is derived from three substantially different calibrating datasets 22 

of flow in the ASL originating from boundary-layer wind-tunnel measurements and direct 23 

numerical simulation. Evaluating the model based on independent field observations of near-24 

surface wind speeds showed a high level of agreement between the statistically modelled 25 

horizontal wind speeds and measurements. The results show that, based on the knowledge of 26 

only a few simple flow statistics (mean wind speed, wind speed fluctuations and integral time 27 

scales), the occurrence probability of velocity magnitudes at arbitrary flow locations in the 28 

ASL can be estimated with a high degree of confidence. 29 
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Knowledge of the probability density function (p.d.f.) of wind speed in the atmospheric 34 

boundary layer (ABL) is necessary for many applications such as the estimation of the wind 35 

energy potential at a particular location (Sarkar et al., 2011) or wind comfort and safety 36 

studies (e.g. Janssen et al., 2014). Furthermore, safety considerations in the design of 37 

structures at exposed locations (e.g. bridges, radio masts or wind turbines) require a reliable 38 

assessment of the maximum expected wind speeds (Brabson and Palutikof 2000). 39 

For the prediction of wind gusts, i.e. sudden, brief increases of local wind speeds, various 40 

methodologies have been proposed in the past. Zhang et al. (2013), for example, performed 41 

an analysis of the characteristics of 1-Hz wind-speed data continuously sampled in the air 42 

layer below 2 m. They proposed an empirical model to predict the fluctuating wind gusts of 43 

the streamwise velocity based on friction velocity, mean wind speed and standard deviation at 44 

2 m. Sallis et al. (2011) used a machine-learning approach to determine meaningful and 45 

robust results of wind gusts and proposed an algorithm for application to real-time climate 46 

data. Brasseur (2001) proposed a new wind gust estimate method where the determination of 47 

gusts is fully based on physical considerations. The proposed approach assumes that surface 48 

gusts result from the deflection of air parcels in the upper levels of the boundary layer, which 49 

are brought down by turbulent eddies. The method takes into account the mean wind and the 50 

turbulent structure of the atmosphere. 51 

Over the past years, research activity in the area of wind-speed distribution modelling has 52 

increased considerably. For the prediction of wind-speed distributions statistical models that 53 

provide information about the local occurrence probabilities at a certain site are preferably 54 

employed. For this task, the choice of a suitable p.d.f. is crucial. A number of previous 55 

studies compared statistical distributions with measurements in order to examine how well 56 

the p.d.f.s describe the statistical properties of the measured wind speed. An overview of 57 

recent studies is presented in Table 1. 58 

Table 1. Overview of recent studies (in chronological order) that use different statistical distributions to assess 59 
wind speed occurrence probabilities. 60 

Publication Distributions Averaging time interval of data 

analyzed 

Donk et al. (2005) Weibull 1 h 

Carta et al. (2009) Generalized Gamma, Gamma, 

Weibull, singly truncated from 

below normal, two components 

mixture Weibull, Rayleigh, beta, 

inverse Gaussian, lognormal 

1 h 

He et al. (2010) Weibull 1 h 

Morgan et al. (2011) Gamma, lognormal, Rayleigh, log 

Pearson type III, Generalized 

Rayleigh, Generalized Gamma, 

Pearson type III, Weibull, 

Generalized normal, Wakeby, 

10 min 
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Kappa, bimodal Weibull mixture 

Waewsak et al. (2011) Weibull 10 min 

Aidan (2011) Normal, Gamma, Weibull, 

Rayleigh 

1 month 

Sarkar et al. (2011) Weibull, extreme value distribution 

of type I (Gumbel) 

1 h 

Odo et al. (2012) Weibull 1 d 

Kollu et al. (2012) Weibull-extreme value distribution 

(GEV), Weibull-lognormal, GEV-

lognormal 

10 min 

Masseran et al. (2013) Lognormal, Weibull, Rayleigh, 

exponential, Gamma, inverse 

Gaussian, Burr, inverse Gamma 

1 h 

Datta and Datta (2013) Weibull, exponentiated Weibull 1 a 

Nemeş (2013) Weibull 1 h 

Indhumathy et al. (2014) Weibull 1 h 

Kidmo et al. (2015) Weibull 1 h 

Petković (2015) Weibull - 

Men et al. (2016) Gauss 30 min 

Karthikeya et al. (2016) Weibull 10 min 

Carneiro et al. (2016) Weibull 10 min 

 61 

Table 1 shows that a large number of different p.d.f.s were previously compared with wind 62 

speed data, with the Weibull distribution overall being the most popular choice. 63 

In order to assess extreme wind speeds, extreme value theory can be used (e.g. Palutikof et al. 64 

1999; Holmes and Moriarty 1999; Simiu et al. 2001). However, in this case, the successful 65 

modelling of the upper tail can often lead to an inadequate representation of the main part of 66 

the wind-speed distribution. Most of the studies listed in Table 1 used 1-h or 10-min 67 

averages. Steinkohl et al. (2010) analyzed the wind-speed measurements on a finer time scale 68 

in the so-called micrometeorological range. Their dataset consisted of observations measured 69 

in the ABL on two different days with a sampling frequency of 1 Hz. They focused on the 70 

modelling of the tail of the wind-speed distribution by using the ‘peaks-over threshold’ 71 

approach of extreme value theory. 72 

Other studies use nonparametric estimators of wind speed. Rozas-Larraondo et al. (2014), for 73 

example, studied a new method based on nonparametric multivariate locally weighted 74 
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regression for improving wind speeds forecast by a numerical weather prediction model. 75 

Wind direction data were used to build different regression models, as a way of accounting 76 

for the effect of surrounding topography. Recently, D’Amico et al. (2014) presented a new 77 

nonparametric model to predict wind speeds based on semi-Markov chains. They found the 78 

model to be able to reproduce the statistical behavior of wind speeds accurately for different 79 

time scales when used as a forecast tool. Francisco-Fernández and Quintela-del-Río (2013) 80 

applied nonparametric curve estimation methods to analyze time series of wind speeds, 81 

focusing on extreme events exceeding a chosen threshold. Nonparametric methods to directly 82 

estimate quantities such as the probability of exceedance, the quantiles or return levels or the 83 

return periods were proposed. Moreover, bootstrap techniques were used to develop 84 

pointwise and simultaneous confidence intervals for these functions. 85 

1.1. Aim of this study 86 

In this study we aim at demonstrating that occurrence probabilities of wind speeds in the 87 

atmospheric surface layer (ASL) can be estimated based on the knowledge of low-order flow 88 

statistics readily available from field measurements and the choice of a p.d.f. that has a finite 89 

range. In quantitative terms we aim to predict the horizontal wind speed V within the time 90 

interval Δτ that is encountered at an arbitrary location, 91 

  



 dttvV )(

1

,
 (1) 92 

where v(t) is the instantaneous wind speed. V(Δτ) is in meteorological terminology the Δτ 93 

gust. 94 

The time interval Δτ can signify a measurement time interval or an averaging period, as is the 95 

case in this study. However, Δτ can be assigned further significance when associating it with 96 

typical exposure times to certain wind speeds, e.g. based on the time an individual is expected 97 

to stay at a particular location. While mean velocities in urban areas are typically low, 98 

turbulence levels can be significant and wind gusts can by far exceed the time-averaged wind 99 

speeds encountered at street level, which can cause discomfort for pedestrians or result in 100 

structural damage to buildings. The time scales associated with such gust episodes are as low 101 

as times associated with typical pedestrian walking speeds (i.e. a few s). 102 

The derivation of a new p.d.f. for V(Δτ) and the associated maximum expected wind speed 103 

Vmax(Δτ) will be the main effort in the present investigation. A suitable p.d.f. should satisfy 104 

the following criteria: 105 

1. It should describe all parts of the wind-speed distribution accurately. 106 

2. It should have a finite upper extreme. 107 

3. It should be applicable to a wide range of turbulent flows in the ASL. 108 

One probability distribution that fulfils these criteria is the Beta distribution. 109 
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The methodology employed in this study is described in detail in the next section. The 110 

experimental and numerical wind speed databases are introduced in Sect. 3. Based on this 111 

calibrating data, in Sect. 4 the basic parameter of the proposed model is estimated. Finally, in 112 

Sect. 5 the methodology is validated based on independent field data. 113 

2. Methodology 114 

The present methodology is based on the studies by Bartzis et al. (2008) and Bartzis et al. 115 

(2015), in which the cumulative distribution function (c.d.f.) of scalar concentrations from 116 

point source releases of airborne materials was modelled. In the present study we apply the 117 

same methodology to the prediction of wind speed p.d.f.s and c.d.f.s. 118 

For this, we make the hypothesis that the maximum wind speed that can be encountered in 119 

the ASL takes a finite value and that this maximum wind speed Vmax(Δτ) can be predicted by 120 

the Bartzis et al. (2008) model. We present a detailed justification for the applicability of the 121 

model in the following. 122 

2.1 Probability density function selection and parameterization 123 

It is assumed that the p.d.f. for the time-averaged horizontal wind speed V(Δτ) at a certain 124 

location is given by the Beta distribution (e.g. Gupta and Nadarajah, 2004) 125 

    11 1
 

 xxxpdf ;            0 ≤ x ≤ 1.                                                                               (2a) 126 

In the case of our study x is given by a normalized form 127 

 
 







maxV

V
x

,                                                                                                                        

(2b) 128 

and hence x ranges from 0 to 1. 129 

The exponents α and ξ are estimated from the wind speed mean, variance and the maximum 130 

value based on the general relationships for Beta distributions, 131 












 1

1

1 




,                                                                                                                  

(3a) 132 

 
,                                                                                                                                  (3b) 133 

 
V

VV 



 max

,                                                                                                                  
(3c) 134 

where Vmax(Δτ) is the maximum time-averaged wind speed in the interval Δτ or in 135 

meteorological terminology the maximum Δτ gust in a large ensemble or a long time series. 136 

We obtain Vmax(Δτ) from the model proposed by Bartzis et al. (2008) (see Sect. 2.2), V  is the 137 

mean wind speed and I is the wind speed fluctuation intensity given by 138 
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2

2

V
I V

                                                                                                            
(4a) 139 

with 140 

22 VV
  ,

                                                                                                        
(4b) 141 

where 2

V  is the variance and V   is the fluctuation, which are quantities that are routinely 142 

available from different types of atmospheric flow models by solving the relevant equations 143 

(e.g. Hertwig et al., 2012; Koutsourakis et al., 2012) or from experimental measurements. 144 

Hence, in order to use the model the extreme value Vmax(Δτ) needs to be estimated. This is 145 

described below. 146 

2.2 Extreme value analysis 147 

When adopting any finite range p.d.f. for the wind speed V(Δτ), the ability to estimate the 148 

extreme value Vmax(Δτ) forms a prerequisite. It should be noted that the experimental 149 

maximum  measVmax
 cannot be a priori expected to be the “true” extreme value as a direct 150 

consequence of statistical uncertainties associated with limited measuring (or simulation) 151 

times. For this reason we use the theoretical approach proposed by Bartzis et al. (2008) in 152 

order to approximate the expected (“true”) Vmax(Δτ), which is modelled by 153 

 























 




I
T

bVV
V




 1max  (5) 154 

where TV is the wind speed integral time scale derived from the wind speed autocorrelation 155 

function RV(τ) via 156 

   dRT VV 



0

                                                                                                                     (6a) 157 

and RV(τ) is defined as 158 

 
   

2V

tVtV
RV







  .                                                                                                         (6b) 159 

Eq. 5 was developed initially for the estimation of maximum concentrations of airborne 160 

pollutants released from point sources. The theoretical background for the development of 161 

Eq. 5 is based on the application of the following equation for a stationary time series of 162 

infinite length: 163 

 
 

n

TV

V


















 

max

max

.

 (7) 164 
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Eq. 7 is used for the calculation of the maximum expected wind speed in a time interval Δτ 165 

when the maximum wind speed in a time interval ΔΤ is known. It follows a similar functional 166 

form as proposed by Bartzis et al. (2008) for concentrations. Following the same argument 167 

presented in Bartzis et al. (2008), here referring to wind speed instead of concentration, Eq. 7 168 

is applied in deriving Eq. 5 based on the following assumptions: 169 

(1) The maximum wind speed Vmax(ΔΤ) tends to the mean wind speed V  as the time 170 

interval ΔΤ increases. 171 

(2) The time interval by which the wind speed Vmax(ΔΤ) approximates V  is analogous to 172 

the integral time scale of the wind speed TV (Eq. 6a). 173 

(3) When the time interval Δτ increases, the wind speed Vmax(Δτ) approximates zero 174 

according to Eq. 7, while it should tend to V . This accounts for the additional term of 175 

unity in Eq. 5. 176 

(4) The ratio   VTV max
 depends on the fluctuation intensity I (Eq. 4a). 177 

Under these considerations the parameters that determine the extreme wind speed at a certain 178 

location are the fluctuation intensity I and the integral time scale TV, together with the 179 

constants b and ν. 180 

The relationship presented in Eq. 5 was previously used successfully to predict maximum 181 

time-averaged pollutant concentrations from near-ground emission sources based on 182 

numerical results from simulations performed with computational fluid dynamics (CFD) 183 

models (Efthimiou and Bartzis 2011, 2014; Efthimiou et al. 2011a, 2011b, 2015). The 184 

parameters b and ν in Eq. 5 can be derived empirically and typically exhibit a wide range of 185 

values as demonstrated in previous studies. This is a result of the combination of limitations 186 

of the model, experimental errors, insufficient stationarity of the time series and the finite 187 

duration of the analyzed signal used to derive these values. Previous studies on the dispersion 188 

of airborne material in atmospheric flows suggested indicative values of b = 1.5 and ν = 0.3. 189 

Several previous studies of wind gusts in the ASL have demonstrated that local gusts scale 190 

with the standard deviation of wind speed observed at the site (e.g. Beljaars 1987; Kristensen 191 

1991), a parameter which indirectly includes information of surface roughness characteristics 192 

and effects of atmospheric stratification. This dependence is also included in the model 193 

shown in Eq. 5, via the fluctuation intensity I. Further information about the temporal scale of 194 

the phenomena is added by including a direct link to the local auto-correlation time scale TV. 195 

The rationale for adopting the Bartzis et al. (2008) concentration model for the prediction of 196 

wind speed extremes (Eq. 5) is further based on the following: 197 

1. The wind speed and the concentration are scalars, real numbers and take positive 198 

values. 199 

2. There is relation between the wind and the concentration which is expressed through 200 

the Schmidt number. 201 

3. It is expected that both variables have finite extreme values in the ABL. 202 

4. The assumptions that were mentioned before for the construction of Bartzis et al. 203 

(2008) model are also considered to be valid for the wind speed. 204 
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The last point is examined by analyzing sample data. For this purpose a random wind speed 205 

time series was selected from one of the experimental test cases used in this study (BL3-0 206 

case described in Sect. 3.1.1.), which represents measurements in a rough-wall boundary 207 

layer modelled in the wind tunnel. 208 

The first assumption is: “The maximum wind speed Vmax(ΔΤ) tends to be equal to V  as the 209 

time interval ΔΤ increases.” The maximum time-averaged wind speed Vmax(ΔΤ) of the 210 

random wind speed time series is plotted against ΔΤ in Fig. 1. Also the mean velocity is 211 

presented. The horizontal axis is plotted in logarithmic scale. It is clear that Vmax(ΔΤ) 212 

approximates V  with the increase of ΔΤ. 213 

 214 

  215 
Fig 1 The maximum time-averaged wind speed and the mean wind speed are plotted versus the time interval 216 
ΔΤ. The results correspond to a random wind speed time series of the BL3-0 case. 217 

The second assumption is: ”The time interval by which the wind speed Vmax(ΔΤ) 218 

approximates V  is analogous to the integral time scale of the wind speed TV (Eq. 6a).” The 219 

ratio   VTV max  of the random wind speed time series is plotted against ΔΤ/TV in Fig. 2. 220 

There is a clear correlation (R
2 

= 0.9992) and a power-law function fits the data very well. 221 
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 223 

Fig 2. The ratio   VTV max  is plotted versus the ratio ΔΤ/TV for the same dataset as in Fig. 1. 224 

The third assumption is: “When the time interval Δτ increases, the wind speed Vmax(Δτ) 225 

approximates zero, while it should tend to V .” This is illustrated in Fig. 3. 226 

 227 

Fig 3 The maximum time-averaged wind speed Vmax(Δτ) is plotted versus the time interval Δτ for the same 228 
dataset as in Fig. 1. 229 

The fourth assumption is: “The ratio   VTV max  depends on the fluctuation intensity I (Eq. 230 

4a).” In order to substantiate this assumption based on the data used in this study, the entire 231 

set of experimental wind speed time series of the wind-tunnel boundary-layer flow case BL3-232 

0 were analyzed. The ratio   VTV max  is plotted against the fluctuation intensity I in Fig. 4, 233 

clearly illustrating a strong linear relationship (R
2 
= 0.947). 234 
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 235 

Fig 4 The ratio   VTV max  is plotted versus the fluctuation intensity I for all horizontal wind speed time 236 

series available from the rough-wall boundary-layer flow experiment in the wind tunnel. 237 

Finally, a further test is performed for the applicability of the method. Vmax(Δτ), V , I and TV 238 

used in Eq. 5 can be calculated from the experimental wind speed time series. In this case, Δτ 239 

denotes the measurement time interval. The indicative value of the parameter ν in Eq. 5 is 0.3 240 

if the equation is used to estimate peak concentrations. If we assume the same value to be 241 

valid for wind speed data, Eq. 5 can be rewritten as follows: 242 

 
3.0

max 1












 




VT
bI

V

V 

.

 (8) 243 

The form of Eq. 8 is equivalent to the linear equation y = b x where: 244 

 
1max 




V

V
y



,
                                                                                                                   (9a) 245 

3.0










 


VT
Ix



.                                                                                                                       

(9b) 246 

If Eq. 5 is valid for wind speed then y should clearly correlate with x. y and x are plotted in 247 

Fig. 5. As for Fig. 4, the data points in Fig. 5 are from all the horizontal wind speed time 248 

series of the laboratory experiment (BL3-0 case). The correlation coefficient R
2
 is 0.87, 249 

which indicates that there is a significant linear relation. Furthermore it is noteworthy that the 250 

parameter b takes a value of 1.85 which is close to the indicative value of 1.5 that had earlier 251 

been determined for concentration data. 252 
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 253 
Fig 5 Examination of the validity of Eq. 5 for wind speed data based on all horizontal wind speed time series 254 
available from the rough-wall boundary-layer flow experiment in the wind tunnel. 255 

However, since we are interested in the p.d.f.’s upper bound we go beyond the indicative 256 

maximum values measured in the experiments and instead focus on the extreme value 257 

Vmax(Δτ) reached within a time interval of infinite duration. It is noted that naturally such an 258 

extreme value cannot be verified experimentally. When comparing the measured peak value 259 

 measVmax  with the expected extreme value Vmax(Δτ) for a specific sensor location, in theory 260 

the relation  measVmax  ≤ Vmax(Δτ) will always hold true due to the ultimately finite length of 261 

the measured signal. 262 

It is proposed that the extreme value Vmax(Δτ) can be approximated based on Eq. (5) given the 263 

values of the parameters b and ν. The present strategy is to fix the value of ν = 0.3 (the 264 

indicative value from Bartzis et al., 2008) and allow the b parameter to be estimated from 265 

suitable calibrating data. This reduces the problem of estimating Vmax(Δτ) to estimating a 266 

single parameter, b. 267 

Bartzis et al. (2008) have presented a method to estimate the parameter ν, where (Vmax(Δτ)/V268 

) - 1 is plotted versus Δτ. Vmax(Δτ) is the experimental maximum time-averaged wind speed 269 

which changes at every Δτ. In other words at every Δτ a new wind speed time series is 270 

constructed and the maximum wind speed is calculated. For the following test Δτ ranges from 271 

0.01 to 45000 s. Vmean is the experimental mean wind speed for Δτ equal to the measured time 272 

interval i.e. the original time series that is measured by the instrument. For the following test 273 

Δτ = 0.01 s. For this test we selected a random time series from the BL3-0 wind-tunnel 274 

experiment. Results are presented in Fig. 6. The equation y = α*(x
-β

) was fitted to the data, 275 

where y is (Vmax(Δτ)/V ) - 1 and x is Δτ. In our case, the parameter β is the desired ν 276 

parameter. For this dataset β was found to be equal to 0.403, which is very close to the 277 

previously determined value of 0.3. Uncertainties arising after fixing the parameter ν are 278 

reflected in the value of b for each particular location. 279 
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 280 

Fig 6 (Vmax(Δτ)/V ) - 1 is plotted versus the time interval Δτ. The results correspond to a random wind speed 281 
time series of the BL3-0 case. 282 

It is noted that for the parameters b and b
meas

 obtained from Eq. (5) using Vmax(Δτ) and 283 

 measVmax  respectively, in theory b
meas

 ≤ b always holds true since  measVmax  ≤ Vmax(Δτ). 284 

With this approach we implicitly hypothesize the existence of a single value of b that can 285 

qualify as the upper bound of all b
meas

 values obtained at any location in the ASL flow at 286 

which the corresponding value of  measVmax  is detected. 287 

To close the model, it remains to estimate the value of the parameter b in Eq. 5. 288 

In summary there are two groups of equations. 289 

(1) The equations for the construction of the Beta distribution (Eqs. 2a, 2b, 3a, 3b and 290 

3c). 291 

(2) The equation for the estimation of the maximum time-averaged wind speed (Eq. 5). 292 

The equations of the first group use the equation of the second group through the parameter η 293 

(Eq. 3c). 294 

2.3 Application of the method 295 

The methodology used in this study includes the following steps: 296 

1. Estimation of the parameter b from an analysis of experimental and numerical datasets. In 297 

our study we use near-surface turbulent flow signals that are available from a dense sensor 298 

network, offering sufficient coverage of a diverse set of ASL flow scenarios, also including 299 

data measured within and above urban environments. The wind speed time series should be 300 

of high time resolution, statistically stationary and have a sufficiently long duration to ensure 301 

that relevant statistics are derived with high levels of statistical confidence. 302 
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2. Calculation of the mean wind speed, variance and time scale parameter TV from each 303 

measured wind speed time series from the calibrating data. 304 

3. Identification of the peak value  measVmax  and estimation of the corresponding local 305 

parameter b
meas

 from Eq. (5) for each wind speed time series. In this study, the selected time 306 

interval Δτ is equal to the time resolution of the experimental/simulation data. 307 

4. Estimation of the parameters for the wind speed Beta p.d.f. as described by Eqs. (2a, b) and 308 

(3a, b, c) for each location. The values of the required input variables V , 2

V  and TV are 309 

derived from the reference datasets (see point 2. above). The single missing parameter is the 310 

coefficient b. 311 

5. Derivation of a suitable value for b. 312 

6. Evaluation of the accuracy and robustness of the single value for b derived from the 313 

calibrating data by testing the model based on independent wind speed measurements from 314 

field experiments. 315 

It is emphasized that we look for a p.d.f. that produces a relatively simple but adequate 316 

approximation. Thus, the present methodology is based on the assumption that if a theoretical 317 

c.d.f. can reproduce the real threshold wind speeds for various probabilities then the p.d.f. 318 

used is considered a good approximation. 319 

3. Data and Test Cases 320 

For the estimation of the parameter b and the construction of the statistical model we use data 321 

from wind-tunnel experiments and numerical simulations. The performance of the statistical 322 

model is evaluated in Sect. 5 based on hourly wind speed measurements taken at various field 323 

sites. 324 

3.1. Wind-tunnel experiments 325 

The first two flow datasets analyzed in this study to derive the model coefficient b stem from 326 

boundary-layer wind-tunnel measurements conducted at the Environmental Wind Tunnel 327 

Laboratory (EWTL) of the University of Hamburg. The datasets are part of the CEDVAL-328 

LES reference database that offers time-averaged statistics as well as time-resolved data for 329 

different types of boundary-layer flow and dispersion scenarios under neutral stability 330 

conditions. The validation datasets are freely available and described in detail in Fischer et al. 331 

(2010). 332 

CEDVAL-LES contains data for various levels of geometric complexity and surface 333 

roughness characteristics. In the database, the term “complexity” refers to the configuration 334 

of the flow scenario covered in the experiment, ranging from complexity 0 denoting simple 335 

rough-wall boundary-layer flows, over flows around isolated obstacles or within obstacle 336 

arrays (complexities 1 or 2, respectively) to flows in semi-idealized urban environments 337 

(complexity 3) or realistic city layouts (complexity 4). Two of the available cases were 338 

selected for this study: (1) boundary-layer flow over a very rough surface (CEDVAL-LES 339 
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complexity 0; case reference: BL3-0) and (2) urban flow within and above a semi-idealized 340 

city geometry (complexity 3; “Michel-Stadt” case reference: BL3-3). In both cases the flow 341 

was physically modelled under a scale of 1:225 and point-wise velocity measurements were 342 

conducted by means of 2D laser Doppler anemometry (LDA). The setup of the very rough 343 

boundary-layer flow (BL3-0) was used as the inflow boundary layer for the semi-idealized 344 

city case (BL3-3). 345 

3.1.1 Boundary layer over very rough surface 346 

With a power-law profile exponent of α = 0.27 and a roughness length of z0 = 1.53 m, the 347 

boundary-layer flow (complexity 0 case) shows roughness characteristics of flow above an 348 

urban environment. In this case, the buildings are not directly represented, but their 349 

aerodynamic effect on the approach flow boundary layer is physically modelled by means of 350 

floor-roughness elements. 351 

At sufficient distance from the tunnel inlet and from the floor-roughness elements, the 352 

boundary layer was verified to be horizontally homogeneous. Measurements are only taken 353 

above the blending height, where only the integrated effect of the surface roughness is 354 

represented in the flow characteristics. The 2D-LDA was operated consecutively in two 355 

measuring modes to acquire two components of the velocity vector at a time: the streamwise 356 

(U) and spanwise (V) velocities (UV-mode) and the streamwise and vertical (W) velocities 357 

(UW-mode). Data are available in terms of vertical profiles and horizontal transects 358 

perpendicular to the mean inflow direction. All velocity data were scaled to a full-scale 359 

reference height of zref = 100 m (444.44 mm model scale) with reference wind speeds Uref 360 

ranging between 4.75 and 6 m s
-1

. With a measurement duration of 3 min (corresponding to 361 

11 h full scale) per locations, the derived velocity statistics offered a high level of statistical 362 

representativeness. 363 

For the present study, wind speed time series with a full-scale resolution of Δτ = 0.01 s were 364 

analyzed at 96 points for UV measurements. It should be noted that all time-series were 365 

resampled to the same time resolution. 366 

3.1.2 Flow in a semi-idealized city 367 

The semi-idealized urban geometry includes typical features of Northern and Central 368 

European cities like courtyards, oblique road arrangements, squares and complex 369 

intersections. Three building heights are included in the model: 15, 18 and 24 m full-scale 370 

(see. Fig. 7 top left). All buildings had flat roofs. 371 

Velocity measurements were conducted with the LDA in UV-mode, providing information 372 

about the horizontal winds within and above the city. The streamwise reference velocity at a 373 

height of 100 m was kept at 6 m/s and was monitored during each measurement run. The 374 

reference velocity was verified to be sufficiently high to guarantee Reynolds number 375 

independence of derived flow statistics within and above the urban canopy. Three groups of 376 

wind speed measurements were used in this study: (1) 40 vertical profiles distributed at 377 

various points throughout the city (Fig. 7, bottom left), (2) detailed measurements on dense 378 



15 
 

horizontal grids at heights of 2, 9 and 18 m full-scale within the main city area (340 m x 340 379 

m), containing 383 measurement points per level (Fig. 7, top right); (3) measurements on a 380 

coarse horizontal grid above the city centre at full-scale heights of 27.5 and 30.2 m, 381 

containing 252 data points at each height (Fig. 7, bottom right). 382 

The total number of signals analyzed is 2,158. Again the time series were resampled to a 383 

resolution of 0.01 s. 384 

 385 

       386 

Fig 7 Top left: the idealized city domain (dimensions given in full scale, dimensions X, Y and Ζ are in meters); 387 
top right: densely-spaced measurement locations within the urban canopy layer at elevations of 2 m, 9 m and 18 388 
m; bottom left: vertical profile locations; bottom right: densely-spaced measurement locations above roof top at 389 
heights of 27 m and 30 m. 390 

3.2 Direct numerical simulations 391 

The second type of data analyzed in this study stems from simulations of urban flow fields in 392 

an idealized urban roughness generated by direct numerical simulation (DNS). With the DNS 393 

approach, turbulence is directly resolved down to the small dissipative eddy scales. In order 394 

to facilitate this computationally, the flow is simulated at lower Reynolds numbers compared 395 

to the ones typically encountered in the atmospheric boundary layer. The Reynolds numbers 396 

that can be realized, however, are comparable to those typically achieved in boundary-layer 397 

wind–tunnel experiments as those described in the preceding sections. Compared to other 398 

turbulence-resolving CFD approaches like for example large-eddy simulation (LES), the 399 

accuracy of flow simulations with DNS is not affected by errors resulting from turbulence 400 

modelling. Hence, DNS data, after appropriate accuracy checks, can be used as reference data 401 

similar to experimental measurements. The significant computational requirements involved 402 
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in performing DNS, however, currently restrict the applicability of the technique to simple 403 

flow scenarios at low Reynolds numbers. 404 

The DNS code that had been used to generate the data analyzed in this study is the research 405 

code CgLES developed at the University of Southampton specifically for performing 406 

massively-parallel DNS and LES computations. The code is parallelized with the Message 407 

Passing Interface (MPI) and a flexible multi-block mapping strategy is used to deal with 408 

complex geometries. The Navier-Stokes equations are discretized using second-order central 409 

finite differences in space and a second-order Adams-Bashforth scheme in time based on the 410 

pressure correction method. The Poisson equation for pressure is solved using a multigrid 411 

method. A detailed description of the numerical techniques involved in the DNS as well as 412 

examples of previous studies with the code can be found, e.g., in Yao et al. (2001), Branford 413 

et al. (2011) or Coceal et al. (2006, 2007, 2014). 414 

Flow simulations were conducted in a geometry comprised of 64 cubical obstacles of height 415 

H that were set up in a regular array consisting of 8 rows of 8 obstacles. The computational 416 

domain was of size 16H x 16H x 8H. Periodic boundary conditions were prescribed in 417 

horizontal directions, free-slip conditions at the upper domain boundary and no-slip and 418 

impermeability conditions at the bottom of the domain and at solid surfaces. The flow was 419 

driven by a constant body force that resulted in a roughness Reynolds number of Reτ = uτ H/ν 420 

= 500, where uτ is the total wall friction velocity and ν is the kinematic viscosity. Sensitivity 421 

studies for this setup (Coceal et al. 2006, 2007) demonstrated that the selected resolution of 422 

the uniform grid of H/32 is sufficient to adequately resolve the flow down to the dissipative 423 

scales. Data is available for two wind directions (0° and 45°) under neutral stratification. Fig. 424 

8 shows snapshots of the instantaneous horizontal wind speed magnitudes at a height of Z = 425 

0.5H for both wind directions, illustrating the complexity of the canopy layer flow field. 426 

 427 
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Fig 8 Plan views of the computational domain of the DNS including contours of instantaneous snapshots of the 428 
non-dimensional horizontal velocity magnitude, Uh/uτ, at half the building height (Z = 0.5H). Left: 0° forcing 429 
direction; right: 45° forcing direction. 430 

Wind speed time series at 896 locations overall (for both wind directions) were analyzed in 431 

this study, each of them having a length of 140T, where T is the eddy turnover time defined 432 

as T = H/uτ. As done with the wind-tunnel data, the DNS time series were resampled to a 433 

non-dimensional time resolution of 0.01. The data locations are distributed in two horizontal 434 

planes covering the entire simulation domain at two different heights: Z = 0.5H and Z = 1.5H. 435 

Time series were extracted in the centre of each street and intersection. The DNS 436 

computation were performed on a supercomputer and required a total spin-up time of 12 days 437 

on 124 nodes for both the 0° and 45° runs, after which the simulations ran for10 days (0° 438 

case) and 13 days (45° case) on 248 nodes to collect flow time series and statistics. 439 

 440 

4. Estimation of the b parameter 441 

4.1 Wind-tunnel flow fields 442 

4.1.1 Boundary-layer flow 443 

The autocorrelation time TV is calculated from the autocorrelation function RV(τ) on the 444 

interval from 1.0 to 0. The wind speed time series are considered to be characterized by a 445 

sufficiently high temporal resolution. 446 

At each sensor location, an experimental peak  measVmax  is identified and a b
meas

 value is 447 

estimated from Eq. 5 using  measVmax . The values of b
meas

 range from 1.5 to 7.2. The value of 448 

5, however, is only exceeded three times out of 96 (i.e. 3.1%) and seems to point more to 449 

‘outliers’ behavior. 450 

It is evident that if the proposed model is valid and a single value for b exists this value has to 451 

be greater than 5. This dataset and the two other datasets (discussed in detail in the following 452 

Sects. 4.1.2. and 4.2) clearly indicate that a value of b = 6 is appropriate for these flow 453 

scenarios. 454 

For a randomly selected sensor of the BL3-0 case, the Beta and the experimental p.d.f.s and 455 

c.d.f.s are plotted in Fig. 9 (first row). The agreement between the model curve and the 456 

experimental data points is very good. 457 

 458 
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 459 

 460 

Fig 9 Experimental and theoretical p.d.f.s and c.d.f.s using the Beta distribution for a randomly selected sensor 461 
of the BL3-0 case (first row); for a randomly selected sensor of the BL3-3 case (second row) and for a randomly 462 
selected sensor of the DNS experiment (third row). The parameter b is set to 6. 463 

4.1.2 Semi-idealized city 464 

As a next step, the robustness of using a value for b equal to 6 was examined by analyzing 465 

flow data acquired in the semi-idealized city wind-tunnel model. 466 

As for the boundary-layer flow data, the b
meas

 is obtained based on the analysis of all 2,158 467 

signals. The b
meas

 ranges from 0.63 to 7.1. Again, only at three of the available measurement 468 

positions a b
meas

 value larger than 5 was obtained. The proposed value of b (equal to 6) is also 469 

relatively close to the maximum value of 7.1. 470 

As for the boundary layer flow case analyzed above, the agreement between the Beta and the 471 

experimental p.d.f.s and c.d.f.s for an example time series from a randomly selected sensor 472 

location is very high (Fig. 9, second row). 473 

4.2 Direct numerical simulations 474 

The analysis of the wind-tunnel data clearly supports the proposed methodological approach. 475 

In a next step, the DNS data of flow in an idealized urban roughness is analyzed in a similar 476 

manner. 477 

As with the experimental data, the DNS dataset is first analyzed with regard to determining 478 

an appropriate value of the b parameter. For each sensor, a peak  measVmax  is identified from 479 

the simulation data and the corresponding b
meas

 value is estimated from Eq. (5). The b
meas

 480 

range is from 1.1 to 5.56. Only 10 values are larger than 5 and the proposed b value (equal to 481 

6) is relatively close to the maximum value 5.56. 482 
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The Beta and the experimental p.d.f.s and c.d.f.s from time series at a randomly selected 483 

point of the DNS flow simulation is presented in Fig. 9 (third row) and again reveal a high 484 

level of agreements between the statistical model and the reference data. 485 

It is worth highlighting that it is rather impressive that two completely different kinds of data 486 

sources, the wind-tunnel measurements and the DNS, corresponding to very different near-487 

surface flow scenarios show such a similar range of values determined for b
meas

. This 488 

provides strong support for the hypothesis that a single representative maximum value of the 489 

b parameter can be derived, which could then be applied to various types of ASL flows. 490 

5. Model evaluation based on field data 491 

Based on the analysis of the three different calibrating datasets presented above, an upper 492 

value of the parameter b equal to 6 was derived. However, the flow scenarios analyzed to 493 

derive this model parameter represent quite idealized cases of ABL flow (e.g. with respect to 494 

the isothermal conditions/neutral stratification and stationarity of the flow). In order to 495 

demonstrate the applicability of the model to real-world ABL flow scenarios, in a next step 496 

the model is evaluated based on independent field measurements. These consist of hourly-497 

averaged in-situ wind-speed measurements from multiple ground-based sensors available 498 

over the course of several months, which reflect the true variability of the natural atmospheric 499 

boundary layer in terms of wind-speed trends (e.g. through the propagation of meso-scale 500 

systems) and stratification effects. 501 

For this study, the Greek Public Power Corporation (https://www.dei.gr/en) provided hourly 502 

wind-speed data for the period from 1 January 2012 to 31 August 2012 from 7 503 

meteorological stations (Vevi, Florina, Koilada, PPC village, Pentabrysos, Petrana and 504 

Pontokomi) located in the western part of Greece (see Fig. 10). All velocity sensors are 505 

located in urban areas, the measurement height is 10 m above ground and the averaging 506 

period of the signals is 1 h. 507 

 508 

https://www.dei.gr/en
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Fig 10 Topography of Western Macedonia, Greece, where the meteorological stations are located. The black 509 
numbered boxes indicate power plants, gray areas mines. The blue numbers indicate the location of 510 
meteorological measurement stations, with names listed on the right. Data available for this study are from the 511 
stations in Vevi, Florina, Koilada, PPC village, Pentabrysos, Petrana and Pontokomi. 512 

Initially a comparison is performed in terms of the theoretical value of Vmax(Δτ) as derived 513 

from the Bartzis et al. (2008) model and the measured  measVmax at all stations (see Fig. 11). 514 

The model provides a success rate of 85.7% (only one value is below the 1:1 line), which 515 

supports the hypothesis that the proposed theoretical Vmax(Δτ) can serve as an upper bound of 516 

the corresponding measured  measVmax . 517 

 518 

Fig 11 Modelled versus measured peak wind speeds at the 7 field measurement stations. The straight line 519 
indicated the 1:1 relationship. 520 

In the following analysis the performance of the Weibull distribution is also tested. This 521 

distribution was fitted to the data and its parameters were calculated with the maximum 522 

likelihood estimation. The results of the 99% threshold (c.d.f.(V)=0.99) are analyzed in order 523 

to test the performance of the statistical model at the upper tail of the distribution. Based on 524 

the analysis of the calibrating data discussed in the preceding section, the Beta distribution 525 

was configured with a b value of 6. In Fig. 12 scatter plots are presented comparing the 526 

calculated wind speed V(Δτ) from the Beta and Weibull distributions and the ones derived 527 

from the field data corresponding to cumulative probabilities of c.d.f.(V) = 0.25, 0.50, 0.75 528 

and 0.99. The Beta distribution performs slightly better than the Weibull distribution in the 529 

higher wind-speed range for probabilities of 0.25, 0.50 and 0.99. 530 
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531 

 532 

Fig 12 Modelled (Beta and Weibull) versus measured wind speeds from the field experiment corresponding to 533 
(a) c.d.f.(V) = 0.25, (b) c.d.f.(V) = 0.50, (c) c.d.f.(V) = 0.75 and (d) c.d.f.(V) = 0.99. 534 

The remaining critical question is how individual c.d.f.s derived from the Beta distribution 535 

compare with the counterparts from the field measurements at each location. In Fig. 13 the 536 

measured and modelled c.d.f.s for percentiles between 75
th
 and 100

th
 are shown for three 537 

stations (Vevi, PPC village and Pontokomi). At these and the other locations not shown here, 538 

the model presents good agreement with the field data. 539 
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 541 

 542 

Fig 13 Modelled versus measured c.d.f. results for percentiles between the 75th and 100th for three 543 
meteorological stations of the Western Macedonia region of Greece. 544 

Concerning the atmospheric stability it should be noted that the wind tunnel and the DNS 545 

experiments modelled neutral conditions. However the present field experiment covers all the 546 

stability conditions and the Beta distribution performs very well under all conditions. Using a 547 

value of b = 6 when applying the model to independent datasets from field measurements 548 

shows that the value seems to be a good choice when dealing with ASL wind speeds. 549 

5.1 Effect of the time interval Δτ on the performance of the model 550 

A further testing of the universal nature of the proposed Beta model is conducted by 551 

repeating the above analysis for different Δτ. 552 

In Fig. 14 the peak time-averaged wind speeds based on Eq. 5 and the field experiment are 553 

plotted for different Δτ for an example station. The horizontal axis is presented using a 554 

logarithmic scale. For Δτ = 1 h the model wind speed is higher than the experimental peak 555 
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wind speed, as expected. For Δτ between 10 h and 100 h the model slightly underestimates 556 

the experimental values, while overestimating again after 100 h. For 1000 h the Vmax(Δτ) of 557 

both model and experiment approximate the mean wind speed. 558 

 559 

Fig. 14 Examination of Eq. 5 against field measurements for various Δτ for data from an example station. 560 

In Fig. 15 V(Δτ) obtained from the Beta distribution model and the values derived from one 561 

of the field stations are presented. Δτ ranges from 1 h to 24 h. The results correspond to 562 

cumulative probabilities of c.d.f.(V) = 0.25, 0.50, 0.75 and 0.99. For c.d.f.(V) = 0.25 and 0.5 563 

the wind speed increases with Δτ while for 0.75 and 0.99 it decreases with Δτ. This indicates 564 

that with the increase of Δτ the distribution becomes more leptokurtic. The model shows the 565 

same tendency as the experiment. For the specific station the largest deviation of the model 566 

from the experiment is observed for c.d.f.(V) = 0.25 and for Δτ = 24 h. On the other hand the 567 

best performance of the model is observed for c.d.f.(V) = 0.5 over the entire range of Δτ. 568 

569 

 570 

Fig 15 Beta distribution versus measured wind speeds for an example station corresponding to (a) c.d.f.(V) = 571 
0.25, (b) c.d.f.(V) = 0.50, (c) c.d.f.(V) = 0.75 and (d) c.d.f.(V) = 0.99. 572 
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5. Conclusions and Outlook 573 

By using the properties of the Beta p.d.f. in combination with a model for estimating extreme 574 

values based on readily available turbulence statistics (Bartzis et al., 2008), this study 575 

demonstrated that this novel modelling approach can reliably predict the upper margins of 576 

wind speeds encountered in the ASL. 577 

The problem itself is quite complex and adequate validation studies require extensive 578 

experimental datasets. Such comprehensive validation efforts exceed the scope of a single 579 

publication, but the work presented here represents a significant first step towards a thorough 580 

testing of the proposed methodology. 581 

The selected calibrating data for constructing the proposed model are representative of 582 

different scenarios of turbulent wind flow in the ASL: a rough boundary layer without 583 

buildings, a typical European urban micro-environment and an urban-like arrangement of 584 

cubical buildings. The sensor locations cover the boundary layer and the urban canopy-layer 585 

characteristics. The temporal resolution of the wind-speed signals covers a wide range of 586 

fluctuation intensities. 587 

The performance of the model was successfully evaluated based on long-term independent 588 

field measurements (hourly averages), which cover the true variability of ABL flows in terms 589 

of wind-speed trends through the propagation of meso-scale systems and stratification effects. 590 

Concerning the atmospheric stability it should be noticed that the wind tunnel and the DNS 591 

experiments were conducted under neutral conditions. The field experiment, however, 592 

covered a wide range of stability conditions that can be encountered in natural ASLs and the 593 

Beta distribution performed very well under all conditions. 594 

From the results obtained the following main conclusions are drawn: 595 

1. The approximation of the statistical behavior of the abovementioned wind speed variability 596 

with a Beta distribution p.d.f. was shown to be satisfactory. 597 

2. The important issue of the extreme value in the Beta distribution is properly addressed by 598 

an adaptation of the Bartzis et al. (2008) model. 599 

3. The present work proposes b = 6 and ν = 0.3 in Eq. 5. 600 

4. With an increase of the averaging time interval the wind-speed distributions of the model 601 

and experiment become more leptokurtic. 602 

The new model can broaden the capability of ensemble-averaged computational models such 603 

as Reynolds Averaged Navier Stokes–CFD models to estimate the wind-speed p.d.f. provided 604 

that reliable predictions of mean wind speeds, wind-speed fluctuations and integral time 605 

scales are available from these computations. 606 

 607 
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