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Abstract

I present a method for inferring a protein interdependency network, based on correlated evolution
between proteins on a large phylogeny of 72 diverse eukaryotic species. My original contribution
is in the span of the phylogenetic tree used to generate the network: similar studies have concen-
trated on more localised regions in the tree of life and have been undertaken with more limited
intent. I show that the whole-eukaryotic correlated evolution network is a real network and has
interesting features of its own. The method can be broken down into three major, sequential parts:
binary trait derivation, phylogenetic inference and likelihood analysis. I describe the implementa-
tion of a reciprocal BLAST protocol for the inference of a binary trait matrix corresponding to the
presence or absence of orthologues in each species in the analysis, based on a reference human pro-
teome. Rows in the matrix correspond to the reference proteins, columns to species: entries are 1,
denoting presence, or 0, denoting absence. The matrix that I derive is mapped onto a phylogeny
of the same set of species, to facilitate the detection of correlated evolution between proteins, or
orthologous sets thereof, based on the pattern of gains and losses. The phylogeny is inferred from
a set of genes, which are selected according to the criterion that they be present in all 72 species.
15 genes meeting this criterion are identified from the trait matrix; 14 of them are aligned and used
for phylogenetic inference. The inference itself is performed using the program BayesPhylogenies,
which implements a phylogenetic mixture model using a Markov Chain Monte Carlo (MCMC)
method. A consensus phylogeny (tree) is calculated after the chain has been run for many millions
of iterations; trees based on the genes individually were also inferred, for purposes of comparison.
I use the program BayesTraits to perform a likelihood analysis on pairs of proteins from the trait
matrix. This method detects correlated evolution by means of a likelihood ratio statistic, relating
the likelihood of the two proteins having evolved independently, to the likelihood of their hav-
ing evolved in an interdependent, or correlated, fashion. If the likelihood ratio statistic exceeds a
certain threshold, this is interpreted as the signature of correlated evolution. Using presumptively
interacting protein pairs from the Human Protein Reference Database, and a control (or null) set
of pairs where no interaction is expected, I present evidence for the efficacy of the method in de-
tecting correlated evolution. I proceed to infer a network based on correlated evolution, wherein
each link represents an instance of pairwise correlation, and demonstrate that a power law gives a
good fit to the distribution of nodal degree within the network, which is also the case for a network
of presumptive protein interactions with no filter for correlated evolution. Finally, I infer a new
equation to characterise the evolutionary rules which fashioned the network. I propose a method
for testing the equation, and discuss future directions.
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Chapter 1

Introduction

1.1 The World, the Cell and the Network

Consider our world. Wherever we look, most of what we see, most of the time, is quite familiar.
Even if we find ourselves in a strange town, the very fact that it is a town lends it familiarity,
because it tends to operate by rules with which we are intimately, and intricately, acquainted. The
town probably has a bus station; if we are lucky, perhaps a railway station too. Moreover, to find
these familiar places, with familiar purposes, we follow familiar protocols for discovering their
locations.

On a smaller scale, one pebble on the beach looks much like another pebble, one oak leaf much
like another oak leaf. Our lifelong familiarity with these objects lends us the capacity to classify
and make sense of our world, of course. We know how to behave on the road, or inside a shop;
we see oak leaves emerge, grow large, turn orange and fall. And we know how pebbles behave
when thrown, or skimmed across the water. Our exposure to several, or many, such objects gives
us a framework of rules which we can extend to predict the behaviour of similar objects. We are
seldom called upon to deal with complete novelty; more rarely still do we relish it.

How does all the world’s teeming diversity, and even the inorganic things which are not obvi-
ously related to each other, come to be divisible into categories, and sets of categories, which are
comprehensible to its denizens? And comprehensible not only to its human denizens, but to all
creatures possessed of neural cells1, able to sense and react to their various environments by means

1Of course, the neuron is a signature cell type specifically of metazoa. However, recent work discusses structural
and molecular motifs common to both neurons and certain types of plant cell [Baluska, 2010].
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of the physical expression of sets of rules, however simple (“stay upright”, “avoid sunlight”, “seek
out sunlight”, “flee from predators” and so on)? Even a tiny animal with a rudimentary nervous
system, and negligible capacity for developing new rules based on its individual lived experience,
expresses rules which are hard-wired into its genome, a kind of collective unconscious encoded in
its genetic inheritance2. The nematode Caenorhabditis elegans provides the most comprehensively
studied example of such an organism, having a fixed number of 302 neurons, each of which has
relatively few synaptic connections. Interestingly, despite their invariance between individuals,
the level of morphological diversity among neurons in a single individual is surprisingly high:
C. elegans neurons may belong to one of fully 118 distinct classes [White et al., 1986]. I shall return
to this point shortly.

1.1.1 Evolution and information

If knowledge is viewed as a set of rules dictating the appropriate responses to given stimuli (or
environmental information)3, it is clear that living organisms of every sort must possess this
information-processing capacity, this knowledge, at some level, in order simply to survive and re-
produce. Seen in this light, evolutionary adaptation itself is in a sense a form of learning, wherein
the acquisition of knowledge is confined and nurtured not within the particular neural structures
of the individual, but distributed among an aggregate of individuals—a species or population. This
form of “learning” allows for redundancy; individuals are expendable, both because they have no
necessary ability to reinvent their own rule systems based on information acquired during their
own lifespan, and in that this very knowledge is replicated more or less faithfully in each genome,
i.e. in each individual. This is not to say that organisms are necessarily born with a full set of rules
ready to run “out of the box”. All but a few multicellular organisms have differentiated cell types
and typically exhibit marked localisation of function within different parts of the body [Carroll,
2001]. This necessitates a developmental process characterised by progressive cellular speciali-
sation following rounds of mitosis, and determined by factors extraneous to the genome itself,
which is (for the most part) typically identical between different somatic cell types [Medvedev,
1995]; this is Waddington’s “epigenetic landscape” [Waddington, 1957] in action. As such special-
isation of function becomes established, the organism’s full functional potential is realised when

2If one subscribes to the minimalist interpretation [Gooch, 1972] of Jung’s notion of the collective unconscious, this
might literally be true.

3Epistemologicially, knowledge can be equated with truth, plus belief in that truth on the part of the holder of
knowledge, sometimes with an additional stipulation that the belief be justified rather than simply coincident [Ichikawa
and Steup, 2014]. Parallel characterisations of knowledge, for example arising from research into Artifical Intelligence
(AI), emphasise knowledge representation and have been described in terms of stimulus, perception, internal model
and response [Newell, 1994]; more modern perspectives from AI have questioned the centrality even of an internal
model [Brooks, 1990].
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it becomes capable of marshalling all the now diversified biological resources at its disposal. This
is the richest expression of the set of behavioural rules encoded in its genes, but throughout the
developmental process, the rules which the organism is able to follow must facilitate its survival
during the respective phases of maturation. This requirement might be thought significantly to
constrain the possibility space of what comes later, analogously to the unplanned growth of a
modern European city around its mediaeval marketplace—quite unlike a new town, with its desig-
nated schools, shopping malls and leisure facilities, conceived and realised as a thing fully formed,
abstracted from history.

And yet there are animals that undergo spectacular metamorphosis between life stages adapted to
inhabit distinctly different ecological niches; moreover, these niches commonly allow adult and ju-
venile forms to live in the same geographical location, i.e. sympatrically4, without competing with
each other for resources [Herder and Freyhof, 2006]. In the familiar case of butterflies and moths,
metamorphosis entails the loss of pseudopods and mouth parts, along with the gain of feeding
tubes and wings, among other remarkable transformative events [Judy and Gilbert, 1969; Mercer,
1900]. How does one genome encode these radically different, but both highly sophisticated and
independent-living phenotypes? Are battalions of genes retired to make way for fresh conscripts
during the change, or does the old guard have to learn to campaign under new leadership? In less
allusory terms, we might ask whether changes in genetic expression are widespread or confined
to a few controlling genes? In fact, recent work indicates that expression levels of a high pro-
portion of genes undergo substantial up- or down-regulation during fruit fly metamorphosis, but
that a much smaller proportion of genes acts to trigger the cascade of metamorphic events at the
biomolecular level [O’Keefe et al., 2012].

The process of organismal maturation is not peculiar to animals: plants too must undergo differ-
entiation and specialisation, although their body plans, and their genomes, are radically different
from those of animals. For instance, a mature plant often has the ability to regenerate from the
smallest vegetative part [Grime, 2002], while hybridisation and polyploidy are commonplace spurs
both to phenoptypic diversity and evolution in plants, through the founding of reproductively
isolated communities—potentially, the early stages of speciation [Soltis and Soltis, 2009]. Plants,
along with most other major multicellular groups, lack nervous systems, but not the capacity for
environmental response. They certainly respond to sunlight, to gravity, to moisture, as well as to
stimuli from other living organisms. Pollinating insects and mycorrhyzal fungi [Barker, Tagu and

4More or less roughly speaking, that is: a pond inhabited by dragonfly nymphs is clearly spatially distinct from the
airborne realm of the adult organism, yet the two habitats bound each other directly; strictly, this would be an instance
of parapatry, rather than sympatry, as between conspecific juvenile and adult forms. Other geographical distributions
involving terrestial larvae and winged adults could be regarded as more properly sympatric, but even here, trophic
partitioning, perhaps between different parts (e.g. flowers and leaves) of the same food plant, will tend to be reflected
in the respective stages favouring one microhabitat over another.
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Delp, 1998] are just two examples. Such organisms’ own “rules”—the particular ways in which
they respond to their environment, e.g. in the case of some pollinating insects, by following an
airborne chemical gradient “upstream” [Raguso, 2008]—can co-evolve with those of plants. Looser
symbioses, or their logical antitheses—those evolutionary arms races between predator and prey,
or parasite and host—also demonstrate example systems comprising agents each of which lives by
rules which co-evolve in concert with the rules followed by its reciprocal partner, or partners, in
this great interplay [Dawkins and Krebs, 1979].

The rules governing development and maturation, of a multicelluar organism’s parts, and of the
changing rules of behaviour which these parts acting in concert shall unfurl and deploy at each
developmental stage, we may regard as “rules for rules” or meta-rules, existing alongside and
co-ordinating the genes encoding the rules of behaviour themslves. These meta-rules are them-
selves encoded within the genome; the developmental genetic cascade—comprising, for exam-
ple, HOX genes [Lemons and McGinnis, 2006], effector genes [Artero et al., 2003] and micro-
RNAs [Pasquinelli and Ruvkun, 2002]—forms a kind of directed network (or directed graph)5,
wherein the active nodes at each stage of development define organismal phenotype. Behavioural
rules are an aspect of phenotype, the manifestation of a larger network of molecular interac-
tors [Hartwell et al., 1999]. This larger network changes with the organism, essentially as different
genes are brought into play as the organism matures [Xue et al., 2013]. The “phylotypic stage”6

of metazoan development has been correlated with signature genetic expression profiles, and has
prompted the conjecture that the divergence of animal body plans over evolutionary time is re-
lated to differential synchronisation of genetic expression corresponding with key developmental
milestones [Levin et al., 2012].

1.1.2 Ontogenic rules and the cell

In the most parsimonious formulation, we might anticipate that the genes encoding behavioural
rules are recycled—that is, that they are employed in ways that may themsleves develop as the

5Generally, we may regard any aggregation of things which interact, and the interactions or relationships between
these things, as a network (the equivalent term “graph”, while technicially correct, is a formalism which we might
choose to disfavour if only because of its propensity to confuse laypersons). Conventionally, each thing in the network
constitutes a “node” or “vertex”; each relationship between things is a “link” or “edge”. I give preference but not exclu-
sivity to the terms “network”, “node” and “link” over their respective counterparts for most of this study. For a slightly
fuller discussion, see Section 1.1.3. Note that while it may appear that the network is an abstraction which distills reality
down to a type of cartoon, networks nonetheless provide a paradigmatic framework which is extraordinary both in the
breadth of its applicability, and in the growing power of the analytical toolkit which it can bring to bear on some very
diverse fields of scientific inquiry [Watts, 2004].

6The embryonic stage following neurulation, during which diverse organisms within a single phylum are supposed
most closely to resemble one another morphologically [Slack, Holland and Graham, 1993].
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organism develops. As in fact may the genes encoding meta-rules, because they are often con-
nected to other genes in the cascade by both inputs and outputs (forming internal nodes within the
graph representing the developmental cascade) [Ben-Tabou de Leon and Davidson, 2007; Schütte,
Moignard and Göttgens, 2012]. Or it could be that at certain developmental stages, certain genes
are switched on, and having a single and very specific function, are switched off again, forever to
remain quiescent, when that stage comes to a close [Ezhova, 2007]. Interestingly, this conception
leads us to consider the possibility of the existence of yet another type of network, one wherein
a protein or gene might have several connections to other proteins or genes, but where a specific
subset only—of this aggregate of all such pairwise connections—is active at any given time7. So the
network may change not only over evolutionary time, but within one lifetime. Recent work sug-
gests that the transition from pluripotency to differentiated cellular phenotypes can be mediated
by the binding of various histones to the other components of chromatin, including other histones;
as they transition from being quite promiscuous to very specific in their affinities during the course
of commitment, this in turn sets the general pattern for future gene expression, and by extension
phenotype, in the differentiated cell [Meshorer et al., 2006]. These two conceptions of determin-
istic mutability in networks of gene (and by extension protein) interactions—the evolutionary and
the developmental—surely do not exist in isolation one from the other, and indeed, the field of evo-
lutionary developmental biology (or “evo-devo”) is concerned with just such connections between
evolution and development [Carroll, 2008].

In this connection, we might also ponder the rules of behaviour encoded within the genome of a
unicellular organism. Compared with the corresponding rules within multicellular organisms, the
rules for a unicell appear to be more limited in scope, constrained as they seemingly must be to en-
compass only its immediate phenotype and associated behaviours, which pass down directly from
the parent cell upon mitosis8; we may then expect these rule-based behaviours to become manifest
in the progeny almost immediately (or at least within a cell cycle), so there is on the face of it no re-
quirement to encode an auxiliary set of rules for growth and development of the organism. This is

7Although the immediate discussion in the context of developmental biology pertains chiefly to genetic regulatory
networks, exactly this kind of temporal plasticity, relating to the pattern of connections (i.e. adjacency relationships)
involving particular nodes, has been recorded within physical protein-protein interaction networks. It is not so much
that such a network taken as a whole has a distinctive temporal signature, but rather that individual, highly-connected
proteins within it can often be assigned to one of several different categories depending on their particular patterns of
temporal variability, as these relate to observed (or inferred) physical connections to other proteins. Han et al. [2004]
divide highly-connected proteins into “party hubs”, which are capable of forming many concurrent connections, and
“date hubs”, whose affinites change over time. The terms “party” and “date” allude, respectively, to the parallel and serial
character of the human interactions typical of the analogous social situations.

8Unicellular reproduction, even in eukaryotes, is predominantly asexual [Tibayrenc et al., 1991].



6 Chapter 1. Introduction

until one considers those unicellular organisms exhibiting several distinct life stages9, such as, for
example, the Plasmodium parasite, which causes malaria in humans10. Its different stages reflect
adaptive resposes to the different environments which the organism finds itself inhabiting during
the course of its life. The transitions from one form to another are discrete in character; they do
not typically stop at some half-way point and we may therefore allow that the forms themselves
are truly categorical in nature11. This is equally true of the cell types found at the same time, and
often in close proximity, within multicellular organisms, from early development (e.g. gastrula-
tion in metazoa [Smith, 1989]) through to the mature phenotype. The distinct cell types within the
human being are sufficiently defined in character that we may meaningfully enumerate them; a
recent investigation reckoned their number at 411 [Vickaryous and Hall, 2006]. Interestingly, of
this number, 145 were reckoned to be types of neuron, 55 of these in turn belonging to the central
nervous system. On the face of it, this makes for a considerable contrast with a past estimate of
human neuronal diversity, which identified only 5 distinct classes of cerebellar neuron [Eccles, Itō
and Szentägothai, 1967]. However, because the cell types specific to the cerebellum itself were not
explicitly enumerated in the later study, this comparison is drawn only tentatively. Nonetheless,
even if any reckoning of the ratio of neuronal diversity in C. elegans to that found in Homo sapiens
is liable to overstatement12, there is a very strong case for believing that the source of the greater
complexity of the human organism as compared with the nematode lies not in the diversity of its
cell types but in the way in which vast numbers of cells of similar type can in concert generate
complex emergent behaviours. This is arguably lent support by the finding that the appearance
of a single novel neuronal cell type in the lineage of higher primates may be associated (causally
or otherwise) with other architectural changes in the brain, and most particularly with increases
in both brain volume and cognitive facility in these species—which, of course, include Homo sapi-

ens [Nimchinsky et al., 1999]. Such complex behaviours may be quite inaccessible to an organism
possessing a fixed complement of 302 neurons in total, which are nonetheless sufficient to facili-
tate its survival and reproduction. The hypothesis that human complexity is an emergent quality
of myriad yet largely homogenous basic components, if true, has important implications [Carroll,
2001].

So even within an organism, the categorical footprint of nature itself is crisp and unmistakable.
But what is the reason for the discretisation of cell type? The absence of a continuum of cellular

9Interestingly, temporal polymorphism in eukaryotic unicells has been linked at the genomic level to cell type
polymorphism in metazoa, which if true has profound implications for the evolutionary emergence of multicellular
forms [Mikhailov et al., 2009].

10Concession should be made that Plasmodium is in some senses arguably a poor example here, being a rather atypical
unicell not least in its predominantly sexualmode of reproduction [Tibayrenc et al., 1991; Kooij andMatuschewski, 2007].

11The discretisation of cellular phenotype within distinct Plasmodium life stages is well supported by biomolecular
evidence [Gunderson et al., 1987; Florens et al., 2002].

12This is perhaps understandable given the very precise and thorough morphological studies of C. elegans published
at a time when data of equivalent quality were not available for any other organism.
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characteristics is the more surprising if one considers that most somatic cells of the metazoan
body have at their nucleus precisely the same, full, genetic complement. This may in a sense be a
manifestation of the unfolding of yet another set of rules, which are typically run to completion,
or to some sort of provisional end state representing an attractor in possibility space—a point
corresponding to a certain relatively stable configuration of gene expression andmetabolismwhich
can be sustained over time13. Much work in recent years has contributed to our understanding of
the developmental cascade in terms of epigenetics, the framework beyond the genome, within
whose intricate but not infinite interconnect the genome is drawn preferentially to certain nexi,
each embodying a particular stable state of differential expression associated with a characteristic
cell type [Goldberg et al., 2007]. These states may be real enough, but the thoeretical underpinnings
of such stable states have been considered outside the context of the genome, even in the context
of the origin of life itself, in the emergence of autocatalytic chemical networks [Kauffman, 1995].

More broadly, rules dictate category at every level. The pebbles on the beach look similar because
similar sets of forces (rules) have operated on them over geological time to make them that way.
They are very different from the stones found inland, although stones found in one inland area
may be different from stones found in another, depending, for example, on whether what is now
rolling countryside was in the deep past an ancient seafloor, or an eroded Hadean expression of
volcanic forces.

These objects, as well as being similar, have relationships to each other. It is these, the relation-
ships between like things, which ramify into the networks that give us a way of quantifying as-
sociation. Smaller “things” may act in concert to form greater things with properties seemingly
dissociated—or perhaps emergent—from those of their parts. Tiny grains of silica, themselves the
product of forces on the Earth’s surface acting to break apart the extended covalent structures
forged deep below, now aggregate to form sand, which has particular and notable properties all its
own—properties which differ depending on whether it is wet or dry. When wet, such properties
are to do with the forces acting between the individual grains and water, and in this sense are de-
terministic and predictable. Even so, the emergent thing itself, the sand, has surprising empirical
behaviours [Hornbaker et al., 1997]. Wolves [Marino et al., 2012], some cetaceans [Mann, 2000],
and primates including humans [Marino, 2002], may act in concert within social groups to advance
one other’s interests, or the interest of the collective, at least when faced with challenges or threats
from outside. Some insects14 form highly complex groups of closely related individuals which act
in ways the significance of which the tiny-brained actors cannot themselves be conscious of, but

13This is encapsulated in the notion of “homeostasis”, which may be something of a misnomer in that what it is really
describing is an ordered dynamic system [Lloyd, Aon and Cortassa, 2001].

14Chief among these are the Hymenoptera, comprising wasps, bees and ants. All three groups providemany instances
of species which form “social”, or super-organismal structures [Wilson, 1990a]—although solitary wasps and bees are
also familiar [Linsley, 1958].
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whose combined effect may be to generate both social and architectural structures of impressive
complexity [Wilson, 1990b; Theraulaz et al., 1998].

Rules build upon rules. The tendency of a thing to follow one set of rules may cause such changes
over time as to predispose it to observe new sets of rules: sand does not behave like so many peb-
bles; sandstone does not behave like sand. And a moth does not behave like a caterpillar. This
layering of rules is observable at different spatial scales as well as over chronological time. The
rule which attracts a bee to a flower is laid down in the bee’s neuronal system, but has specific
dependencies on the observance of finer-grained rules at the molecular scale, e.g. the formation of
specific protein complexes at the synapses [Burne et al., 2011]. If one of the proteins involved in
such a complex is mutated, it is possible that this dependency, this link, may ramify upwards in
scale to impair the insect’s ability to find its food source (and thereby to disperse the plant’s pollen).
It is also possible that the protein complex may form in a slightly modified way, or that different
sensory cues are activated or made primary within the bee15. In this way—the conscription, activa-
tion or substitution of one link for another, if the latter becomes broken or weakened—robustness
(arising from redundancy) at one scale in a network may help to preserve network integrity at
another [Lehár et al., 2008].

These networks are not, of course, ordained by any designer, any authority, or in the case of biolog-
ical networks, including the various types of biomolecular network, even necessarily any physical
law16. At the organismal level, including not only all the molecular interaction and interconversion
networks within the cell, but networks encompassing the nervous system, the endocrine system
and other systems of more proximate intercellular communication17, they are evolved phenotypes.
At the level of communities or societies of organisms, this may still be true: a termite colony, in-
cluding its intricate networks of cooperations between workers, and its labyrinthine passageways
connecting living quarters, nurseries, etc., is arguably a phenotypic expression in the sense that
the rules that built it are hard-wired into the termites at the level of the genome [Dawkins, 1999].
Yet in what manner does the structure of such networks embody their evolutionary or adaptive
“purpose”? And what might be the precise role of selection in effecting changes to the network
over evolutionary time?

15If our objective is actually to observe this rule-based cascade, note that although mutation can plausibly account
for many behavioural modifications, arguably a more informative mechanism when we observe differential behaviour
in bees of the same species, and especially in bees from the same colony, is the way in which environmental stimuli
may influence underlying patterns of gene expression to generate behaviours which are adaptive in different habitats,
e.g. where different feeding strategies might be optimal [Withers, Fahrbach and Robinson, 1993].

16All biomolecular networks are, of course, necessarily constrained by physical law, however.
17E.g. the paracrine, juxtacrine and autocrine signalling systems [Singh and Harris, 2005].
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1.1.3 The network is more than a metaphor

In the sense that processes involving relationships between similar agents at all scales of both size
and complexity (sand grains, bacterial cells, human beings, etc.) are ubiquitous, and that each
agent usually has multiple such relationships with its fellows (other agents of the same general
type), networks surely pervade our world. Yet, perhaps because it is easy to regard a network as a
rather esoteric distillation of the bonds which exist within a real community18, and one moreover
which appears to discard much essential data, the true analytical potential of the network has
begun to be understood and wielded in earnest within the general scientific community perhaps
only in the last decade and a half.

A network, in formal mathematics known as a graph, can be defined as a set of nodes (vertices)
plus the set of links (edges) which connect them. A node is an abstraction that can represent any
one of a huge range of real-world agents; links may represent specific types of relationship among
such (typically similar19) agents. An illustration of a simple network is provided in Fig. 1.1.
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Figure 1.1: A simple network with a few nodes and links

Note certain features of the figure. There is one node (f) which has no links at all, yet formally
it is still part of the network and we say that its “degree” is zero. There are visible “islands” of
connected nodes which are completely disconnected from other such islands20,21. Because of the

18I use term “community” very loosely here, to refer not only to communities of organisms, but to aggregations of
inanimate or even virtual objects (such as web pages).

19Although see Section 1.1.5.
20This is the very property that defines them as islands, of course.
21The more technical word for “island”, in network terms, is “component”; I shall henceforth adopt this convention.
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existence of separate components, with no way to reach one from another (e.g. in this network,
there is no path from a to b), the network is said to be “disconnected”. It would be “connected”
only if there were at least one path between any two nodes in the network22. A series of “hops”
over adjacent links23 forms a “path” through the network. Any pair of nodes that are connected
by a path are part of the same component. There are closed paths, or loops, within the network,
such as the path connecting nodes b, m and j. There is one very well connected node (i) with links
to five others: this is a “hub” (in this case a small hub of degree 5). Another point of note is that
the network is planar : it is capable of being represented in two dimensions without any of its
links crosssing over each other. While for a subset of real-world networks this might be true24,
in general it is not, and Fig. 1.1 is drawn as planar for clarity’s sake only, in that the introduction
of points of crossing might obsure its explanatory purpose. However, if the network were fully
connected (retaining the same complement of nodes) it should be fairly clear that there is no way
that it could then be drawn without links crossing one another. For the purposes of this study, we
assume that molecular networks, including those derived by the application of novel inferential
methods, are non-planar.

Further significant features of Fig. 1.1 include the observation that there are no nodes which are
linked back to themselves (i.e. no “self-edges”); nor are there are any multiple links (“multi-edges”)
between any one pair of nodes. Furthermore, the links, like the nodes, have no visible weighting
or other qualitative distinction between themselves and any other link—apart, that is, from their
lengths. With regard to the lengths of links, note that we are forced to represent a set of relation-
ships on a plane, and that the same set of relationships can be laid out in different ways, dependent
upon our intentions, our aesthetic sensibilities, or both. We should therefore be careful in ascribing
too much significance to the apparent length of a link in a network, possibly even if urged to do so.
With this caveat in mind, certain features of a given network topology should remain apparent,
regardless of its layout. Finally, there is no directionality in this network, as there are no arrows
on the links; relationships denoted by the links run equally in both directions, which makes this
an undirected network. In fact, this is an instance of a subclass of network of a very simple type25

and I have here sacrificed complexity for the sake of clarity.

22In a fully connected graph, every node has a link to every other and every shortest path between any two nodes is
of length 1.

23One can think of links as being joined together by nodes much as one thinks more conventionally of nodes being
joined together by links.

24E.g. the road network is mostly planar, although bridges and tunnels provide occasional points at which links cross;
such points are the exception rather the rule however.

25In fact, by virtue of its lack both of self-edges and multi-edges this is formally a simple graph, specifically a simple
undirected graph.
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1.1.4 Networks in the real world

Many different types of real-world network have come under scrutiny by scientists from a sur-
prising range of disciplines. Friendship and other social networks have long been studied by soci-
ologists, particularly since the publication of pioneering studies in the 1960s [Milgram, 1967] and
1970s [Granovetter, 1973]. Here the nodes and links are of the most familiar kind: people and their
relationships to one another, respectively. Normally, people’s relationships (friendships, acquain-
tanceships, etc.) are difficult to quantify on a very large scale. Yet statistics for certain kinds of
relationship between people are more readily available: arguably, the two most famous examples
are scientific citation networks [Leicht et al., 2007] and the network of film actors who have ap-
peared in the same film [Collins and Chow, 1998]. In the former, the links are citations (strictly
the nodes are scientific papers rather than people), while in the latter, the links are films26.

Computerised networks have also been widely favoured as a subject of study, partly because of
the ready availability of data. These networks may be actual computer networks, representing
cabled links between routers and DHCP27 clients, as well as directly between routers themselves.
Or they may be less tangible, as with the network of links to and from pages on the World Wide
Web [Dorogovtsev et al., 2002].

Biomolecular networks too have formed primary objects of scrutiny in recent years, with protein-
protein interaction networks [Pellegrini et al., 2004], genetic regulatory networks [Guelzim et al.,
2002] and signal transduction networks [McCormick, 2003] all providing a focus for examination as
data from sequencing projects, genetic expression arrays and other large-scale assays28 has become
more readily available. These various sorts of network, while sharing some of the same partici-
pants, are each slightly different in kind. Protein-protein interactions are straightforwardly repre-
sented with proteins forming the nodes, and physical interactions between them the links. Con-
trastingly, in a metabolic network of the kind familiar from biochemistry textbooks, metabolites
are typically represented as nodes while enzymatically-catalysed interconversions among them (if
not the enzymes themselves) are usually shown as links [Jeong et al., 2000].

Some networks are more tangible, with both nodes and links having a (potentially observable)
physical incarnation. The neural networkwithinC. elegans, and its vastly more complex equivalent
within us, are examples. Conventionally, the neurons (of however many kinds) form the nodes,
while links are provided by the dendrites (which carry the electrical inputs from other neurons)
and the axon, which conveys the action potential from the neuron when it fires, and branches into
various terminals, all of which enable the signal to propagate to the synapses, on the other side of

26But again, see the discussion on bipartite networks in Section 1.1.5.
27Dynamic Host Configuration Protocol [Droms, 1997, RFC2131]
28E.g. the yeast two-hybrid assay, designed to detect protein-protein interactions [Fields and Song, 1989].
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which lie the terminals of other neurons’ dendrites [Braitenberg and Schüz, 1998]. Note that the
simple (or simplistic) representation of a neural network as a set of interconnected neurons with
undifferentiated links rather disregards the specific roles of dendrites, axons and synapses, which
are subsumed into the concept of the link, but none of which in real neural networks29 are any less
a physical reality than the neurons themselves.

Another tangible network is our circulatory system, the system of veins, arteries and capillar-
ies which distributes oxygen through our bodies before cycling deoxygenated blood back to the
lungs [Tortora andDerrickson, 2011]. Analogously, the roots and branches of a tree, or themycelial
system of a fungus, may form physically realised network structures, wherein the nodes are simply
the bifurcations where tubelike somatic tissue forks30.

1.1.5 Unifying themes and categorical divisions

Actually, the examples of real-world networks given above are fairly diverse not only in their es-
sential natures but also in their topologies; drawing contrasts between themmay help to illuminate
a number of the nuances that are sometimes alluded towhen talking about and analysing networks.
These nuances transcend the simple, but archetypal, representation of a network illustrated above,
which is in some regards a special case, but is nonetheless often invoked to illustrate more general
principles.

Consider for example the network of film actors mentioned above. Plainly, two actors might well
have co-starred inmultiple films. Dowe then draw a link for each film inwhich they have appeared
together? This is one possbility. The network of actors thus formed, wherein the same pair of actors
might have an arbitrary (but integral) number of links joining them directly together (i.e. without
any intervening nodes) is an example of a “multigraph”. What about the strengths of the links?
Maybe we could apply a weighting to each link, denoting how much on-screen time the two had
shared together? Nowwe have a weighted graph: the strength of each link could be represented by
its thickness. There is of course nothing to stop us drawing a weighted multigraph, the thickness of
each link representing time shared on screen in a particular film. The two quantities (weightedness
and multi-ness) differ in that the former is continuous, the latter discrete; they may be distinctly
portrayed within the same network as multiple links of varying thickness between certain pairs of

29Because the “neural network” is now a paradigm in computer science, the term has become semi-detached from real
brain tissue, in that often, it refers to an implementation in software or (more rarely, electronic hardware) of principles
abstracted from biology. Perhaps it would be helpful to apply a separate term to real biological networks of neurons,
e.g. “neuronal network”, but here I simply allow that the intended meaning of each use of the accepted term is given
clarity by context.

30This makes for a particular kind of directed network wherein each node has one incoming and two outgoing links.
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nodes.

Continuing with the film analogy, what if an actor plays more than one part in a film, and perhaps
even features as two different characters within the same scene, such as Eddie Murphy in “Coming

to America”? We might draw a link in the network, from the node representing Eddie Murphy,
back to himself—a self-link.

Considering again the notion of the multigraph among film actors, there is another, arguably more
expressive, and certainly more information-rich, way of representing the same information: as
a bipartite network, i.e. a network comprising two different types of node, and just one type of
link (which can exist only between unlike nodes). In the case of the co-star network, one type
of node represents actors, the other films; all links occur only between actors and films, never
between two films, or between two actors. So a co-star relationship is represented by two separate
links terminating at the same film. In this case there is no need for (nor any meaning in) drawing
more than one link between any two nodes, since each link fully expresses the involvement of one
actor in one film. Moreoever, we know which film. This is more informative than the equivalent
multigraph representaton with a single type of node: consider three actors who once starred in the
same film together, but whose paths have never crossed apart from that. Themultigraph represents
this as three links: one link between each pair of actors. Yet we cannot tell whether the triangular
closed loop thus formed represents one film, or three31. The bipartite graph neatly encapsulates
this information, and expands on it, by drawing a link between each actor and the same film: the
relationship is unambiguous.

Of what relevance are these considerations to the present study? Actually, they are tenably of some
importance. The co-star network shares with protein-protein interaction networks the feature that
it is undirected, i.e. relationships are reciprocal and cast each partner in an equal role. This cannot
be said of the network of links on theWorldWideWeb, or of genetic regulatory networks, wherein
the relationships are decidedly non-commutative. Perhaps more interesting still is the idea that we
might attempt to represent protein-protein interactions in the form of a bipartite network. Tradi-
tionally, this has not been done. And yet the mathematical and software toolkits at our disposal for
the purpose of anlaysing network structures is richer now than ever before. With a protein-protein
interaction network, it is processes involving physical contact between macromolecules that are
being characterised. Proteins come together to form complexes with a certain effect. Participation
in the same protein complex is typically depicted as a link between two proteins, even though
such a complex may have multiple participants, rather than just two. That being the case, it seems
plain that to represent the protein-protein interaction network as a set of pariwise interactions

31Even though we do know that it cannot be two, because at least one of the actors would necessarily have had a part
in both films, implying that the remaining two actors had never starred in a film together at all—thus breaking the third
link.
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is actually to throw away important information32. If we could characterise the interaction clus-
ters themselves and view them too as nodes, it would be possible to derive our bipartite form of
the protein-protein interaction network. In combination with the proposed phylogenetic protocol
for the inference of protein-protein relationships (admittedly not necesssarily confined to physical
protein-protein interactions), this holds out a tantalising prospect of brand new science.

1.1.6 Towards formal network knowledge representation

Relationships between things are often representedwithin ontologies, as subject-verb-object triples;
in our case protein A (subject) interacts physically (verb) with protein B (object). In fact the con-
verse, commutative relation also applies. What we are concerned with here, however, is the fact
that both protein A and protein B participate physically in protein cluster X, which may include yet
more participants—proteins C, D and E, for instance. Clearly proteins A, B, C, D and E are related to
each other physically by virtue of their participation in the cluster, but to represent this as a set of
binary relationships in the form suggested above for proteins A and B would require 5!

2!(5−2)! = 10

pairings, even if we enumerate only one of the two possible directionalities (orderings) of each
pair33. In fact, in ontological terminology, the relationship between these five proteins, at its sim-
plest, is n-ary rather than constituting a set of binary relations. Here we have n = 5, which we
should be able to represent as a set of five statements (or relations), as long as we relate our five
existing entities (proteins) not directly to each other, but to the entity (protein cluster X) of which
they are all part. So we can add a new class of thing (protein cluster) to our ontology, and equiv-
alently to our network—making it bipartite, but still undirected. In doing so, we save ourselves
the inconvenience, consfusion and associated information loss of recording 10− 5 = 5 redundant
relations in our ontology, or drawing the same number of extra lines on our network diagram. The
number of redundant binary links between like entities increases roughly in proportion with the
square of cluster size, as compared with using the n-ary relation, or bipartite graph. In fact, the
number r of redundant, or “wasted” links in the former over the latter, in a protein cluster of size
s (i.e. containing s proteins) is given by

32Admittedly, this assumes that we have the information to throw away in the first place: because of the pairwise
nature of the screens often used to infer protein-protein interactions, this is not necessarily the case.

33In fact this is correct: because the protein-protein interaction network is undirected, we would not wish to enu-
merate ordered pairs (2-permutations) from our total of five elements (i.e. proteins in cluster X), but rather, the number
of possible 2-combinations, or unordered pairs.
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r =
s!

2! (s− 2)!
− s

=
s(s− 1)

2
− s

=
s2 − 3s

2

(1.1)

Researchers are now well placed to start using, as well as enriching, ontological data concerning
protein-protein interactions, as well as other intermolecular relationships within the cell, thanks
in no small part to standards-based approaches to biological data curation and exchange like the
HUPO PSI34 Molecular Interaction (PSI-MI) format [Hermjakob et al., 2004]; several public repos-
itories of protein-protein interactions now supply data in PSI-MI format, which includes a facility
to represent and curate protein clusters distinctly from their constituent proteins. A broader list of
ontologies, built upon and incorporating “controlled vocabularies” for the definition of allowable
entities and relations between them, relating specifically to the represention of biological data, is
available at the OBO35 Foundry web site: OBOmaintains a subset of these ontologies directly, in its
own OBO format, but others are available in OWL36 format. OBO has a primary goal of facilitating
the exchange and interoperability of biological data, including specifically biomolecular data.

With the spread, recognition and adoption of these standards-basedways of encoding biomolecular
knowledge, the opportunities for novel discovery through the integration and analysis of data
from disparate sources—mRNA array data, DNA sequence data, analytical proteomics from mass
spectrometry, metabolic networks, two-hybrid assays for detecting protein interactions, inferred
genetic networks (increasingly accounting for the role of non-coding DNA control sequences),
and, not least in the context of this study, relationships among genes and proteins inferred from
various computational studies including evolutionary analyses—are as never before. Controlled
vocabularies allow the matching, comparison and extension of raw and pre-filtered data acquired
from a spectrum of disciplines within the biological sciences. Taking advantage of ontology-based
knowledge representation, derived from the ever more precise characterisation and formalisation
of biomolecular relationships, may ultimately allow us to couple networks of knowledge from these
different realms in newways, and open wholly new and unimagined vistas of discovery, which can
be conducted from the desktop.

34Human Proteome Organizaton Proteomics Standards Initiative
35The Open Biological and Biomedical Ontologies [Smith et al., 2007]
36Web Ontology Language
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1.2 Statistical features of undirected networks

Some types of biomolecular network are directed. Metabolic networks are a case in point, meaning
that the enzymatic conversions of substrates to products are usually one-way only, which is why
they are often drawn as arrows. This is one instance where it is meaningful to ascribe a direction to
relationships within a network, even though many networks, including not only protein-protein
interaction networks but other molecular networks within the cell, are better characterised as
undirected. As far as our preferred objects of study are concerned, if protein A interacts with pro-
tein B, then protein B interacts with protein A; the relationship is straightforwardly commutative.
A node may be characterised in part by its degree (or “valency”), which is simply the number of
links attached to it at one end37. Degree is typically denoted k. Because an undirected link has
two ends, each representing a connection possessed by a node, the sum of all values of k for every
node will come to exactly twice the number of links in an undirected network.

In considering various ways in which we might characterise the features of a network as a whole,
one of the primary statistics of interest is the node degree distribution, which can equivalently be
thought of as the way in which the network’s links are distributed among its nodes. We speak of
a network’s “degree distribution” rather than its “connectedness distribution” (much less its “con-
nectivity distribution”, which actually has a distinct formal meaning38). We might ask ourselves
whether an observed degree distribution provides evidence for a network’s links having been laid
down in some random process, or whether the acquisition of links appears to be weighted or di-
rected in some manner which merits further investigation. A note of caution should be sounded
in connection with the word “random”, however. In employing it, we mean specifically that links
have been laid down between nodes in a stochastic or non-deterministic fashion. Wemay stipulate
an additional condition, that the probability of an end attaching to a node is equal for all nodes
each time a new link (pair of ends) is laid down, but this condition is not a necessary corollary of
randomness. This is an important distinction to which we shall return later. For the time being, we
note that in a random network which has been shaped by a probabilistically uniform attachment
process (one which does not discriminate among nodes based on their existing properties, either
innate or emergent), values of k follow a Poisson distribution, wherein the probability of a node
being connected to k other nodes (in principle possibly including itself) is described by

p (k) =
k̄2e−k̄

k!
(1.2)

37This is precisely equivalent to the number of nodes to which the node in question is “adjacent”.
38Conventionally, by connectivity, we mean not the number of links terminating—or originating, which is effectively

the same thing for an undirected network—at a node, but the number of independent paths between two given nodes.
So connectivity differs fundamentally from degree, not least in being a function of two nodes rather than a single node.
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where k̄ is simply the mean value of k. Note that k = 2l/n where l is the number of links and
n the number of nodes. The distribution is peaked where (k−1) ≤ k̄ ≤ k. If k is integral, there
are joint maxima at k−1 and k. In its tail, where k ≫ k̄, the Poisson distribution approximates an
exponential distribution, i.e. one described by the equation

p (k) = e−k (1.3)

Until the late 1990s, the often unspoken but prevalent assumption was that most naturally occur-
ring networks, including the molecular networks which interest us, were fairly well characterised
by Poisson-distributed degree. This assumption was shared even by investigators whose principal
focus consisted in the theoretical aspects of molecular networks within the cell, an area where
network topology, reflected in degree distribution, might be thought to have profound implica-
tions for any conclusions reached. Kauffman [1995] proposed that the origins of life itself could
be traced to the formation of a “giant component” of reactions within an increasingly complex
chemical soup. The giant component, an autocatalytic chemical set, emerges as a distinct phase
transition within the soup as more reactions (links) are added to the substrates (nodes) in a random
process wherein there are no probabilistically preferred nodes.

It is interesting therefore that in the space of two short years at the very end of the twentieth
century, the predominance of the random graph as the expected form taken by real networks,
natural and man-made alike, was first subverted and then effectively toppled. Although several
clues had already been left lying on the trail for decades, because these clues came from the social
sciences rather than from physics or biology, the key insights into real-world network topology
did not follow until 1999. It was in this year, following a revival in interest in the “small world”
phenomenon [Watts and Strogatz, 1998], which describes a social network wherein each individ-
ual is separated from any other by no more than six links (hence “six degrees of separation”), that
Barabási and Albert [1999] published work showing that the true topology of several real world
networks was better characterised as being “scale-free”. Networks as varied and unrelated as the
network of pages on the World Wide Web—the “nodes” being the pages themselves and the “links”
being directed hyperlinks—and the metabolic networks within micro-organisms, shared a trait in
common: instead of k following the assumed Poisson distribution, the observed degree distribu-
tions roughly followed a power law, where p (k) = ak−λ, λ being dubbed the “degree exponent”.
The “fat tail”39 of a power-law distribution allows for the existence of numerous nodes with very
high k as compared with the mean (k̄); modal degree, by contrast, is less than the mean. The

39An exponential distribution or a Poisson distribution will see the value of f (k) (frequency, or, in the context of a
network, number of nodes) approach zero asymptotically as k increases; in a power-law distribution, the decline is very
much shallower. So f (k) represents the probability of k (degree) taking a certain value.
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term “scale-free” is used to indicate that one can expect to find nodes within the network of every
level of connectedness (degree), no matter how large, given a big enough sample of nodes; this is
characteristic of power-law distributions.

The findings of Barabási and Albert are counter-intuitive in the sense that the kinds of distribution
with which people are typically better acquainted, such as the frequency of male adult individuals
fallingwithin certain height ranges, separated by (say) an inch, are approximately normal, and have
the familiar bell-curve shape on normal axes. There are no men who are ten feet tall, let alone 100
feet tall, and yet this is what we would see if human height followed a power-law distribution.
It should be noted that in a random graph, given large k̄ and larger n, the degree distribution
approaches a normal distribution; by contrast, a power-law distribution is skewed to the right,
i.e. it has a fat tail to the right. In many real networks, such as metabolic networks, k̄ can be quite
small (<3), but plotting frequency against k on log-normal axes (y being logarithmic, x normal)
should reveal that the distribution in the tail approaches a straight line where k ≫ k̄, if the degree
distribution is random. For metabolic networks, for social networks of friends, and for networks
of web links, the degree distribution does not follow this pattern. Rather, it is approximately linear
when plotted on log-log axes, i.e. when both x and y axes are logarithmic. This is the key signature
of a power-law distribution; the slope of the line fitted to such a plot gives the degree exponent λ,
according to

ln (p (k)) = ln (a) −λln (k) (1.4)

where ln is the natural logarithm, or loge. This is a straightforward reformulation of y = mx+ c.

Real-world networks with power-law degree distributions typically have several other interesting
features. In commonwith randomgraphs, they tend to have very shortmean path lengths [Barabási
and Oltvai, 2004], path length being the minimum number of intermediate nodes lying on any path
between a pair of nodes, out of all possible paths. However, unlike random graphs, many real world
networks exhibit a high degree of clustering [Ravasz et al., 2002], meaning that if nodes A and B
are directly connected and nodes B and C are directly connected, it is highly probable that nodes
A and C are directly connected too. The archetypal networks in which this is observed are social
networks of friends, but clustering has been found to exist in less obvious networks too, including
molecular networks. One way of quantifying the extent of clustering within a network is to use
the clustering coefficient C proposed by Watts and Strogatz [Watts and Strogatz, 1998], which is
defined for each node; for a node with k links, it is given by
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C (k) =
2N (k)

k (k − 1)
(1.5)

whereN (k) is the number of direct links between the k direct neighbours of the node. Clustering
has been suggested, for example, as the mechanism by which cellular functions are modularised,
or isolated from one other, enabling the cell to perform many tasks in parallel without too much
mutual interference. Thus the network can be viewed as being constructed from building blocks
which are themselves mini-networks built from still smaller network modules. It has even been
argued that clusters within networks can exhibit self-similarity at different scales, in a manner
analogous to fractals [Dorogovtsev et al., 2002]. In an evolutionary context, this kind of mod-
ularisation of roles may allow selection, both purifying40 and positive41, to operate on discrete
traits which are associated with such modules. This conjecture is interesting in connection with
our current inquiry in the sense that the kind of correlated evolutionary linkage between proteins
which we seek to elucidate may provide supporting evidence for modularity in real networks of
interacting proteins, or of proteins which are interdependent in other ways. We will return to this
later.

It is worth pausing to note that one consequence of clustering or modularity that we might expect
to observe is a more extended mean path length for the network as a whole; indeed this is the
case for highly clustered networks whose degree distributions do not follow a power law. The
reason why scale-free networks can simultaneously exhibit both a short mean path length and
a relatively high level of clustering is the presence of highly-connected nodes, or “hubs”, which,
like the larger stations in a rail transport network, together form a high-speed backbone which is
easily accessible to nearby, less well connected nodes, analogously to small stations on a branch
line. This observation neatly accounts for the “small world” phenomenon mentioned earlier, and
does so in a way which requires no special trick or clever wiring in the network to ensure that the
journey between any two nodes contains no more than a few hops.

1.3 Network emergence as evolutionary process

We have noted that many real-world networks, including such protein-protein interaction net-
works as have been investigated, are characterised by degree distributions corresponding roughly
to a power law. This being the case, they could not have arisen from a process of random at-

40Acting to eliminate miscopies resulting in deleterious mutations. Most mutations are deleterious, so genes coming
under purifying selection tend to be conserved.

41Being pulled by selection along a certain evolutionary trajectory, many mutations at the locus concerned having a
positive or neutral effect on organismal fitness.
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tachment in which the probability of attachment is invariant between nodes. Various alternative
mechanisms have been proposed to explain these networks’ scale-free topologies. Of these, the
most frequently cited is “preferential attachment” [Newman, 2001], whereby nodes possessing
more links are more likely to acquire new links than are nodes possessing relatively few. More
precisely, in this scheme, the probability of a fresh attachment being made to a particular node is
proportional to its current degree, plus some constant term. Because of the dependence of cur-
rent probabilities (the instantaneous probability of each node forming a new attachment) on prior
events, this is a dynamic process in which accretions of new connections form around already well
connected nodes in a manner loosely analogous to the way in which localised concentrations of
matter in the early solar system are thought to have seeded the planets [Lin and Papaloizou, 1985].

Preferential attachment provides a plausible and intuitively pleasing explanation for observed
power-law scaling in social networks (we refer here to traditional social networks, and specifi-
cally exclude online social networks such as Facebook, for no reason other than that they have
not been considered in this study) because gregarious people have more friends of friends to make
friends with themselves [Jin et al., 2001]. It has similar power in explaining the growth of some ar-
tificial networks such as the network of web hyperlinks and the scientific citation network [Jeong
et al., 2003], where highly referenced pages or papers will attract further viewers in proportion
to the number of existing references; the potential for explosive growth in the exposure of such
highly linked or cited content is not of course itself necessarily correlated with the intrinsic merit
thereof.

Despite its obvious attraction in certain realms, however, preferential attachment remains con-
troversial as a candidate causal agent for the emergence of scale-free topology within the cell’s
molecular networks. Consider the protein interaction network. By what process may the acqui-
sition of a link (an interaction with another protein) increase the probability that the protein will
acquire yet more such links in the future? Although such a mechanism has many supporters, it is
not clear that it exists. It has additionally been suggested that selection may operate to promote
and preserve scale-free topology in the network as a whole, because scale-free networks are gen-
erally very robust to perturbation, i.e. there is a very low probability that random loss of any node
(protein) within such a network will prove highly deleterious, let alone lethal to the organism. This
is because modal connectivity, which by inference we presume to correlate with phenotypic effect,
is so low (when compared with the mean). This may tie in neatly with Fisher’s notion that most
mutations will tend to have low phenotypic effect, because the kind of large instantaneous jump
in fitness which would be associated with a change to a gene of high phenotypic effect is a poor
mechanism for allowing an organism to evolve towards a peak on a unimodal fitness landscape;
in this view tiny, incremental changes are required for efficient selection.
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Plainly, losses of proteins will occur at a certain rate through evolutionary time; the same is true
for gains of proteins. Taken together, protein gains and losses yield a net rate of protein turnover
which has been estimated in the context of larger investigations [Wagner, 2003] into the reasons
for power-law scaling in protein-protein interaction networks. If preferential attachment does op-
erate to sculpt the protein interaction network, we may go on to ask whether selection favours
the conservation of highly-connected nodes, whose loss could be potentially a lot more delete-
rious than losses of nodes with low or modal connectivity. This is the conclusion of one early
study [Albert et al., 2000]. In contrast, Wagner suggests that the evidence for such selectional bias
is poor; rather, he argues that preferential attachment plus node addition42 constitute a set of “lo-
cal rules” which are sufficient in themselves to maintain scale-free degree distribution within the
protein-protein interaction network, without the necessity to invoke selection.

Wagner also examines the role of gene duplication in fashioning the observed network topology.
Immediately subsequent to any duplication event, the reciprocal partner proteins in each inter-
action with the original protein will acquire an extra interaction with the new paralogue43. So
such events always increase the average connectivity within the network. The question here is
whether the interactions with both the original protein and the paralogue are likely to be retained,
or whether redundancy favours the retention of one interaction only. Wagner argues that redun-
dant links tend to be dispensed with relatively quickly; this is intuitively pleasing, as purifying
selection seems unlikely to act to retain redundant function. Simulations of gene duplication and
subsequent erosion of connectivity (which we might reasonably expect to be much higher for re-
cent duplicates than the mean rate for the network as a whole) indicate that gene duplication by
itself has little effect on connectivity distribution over time, although the historical role of large-
scale gene duplications in landmark bifurcations in the eukaryotic tree is now beyond reasonable
doubt [Christoffels et al., 2004].

Another possible cause of power-law scaling could be at work. The absence of any mechanism
which is both intuitive and widely accepted for the operation of preferential attachment in both
intra- and extracellular molecular networks, and protein-protein interaction networks in particu-
lar, may give us cause to consider the nature of such an alternative. Pagel, Meade and Scott [2007]
have proposed that the rate of attachment (i.e. the rate at which new links are formed) in the
protein-protein interaction network does not vary in proportion to the number of existing links,
which would suggest an historically accelerating rate of attachment in those proteins which are
now highly connected, but rather that each different protein possesses its own instantaneous rate
of attachment, which is invariant with time. This rate, different for each protein, is dubbed “stick-
iness”, and is a function of the protein’s intrinsic properties, which do not change simply by virtue

42Note that “addition” here refers specifically to the acquisition of its first network link by a protein, regardless of the
antiquity or otherwise of the protein itself. So by “addition” we mean “addition to the network”.

43A homologous (duplicated) gene within the same genome.
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of gaining an interaction with another protein. If a gamma-distributed coefficient of stickiness λ
is defined such that

p (k) ∝ e−λk (1.6)

it is possible by integration to find the two parameters to the gamma distribution, α and β, which
provide the optimal fit to the observed connectivity distribution within the protein-protein inter-
action network (or other molecular network). The goodness of fit can then be compared with that
of a simple power law. One aim of the current study will be to refine this investigation in the light
of new data and theoretical considerations.

1.4 A phylogenetic approach to network inference

My interest here is specific. I concern myself neither with stellar accretion discs, nor crystal
lattices, nor the social whirl nor yet any of the artefactual patterns of linkage spawned by our
technology—all of which could in some sense be characterised as networks—but rather with the
interior of the biological cells which constitute the building blocks of Earthly life. Each such cell
can be characterised on one level by patterns of molecular interactions whose collective flux can
usefully be understood in terms of networks. These networks are of several conceptually dis-
tinct but interrelated types, including: the familiar and relatively well-characterised metabolic
networks of enzyme-catalysed interconversions between small molecules; the genetic regulatory
network [Guelzim et al., 2002], comprisingmolecules both simple and complexwhich variously en-
hance, inhibit and stabilise the manufacture of proteins within the cell; the network of interactions
among those proteins once formed; and the network of interactions triggered by molecules trans-
mitting signals between cells, most particularly the hormonal and signal transduction systems of
multicellular organisms. These, and more subtle networks still, are being elucidated in ever more
detail by studies of patterns of correlated gene expression using RNA microarrays, among several
other advanced techniques falling within what we might call the paradigm of direct molecular
analysis. I point this out not by way of offering a methodological critique, but to draw a contrast
between this paradigm and an alternative approach which characterises other elucidative methods,
specifically those falling within the realm of computational inferential statistics including phylo-
genetic methods; I argue, with supporting evidence, that these techniques too offer a valid means
of investigating molecular networks within the cell. Such a perspective is facilitated in large mea-
sure by the exponential growth in computing power over the past four decades and should be seen
as being complementary, rather than antagonistic, to “wet-lab” inquiry.
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In this study, I employ such computational techniques, combining traditional statistical methods
with more modern Bayesian approaches to phylogenetic inference, in order that we might inves-
tigate pairwise linkages between proteins and the characteristics of the network which we discern
when these linkages are aggregated. For this I use a phylogeny of eukaryotes and a matrix of
protein presence/absence data to derive a protein network based on pairwise correlated evolution
between proteins, on the assumption that the latter indicates some correlation in function; a direct
physical interaction between two proteins would be the simplest instance of this. I lay to one side
any attempt at direct investigation into metabolic networks, which are comparatively well charac-
terised, but make few assumptions about the exact nature of the inter-protein linkages which do
emerge. Although part of my concern is to compare our network with others that are already par-
tially characterised, for which very reason we focus much attention on protein-protein interaction
networks (i.e. those wherein the “linkage” between two proteins is physical rather than metaphor-
ical), it is nonetheless possible that a sizeable component of the network that we derive using our
computational method represents not these physical interactions but an interdependency based
on shared participation within the same molecular pathway, be it related to signal transduction,
genetic regulation, or indeed metabolism.

1.5 Synopsis

The body of research which this project records is presented in four discrete parts, each a smaller
project in its own right (plus some more speculative, unfinished work presented in Appendix A).
Each part is detailed in a separate chapter, and each was dependent upon all of the preceding
parts having been completed first, with the exception of Chapter 5, which was informed by certain
mistakes in Chapter 2, but can otherwise stand independently. Still, in a sense all the following
five chapters follow an order which is both logical and chronological, in accurately reflecting the
time at which the various stages were completed.

Chapter 2 describes the inference of a binary trait matrix of protein presence/absence across eu-
karyotic species. By “protein” we specifically mean an orthologue44 of a source protein found in
a reference human proteome; such orthologues will generally have undergone amino acid substi-
tutions since they diverged from their common ancestor, in addition to synonymous substitutions
in their corresponding genes, so in reality we seek to identify orthologous sets of proteins across
species, rather than sequence identities.

By treating protein presence/absence as a discrete trait, we can trace the evolution of that trait on

44A homologue found in another species; an orthologue can have paralogy in its past and may not necessarily there-
fore be found at a similar locus within its own genome as can its human equivalent.
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a phylogeny. Each protein will either have been present at the root of the phylogeny, or gained
at some point. It may have been lost never, once, twice or several times, on different branches
of the tree. Ultimately, our matrix will allow us to extend our investigation to infer instances of
correlated evolution between pairs of proteins. Although the methods we use for such inference
do not require us directly to infer the branch on which a protein may have been lost, we expect
that detection of correlated evolution will be reflected typically in two or more instances of cor-
related loss (i.e. both proteins in a pair being eliminated from the proteome on the same branch).
Phylogenetic inference will be dealt with in Chapter 3.

My penultimate aim is to facilitate the inference of a network based on correlated evolution, and
to describe the important features of this network and whether it successfully recapitulates actual
functional relationships between proteins, both in terms of specific links and overall topology.
Network inference is dealt with in Chapter 4.

Chapter 5 records some recent work undertaken by me to refine the protocols laid out in more
detail in Chapter 2.

Chapter 6 is reserved for concluding remarks and recommendations for future investigation. Ap-
pendices and a bibliography are located after the body of the thesis.

As what ultimately turned into an aside to our investigation, in Appendix A, I outline some thought
experiments aimed at elucidating the rules underlying the evolution of the correlated evolution
network. From this I would like to have been able to go on to divine the evolutionary rules which
fashioned the network, by reconstructing ancestral states [Omland, 1999].
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Chapter 2

A binary trait matrix for proteins

2.1 Aims

The overarching goals for this project are: firstly, to demonstrate the utility of a set of computa-
tional statistical methods in predicting functional linkages between genes; secondly, to investigate
and characterise the structural motifs in the network that emerges from the aggregate of the pre-
sumptive links thus inferred. We use raw sequence data from publicly accessible repositories as
the primary (but not the exclusive) input to our experimental protocols. We break these protocols
down into discrete parts, corresponding to the chapters of this thesis, apart from the Introduction
and the final chapter—the Conclusion, wherein we discuss several of the many potential ramifica-
tions of our findings.

We set out by following the logic of Barker and Pagel [2005] in employing a computational proce-
dure to detect the existence of particular genes (or proteins)within several dozenwell-characterised
organisms. Specifically, we seek to derive a trait matrix T , representing the presence or absence of
proteins within a set of eukaryotic species each having a putatively complete published proteome.
One dimension of T corresponds to a reference set of proteins, the other to our list of species. We
can visualise species as the row index and protein as the column index, as in Fig. 2.1. Each element
of T is a trait of the simplest possible kind: a binary entry tij which, if 1, denotes that the jth

protein is present in the ith species, or absent if tij = 0.

In determining whether a protein is present in a given species, we are asking not whether a given
sequence corresponding to that protein is perfectly replicated, but rather whether there is a close
orthologue of some reference protein. Reference proteins come from a reference proteome—in
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Figure 2.1: A binary trait matrix

this case that of Homo sapiens. I use the human proteome because it is at once extensive, well-
characterised and of immediate scientific and medical interest [Legrain et al., 2011]. Our ideal, for
each source sequence in the human proteome, is to derive a set of true orthologues whose pairwise
relationships one to another are generally as close as the relationship between each non-human
orthologue and the human reference sequence itself1.

The trait matrix will serve not only as one of two principal inputs (the other being the phylogeny)
for the correlated evolution analysis to follow, but has interesting properties in its own right. Most
critically for this project as a whole, it will allow me to select a suitable set of genes from which
to infer the phylogeny, described in Chapter 3, “A phylogeny of eukaryotes”. To do so, in the best
case we require proteins—and, by extension, genes—which are observed to be present in all species
in the study.

It will be of interest also to observe how particular proteins are distributed across species [White,
Hightower and Schultz, 1994]. I shall later make use of this knowledge to help check my control
group in the test for correlated evolution [Pagel, 1994]2.

1By this I do not mean that all proteins within each interspecies orthologous set should be equidistant one from
another in sequence space, but (rather less rigidly) that in the ideal case, a protein’s evolutionary history—its gene
tree—should track as closely as possible the tree of species themselves. See Section 2.4 for an example of the sorts of
inferential problem that can arise if there is a mismatch between gene and species trees (i.e. if the gene tree has extra
“hidden” branches within a single species’ lineage).

2Of course, species are not independent, and traits will tend to be shared preferentially between closely-related
species. To avoid a naive across-species comparison wherein closely-related species are wrongly treated as indepen-
dent points, comparative methods can be used to apply a phylogenetic correction to trait data before any inferences are
derived [Harvey and Pagel, 1991; Stone et al., 2011]. Although the comparative method lies at the heart of the current
project taken in the round, the control group (of protein pairs) described later was not derived using a phylogentic cor-
rection, because it was felt that even the use of a “rough and ready” control group would be sufficient, and a considerable
innovation of itself as compared with previous research. This is discussed more fully in Section 4.2.
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2.2 Methods: Multiple whole-proteome reciprocal BLAST

I start with the human proteome, for the reasons outlined above. Specifically, I wish to identify, for
every protein within the human proteome, whether a direct orthologue is present in each of the
other species considered in this study. In order that it should be possible to determine this reliably,
we require not only a complete set of sequences for the human proteome, but similarly complete
sets for all these other species too. If we search for a human orthologue within an incomplete set
of proteins from another species, and fail to find it, we can have little confidence that our negative
“result” is not the consequence of an omission in the source data rather than a true absence. Thus
we expect false negatives (type II errors) if the protein data for any of our species are incomplete.

Because it was my every intention to include as many complete eukaryotic proteomes as possi-
ble in the study, I had envisaged importing proteomes from several different curated repositories,
which specialise in different sets of eukaryotic species. However, in the event and for various
reasons—including considerations relating to curational consistency, fragile and ad hoc custom
data retrieval protocols (developed as part of this study), inconsistency of species coverage among
the various sources, as well as time constraints—I settled on NCBI’s RefSeq [Pruitt et al., 2005], or
Reference Sequence project, as my exclusive source of proteomic data. RefSeq’s curators aim to
make available a unique consensus sequence for each gene or protein recorded for many species
within the NCBI’s taxonomy database3. This is helpful because various ecotypes and allelic vari-
ants of any such gene may exist concurrently in GenBank [Benson et al., 2005]. When searching
for orthologues of a given human gene in other species, and still more when trying to infer a deep
phylogeny of eukaryotes using a sample of such orthologues, we are unconcerned with the small
sequence differences at a particular locus that may exist between populations of a single species;
these will generally be insignificant compared with inter-species differences but one needs to de-
cide on a single sequence per gene, per species, in order to perform the analysis.

My methodology for inferring presence/absence is conceptually straightforward. For each protein
in the human proteome, I use the program NCBI BLAST [Altschul et al., 1990] to determine which
proteins in each other species’ proteome are orthologous. Taking the top hit in the target organ-
ism, i.e. the sequence with the highest BLAST score, I again use the BLAST algorithm (in effect
reciprocally) to find its orthologues in the human proteome. If the original source protein in the
human proteome comes out as the top hit, I deem that the two are exclusively orthologous and
that the protein in question is, in fact, present in the target species. This reciprocal BLAST proto-

3Most species (several thousand) which feature within RefSeq have curated reference sequences for a small subset
only of their total complement of proteins: particularly in metazoa, this is often confined to mitochondrial orthologues
of the 13 mitochondrial proteins identified within human beings—although a fourteenth such protein (humanin or HN)
was identified just after the turn of the century [Hashimoto et al., 2001].
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col is completely without novelty and has been widely used by others in the past [Hutter, 2000;
Fuchsman and Rocap, 2006].

The proteomic data within RefSeq are stored in FASTA [Pearson and Lipman, 1988] text files, a pop-
ular format which is readily convertible into BLAST databases using the formatdb4 command, part
of the NCBI BLAST package itself. However, the data are not stored using a single file for a single
species; rather, RefSeq’s FASTA proteomes are stored in seven different directories, corresponding
to different branches of the tree of life. One directory is reserved for prokaryotes, which do not
form part of this study. The remaining six each accommodate a set of sequentially numbered FASTA

files, all of which contain multiple protein entries, potentially from multiple species. My chosen
methodology required me to separate the entries into species-specific files.

Because neither taxon IDs, nor any other means of identifying the species directly, are stored as
part of the FASTA protein sequence record, the only way of matching species to protein entry is
to take the RefSeq ID and cross-reference it with the RefSeq catalogue, which is also available for
download5. Although the catalogue does contain the species name directly, to avoid any incon-
sistencies in identifying and naming the proteomes, I instead chose to take the taxon ID and then
match it against the NCBI Taxonomy database, which I also downloaded separately. The most
up-to-date version of NCBI Taxonomy is available as a gzip archive; the file names.dmp matches
taxon ID against scientific name; it is a tab-separated-variable file, which I parsed to exclude all
but the two fields of interest before importing into a MySQL [Kofler, 2001] database table. I then
downloaded the catalogue (also a tab-separated-variable file) and imported it into a separate table.

Next, I downloaded and decompressed (using gunzip) the raw FASTA protein files. To split these
up into files each containing one species’ proteome only, I created a Perl program which uses
the BioPerl [Stajich et al., 2002] module Bio::SeqIO to read and write individual protein sequence
records. This it achieves by stripping out the RefSeq accession number, cross-referencing it with
the taxon ID in the catalogue, which is in turn cross-referenced with the species name in the NCBI
taxonomy table; the species name is used for the output FASTA proteome file, which is also suffixed
with the taxon ID. The catalogue and all FASTA files downloaded as part of this study were from
RefSeq release 36.

In contrast to sources like Ensembl [Hubbard, 2002] or the JGI [Grigoriev et al., 2012] for example,
RefSeqmakes no explicit claims about the completeness of the proteomes which it contains. In fact,
the vast majority of species present are represented by a small subset only of proteins—typically
mitochondrial. Other proteomes, including that of Homo sapiens, appear to be relatively enriched
(at over 30 000) as compared with the most widely accepted estimates of gene number—even if this

4In BLAST+, a.k.a. BLAST2 (especially on some Linux systems), formatdb has been superseded by makeblastdb.
5Available (current version only) by ftp from ftp://ftp.ncbi.nih.gov/refseq/release/release-catalog/

ftp://ftp.ncbi.nih.gov/refseq/release/release-catalog/
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remains itself to some extent an open question [Pertea and Salzberg, 2010]. Despite this uncer-
tainty, the unexpectedly high number of human proteins in RefSeq seems likely to be a result of
the inclusion (in well-annotated RefSeq proteomes) of splice variants, which will be elevated in
comparison to gene count [Sorek, Shamir and Ast, 2004]. Even with such relatively substantial
proteomes, I sought assurance that coverage was comprehensive for each species in the study:
otherwise, I could not have had confidence that a given human orthologue was truly absent when
I came to perform the reciprocal BLAST—carrying with it the aforementioned risk of generating
type II errors. Complete proteomes exist in varying states of annotation, and hence of reliability.
Many proteomes, even those described as complete, rely mainly on predictions from homology of
known genes in other species. In this case the initial prerequisite is that the genome itself be fully
sequenced. Although an authoritative list of all complete eukaryotic proteomes is elusive, in that
the several repositories hosting complete proteomes do not claim to provide proteomes for every
completed species, nevertheless equivalent lists of completely sequenced genomes do exist. Note
however that annotated proteomes follow in the wake of genome sequencing: the intevening steps
require further computation and curation. Moreover, putatively complete proteomes may be avail-
able from multiple sources, in various states of reliability and completeness. Because RefSeq seeks
to provide reference sequences with high curational integrity, “complete” proteomes for most se-
quenced organisms will usually become available from other sources before they appear in RefSeq.
Nonetheless, RefSeq continues to grow. From the “Fungi” tab on the “statistics” page of the RefSeq
web site, on 7 July 2008, there were 100 fungal proteomes available; by 7 July 2014, this number had
grown to 2 859. It is not clear from RefSeq’s statistics web page whether all the fungal proteomes
at the point at which the research for this study was conducted (i.e. relating closely to the 2008
figure) were deemed to be complete, but this appears not to have been the case, particularly in
light of the plethora of minimal mitochondrial proteomes only (for many eukaryotes), which are
currently available in RefSeq. In any event, this study incorporates only 23 fungal species, based
on the filtering procedure for complete proteomes described below.

Probably the oldest list of completely sequenced genomes is GOLD [Liolios et al., 2006], theGenomes
OnLine Database. My method was to ascertain which eukaryotic genomes had been fully se-
quenced, then to check, for each species, whether its genomic sequence was available in RefSeq,
and furthermore to verify that a compete proteome seemed to be available as well. For the first
part of this process, GOLD seemed an appropriate resource, and one that lends itself, albeit a lit-
tle clumsily, to formal proceduralisation, thanks to its downloadable tab-delimited table listing all
published fully sequenced genomes, including their source repositories. I used this table to gen-
erate a list of all published eukaryotic genomes, which I then checked against the species-specific
proteome file names already generated in parsing the proteomes from RefSeq. Instances where a
match was found on taxon ID were checked again to ensure that the size of the proteome from
RefSeq was consistent with a complete set of proteins. My first step was to filter for a proteome
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of ≥ 500 kB, a lower limit just a little smaller than that of the smallest proteome in the study,
belonging to Bombyx mori, the silkworm, whose proteome I had presumed to be reduced thanks
to millennia of artificial selection6; crucially however, see Chapter 5, “A trait matrix remade: im-
proved protocols”. Where the proteome met this size criterion, I selected the species for inclusion
in the reciprocal BLAST analysis, with some checks for consistency of proteome size with other
curated sources: again, see Section 2.4. A few of the species’ taxon IDs seemed to be misspecified
in GOLD, referring to different strains or variants of species which were clearly complete in Ref-
Seq. Some manual selection was therefore necessary, but this was the exception rather than the
rule. To the final list thus derived, I added two species: Strongylocentrotus purpuratus, the purple
sea urchin, and Trichomonas vaginalis, the causal agent of trichomoniasis. Both organisms, despite
having been absent from the GOLD listing, have complete proteomes in RefSeq 36.

Before creating the BLAST databases, one more step was necessary. Each of the complete proteome
files contains several thousand entries, a certain proportion of which are duplicated sequences.
Had I left the duplicates in, there would have been the potential for the reciprocal BLAST process
to generate false negatives, because if the source protein in the first step has one or more exact
duplicates, there is a chance that it will not be returned as the top hit in the second step, even
though it will score exactly the same as the duplicate which is returned. I therefore wrote a Perl
program, which again invokes BioPerl’s Bio::SeqIO module, to flush out all duplicated sequences
from each proteome by extracting, comparing and eliminating them. It matters not which specific
sequence(s) among a set of duplicates is/are eliminated, just that each one that remains be unique.
See Section 2.3 for details of the gross number of sequences, plus the number of duplicates, for
each organism.

I used a Bash shell script to output a BLAST database from each of the duplicate-free FASTA pro-
teomes. Because to perform a reciprocal BLAST from the human proteome to all the other complete
proteomes in the study would have taken an inordinate amount of of time (up to a few weeks) on
a standard desktop PC, I uploaded the databases to a 100-processor cluster housed at the Universiy
of Reading, and wrote two Perl programs: one to perform the BLAST processing itself, the other
to split the BLAST jobs among the cluster’s 62 nodes (38 of which housed two processors). I used
NCBI BLAST 2.2.19, accepting most of that program’s defaults. However, I used a modified expec-
tation (E) value, which denotes the number of matches that would be expected purely by chance
(i.e. if there were no actual homology between the source sequence and any of the sequences in
the target database) from a BLAST query. By default this is set to 10, which seems unduly lax.
To constrain my result set to those target sequences which are overwhelmingly likely to possess
and exhibit true homology to the query sequence, I set the expectation value to one in a million,

6In fact, it appears that while artificial selection might indeed have left its imprint on B. mori, that imprint emphati-
cally does not manifest itself as a reduction in genome size [Xia et al., 2009].
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i.e. E = 10−6. Occasionally this resulted in the BLAST query returning no results at all, in which
case I simply recorded the protein as absent in the target.

Output from the reciprocal BLAST was produced in the form of a series of text files containing one
line per human protein, with the GI accession number of the protein itself in the first column, the
rest of the columns being a tab-separated set of ones and zeroes denoting presence or absence in all
species in the study; obviously, this will always take a value of 1 for Homo sapiens, but the column
was included nonetheless7. These text files were concatenated into a single file encapsulating a
complete presence/absence matrix with one row for each unique sequence in the human proteome
(over 30 000 in total). The single file was stripped of its tabs before being loaded into aMySQL table,
which stores the two fields of interest (GI number and the presence/absence fixed-width string of
ones and zeroes) plus another field computed by the loading script, this being the overall number
of species out of my sample in which the protein was reckoned to be present. This number is
used later in the likelihood analysis to select proteins with a spread of presence and absence, since
in the extreme cases of ubiquity on the one hand, and exclusivity to the human organism on the
other, a protein cannot meaningfully be tested for correlated evolution with any other, regardless
of the latter’s pattern of presence/absence. I note that a simple sum of the number of organisms
in which a protein is deemed to be present is an inherently biased statistic, in that it takes no
account of phylogeny—which is is my precise objective in the context of the overall study. It is
nonetheless presented in the results as a distribution of protein frequency among my particular,
phylogenetically biased set of organisms.

In tandem with the BLAST databases, I needed a way of mapping unique human source sequences
(fromwhich duplicates are deliberately excluded) back to the actual, potentially multiple sequences
in the original human proteome that they represent. This would later enable me to represent ac-
curately the frequencies of the original proteins in the likelihood analyses, for both curated inter-
actors from HPRD8 and presumptive non-interactors. I therefore wrote one program to populate a
MySQL table with all the human sequences, and another to map each genuinely unique RefSeq ID
in the full proteome to a GI number representing a sequence from the unique set which might be
common to multiple RefSeq IDs. (The GI number is real; for each unique sequence, it represents
the GI from the first record found with that particular sequence). This is a many-to-one mapping,
even though a majority of sequences do not have exact duplicates. I would later rebuild the trait
matrix, reassigning its entries to interactor IDs from HPRD: see Chapter 4, “A correlated evolution
network”.

7I did not run a reciprocal BLAST from the human proteome back to itself, because this would have been redundant.
8The Human Protein Reference Database [Peri et al., 2004], henceforth referred to in the text only as HPRD.
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2.3 Results

According tomy stated criteria, I determined that 85 complete eukaryotic proteomeswere available
in RefSeq release 36. For reasons to be explained in Chapter 3, I would go on to eliminate 13 species
from the study, leaving 72. Total number of sequences varies widely among the eukaryotes. The
totals found in this study, together with a summary of duplicates for each of the 85 species, are
shown in Table 2.1. Those species which did not feature in the likelihood analysis described in
Chapter 4 are greyed in comparison to the other entries.

Table 2.1: Total and duplicate sequence counts9 for complete eukaryotic proteomes from RefSeq 36

total unique
species sequences sequences 1 2 3 4 5–9 10–99 100+

Aedes aegypti 16 798 16 059 15 478 483 71 17 8 2
Anopheles gambiae str. PEST 13 123 12 889 12 707 145 29 5 3
Apis mellifera 9 268 9 199 9 136 57 6
Arabidopsis thaliana 33 402 31 220 29 508 1 379 249 54 28 2
Ashbya gossypii ATCC 10895 4 725 4 720 4 716 3 1
Aspergillus fumigatus Af293 9 630 9 630 9 630
Aspergillus nidulans FGSC A4 9 541 9 528 9 515 13
Aspergillus niger CBS 513.88 14 086 14 077 14 074 2 1
Aspergillus oryzae RIB40 12 074 12 051 12 037 9 3 1 1
Babesia bovis T2Bo 3 706 3 690 3 675 14 1
Bombyx mori10 1 680 1 679 1 678 1
Bos taurus 22 879 22 322 21 866 406 35 4 8 3
Branchiostoma floridae 50 755 49 779 48 872 878 19 5 3 2
Brugia malayi 11 472 11 349 11 250 85 10 2 2
Caenorhabditis elegans 23 906 23 726 23 611 102 5 3 1 4
Candida albicans SC5314 14 633 9 283 4 122 4 986 164 9 2

9The second column, “total sequences”, refers to the total count of protein sequences from RefSeq for each species,
including all duplicate and multiplicate instances of identical sequences originating from different genomic loci. The
third column, “unique sequences”, gives the count, by species, of sequences with additional copies of any identical
sequences removed: in fact it is the straightforward sum of all 7 columns to its right, which simply sort the unique
sequences into buckets according to how many times they occur within the proteome. So counts under the column
heading “2” refer to the non-redundant number of sequences which occur twice: to get the total for all the duplicates,
multiply this number by 2. Similarly, to get the number for all the triplicates, multiply the numbers in the column
headed “3” by 3—and so on. In general, most sequences have no exact intraspecific matches: species counts for these
appear in the column headed “1”. Note that the total sequence count in the second column can be obtained by summing
the products, i.e. of all the uniquely defined sequence counts, and the number of times each sequence occurs (2 for
duplicates, 3 for triplicates, and so on). However, it is not generally possible to obtain such products definitively from
columns covering a range of multiplicates (e.g. 5–9).

10The count of 1 680 proteomic sequences for B. mori is an anomaly: in fact it is artefactually low, for reasons explained
in Section 2.2, especially Footnote 6 on page 30.
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total unique
species sequences sequences 1 2 3 4 5–9 10–99 100+

Candida glabrata CBS 138 5 192 5 180 5 170 8 2
Canis lupus familiaris 33 502 31 980 30 942 775 158 55 46 4
Chlamydomonas reinhardtii 14 489 14 338 14 280 48 2 1 4 3
Ciona intestinalis 13 945 13 802 13 677 110 12 3
Cryptococcus neoformans JEC21 6 594 6 443 6 309 120 11 3
Cryptosporidium hominis TU502 3 885 3 885 3 885
Cryptosporidium parvum Iowa II 3 805 3 805 3 805
Danio rerio 27 850 27 068 26 500 514 31 6 10 7
Debaryomyces hansenii CBS767 6 317 6 310 6 303 7
Dictyostelium discoideum AX4 13 408 13 032 12 698 324 5 1 2 2
Drosophila ananassae 15 070 14 954 14 913 28 6 1 1 5
Drosophila erecta 15 048 14 868 14 827 28 6 1 1 5
Drosophila grimshawi 14 986 14 741 14 620 113 4 4
Drosophila melanogaster 21 099 18 122 16 213 1 309 379 122 94 5
Drosophila persimilis 16 878 16 741 16 645 80 9 2 5
Drosophila pseudoobscura pseudoobscura 16 071 15 995 15 930 58 5 1 1
Drosophila sechellia 16 484 16 138 16 012 105 11 1 5 4
Drosophila virilis 14 491 14 382 14 347 27 4 4
Drosophila willistoni 15 513 15 434 15 375 49 6 1 3
Drosophila yakuba 16 095 15 953 15 812 140 1
Encephalitozoon cuniculi GB-M1 1 996 1 908 1 853 38 10 1 6
Entamoeba histolytica HM-1:IMSS 8 163 7 958 7 803 121 24 6 4
Gallus gallus 18 734 18 509 18 354 119 19 8 9
Giardia lamblia ATCC 50803 6 502 6 329 6 176 137 13 2 1
Gibberella zeae PH-1 11 640 11 638 11 636 2
Homo sapiens 37 946 31 120 26 781 2 393 1 658 186 94 8
Kluyveromyces lactis NRRL Y-1140 5 327 5 308 5 292 14 1 1
Laccaria bicolor S238N-H82 18 215 17 895 17 607 266 17 2 3
Leishmania infantum JPCM5 7 992 7 872 7 760 107 4 1
Leishmania major strain Friedlin 8 265 8 001 7 865 101 16 15 4
Macaca mulatta 37 851 32 836 29 982 1 748 573 291 229
Magnaporthe grisea 70-15 14 010 13 459 12 972 468 8 4 4 3
Malassezia globosa CBS 7966 4 286 4 274 4 266 4 4
Monodelphis domestica 20 206 20 120 20 060 49 7 2 1 1
Monosiga brevicollis MX1 9 171 9 155 9 145 5 4 1
Mus musculus 35 651 30 713 26 752 3 476 309 101 60 15
Nematostella vectensis 24 780 24 430 24 239 161 10 6 7 7
Neurospora crassa OR74A 9 841 9 813 9 787 24 2
Ornithorhynchus anatinus 16 680 16 590 16 560 23 5 2
Oryza sativa Japonica Group 26 940 26 858 26 790 62 3 1 2
Ostreococcus lucimarinus CCE9901 7 603 7 403 7 206 195 1 1
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total unique
species sequences sequences 1 2 3 4 5–9 10–99 100+

Pan troglodytes11 51 405 41 822 37 215 2 594 905 457 570 81
Paramecium tetraurelia strain d4-2 40 043 39 399 38 828 541 12 4 12
Phaeodactylum tricornutum CCAP 1055/1 10 408 10 336 10 268 65 2 1
Physcomitrella patens subsp. patens 35 894 35 552 35 294 213 33 3 7 2
Pichia stipitis CBS 6054 5 816 5 797 5 782 13 2
Plasmodium falciparum 3D7 5 262 5 244 5 231 10 2 1
Plasmodium yoelii yoelii str. 17XNL 7 353 7 302 7 270 23 6 1 2
Podospora anserina DSM 980 10 219 10 219 10 219
Populus trichocarpa 42 344 41 784 41 312 419 36 11 5 1
Postia placenta Mad-698-R 9 083 8 983 8 889 88 6
Rattus norvegicus 30 920 26 709 22 728 3 841 89 41 8 2
Saccharomyces cerevisiae 5 884 5 821 5 769 45 3 4
Schizosaccharomyces pombe 4 994 4 948 4 911 31 3 3
Sorghum bicolor 32 520 32 353 32 227 104 18 1 2 1
Strongylocentrotus purpuratus 42 324 24 420 6 924 17 294 51 140 9 2
Tetrahymena thermophila 24 770 24 743 24 717 25 1
Thalassiosira pseudonana CCMP1335 11 673 11 612 11 562 46 1 1 2
Theileria annulata strain Ankara 3 792 3 787 3 782 5
Theileria parva strain Muguga 4 061 4 050 4 039 11
Tribolium castaneum 9 883 9 853 9 825 27 1
Trichomonas vaginalis G3 59 679 50 187 48 037 1 228 343 154 236 178 11
Trichoplax adhaerens 11 537 11 520 11 505 13 2
Trypanosoma brucei TREU927 8 712 8 514 8 383 108 11 4 5 3
Trypanosoma cruzi strain CL Brener 19 607 19 245 18 951 254 26 10 3 1
Ustilago maydis 521 6 522 6 518 6 514 4
Vanderwaltozyma polyspora DSM 70294 5 367 5 345 5 326 16 3
Vitis vinifera 23 493 23 081 22 733 302 39 2 5
Yarrowia lipolytica CLIB122 6 448 6 425 6 417 3 5

After running the reciprocal BLAST itself, based on the unique sequences only, I observed the
patterns of frequency distribution among the found orthologues displayed in Fig. 2.2 on the facing
page. I include both my favoured reciprocal BLAST results from the later run with E = 10−6 and
the results from my initial run with the BLAST default E = 10 for comparison. The left-hand
column represents the older default expectation parameter, the right-hand my one-in-a-million
criterion. The top row gives the results for all 85 species, the bottom for the 72 species in the

11Total proteomic sequence tally for P. troglodytes is substantially overstated in comparison to the H. sapiens figure.
This is presumed to be due to the relatively immature status of the chimpanzee genome assembly within RefSeq 36. Good
evidence for this is that of 51 405 chimpanzee protein sequences, fully 50 080 had an “XP” prefix, denoting a predicted
protein, with only 725 proteins based on the accepted assembly (denoted by the prefix “NP”). Compare this to H. sapiens,
with 9 942 predicted proteins, and 27 991 already in the assembly; there are also 13 human “AP” proteins, presumed to
be mitochondrial. See Table 5.1 on page 78 for a list of RefSeq sequence prefixes relating to proteins.
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likelihood analysis only. Therefore Fig. 2.2(d) gives the results which relate specifically to the
inputs to the likelihood analysis. The quoted species totals include Homo sapiens; human proteins
with no orthologues appear in the “zeroth” bar in each histogram.
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Figure 2.2: Human protein frequency by count of species exhibiting orthology:
for different E and species totals

Finally for this section, in Fig. 2.3 on page 43 I present totals of human orthologues in each indi-
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vidual non-human species, leaving aside the trivial case of Homo sapiens itself, with 31 120 unique
sequences. Species are presented in order of the number of orthologues found, left-to-right. Totals
appear beside each bar, to the right.

2.4 Discussion

There are pitfalls in the reciprocal BLAST methodology. As a tool for detecting orthology specifi-
cally, and homology more generally, it could be judged to be effective but crude. I draw attention
to two problems in particular: firstly, the weakness of heuristic local alignment in identifying best
matches; secondly, the potential for questionable categorisation of orthologous sets, chiefly owing
to gene duplication and loss.

NCBI BLAST [McGinnis and Madden, 2004], and WU-BLAST [Gish, 1996] for that matter, employ
a heuristic search algorithm which finds short aligned sections of sequence (protein–protein in
this case) and tries to produce an alignment by extending the aligned sections at either end using
an amino acid substitution matrix—usually BLOSUM62 [Henikoff and Henikoff, 1992]—which also
enables the overall alignment to be given a score. Low-scoring alignments can be rejected, while
high-scoring alignments are retained in the BLAST report. While this approach is relatively quick,
and is typically the first resort of the researcher searching for homologues of a given sequence, we
should note that because it is based on short exact matches in the “seed” sequences, it is not neces-
sarily optimal for discovering the best possible pairwise alignment, particularly in more distantly-
related sequences. For this we might look toward a dynamic programming algorithm [Eddy, 2004]
which can perform a global alignment by thoroughly weighing the possible state transformations
between the sequences, albeit at the cost of very significantly increased processing time, typically
around two orders of magnitude as compared with BLAST (and variants thereof). This in fact forms
part of the hybrid approach adopted by Barker, Meade and Pagel [2007], who used blastp to isolate
up to 20 of the highest-scoring matches from whole proteomes before using EMBOSS [Rice et al.,
2000] needle, an implementation of the Needleman-Wunsch global alignment algorithm [Needle-
man andWunsch, 1970], to find the best match out of this reduced set of candidates. This two-stage
process is still acceptably quick and is very likely to find the “true” best match; using needle to query
the entire proteome would be very much slower.

In spite of these reservations, arguably our reciprocal BLAST process does a fairly good job on its
own of identifying the closest orthologue (to a given human protein) present in another species,
given constraints of processing time. However, assuming that for each non-human species we can
successfully infer the closest one-to-one orthologue mapping between human and non-human
proteomes, are we justified in going on from here to characterise the collection of proteins found
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in this manner in the various non-human species as a true orthologous set? This has implications
both for the derivation of presence/absence, and by extension (and perhaps evenmore importantly)
for the phylogenetic inference, which depends critically on identifying such exclusive orthologies
with accuracy. I will try to infer the tree of species based on a tree of genes, which constitute my
data; because for this purpose I wish to use those genes which are both present in all species, and
whose evolutionary bifurcations correspond with speciation events, a misidentified orthologue has
the potential to give rise to a misleading species tree. Yet how could this happen under the already
stated (if not completely realistic) assumption that given the sequence for any human protein, we
can unfailingly pick out its closest match from another species’ proteome database?

The chief source of difficulty is the fact that genes’ evolutionary histories can be more convoluted
than those of the organisms in which they are found. A gene can undergo a duplication within the
same genome, giving rise to a paralogue. This can happen an arbitrary number of times on a sin-
gle (organismal) evolutionary branch, i.e. during a period when no speciation takes place. Several
rounds of such duplications can give rise to multiple paralogy. Not only can paralogues accumu-
late in this way; they can be eliminated as well. In fact, this may be typical and to be expected
given that in the most probable case, paralogy will confer not evolutionary advantage but simply
redundancy [Wagner, 2003]. On a gene tree inferred from the sequences of a set of paralogues,
the historical evolutionary relationships among the paralogues may be apparent, but what will be
missing are these losses—gene extinction events, effectively. Only when orthologues from other
species are included in the gene tree may some such losses be exposed, because a speciation event
following a proliferation of paralogues in the common ancestor gives us two repository species
in which all the paralogues extant at the time of speciation are carried forward—to be eliminated,
retained or duplicated further. Note that such a gene tree will contain bifurcations corresponding
both to intragenomic duplications and speciation events [Tatusov, 1997]. To illustrate the potential
complications which this might present for our simple reciprocal BLAST process, we may (hypo-
thetically) use phylogenetic inference to construct a very simple gene tree for a hypothetical gene
which may have been present in an ancestral primate, whose hypothetical evolution we trace into
the human, chimpanzee and macaque descendent lineages. Let’s say the gene underwent a pre-
historic duplication before the speciation event which separated the ancestral macaque from the
common ancestor of humans and chimps. Finally, the human and chimp lineages themselves split
apart. Because the gene is present in each lineage at each bifurcation, effectively it became present
in six separate versions. However, because it has been lost on two separate occasions following
the most recent bifurcations, only four versions of the gene have survived until the present: both
duplicates in the chimpanzee and one each in humans and macaques. This is illustrated in Fig. 2.4
on page 44, where α and β represent the initial duplicates, while the subscript m represents the
macaque lineage, h the human, c the chimpanzee, and hc that of the most recent common hu-
man/chimp ancestor.
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Starting with the human proteome, if we BLAST αh against the chimp proteome, we are likely to
score a reciprocal top hit on αc, whereas if we BLAST it against the macaque proteome, we are
likely to score a reciprocal top hit on βm. So, if we didn’t know any better, we would infer a mini-
set of direct orthologues across the three species. However, consider starting from the macaque
proteome, with its one remaining copy of the ancestral protein, βm. We have already stated that
this will probably undergo a successful reciprocal BLASTwithαc in the human proteome. However,
targeting the chimp proteome, in the most likely event βm will BLAST reciprocally with βc. So if we
start from the human proteome, we come up with the inference that {αh, αc, βm} constitutes an
orthologous set, with βc being unlikely to get included in any other orthologous sets and therefore
being left out altogether. If on the other hand we start from the macaque proteome, we infer
{αh, βc, βm} to be an orthologous set, this time with αc excluded altogether. Of course, if we
were to start from the chimp proteome, in which both descendants of the initial intragenomic
duplication survive, we would get two orthologous sets of proteins, {αh, αc} and {βc, βm}; the
former orthologue would be marked as absent in the macaque, the latter as absent in the human,
since in each case the reciprocal BLAST would return not to the source protein but to its paralogue
in the chimp proteome. So not just the extent, but the character of our binary trait matrix too, is in
somemeasure dependent on the proteome we choose to start from, and the particular evolutionary
relationships it shares with the other proteomes in our study, at a genomically localised level which
has the potential to elude the rather coarser-grained methodology which we employ.

The hypothetical sequence of events outlined above is problematic not only for the derivation
of the trait matrix itself, but perhaps even more importantly, in its implications for phylogenetic
inference. In fact, it is possible that something close to this very scenario has already manifested
itself during the course of the preparatory work for this project [Read, 2007]. In my 85-species
reciprocal BLAST, the very last bar on the right of Fig. 2.2(b) actually represents 15 proteins found
to be common to all species; admittedly this is difficult to see given the scale of the y axis. As
will be explained in more depth in Chapter 3, it was these 15 genes which I elected to use for
phylogenetic inference. An earlier run of the reciprocal BLAST, using only 48 species, identified
a slightly different set of proteins which had an orthologue in all species. In like manner to this
study, these genes12 were then used to infer a phylogeny, or rather multiple phylogenies, since as
well as using the concatenated sequences of all such genes to infer the main phylogeny, I had been
interested to see how the topology would be affected by generating phylogenies from each gene
sequence individually. In fact, the most striking feature of all the trees based on individual genes
was the presence of one very long branch (i.e. at least three times longer than the second longest
branch); more interestingly, the long branch belonged to a different species in each tree. In the tree
generated using sequences from the orthologous set of the human gene isoleucyl-tRNA synthetase

12For reasons which will also be explained in the Chapter 3 (strictly in the context of the present study), the nucleic
acid sequences from the gene orthologues, rather than the protein sequences, were used to infer the phylogeny.
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(IARS), the long branch was that of Macaca mulatta; in fact, this was the longest branch observed
in any of the single-gene trees.

A reciprocal BLAST from the macaque IARS orthologue against all other species’ proteomes might
have thrown further light on this apparent anomaly, but unfortunately this was not performed.
Therefore any inference drawn at this point is strictly speculative, but it seems unlikely that the
macaque protein’s extraordinary apparent rate of evolution was real. More likely (and assuming
the reciprocal BLAST did not simply miss the true orthologue for artefactual reasons to do with the
less-than-perfect BLAST-only algorithm) is that the macaque protein found is not a true orthologue
of the human source protein at all, but that the real orthologue has been lost from the macaque.
We may extend the speculation to wonder if the last common ancestor protein of the human and
macaque proteins predates bymanymillions of years the last common ancestral organism. Wemay
imagine a gene duplication, a subsequent divergence of function between the two variant genes,
followed by loss of one variant in the human lineage and of the other in the macaque lineage,
which could account for the “success” of the reciprocal BLAST.

All of which prompts the question, what happens after gene duplication? Gene duplication has
been proposed as one of the main driving forces behind evolution itself [Ohno, 1970]; plausibly,
almost all novel genes which confer evolutionary advantage by means of functional innovation
arise through duplication events. If both child genes arising from the duplication of a functional
parent gene are themselves fully functional, an immediate redundancy in function arises. Until one
of the duplicates undergoes a mutation which destroys or compromises its function in some way,
purifying selection is likely to become more relaxed [Zhang, 2003]. Once one of the duplicates
does start to diverge, however, the overwhelmingly likely consequence is that its function will be
impaired [Wagner, 1998], while the other is likely to come back under more stringent purifying
selection, and to remain strongly constrained. One can imagine selection operating rapidly to
separate the functions of the sibling proteins once one of them starts mutating, purifying selection
acting as negative feedback on the unmutated sibling and maintaining stasis, while genetic drift
slowly pulls the other away, through sequence space, as it undergoes further mutation without
check.

If the divergent duplicate remains free of purifying selection, it may meet one of several fates. It
may be lost; the evidence is that this is the most likely outcome [Lynch and Conery, 2000] and
would be expected eventually if its retention conferred no selective advantage. It may exploit
its freedom from the shackles of purifying selection to wander over a fitness landscape before
climbing towards a local optimum, bringing it under positive selection for some novel trait. Al-
ternatively, the (otherwise potentially lethal) loss of its sibling duplicate may bring it suddenly
back under purifying selection; in this scenario we would expect it to have retained aspects of
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its original function. In the case where it is free to wander over a fitness landscape, it might
scale some peak which enables it to perform its original function better than the gene which had
remained constrained, at which point it could come back under purifying selection itself, while lib-
erating its sibling to wander the local fitness landscape in a kind of evolutionary ping-pong. Dehal
and Boore [2005] have made a powerful case that major gene duplication events involving multi-
ple chromosomes are associated with major historical evolutionary innovations in the eukaryotic
tree. Smaller, more localised gene duplications might account for less punctuated evolutionary
innovation, whose steady accumulation nonetheless contributes significantly to the diversity of
organismal form and function in existence today [Shubin and Marshall, 2009].

Phylogenetic reconstruction of gene trees is one way of establishing the history of gene lineages
with more certainty than a BLAST protocol alone can offer, and is interesting in its own right, but
at the time of writing does not scale well given the existing limits to computational power. It might
be reserved for problematic genes, however.

If we wish in future to address some of the issues around orthology discussed above, the various
strategies are expensive in terms of computing time, whether we seek to employ phylogenetic
methods (see Chapter 3) or simply to expand our BLAST search to give us the top hit(s) from every
species’ database found bymatching every other protein in every other species’ database against it.
In the latter case, this applies whether we employ BLAST alone (in any of its variants), or whether
we use it as a filter for a more limited, but definitive, search using a dynamic programming algo-
rithm like Needleman-Wunsch. Either way, run time in the all-species-against-all-species scenario
will increase by a factor roughly equal to the number of species in the analysis, compared with us-
ing the human proteome as the sole source proteome as per our reported method; also, run time
would vary in rough proportion to the square of the number of species in the analysis, rather than
linearly, as at present.

We might therefore profit from taking an approach suggested by Korf [2003], whereby BLAST

searches are run serially, using different input parameters on each iteration, two iterations being
typical. In this scheme, the first run uses very insensitive parameters, while subsequent runs be-
come increasingly stringent: using high stringency for BLASTing against unrelated sequences is
very costly in terms of processor time, but we can use stringent criteria in a fast BLAST protocol
if we confine ourselves to a more limited set of targets which are already presumed to show some
level of similarity to our source sequence.
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2.5 Addendum: Protocols for incorporating additional proteomes

Although this study has been limited to proteomes extracted from the repositories in RefSeq, the
original intention was to incorporate complete proteomes from as many different sources as pos-
sible, so as to maximise the coverage of eukaryotic species. A number of institutions maintain cu-
rated collections of such whole-proteome sequence data; work on bringing them into this project
made some progress before it was abandoned owing both to considerations of time and data con-
sistency. I briefly describe these efforts below.

Apart fromRefSeq, projects hosting a range of complete eukaryotic proteomes include Ensembl [Hub-
bard, 2002], Integr8 [Pruess et al., 2005], the International Protein Index (IPI) [Kersey et al., 2004]
and the Joint Genome Institute (JGI) [Grigoriev et al., 2012]. Like RefSeq, at the time this study was
originlly conducted (2009), all of these repositories were updated every few weeks or months. Be-
cause none of them provides a simple downloadable archive containing all the proteomes in each
release, I wrote Perl programs of various levels of complexity to retrieve all the files automatically,
anticipating that the process might benefit from being re-run occasionally to accommodate up-
dates to the data. For the purpose of combining the data after download, I also developed various
ways of incorporating taxon IDs into the file names on my local machine.

I wrote a Perl program to download FASTA proteomes from Ensembl by calling ftp. It retrieved the
respective taxonomy IDs from the Ensembl online databases using Perl’s MySQL DBI interface.

Intergr8 from the EBI provides a SOAP13 module which I called from within another Perl program
to search for the required files by superkingdom (or “superregnum”)—in our case, eukaryota. These
FASTA proteomes are based on the UniProt Knowledge Base; taxon IDs are returned along with the
remote file names in the SOAP search, so were easy to incorporate in the local file names after
download.

Some of the proteomes rely heavily on computational inference from nucleotide sequence data,
so can vary dependent on the inferential algorithms used. Therefore, because there is some over-
lap in the species for which these various sources (including RefSeq) hold data, I also developed
a way of selecting unique sequences from the combined sources, so as to make the coverage of
the proteomes themselves as comprehensive as possible. This was done in preference to simply
choosing a favoured data source for each species. In making this choice I ran the risk of incorpo-
rating multiple non-consensus variants of the some of the same sequences in each file, and signif-
icantly overstating each species’ real number of unique proteins. However, this was a conscious

13Simple Object Access Protocol: one of the standards defined for the provision of web services [Scribner and Stiver,
2000].
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calculation. Crucially, if I chose a single data source, namely RefSeq, for the human proteome,
my reciprocal BLAST process (which starts from the human proteome) should still have returned a
plausible number of orthologues, although the individual orthologue sequences themselves (i.e. the
top BLAST hits) might have been different. If there was any systematic variation in the way the
various institutes curated their proteomic data, my strategy was going to be to try and minimise
its effect by incorporating all of them. Essentially this process was the same as the one already
referred to in Section 2.2, which eliminates any duplicate sequences. The only difference was the
use of multiple input files, one per source proteome for each species; species were identified by
placing the taxon ID in the file name as described above (in the current section).

This avenue of research was laid to one side soon after the stage where the proteome files could
be downloaded and combined automatically. It might be profitable to revisit it in the future, as it
would certainly facilitate the incorporation of many more species in the study. The total number
of species for which I generated combined proteome files was 189. At the time when this much
larger studywas shelved, there remained unresolved problems in generating BLAST databases from
a handful of the combined proteomes. Were the study to be conducted again in full at the time of
writing (2014), it is unlikely that all the original data sourceswould be accessible using the protocols
employed during this early phase of the study (2008–9), given the difficulties experienced at the
time. Based on observed species counts within RefSeq however, it is altogether possible that a
study incorporating 200+ complete proteomes would be feasible.
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Orthologue totals by species
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Figure 2.3: Nos. of human orthologues in other species, coloured by major phylogenetic grouping.
Counts are next to bars (ranks in parentheses). Rank is assigned by descending orthologue count.
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Chapter 3

A phylogeny of eukaryotes

3.1 Aims: Building a new phylogeny of fully sequenced eukaryotes

We sought to infer a phylogeny of all the organisms in our BLAST study. By building such a tree
of relatedness between these disparate eukaryotic organisms, we aimed to facilitate the subse-
quent analysis of each protein (or, more correctly, each set of orthologous proteins1) for signs of
correlated evolution. Using the patterns of protein presence/absence whose derivation was de-
scribed in Chapter 2, it is possible to apply statistical techniques to correct these patterns for phy-
logeny [Freckleton et al., 2002], and thereby to go on to infer how likely it is that a given pairing of
orthologous sets (proteins) shows evidence of a codependency. When it comes to ancestral state
reconstruction [Omland, 1999], coincident points of protein gain and loss testify to such relation-
ships [Barker and Pagel, 2005]. Multiple coincident points of loss (by which we mean two or more
instances of two given proteins being lost on the same branch of the phylogeny) are generally an
indicator of correlation. This will be discussed at greater length in Chapter 4; suffice for now to
say that phylogenetic inference is a necessary precursor to inference of correlated evolution.

The process of phylogenetic inference, performed from scratch using a modern implementation
of Bayesian statistical methods within a Markov Chain Monte Carlo (henceforth referred to as
MCMC) framework [Pagel and Meade, 2004], is itself revealing, potentially offering insights into
larger questions in evolutionary biology such as the correct placement of the root of the eukary-
otic tree, which is still a matter of contention [Lasek-Nesselquist and Gogarten, 2013]. The correct

1An orthologus set is a multi-species set of homologues (i.e. orthologues) to a reference human protein sequence,
where each sequence in the set is uniquely defined for its particular species. Few human protein sequences have ortho-
logues in all the other species studied here, so these sets typically come from a subset of the species in the study; only
rarely is the set complete, in the sense of having an entry for every species studied.
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placement of major monophyletic branches within the eukaryotes is also a matter of ongoing de-
bate, probably thanks to rapid adaptive radiation close to the basal eukaryotic divergence [Baldauf,
2008].

I will present not just a single tree, but a series, including a consensus tree based on multiple
concatenated sequences. Trees based on individual genes were generated but are not included
here as they were not used as inputs to the subsequent trait analysis.

3.2 Methods: Gene choice, MCMC and the consensus tree

The first step towards deriving a tree was to produce a set of sequence alignments that could serve
as the inputs to a phylogenetic inference program; such programs are generally fairly similar in
their data requirements, if not necessarily in their algorithmic implementation. In principle, se-
quences either of peptides or of nucleic acids could be used, although certain programs specifically
require one type or the other. In either case, the first requirement is a set of genes or proteins which
are common to all the species in the investigation; as discussed in Chapter 2, we want the gene
tree to match the species tree if the true set of relationships among the species is to be computed
reliably.

Because this study encompasses such a diversity of organisms, the quest for a reasonably sizeable
set of genes which are common to all of them might appear ambitious. However, based on the full
set of species which were originally intended for inclusion in the phylogeny, I isolated 15 proteins
from the reciprocal BLAST which appeared to be common to all 85 species, without exception
(that is, their orthologous sets spanned all 85 species). These were judged to constitute a sufficient
quantity of data that we might have some confidence in the phylogeny that would be inferred from
them. The human protein descriptions (from NCBI Entrez) for these proteins are displayed below.

Proteins found to be common to all 85 species, based on reciprocal BLAST results

chaperonin containing TCP1, subunit 4 (delta) ribosomal protein L13 ribosomal protein L23
eukaryotic translation initiation factor 5 ribosomal protein L15 ribosomal protein S2
proteasome 26S subunit, non-ATPase 14 ribosomal protein L17 ribosomal protein S3a
proteasome beta 3 subunit ribosomal protein L18a ribosomal protein S6
ribosomal protein L9 ribosomal protein L21 ribosomal protein SA

I planned to use the program BayesPhylogenies [Pagel and Meade, 2006] to infer the phylogeny
based on all of the above proteins; this would require first performing a separate multiple align-
ment on each of the fifteen orthologous protein sets, and then aligning the corresponding genes
based on the protein alignment. Before these steps were undertaken, however, it was decided to
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remove 10 species from the analysis. Because 10 species from the genus Drosophila (fruit flies) had
complete proteomes in RefSeq, I had included all of them in the reciprocal BLAST analysis, where
the clustered character of their results extends beyond the closeness of the gross orthologue totals
reported in Fig. 2.3, to a discernible similarity in their specific patterns of presence and absence.
For example, the average number of human protein orthologues found in the 10 Drosophila species
was 5 586.3, with a sample standard deviation of 72.1. D. melanogaster had the most orthologues
with 5 727 and D. persimilis the fewest, with 5 439. A full 3 893 of these orthologues were found in
all 10 species. Now consider the effect of including just two more species forming a sister clade to
the drosophilae, namely the mosquitoes Aedes aegypti and Anopheles gambiae, with 5 613 and 5 547
orthologues respectively (i.e. both well within one standard deviation of the Drosophila mean): the
number of orthologues common to all 12 species falls by 616 to 3 277. By contrast, cutting out
any two of the drosophilae, to leave 8 from the original 10, increases the number of orthologues
common to all eight by a maximum of 286 to 4 179, if D. persimilis and D. sechellia are taken out;
the figure is lower is any other pair of species is removed2. This testifies to the comparative close-
ness of the relationships among the drosophilae. Because it was my intention to build a broad
phylogeny of eukaryotes which would bring out the relationships between distantly related or-
ganisms, I was concerned not to bias the inference unduly by weighting the input data heavily
towards a large clade of organisms with a comparatively recent common ancestor, which in the
case of the drosophilae is reckoned to have existed around 60million years ago3. Another consider-
ation is the nature of the genes used for phylogenetic inference; because they are present in every
organism in the study and therefore by definition highly conserved, it is likely that their range of
sensitivity is better attuned towards accurate elucidation of deeper phylogenies. These consider-
ations led me to eliminate 9 out of the 10 Drosophila species from the study before the alignment
stage. D. melanogaster was retained as the best-studied and best-annotated representative of the
genus.

Unfortunately, and ironically given that much previous work in this area has focussed on its pro-
teome, it was also necessary to eliminate Saccharomyces cerevisiae at this stage, because the en-
hanced detail in its genomic annotation in RefSeqmade it difficult to align, andwould have required
extra programming. With the drosophilae, this accounts for the 10 species excluded from the study

2The overall average for Drosophila of 5 586 orthologues is relatively high because they are concentrated at the ends
of the distribution. By this is meant that while a majority of the 7 492 orthologues found in these fruit flies are common
to all 10 species, the largest minority of orthologues (867) are exclusive to one species only, i.e. to any single species
within the clade of drosophilae.

3The phylogeny does include closer relationships than this, particularly among the three primates. The closest
relationship in the study, between humans and chimpanzees, reflects very recent common ancestry of about 5 million
years ago; this was felt to be potentially illuminating given that the human proteome is our starting point. The primate
clade, including the macaque, is unlikely to bias the result unduly because of the very few species involved. Common
ancestry among themammals as a whole, even excludingmarsupials, stretches back considerably further than 60million
years.
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at this stage. This left 75 species, which formed the subject of the phylogenetic inference.

My chosen program for performing the phylogenetic inference was BayesPhylogenies, which re-
quires a multiple alignment of nucleotides. I therefore wrote a Perl program which re-ran the
reciprocal BLAST for the fifteen ubiquitous proteins only4, before retrieving the required 15 sets of
75 protein (amino acid) sequences from RefSeq, together with their coding mRNA (equivalent to
sense DNA) sequences. This was facilitated by BioPerl’s interface to RefSeq, Bio::DB::RefSeq, which
makes it possible to code such operations quite ergonomically; coding sequence accessions were
retrieved from protein sequence annotations before both the protein and the coding sequences
themselves were automatically downloaded in the required FASTA format. The program stripped
any starting methionines from the protein sequences at this point; methionine is employed as
the eukaryotic start codon. The protein sequences must be matched to their coding (nucleotide)
sequences prior to producing a nucleotide alignment. Because there is no start codon in the cu-
rated nucleotide sequences, to have left it in the protein sequences would have caused the matches
between protein and nucleotide sequences to fail.

Separatemultiple alignmentswere performed on all 15 sets of protein sequences, using the program
MUSCLE [Edgar, 2004]; this was preferred to the older andmore widely usedClustalW [Thomopson
et al., 1994] on the grounds of the former’s claimed superior performance and accuracy [Edgar and
Batzoglou, 2006]. This produced fifteen files corresponding to the alignments.

I used the program AAtoDNA, developed by Andrew Meade of the University of Reading, to match
the aligned protein sequences, i.e. including gaps, to the nucleotides, outputting a set of 15 mul-
tiple nucleotide alignments. By default, this program uses a standard eukaryotic genetic coding,
which takes no account of coding modifications which have occurred along some branches of the
eukaryotic tree. In this study, two organisms use one such alternative coding and another uses
a third distinct coding. Paramecium tetraurelia and Tetrahymena thermophila transcribe the RNA
codons UGA and UGG to glutamine; both are stop codons in the standard genetic code. Pichia

stipitis transcribes CUG to serine, whereas in the standard code it makes leucine. I therefore had to
modify AAtoDNA’s source code and recompile to generate different implementations accounting
for these alternative codings.

It was then necessary to split each of the 15 protein alignment files into three, one for each cod-
ing; because AAtoDNA requires a protein alignment plus a set of RNA sequences, the same split
was applied to the raw RNA FASTA files. So with three codings, 6 files were needed per gene; I
wrote a short program to do this automatically, plus a shell script to call the various incarnations of

4This did not take very long in terms of processing time; otherwise it would have been appropriate to store all the
orthologues computed during the complete reciprocal BLAST performed earlier, rather than retaining just the binary
presence/absence score. However, see the Discussion section at the end of this chapter.
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AAtoDNA with appropriate inputs. This produced three separate nucleotide alignments per gene,
which were then appended to give one alignment per gene. At this stage, one of the genes, ri-
bosomal protein S3a, was excluded from the study, because it was not possible to match it to its
RNA sequence for every species. Subsequent manual investigation of the raw nucleotide file using
BioEdit [Hall, 2005] revealed a probable annotational insertion of a single base in the coding for
one species only, throwing the matching algorithm out. BioEdit could have been used to correct
this had it been noticed at an earlier stage; by this point, however, the phylogeny had already been
inferred.

Not all the positions in such alignments are of equal value to us. In general, the third base in each
codon carries little phylogenetic signal; because of the degeneracy of the code, most changes at
the third codon position do not produce a change in the amino acid residue. Consider: there are
43 = 64 possible codons, any one of whichmight constitute a “ground state” prior to a substitution5

involving one of its three bases. So there are 64 possible pre-substitution ground states. Any one
of the bases within the ground state codon can undergo a substitution, and can therefore assume
one of three possible states after the substitution (assuming we are excluding trivial substitutions
such as A → A or C → C). So multiplying the number of possible ground states by the number
of post-substitution states, at any given base within the codon, gives 64 × 3 = 192 possible base
changes in any one of the three positions6, some of which are substitutions to or from stop codons.
If we exclude substitutions involving stop codons, we are left with 174 possible changes at the first
base position within a codon, of which all but 8 are non-synonymous, i.e. they effect a change to
the amino acid residue. At the second base, of 176 possible substitutions not involving stop codons,
none is synonymous. By contrast, only 50 of the possible 176 substitutions at the third base are
non-synonymous; it is therefore likely that purifying selection will have a greatly reduced effect
in constraining rates of evolution at this position. We should therefore expect it to evolve much
more rapidly than the first and second positions. This simply means that it will undergo more
state changes over time than the first two positions, which is why its phylogenetic signal becomes
swamped in noise. Therefore, because not only would the retention in the alignments of the third
base be of marginal if any value, but would certainly impose an extra processing burden, I wrote a
Perl program to strip it from the RNA alignments.

The final stage in preparing the alignments is to remove any stretches of sequence which are ob-
viously of no value, and which could potentially confound the phylogenetic inference, possibly by

5In this context, I have preferred the term “substitution” over “transition” because the former refers unambiguously
to a general state transition, which encompasses any change in a base, and includes purine-pyrimidine “transversions”
as well as purine-purine and pyrimidine-pyrimidine “transitions”.

6Of course, taking all possible ground states and all possible substitutions at any of the 3 bases within the codon
gives us 64 × 3 × 3 = 576 possible state changes which could potentially arise at a codon (which can assume any
ground state) as the result of a single substitution event.
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virtue of their very length. Many genes have long insertions in relatively few species, typically but
not exclusively at the beginnings and ends of sequences, which means that the sequence data at
that position will just be long gaps for most species. Ideally, I wanted to infer the phylogeny based
on alignments with as few gaps as possible. To this end I wrote another short program, employing
the simplest possible alignment cleaning algorithm: it snips from the start of the alignment to the
start of the second longest trailing7 start and from the second longest trailing end to the end of the
alignment. Thus trailing starts and ends, where there are data for one species only, are excised.
Note that using this algorithm, if at least two sequences were to run right from the start of the
alignment, it would not be shortened at the beginning at all; similarly, if at least two sequences
run to the end of the alignment, it will not be truncated. Internal sections of sequence are not
affected at all; a long (or short) insertion in a single sequence would not have been removed by the
program described.

While more sophisticated means of preparing the alignments could have been employed, by con-
vention these would be manual, using a program like BioEdit to remove unwanted sections of
sequence by hand. Because part of my aim was to develop a process which was fully replicable, I
felt that it was important to minimise such manual interventions, without of course overlooking
any glaring incongruence in the data. No such incongruence was apparent to me in viewing these
alignments; they were in fact checked in BioEdit, but not altered manually.

Another option would have been to rationalise the alignments using the program Gblocks [Cas-
tresana, 2000]. This has the advantage of at least being fully replicable and was in fact attempted,
but the program was found to have such conservative defaults (for example, deleting all locations
at which a single gap was found in any species ) as to reduce the length of the alignment by over
70%. Although the parameters could have been modified, it was nonetheless felt, given the highly
conserved nature of the sequences chosen, that the alignments were of sufficient quality to serve
as the inputs to the phylogenetic inference without such intricate tinkering. Also, quite apart from
its stringency, Gblocks seemed unnecessarily complicated and sufficiently obscure in its implemen-
tation that true replication of any method employing it would be possible only with the program
itself to hand: effectively, Gblocks is a “black box”.

The final 14-gene alignments, concatenated together, were 19 021 nucleotides long. Thus prepared,
they were converted from FASTA toNEXUS format, ready for phylogenetic inference. The inference
program BayesPhylogenies was used to run a Markov chain of 100 000 iterations of trees.

In case the reader is interested in implementing the protocols above for him/herself, I have included

7The second longest trailing start (or end), or the very longest for that matter, might not be “trailing” at all, in the
sense of extending beyond the bulk of the other sequences in the alignment; all, most or at least more than a few of
them might start or end in exactly the same place.
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some technical notes in Appendix B, relating to configuring and running the alignments.

3.3 Results: Trees

The overall analysis using all 14 genes for all 75 species yielded some interesting results. The tree
did not settle on a single topology; after rooting, the two main alternative topologies became very
evident visually and are illustrated below. Sample trees were taken every 104 iterations of the
chain, which ran for just over 9.964× 107 iterations in total; the last 5 000 samples only were used
as inputs to the consensus trees. This was more than sufficient time for burn-in, so the phylogeny
was at convergence. The first tree topology, shown in Fig. 3.1 on the next page, was observed in
4 082 of the 5 000 samples.

The other relatively common topology, observed in 936 out of the 5 000 samples, is illustrated by
way of contrast in Fig. 3.2 on page 53.

The consensus trees’ branch lengths are derived by averaging the branch lengths from the individ-
ual trees in the sample of 5 000, for those trees in which that branch exists. Typically, nodal support
values (not pictured in the trees above) in a consensus tree refer not to the likelihood but to the
percentage of trees in the original sample in which that node is found; the nodes that make their
way into the consensus tree are simply those which are observed most frequently in the sample.
Each consensus is relevant for one root only, i.e. all trees contributing to the consensus must pos-
sess the same root node. Therefore, strictly speaking, nodal support values refer to the percentage
of trees with the given node, out of those in the sub-sample having the same root. If, as here, the
phylogenetic inference has not succeeded in resolving the root node8 unequivocally, it may be that
certain branches are given to skipping around the tree with high likelihood of being retained for
many iterations of the chain.

Observe the effect of removing three species from the inference, demonstrated in Fig. 3.3 on
page 54. In fact, this figure is a consensus tree of all 5 000 sampleswithDictyostelium discoideumAX4,
Encephalitozoon cuniculi GB-M1 and Entamoeba histolytica HM-1:IMSS removed. Without these
species, one of which (E. cuniculi) has a noticeably long branch in both trees shown above, the root
node stabilises. When only those 72 species which will feature in the likelihood analysis remain in
the phylogeny, all 5 000 trees in the sample share the same root node; therefore the consensus tree
for the 72 species is derived from all 5 000 trees. In one of the above trees, the two other species

8The tree was rooted manually; by saying that its root was “unresolved”, I mean that the node chosen for rooting is
not topologically valid in the all the trees in the sample. The presence of E. cuniculi on different sides of the “root” in
different samples illustrates this.
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Figure 3.1: Consensus tree for the most common root in a phylogeny of 75 eukaryotes

which were removed cluster closely around the long branch. More on this later; see this chapter’s
Discussion section. Support values for the 72-species consensus tree were 100% (i.e. of trees in the
sample) for most nodes, with exceptions highlighted in dark blue in Fig. 3.3 on page 54. In all cases,
nodal support was 60% or higher. Note that even where nodal support is significantly below 100%,
these values are not likelihoods; the individual likelihood-based support values in those trees in
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Figure 3.2: Consensus tree for the second most common root in a phylogeny of 75 eukaryotes

the sample which do not contain a node (i.e. one which is present in the majority of trees) tend to
be lower for alternative nodes which they contain than those for the majority of nodes. So from a
likelihood perspective, it could be argued that consensus-based nodal support values are actually
significantly understated. Whatever the true interpretation, the tree in Fig. 3.3 on the next page
was the one I went on to use in the likelihood analysis of protein pairs, described in Chapter 4.
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Figure 3.3: Consensus tree for a phylogeny of 72 eukaryotes

3.4 Discussion

A word should be said about rooting. A phylogenetic tree provides a topological representation of
species’ divergence one from another, but the root of the tree is not defined: it has to be assigned
based on prior knowledge. Internal nodes within the tree (as opposed to the tips, which represent
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extant species) describe points where a speciation event occurred, i.e. where one lineage diverged
into two. An internal node is a last common ancestor of the two branches which emerge from
it; one branch only goes into it. So in network terms, an internal node has one in-link and two
out-links. In seeking the root however, we are also seeking another last common ancestor—in this
case the ancestor of every extant species (tip) and of all the defined internal nodes (last common
ancestors) aswell. The root is undefined if we consider a phylogenetic inference as awhole, because
we cannot assume rates of evolution to be constant. Consider the simple tree relating three extant
species. Toplogically, there will be one internal node representing a point where the three branches
leading to the tips join together. But if our species are A, B and C, how do we know whether the
A+B lineage split from the C lineage before A and B themselves split, or whether A+C split from
B, or B+C split from A? If A and B split recently, but B has experienced relatively rapid molecular
evolution since the split, it might look like A and C split more recently if we assumed that time
was closely correlated with the amount of molecular evolution. It may be, but not necessarily.
How, under circumstances like this, can we assign a position for the root and thereby infer the
correct set of relationships between A, B and C? A standard procedure is to use an outgroup. An
outgroup is a related species (or the relevant set of genes or proteins from such a species) which is
known to have a last common ancestor (i.e. with the group of species in the study) which predates
any of the last common ancestors shared between the species in the study themsleves. Thus one
might include a set of bacterial orthologues to the eukaryotic genes used to infer a phylogeny in a
particular study. We know that the bacterium is more distantly related to all the eukaryotic species
(which are our actual focus of interest) than the eukaryotes are to each other, so having derived
an unrooted tree using our preferred inferential method, we look to see where the node that joins
the bacterium to the eukaryotes attaches, i.e. to which two (probably but not necesssarily internal)
nodes in the eukaryotic part of the tree is it adjacent? If we can pinpoint that with confidence, we
have successfully rooted our tree. The two adjacent nodes represent the immediate descendents
of the first speciation event, before the two derived lineages themselves underwent speciation, if
indeed they both have.

Attempts to root a tree in the way described above can be confounded in distinct ways. Firstly,
because the outgroup will by defintion be distantly related to the group of species in which we
are really interested, does it share with those species an orthologue of the gene(s) or protein(s)
used to infer the phylogeny, at all? The orthologue might not be conserved across such a large
phylogenetic divide, which might mean that we have to restrict the sequences used for the phy-
logenetic inference, just to accommodate the need to include an outgroup. Another consideration
of particular relevance to the root of the eukaryotic tree is the very short branch lengths close to
the root, during what is assumed to be a time of rapid speciation and adaptive radiation, when the
major phyla still present today quickly became resolved. With such short branches, the confidence
associated with the correct topological placement of a root inferred using an outgroup will tend to
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be quite low, and there has indeed been much debate about the correct position of the true root of
the eukaryotes. I took professor Sandra Baldauf’s advice in assigning a root to my trees.

Note that for the root of the tree to be “resolved”, the nodes adjacent to the root must be com-
mon ancestors each to a consistent set of descendents (terminal nodes); if different runs of the
phylogenetic inference generate trees with different adjacent nodes, then the branch which, in the
absence of the root, joins those two nodes together, cannot be resolved if both its endpoints are
not themselves resolved. And by defintion, if one node adjacent to the root is unresolved, so is the
other, because it means that at least one terminal node must have “swapped” from one side to the
other of the first bifurcation in the tree9.

Because the set of genes which were found to be common among all species in the study was rela-
tively poor, both in terms of breadth and overall quantity, an alternative approach would have been
to look for genes which are not of necessity common to every species in the study, but merely to all
but perhaps one or two, and to derive a complementary set wherein species missing from any one
gene’s compass are nonetheless included within the ambit of most or all of the other genes in the
set. Thus every species could be adequately covered, but there could be bits missing. Because the
sort of multiple alignment of multiple non-contiguous sequences (i.e. of a set of intragenomically
distant sequences) which can be used as input for computational phylogenetic inference is typi-
cally no more than the set of multiple alignments of the individual genes or proteins, concatenated
end to end, it will contain gaps. The gaps represent genetic insertions and deletions. If an entire
sequence, gene or protein, is missing, it can therefore just be treated as a large gap if it is part of a
much longer alignment.

By treating missing genes as gaps in this way it would undoubtedly have been possible to expand
the number of genes used in the alignment. This would certainly have been desirable from the
perspective that the value of the small set of 14 genes that were usedwould have been enhanced had
they come from a more functionally diverse set of backgrounds. Because a full 10 of our proteins
are ribosomal, they hardly constitute a particularly representative sample; from a phylogenetic
perspective, they are not “independent” points. In fact, the prevalence of ribosomal genes here is
not a surprise, as ribosomal function is highly constrained; this is true not only of the structurally
significant stretches of rRNA, but also of the polypeptide constituents of the ribosome which are
our focus here. As stated in Section 3.2, had it been my original intention to infer the phylogeny
from only the 72 species in the final likelihood analysis, and had time been available to correct one
of the alignments manually, not just 14 but all 19 genes found to be present in every species could
have been used; 6 out of these 19 genes were non-ribosomal. To go further, of the 33 genes which

9Possibly, the rearrangement might involve too many species for a notion like “swapping” to have much meaning;
the point is that the topology has changed, at the root.
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were found to be present in 71 out of the 72 species, 8 were absent from Postia placenta Mad-698-R,
2 each from Aspergillus oryzae RIB40, Nematostella vectensis and Ornithorhynchus anatinus, and 6
from Bombyx mori (which is almost certainly artefactual in that its proteome was incomplete and
therefore included in the study in error, as already stated). Regardless of errors introduced by the
last species, this still leaves 13 proteins which were absent from species in which they were the
sole absentee orthologue. So adding these 13 proteins to the 19 which were ubiquitous within the
species in the study would have introduced only 13 gaps, none of which would have been aligned
with each other. Of these 13 genes, 5 were non-ribosomal, making 11 non-ribosomal genes in total.
To broaden the scope of the data, by including the total of 7 new non-ribosomal genes (i.e. 2 extra
genes from corrected alignments, plus the 5 genes which were absent in one species only), would
be very desirable if inferring the phylogeny again.

Although this study would have benefited from increasing the diversity among the genes used, it is
more open to question whether simply increasing the quantity of genes (and therefore the length
of the alignment) would of itself have improved the reliability of the phylogenetic reconstruction.
Current models of sequence evolution arguably deal well with sequences of up to several thousand
base pairs; the complexity of these models reflects the complexity inherent in that order of quan-
tity of data. Such complexity in the models is a function not only of the complexity of the data
but also of the computing power available to developers of the models. In recent years, despite
ongoing technological innovation in computing, the trend has been for the growth in the quantity
of publicly available sequence data to outstrip the growth in average processing power. It is possi-
ble therefore that the available models, including the mixture model used here, are underspecified
in relation to the complexity of the data. It is in turn possible that this explains why one artefac-
tual consequence of using increased quantities of data is that the level of confidence in a possibly
incorrect result becomes elevated. In phylogenetic terms, this can mean that nodal support is ar-
tificially high; this has been demonstrated in simulation studies performed by the Evolutionary
Biology Group at the University of Reading. At this stage I offer the cautious conclusion that it
would have been better to use a few more genes from a much broader range of functional cate-
gories, using alignments with whole gene gaps where necessary. Functional categorisation could
have been derived from the Gene Ontology.
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Chapter 4

A correlated evolution network

4.1 Aims: Network inference based on correlated protein evolution

In this study I aimed to undertake a large-scale comparative analysis that treats protein pres-
ence/absence as a binary trait. This allows us to select any pair of proteins (orthologous sets)
based on the reference human proteome and perform statistical tests to establish whether the two
proteins’ evolutionary histories are correlated. Critically, these tests employ a phylogenetic cor-
rection, so that our species are not treated as independent data points as per the simplifying, and
simplistic, across-species method. Species which are closely related are likely to have traits in com-
mon merely by virtue of evolutionary proximity. Because the signifiers of correlated evolution are
shared patterns of protein gain and loss on the (in our case) eukaryotic tree, and because these
patterns are historical and can only be inferred from existing data rather than observed directly,
correlations in patterns of presence/absence between widely diverged species should be afforded
more significance, or weight, than those seen in close relatives; this is precisely what the incorpora-
tion of a phylogeny allows us to do. Therefore, the binary trait matrix described in Chapter 2, plus
the phylogeny described in Chapter 3, form the joint inputs to the likelihood analysis described
here.

Correlated evolution between proteins is interesting on the micro level in terms of the clues that
it may provide to interdependent function. This alone has many potential implications for diverse
fields of research, including medicine. On the macro level, correlated evolution offers pointers to
grand questions about the evolution of genetic and organismal modularity, based on the topology
of the network described by aggregating the inferred pairwise correlations. In this, the logic of
Barker and Pagel [2005], as described in Section 2.1, is again followed closely, but with certain
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modifications and a greatly expanded set of input data.

4.2 Methods: Likelihood-based correlated evolution on a phylogeny

If correlated evolution is taken to imply a true functional relationship between two proteins, then
we should expect to see its signature in curated sets of data inwhich known functional relationships
are recorded. Such known interactions are generally those inferred from direct laboratory analysis
of the proteins in question, rather than gross computational investigations such as this one, which,
if they are of use in this context at all, typically serve more to give pointers which may then be
followed up in the wet laboratory. The kinds of interaction which might show up in correlated
evolution include participation in the same metabolic or genetic regulatory pathway, shared roles
in some subcellular structure or organelle, and direct physical interaction to perform some function
which depends on the participation of both proteins, or possibly of more than two1.

So I sought a reliably curated database of known protein-protein relationships. Beyond reliability,
I was concerned that any such data source should be sufficiently extensive and mature to provide
a broad coverage specifically of the human proteome, as that was my starting point in inferring
the orthologous sets. Of the types of relationship that could have been chosen, those which fitted
my criteria most closely were direct protein-protein interactions. There are several curated online
databases of human protein-protein interactions, including BIND, MINT, IntAct and the BIOGRID.
Each of these, and particularly the last (because it was a relatively recent initiative and very active
in terms of updates), was considered for use as a reference data set against which to measure
the effectiveness of the test for correlated evolution. However, in the end, HPRD was chosen as
being the best-attested and offering the widest coverage specifically of the human proteome, with
some 38 037 curated interactions (not all of them merely pairwise). Although releases of HPRD are
relatively infrequent in that it can go more than a year without any new data being added, this was
felt to be an advantage in that it seems to reflect the thoroughness of the curation; HPRD entries
are manually curated from published research papers. I used HPRD Release 8, which is still current
and was released in July 2009.

1Interactions involving more than two proteins are not strictly pairwise, of course. There is no reason in principle
why a physical interaction between proteins should not require the participation of three or more proteins, the loss of
any one of which would destroy the function; multiple interactions of this kind are recorded in HPRD, in fact. However,
in this study, we treat all interactions as pairwise. So for simplicity’s sake, wewould expect a three-way interdependence
of the type described to manifest itself as three separate correlations between the three possible pairs (combinations)
which can be chosen from the three proteins. The same combinatorial logic applies for larger fully interdependent
clusters (physical or otherwise) of proteins. See also this chapter’s Discussion section.
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TheHPRD interaction data were downloaded in the form of a single XML file2, obtainable from the
HPRD website. I wrote small Perl programs employing the CPAN module XML::Twig to parse the
XML data into tab-separated-variable format text files, which were then loaded from the command
line into a MySQL database, incorporating separate tables for interactors and interactions, plus a
cross-referencing table relating one to the other. A separate archive containing a series of flat
files3 was also downloaded from HPRD; one of these flat files, HPRD_ID_MAPPINGS.txt, was used to
populate another MySQL table, which can map HPRD interactor IDs to protein accessions from
RefSeq, among other repositories.

A major part of my concern in the conduct of this likelihood analysis was to go beyond simply
performing a raw statistical test on pairs of proteins which we already know (or have very good
reason to presume) to be interactors. I wanted to derive a reliable control group of pairs of pre-
sumptive non-interactors4. More than this, with very high confidence, members of pairs featuring
in the control group should have no interdependencies of any kind one upon the other, including
participation in the same pathways, so that we should expect to see no evidence whatsoever of
correlated evolution between the members of any pair in such a set. This is a fairly problematic
requirement. While one might reasonably argue that true interdependencies between proteins
constitute a small subset of all possible pairwise relationships (of which, given the 31120 human
proteins recorded in RefSeq, there are

311202 − 31120

2
= 4.84× 108 (4.1)

or nearly half a billion), this is a long way from being able to say that the absence of a given
relationship from any repository of interactions is a reliable indicator that the relationship does
not, in fact, exist. A recent study of publicly available repositories of protein interaction data
found surprisingly little intersection between the data sets [Turinsky et al., 2010]. Because the set
of possible unrecorded interactions is so very much larger than the set of interactions, I have taken
this as being likely to mean that the set of as yet unknown interactions is still comparatively poorly
explored. For this reason I suggest that we are on much safer ground in trusting that a curated
interaction in any publicly available database is real, than we are in assuming that an interaction
does not take place simply because it has never been observed (i.e. observed and recorded).

2HPRD_SINGLE_PSIMI_070609.xml, which contains, among other things, records specific to the interactors, the interac-
tions, and the experiments in which the interactions were recorded.

3HPRD_FLAT_FILES_070609.tar.gz, which is an archived directory in which are placed thirteen text files containing
data of various kinds, mostly in tab-separated-variable format, plus a separate README file.

4The same statistical test should be performed on the control group as on the presumptive interactors. If the control
group is properly specified, this should yield our preferred null distribution of likelihoods, against which to measure
statistical significance correctly in the interactors: more on this later.
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How then should we attempt to identify pairs of proteins between which no interaction or other
form of interdependency exists? The approach I adopted was to use the Gene Ontology [Harris
et al., 2004]. The Gene Ontology, or GO, seeks to provide researchers with a way of annotat-
ing genes/proteins using a hierarchy of identifiers, all of which fall within one of the three main
branches of the ontology: cellular component (effectively localisation), molecular function and bi-
ological process. Each main branch ramifies into a series of sub-branches, which become increas-
ingly specialised towards the tips of the ontological tree. Each node in this structure corresponds
to a GO ID and can have many child nodes; nodes can also have more than one parent, as long
as the relationship to each parent is of a distinct type. Five different relationships are in current
use in GO5: “is a”, “part of”, “negatively regulates”, “positively regulates” and just “regulates”. Take
the GO term “apical part of cell” (accession 45 177), for example: it bears the relationship “is a”
to GO term “cell part” (accession 44 464), which in turn bears the relationships “is a” to “cellular
component” (accession 5 575 – one of the three root nodes) and “part of” to “cell” (accession 5 623),
which itself “is a” “cellular component”.

It was fortunate for the purposes of this study that one of the flat files provided by HPRD, namely
GENE_ONTOLOGY.txt, maps HPRD IDs directly to GO accessions, albeit not in a format which lent
itself to simple parsing into a database table because, in general, one protein (interactor) maps
to multiple GO accessions, with multiple GO accessions being present on each line, wrapped in
superfluous text which had to be removed. Compounding the difficulty, individual HPRD IDs can
repeat over multiple lines. A custom Perl programwas therefore written to parse the mapping into
yet another MySQL database table.

Having thus enabled the mapping of IDs to their respective GO terms, it was necessary to down-
load and install the GO database itself. Because the final stage of filtering for our control set of
presumptively non-interacting protein pairs requires protein IDs bearing similar but non-identical
GO identifiers to be excluded, I needed to be able to traverse the GO hierarchy to identify terms
having identical parents or grandparents, for example. Exactly how this was accomplished is ex-
plained in more detail later on. The GO database itself is available in the form of an archive6

which when unpacked gives a set of SQL table definitions, together with tab-separated-variable
files ready to be loaded into each separate table. Two short shell scripts were written to automate
this process; I defined an empty MySQL database, within which each GO table was first created
and then populated in turn.

Having used the flat file to enable the necessary mapping between RefSeq ID and HPRD ID (as
described earlier in this section), I was able to rebuild the binary trait matrix against HPRD IDs
(including ones without any curated interactions—i.e. many of these proteins do not appear in the

5Although more are listed as available within the GO database, only five are actually employed.
6Available at http://archive.geneontology.org/latest-termdb/go_daily-termdb-tables.tar.gz

http://archive.geneontology.org/latest-termdb/go_daily-termdb-tables.tar.gz
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interactors table at all). To accomplish this I wrote a Perl programwhich stored the rebuilt trait ma-
trix in anotherMySQL table. This was complicated somewhat by the consideration that the already
stored matrix had been flushed of duplicate sequences—correctly so, but this meant that some of
the original RefSeq IDs had been excised, which would have meant that HPRD IDs mapping to
them would have been overlooked. I therefore imported the complete human proteome into a
MySQL table and joined it to the original trait matrix on GI and then back to itself on sequence
string, in order to pick up the missing RefSeq IDs so that the HPRD trait matrix (itself restricted to
unique sequence strings) would not be missing anything. The number of HPRD IDs, at 19 390 as
of Release 8, is considerably fewer than the number of RefSeq IDs (or GIs) in the human proteome,
possibly because only those proteins of well established function, or properly analysed in the lit-
erature, have been curated. Without a fairly comprehensive one-to-one mapping between the two
data sets, of which we are clearly short, it seemed very likely that some trait patterns would be
missed without matching HPRD against the original, full set of RefSeq proteins.

Having reached this stage, it was possible, using the binary trait matrix and the phylogeny as twin
inputs, to run the likehood analyses for all the protein pairs identified by the protocols outlined
above. The pairwise analyses were submitted each as separate cluster jobs under the batch sched-
uler. The likelihood outputs from the linked and unlinked analysis allowed a likelihood ratio to
be calculated, i.e. to tell us whether there was any evidence that gene loss events involving the
deletion of both genes simultaneously were correlated across the phylogeny (i.e. after applying a
phylogenetic correction). I used both 95% and 99% confidence intervals for subsequent stages of
this investigation.

4.3 Results: Likelihood ratio distributions

From the 28 337 protein pairs identified as linked by HPRD, and in which the reciprocal BLAST

analysis identified both members of the pair as being present in no fewer than 8 species (out of the
72), but nomore than 65, giving us a good set of candidates for the likelihood analysis for correlated
evolution, I identified 26 207 unique combinations of presence/absence vectors across the species7.
Taking both partners in the pair, there would have been some redundancy in running the analysis
had I not first excised the duplicate combinations, which although constituting less than 10% of the
whole, would nonetheless have been costly in terms of computer time. Similarly for the presump-
tive non-interactors, in my sample of 60 000 pairs, I identified only 48 879 unique combinations

7By presence/absence vector, I mean the row in the binary trait matrix, consisting of a string of ones and zeros (72
in total) for a particular protein. Generally, I would expect the proportion of unique combinations of 2 such vectors to
be much higher than the proportion of unique vectors among the proteins taken individually. However, see the next
comments in the main text.
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of presence/absence vectors. The surprisingly many non-unique vector combinations in the latter
data are probably attributable to the stringency of my selection criteria for non-interacting pairs.
Before charting the likelihood ratio distributions below, I expanded the data set out again, weight-
ing the results to reflect the original numbers of protein pairs represented in each result (i.e. mostly
1 pair per result, sometimes 2 and occasionally more). This was accomplished by joining data ta-
bles in MySQL. I then excluded those pairs where, for whatever reason, the likelihood ratios had
tended towards infinity before being aborted within BayesTraits [Pagel and Meade, 2007]; my prac-
tical criterion was to exclude ratios whose absolute values exceeded 1 000. This left 27 485 curated
interacting pairs from HPRD, and 58 280 presumptively non-interacting, non-codependent pairs
from my sample. It is possible that excluding these pairs could have been a source of systematic
error, if the likelihood calculations “went wrong” in a systematic way. The best way of testing this
would have been to run the likelihood analysis again on the excluded set; this was not done, owing
mainly to time constraints.

A word of explanantion is due regarding likelihood ratios. Each likelihood ratio is formally twice
the difference in the log likelihoods for each observed presence/absence vector existing under the
two different models—dependent and independent evolution. In the independent model, where 1
and 0 represent protein presence and absence, respectively, there are four different instantaneous
probabilities associated with the trait state transitions 0 → 1 and 1 → 0, which are different for
the two proteins, which is how we get 4 rates in total. Each protein in a pair {A,B}, which are not
functionally related, will undergo transitions according to the independent model, as the state of
A at time t+1 is dependent only upon its own state at time t; it is unaffected by the state of B at t.
Contrast this with the dependent model of trait evolution, wherein, for a pair of proteins, there
are now 8 instantaneous probabilities8, each associated with one of the 8 possible state transitions:
{0, 0} → {0, 1}, {0, 0} → {1, 0}, {0, 1} → {0, 0}, {0, 1} → {1, 1}, {1, 0} → {0, 0}, {1, 0} →
{1, 1}, {1, 1} → {0, 1} and {1, 1} → {1, 0}. The dependent model thus has more variables and
more explanatory power. If there is no dependence of A on B or vice versa, however, the dependent
model collapses to the independent model, which is actually a special case of the dependent model
where p ({0, 0} → {0, 1}) = p ({1, 0} → {1, 1}), p ({1, 0} → {0, 0}) = p ({1, 1} → {0, 1}), etc.
In general, the dependent model will yield a higher likelihood than the independent model9. The
question is whether the difference between the two is sufficiently large that we would be led to
infer a real dependency between the two proteins, i.e. whether, based on observed patterns of
coupled evolutionary gain and loss on the tree, we can make the inference that the evolution of
the two proteins is correlated.

8We exclude trivial transitions like {0, 0} → {0, 0} as well as infinitessimally probable simultaneous transitions like
{0, 1} → {1, 0}.

9Both likelihoods are very small. They are an estimate of the likelihood of the observed data given the model.
Because the model can generate many results, particularly in the space of two presence/absence vectors, any one result
will almost certainly be very unlikely, but may fulfil a maximum likelihood criterion as compared with all the others.
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All results are from the likelihood runs using 144 maximum likelihood tries. Likelihood ratios are
plotted as frequency distributions in buckets of width 0.5. The x axes extend from -1 to 45; there
are a few outliers which do not fall within this range but they are very few in number and would
barely be noticeable given the scale of the y axes. Percentages quoted and represented graphically
include these outliers, but not the excluded absolute likelihood ratios of greater than 1 000.

The distribution of likelihood ratios for the presumptive interactors from HPRD is illustrated in
Fig. 4.1. The differently coloured tail of the distribution represents pairs whose likelihood ratios
are higher than the 95% confidence interval for the χ2 test with 4 degrees of freedom. 4 degrees of
freedom corresponds to the difference in the number of transition rates in the models of dependent
and independent evolution: the former has 8 rates, the latter 4. Fig. 4.2 on the next page highlights
pairs with likelihood ratios higher than the 99% confidence interval for the same test.

Interacting pairs from HPRD, 95% confidence (chi squared)
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Figure 4.1: Likelihood ratio distribution for HPRD curated interacting pairs,
showing χ2 95% confidence interval

These charts seem to show a very positive result, with close to 30% of pairs showing up in the tail
where we would expect to find around 5% by chance, i.e. if there were no correlated evolution.
However, this is just the raw χ2 result; what happens when the distribution of ratios in our con-
trol set of presumptively non-interacting pairs is plotted? Figures 4.3 and 4.4 on page 67 and on
page 68 show the same distribution of likelihood ratios for the presumptive non-interactors, but
highlighting the 95% and 99% confidence intervals, respectively.
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Interacting pairs from HPRD, 99% confidence (chi squared)
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Figure 4.2: Likelihood ratio distribution for HPRD curated interacting pairs,
showing χ2 99% confidence interval

The picture now looks a little different. Although the results are weaker than for the HPRD in-
teractors, they still appear strongly positive, even after all the care taken to ensure that no close
relationship could exist between the two members of any of these pairs. What if these plots do
however represent the true null set? Maybe we should dispense with the χ2 criterion altogether.
It will be interesting to see how the distribution for the known interactors looks if the confidence
intervals are adjusted to reflect the distribution seen in the null set rather than the χ2, which I
have supposed from first principles rather than empirical observation to be correct. Of the 58 280
protein pairs in the null set, 2 914 lie above the 95th percentile and 583 (rounded) above the 99th.
Looking at the empirical likelihood thresholds at these percentiles, I established that these are ap-
proximately 13.74 and 18.84, for the 95th and 99th respectively. Figures 4.5 and 4.6 on page 69
and on page 70 show what happens when we apply these to the interacting pairs from HPRD.

Now the predictive power of the method based on correlated evolution, while undeniably signifi-
cant, seems far from overwhelming. Above the 95% confidence interval based on the null set from
the randomised and filtered sample of pairs, we have barely twice the number of pairs that we
would expect by chance alone. At the 99% confidence interval, things are a little more promising,
with closer to three times as many pairs as we would expect by chance falling into this bracket; the
greater preponderance at the higher percentile also argues in favour of the method’s significance
and reliability.
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Presumptive independent pairs, 95% confidence (chi squared)
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Figure 4.3: Likelihood ratio distribution for presumptively independent pairs,
showing χ2 95% confidence interval

We can use the correlated evolution method to infer a network and divine its features. There are
various repositories of curated protein interactions and other network-related data available on-
line, any of which we may examine both on its own, and then using a filter based on correlated
evolution. It will be interesting to see how or indeed whether the imposition of such a filter mate-
rially affects the character of the network, starting with nodal degree distribution, k.

We do indeed see the characteristic power-law signature of the scale-free distribution in nodal
degree, looking at either our HPRD data as a whole (i.e. we presume it to be a real network) or
looking at just that part of it which exceeds the 95% confidence limit, based on either the χ2 cri-
terion and containing 7 869 links, or on the control set and containing just 2 657 links (links being
instances of correlated evolution). See the three degree distribution plots below (Figs. 4.7 to 4.9 on
pages 71–73).

The last network (Fig. 4.9 on page 73) is quite small but retains its scale-free topology. I felt that it
might be instructive to render it visually, using Cytoscape [Shannon et al., 2003]. Because it is an
interesting extension to our results, but is not central to such inferences as we might draw from
the quantitative method detailed in this chapter, the network diagram is presented separately, in
Fig. E.1 on page 106; the round “giant component” sits atop isolated islands of interaction, usually
involving just two participants. Hubs—highly connected nodes—seem to be discernible within the
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Presumptive independent pairs, 99% confidence (chi squared)
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Figure 4.4: Likelihood distribution for presumptively independent pairs,
showing χ2 99% confidence interval

giant component. This might argue in favour of the idea that modularity is a key architectural
feature of this and larger protein-protein interaction networks. Whether the sculpting of modules
is as important as this might lead us to suppose, could be greatly informed by a more quantita-
tive treatment of this network, and it would have been instructive and possibly revealing to have
undertaken such a study. However, the network derived retains its pairwise character. Trait evo-
lution has not been given a deeper treatment, e.g. involving a larger number—3, 4 and upwards—of
binary presence/absence “traits” in the transition matrix, whereby we might have probed for a
larger number of instantaneous transition probabilities. We could in this way potentially have de-
rived a truly bipartite network of (physical) protein clusters, represented by one type of node, and
proteins, by the other. As discussed in Chapter 1, this approach exposes more of the network’s
intrinsic information content. Arguably this more complex treatment might also have a role in
allowing us to mine the network’s secrets algorithmically.

4.3.1 Probing for particular functional relationships

I present below a distillation of the functional pairs with the highest credible (i.e. <1 000) likelihood
ratios (of dependent to independent model), from the unpaired set. It is these that we should expect
to be linked in some way if we are to bring some solid evidence to the table in support of our
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Interacting pairs from HPRD, 95% confidence (from nulls)
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Figure 4.5: Likelihood ratio distribution for HPRD interacting pairs:
χ2 95% confidence interval based on control set

method. Accession numbers are from RefSeq.

Table 4.1: Putative functional protein-protein relationships in RefSeq 36

aceession 1 accession 2 lr

NP_036575 NP_061840 96.76
NP_005949 NP_000886 68.27
NP_004357 NP_055819 34.66
NP_003729 NP_003551 33.21
NP_005756 NP_361014 32.45
NP_722576 NP_000194 31.60
NP_065723 NP_361014 31.13
NP_115916 NP_068775 30.56
NP_009158 NP_000421 30.23
NP_065828 NP_361014 30.00

The first pair of proteins, with the highest of all the non-artefactual likelihood ratio scores, are
NP_036575 (sperm-associated antigen 6 isoform 1) and NP_061840 (gamma-1-syntrophin isoform
1). A literature search revealed no obvious association betweeen them. However, the second pair of
proteins, NP_005949 (melatonin receptor type 1A) and NP_000886 (leukotriene A-4 hydrolase iso-
form 1) showed more promise: a literature search on “melatonin” and “leukotriene” revealed a pos-
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Interacting pairs from HPRD, 99% confidence (from nulls)
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Figure 4.6: Likelihood ratio distribution for HPRD interacting pairs:
χ2 99% confidence interval based on control set

sible link between melatonins and leukotrienes: leukotriene A-4 in particular is mentioned [Chen
et al., 2006]. The remaining pairs of proteins listed in Table 4.1 constitute further candidates for
investigation.

4.4 Discussion

One feature of note in the degree distribution plots, both for the raw HPRD network and the corre-
lated evolution network, is that each approximately follows the expected power law, i.e. the plots
appear roughly linear on log-log axes. This is unsurprising, although perhaps reassuring for the
predictive power of our inferential method. However, in each case, there appears to be a system-
atic deviation from pure power-law linearity; the plot is slightly convex, and bulges in the middle
toward the top right of the chart. In silico experiments [Read, 2007] revealed that preferential at-
tachment too could produce this effect in a degree distribution plot, although this is far from a
claim that I have detected its fingerprint; it seems likely that other dynamic processes might have
a similar manifestation. However, this is certainly one area which merits further invesigation.

As well as the appearance of hubs in the correlated evolution network diagram produced by
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Figure 4.7: Degree distribution plot for 27 485 HPRD protein pairs
(excludes proteins present in many or few species)

Cytoscape, the most notable feature is the dominant presence of Kauffman’s “giant component”,
surrounded by smaller islands of more limited connectness. Localised clusters of nodes too seem
to be evident, and in this sense we may infer that, rewardingly from the point of view of the in-
vestigator, a relatively high level of clustering, or modularity, is also present. It will be interesting
to take the analysis forward and augment these visual impressions with some hard statistics, but
Chapters 2 and 5 give some reasons why we may have less than complete faith in the underlying
data, based on the erroneous inclusion of incomplete proteomes—not to say that our observations
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Figure 4.8: Degree distribution plot for correlated evolution network 1
(7 869 HPRD protein pairs filtered on χ2)

and inferences here are entirely undermined, but to hold out the prospect that we could do rather
better with a few refinements to the protocols.

Mention deserves to be made again of the GO process used for filtering out a control set of pre-
sumptive non-interactors. It appears to have been successful in its stated aim, but I am not aware
of its having been applied for a similar purpose anywhere else. Its recursive aspect in particular
was not straightforward to implement. While I may on reflection have been over-conservative in
the application of the filter, requiring that GO “ancestor” accessions very close to the root of GO
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Figure 4.9: Degree distribution plot for correlated evolution network 2
(2 657 HPRD protein pairs filtered on control set)

be separate (for the non-interacting pairs), I nonetheless hold out the principle to the community
as one way of using GO curation to isolate not the relationships between genes, but the absence of
any such relationship. This may be a useful method of enforcing experimental controls at a time
when computational biology has become ubiquitous, but when it is not always clear how to subject
computational experiments to the same sort of stringency that would be insisted on in the “wet”
laboratory.
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Finally, it will be most intersting to try and elucidate some of the more subtle features of the
correlated evolution network. The notion that we may use our likelihood technique to identify
relationships beyond the straightforwardly pairwise holds out the prospect, for one, that we could
recast the whole network in bipartite terms, adding some information back into it. This would
enable us to derive an altogether novel structure, prior to applying some of themany new statistical
techniques now available for the analysis of the structure itself.
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Chapter 5

A trait matrix remade: improved protocols

5.1 Background

There are numerous aspects of the protocols outlined in Chapter 2 in particular which may have
been slightly flawed, which may have become obsolete, or which may be less than fully gener-
alisable, in terms of requiring specialised computing resources to which the typical academic re-
searcher may not have ready access. Therefore, several potential methodologies for improving this
workflow suggested themselves. Most pertinently, the quality and completeness of some of the
proteomes included in the analysis from Chapter 2 are questionable, owing in part to the method
used to identify complete proteomes. The silkworm, Bombyx mori, was previously mentioned as
having been misidentified as having a complete proteome in RefSeq 36. Far more probable (than
its proteome being unusually small as a result of thousands of generations of artificial selection) is
that the presence of a putatively complete genome sequence in GOLD, together with a RefSeq pro-
teome that exceeds a small absolute mimimum size threshold, constitute an insufficiently stringent
set of criteria reliably to identify and thereby exclude proteomes (such as that of B. mori) which
are incomplete in significant proportion. In fact, the filter applied based on RefSeq proteome size
took no account of the size of the genome reported in GOLD; a test based on the relative sizes of
the Refseq proteome and GOLD genome might arguably have made for a more effective indicator
of proteomic completeness. In any event, it seems likely that the inclusion of several such incom-
plete proteomes might have compromised the study described in Chapter 2, Bombyx mori being
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only the most glaring example1. The method lacks both rigour and robustness, because it takes
direct account neither of annotation, nor of actual numbers of protein sequences. Consider again
the protein count for B. mori: if the total recorded proteins are less than one sixth the true figure,
this might affect not only the likelihood inference, but the preceding phylogenetic inference too,
in that, potentially, I was artefactually excluding some proteins which might have been more di-
verse in their function and ancestral derivation than the set which in the end I was constrained
to employ. In short, the Chapter 2 study had employed slightly impoverished data, and a better
method would have been desirable; such a method was therefore sought, developed, tested and
implemented.

Additionally, while the improvements to both the quality and quantity of proteomic data in RefSeq,
as between releases 36 and 58 (i.e. during the interval between the original investigation of Chap-
ter 2 and its later counterpart reported here), are in a sense incidental and insufficient in themselves
to justify a robotic recapitulation of the old protocol, they may nonetheless offer enhanced power
to an updated investigation of this general type. The prospect of achieving improved resolution in
correctly identifying functional relationships between proteins, and the topology of the network
emerging from this set of relationships, seemed tantalising enough to warrant the renewed effort.
Because the correct identification of orthologues underpins and ramifies through each subsequent
step of this overall investigation, the imperative to get things right at this stage appeared to be
all the stronger. Therefore, some new work along these lines was undertaken from 2012 to 2013.
A full refashioning and up-to-date reimplementation of the protocol might have been possible,
had sufficent time been available to follow it to fruition. As it is, my implementation of a revised
workflow for constructing the trait matrix is presented below.

Note additionally that not only is the quantity of data held by RefSeq increasing daily (with major
release versions announced every two months), but that annotational quality within RefSeq is
subject to continuous revision and improvement. GOLD too appears to have seen an improvement
in scope and quality since the Chapter 2 investigation was undertaken [Pagani et al., 2012].

1B. mori is glaring indeed: in RefSeq 58, 2 224 proteins only are recorded. Contrast this with an ORF count from
GOLD of 14 623 and the extent of the mistake appears clear. Although it is just one species, B. mori was evidently a
major source of false negatives in the investigation reported in Chapter 2, and should not therefore have been included.
The weakness in the protocol, which this points up, seems likely to have led to other (albeit less glaringly) anomalous
species being included in the Chapter 2 study, too.
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5.2 Revised reciprocal BLAST method

Methods presented here differ in the detail rather than the generality from those of Chapter 2; the
principle is largely unaffected. The reference proteome used is again that of Homo sapiens; RefSeq
remains the exclusive source for proteomic data and an unrefined full-proteome reciprocal BLAST

process is used, as before. I contend that there is a marked improvement in the potential of the
(incomplete) study reported here over its predecessor reported in Chapter 2, based not so much on
the reciprocal BLAST protocol used, but on the choice of species, and the prior methodology used
to derive them, for reasons explained in Section 5.1. The BLAST protocol outlined herein has the
advantage of being fully reproducible by other investigators because it no longer depends upon
the use of in-house hardware resources.

5.2.1 Obtaining the proteomes from RefSeq

I used the same programs that I used with RefSeq 36 to download proteomes from RefSeq 58, the
latter having been released by the NCBI on 11 March 2013. A few modifications were necessary
to accommodate slight changes in the native filenames available for download from RefSeq, but
this was straightforward. The catalogue was again downloaded and stored locally in a database
table. This time round I switched from MySQL to PostgreSQL [Momjian, 2001] as my database en-
gine of choice, mainly because of familiarity, having worked with PostgreSQL more recently. More
generally, PostgreSQL is an attractive option because of its more sophisticated feature set, includ-
ing the availabilty of analytic or “windowing” funtions, which enable group data to be associated
with each record that belongs within the group—so that, for example, a quantity associated with a
species (such as the number of proteins in its proteome) may straightforwardly be represented as
a percentage of the average number of proteins for the phylum to which it belongs2. PostgreSQL

also allows custom functions to be written in a variety of external languages, including Java, Perl,
R and C. Such a feature has the potential not only to enable sophisticated user-written functions to
be embedded directly within SQL queries, but to facilitate the integration of biological databases
(even small ones like my own) with various analytical bioinformatics and other toolkits for which
public APIs are availiable in one or more of these languages3. However, within the parameters of
this investigation, there was neither occasion nor time to take advantage of such rich extensibility.

All records obtained from the downloaded sequence files were summed for each species and com-
pared against the species totals derived from the catalogue, as a check. The catalogue includes

2This particular percentage may of course be less than, equal to or greater than 100.
3The availabiltiy for several programming languages of extensive libraries of bioinformatics-related code modules,

e.g. BioPerl [Stajich et al., 2002] and BioJava [Holland et al., 2008], greatly facilitates the development of such APIs.
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microbial records; in fact, because I did not exclude microbial files from my sequence downloads,
it was possible to make these comparisons for all species. RefSeq includes not only protein se-
quences, but nucleic acid sequences as well, comprising several different categories of DNA and
RNA. Protein sequences themselves are allocated in RefSeq to one of five different categories, each
category being associated with a standard two-letter prefix at the beginning of the RefSeq protein
accession, wherein each such prefix has a “P” as its second character—this is definitive for pro-
teins. These five prefixes and my own brief distillation of their associated categorical types (based
on information on the RefSeq web site) are shown in Table 5.1.

Table 5.1: Meanings of RefSeq protein prefixes

AP Alternate Protein product, derived from an alternate assembly.
NP Protein product, based on accepted assembly, usually but not always

full-length protein precursors.
XP Protein product, predicted using a genome annotation process.
YP Protein product lacking a matching transcript, typically reserved for

microbes, viruses, and most importantly for us, mitochondria.
ZP Protein product, predicted (typically computationally) by a genome an-

notation process on shotgun sequence data.

So, a typical protein product for Homo sapiens would be “NP_115634.2” (TBC1 domain family
member 3F), while an example predicted protein product is “XP_003960205.1” (PREDICTED: E3
SUMO-protein ligase PIAS3-like isoform 4). The human proteome from RefSeq 58 contains 35 922
sequences in total, comprising 33 981 “NP” sequences, 1 928 “XP” sequences and a further 13 mito-
chondrial sequences which are not part of the human chromosomal complement itself, but which
are nonetheless included in the study, as the mitochondrion’s reduced genome is likely to be highly
conserved, being under stringent purifying selection [Stewart et al., 2008]. These mitochondrial
sequences start with “YP” and are all concerned with the electron transport chain [Hatefi, 1985],
e.g. “YP_003024035.1” (NADH dehydrogenase subunit 4). The RefSeq catalogue makes it straight-
forward to assign the “YP” sequences definitively to a particular type of intracellular entity, be-
cause the field “refseq_dir” contains a list of directories on the RefSeq web site where the ac-
cession can be found (directly beneath ftp://ftp.ncbi.nlm.nih.gov/refseq/release/). As well as
“complete”4 and “vertebrate_mammalian”, all 13 human “YP” sequences have the additional entry

4Here, “complete” does not signify completeness of proteome. It simply refers to a directory on the RefSeq ftp server
fromwhich all available data can be downloaded, no taxonomic filter having been applied. Taxonomic filtering at source
(i.e. using a remote directory other than “complete”) may be important simply in view of the quantity of data available
for download from RefSeq, which, as at release 58 contained over 30 million protein accessions alone and amounts to
many gigabytes.

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/


5.2. Revised reciprocal BLAST method 79

“mitochondrion”5. The RefSeq catalogue additionally provides a status field denoting the level of
confidence associated with the sequence. There are six status categories which apply to the human
proteome. In order from lowest to highest confidence, these are “MODEL”, “INFERRED”, “PRE-
DICTED”, “PROVISIONAL”, “VALIDATED” and “REVIEWED”. All 1 928 human “XP” sequences
are classed as MODEL, while the 13 mitochondrial “YP” sequences are classed as PROVISIONAL.
None of the 33 981 “NP” sequences was classed as MODEL; the breakdown of human NP sequences
by status is shown in Table 5.26, again from lowest to highest confidence.

Table 5.2: Breakdown by status of human “NP” proteins

status sequence count

INFERRED 77
PREDICTED 158
PROVISIONAL 1 656
VALIDATED 12 116
REVIEWED 19 974

A simple numeric check consisted in summing the counts of all five protein accession categories
from Table 5.2, for each species, and to compare the resulting total with the relevant downloaded
FASTA sequence count. These two numbers were found to tally for every eukaryotic organism, but
not for all microbes. I discovered that if the “ZP” accession counts were removed, the numbers
for microbes too now tallied. These “ZP” accessions are protein products inferred from shotgun
genome sequencing, and are not recorded for eukaryotes. The fact that the numbers from the
catalogue and the sequence files tallied gave me added confidence that I was correctly interpreting
the source data, and correctly allocating the various eukaryotic species from the aggregated source
files to their respective single-species files, prior to conversion into BLAST+7 databases.

Having downloaded RefSeq 58 in full and run a revised collation script (collate_organisms_pg.pl—
see Appendix F) to create the single files for all available species, my next concern was to identify
with accuracy those species whose proteomes were effectively complete, as it would be these alone
which I sought to include in the reciprocal BLAST. To make this identification more robust, I felt

5This use of accession prefixes in RefSeq appears not to be entirely consistent. For example, the 13 mouse (Mus

musculus) proteins listed under “mitochondrion” are prefixed “NP”. This is true too of the 117 proteins from the model
brassica Arabidopsis thaliana listed under “mitochondrion”, and also of its 85 proteins listed under “plastid” (i.e. proteins
manufactered in the chloroplast).

6This table provides a simple, pared-down distillation of RefSeq annotational status for one species (H. sapiens) only;
in general, for each species, we could represent annotational state as a sparse matrix, with accession prefix along one
axis, and status along the other. It is conceivable that some sort of algorithmic treatment of such matrices might assist
us in deriving some useful metric of per-species annotational maturity. The incorporation of such a protocol is offered
here simply as a suggestion to be considered in the design of future studies of this kind.

7The updated suite of programs from the NCBI is known collectively as BLAST+ [Camacho et al., 2009]; the older
eqivalent programs used in the Chapter 2 study are referred to simply as BLAST.
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that it was imperative to adopt an approach somewhat different from the one employed in the
Chapter 2 investigation.

5.2.2 A new proteome filter based on ORF count

Although RefSeq, as previously noted, provides no information regarding the state of completion
of the proteomes it offers for download, multiple species being mixed up together in the same
files, others too have encountered this issue and developed their own protocols for reckoning the
degree of completeness. I followed the protocol adopted by the developers of the ProRepeat repos-
itory [Luo et al., 2012] in comparing the ORF counts from genome assemblies listed as completed
in GOLD, with the sequence counts from my downloaded proteomes. These authors, like me, used
RefSeq as their source for proteomic data; they then applied a filter specifying that the counts
from RefSeq should differ by <5% from the ORF count reported by GOLD, for each corresponding
species. Conformance to this stipulation they took to indicate a putatively complete proteome.

Because of the general variability in the state of proteomic annotation for all but a select subset of
model organisms, I could find no better way (than following the ProRepeat protocol) of systemat-
ically determining whether a given proteome was complete, although further literature searches
on individual species might have been conducted, had time allowed. Still I encountered several
difficulties in adapting the method to my particular data. A lot of these difficulties arose as a result
of transient issues in the software chosen, most of which is under continuous development and
is therefore subject to change. For the consequent reason that many such issues, at least in their
specifics, are unlikely to concern future investigators, I have detailed some of these rather esoteric
software problems (often specific to particular software versions), and my solutions to them, not in
this methods section but in Appendix C.

5.2.3 Applying the ORF count filter

In comparing the RefSeq protein counts with GOLD ORFs, I first discounted from the former
any proteins originating in mitochondria or chloroplasts. This number is usually fairly negligi-
ble anyway, typically 13 mitochondrial proteins for metazoa such as Homo sapiens and Drosophila

melanogaster—although the number can be higher for other kingdoms, e.g. 43 (provisional) for the
marine green alga Ostreococcus tauri8 and 50 (provisional) for the fungus Giberella zeae, a major
pathogen of wheat. While it is actually not entirely clear that mitochondrial and chloroplast genes

843 mitochondrial proteins: O. tauri has an addtional 61 choroplast proteins (60 provisional), which are of course
entirely absent from metazoa, but which I also excluded when making the comparison with ORF counts.
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are absent from the ORF counts, it seems probable. That being the case, and because their impact
is so marginal anyway, I felt that their removal (at least for the purposes of comparing counts) was
appropriate.

In looking at RefSeq’s proteomic content, it seems that for the vast majority of non-microbial
species for which any proteomic data is held, it is, critically, only the mitochondrial9 proteome
which has any entries. In fact, RefSeq typically holds no more nor fewer than 13 mitochondrial
proteins, and no chromosomal proteins, for most metazoan species for which it holds any data at
all. It seems likely that these 13 proteins are homologous, but I have not performed the BLAST

analysis (outside of the putatively complete species) necessary to confirm that this is so.

Applying a threshold value, of 90% RefSeq proteins to GOLD ORFs, yields 85 species10 for RefSeq
release 58, a number which we may infer to be proteomically complete or nearly so. Too stringent
a filter, such as setting the filter at 95%, gives undesirable results in the sense that the value for
Homo sapiens is lower than we might expect, at 93.0%; clearly the human proteome is required as
the basis for the study and I adjusted my criterion accordingly. There will be some artefactuality
asociated with the respective figures anyway, possibly arising from inferences about the level of
post-translational modification at a whole-proteome level; still, there is little doubt that Homo

sapiens has a complete proteome, by any current standard.

As previously mentioned4, RefSeq holds (and duplicates) proteomic data in various directories on
its ftp server. For eukaryotes only, the breakdown of all RefSeq proteomic entries by classification—
counts of those species having chromosomal entries, as against all species held in RefSeq (most of
which lack chromosomal entries)—together with a count, for each category, of the few species
reaching our completeness threshold of ≥90% protein count (from RefSeq) over ORF count (from
GOLD) is given in Table 5.3. Note that beneath the current RefSeq release’s ftp directory, eukary-
otic proteomes are placed in one of six subdirectories: vertebrate_mammalian, vertebrate_other,
invertebrate, plant, fungi and protozoa. These subdirectory names do not correspond exactly to
kingdoms, or to phyla, but reflect the historical bias in the sequencing and annotation of genomes
to date. Mammals, crop plants, certain pathogens, and model organisms like fruit flies have been
preferentially studied.

It is very apparent that while RefSeq’s coverage of (presumptively highly conserved) mitochondrial
proteins is fairly broad, its coverage of chromosomal proteins is limited to a few key species, of
which I have inferred a significant proportion (85/235 = 36%) to be complete. Interestingly, of

9For plants, and some “protozoa”, plastid proteins too are often populated in RefSeq where there are no entries for
the organism’s own chromosomal proteins. Protozoa, plants and fungi sometimes have entries for plasmid proteins as
well.

10See the bottom rightmost figure in Table 5.3.
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Table 5.3: Depth of coverage of eukaryotic proteomes in RefSeq 58

taxonomic directory all chromosomal complete

vertebrate_mammalian 417 29 5
vertebrate_other 1 627 17 3
invertebrate 1 049 41 18
plant 318 21 11
fungi 210 85 32
protozoa 159 42 16
totals 3 780 235 85

the 85 complete proteomes, only 5 are mammalian, including Homo sapiens. The mouse proteome
failed the filter, as did that of the chimpanzee. This appears to be because GOLD is reporting very
high ORF counts for both: 60 745 and 48 910 respectively, as against 38 612 human ORFs. Given
that the chimpanzee’s total protein count from RefSeq 58, at 34 718 including post-translational
modifications, etc., is reassuringly close to the human protein count of 35 90911, we might expect
the ORF count too to be similar. It seems reasonable to conclude that the reasons for the mismatch
are artefactual, and possibly to do with relatively poor or provisional annotation; yet the opposite
could be the case for the mouse ORFs, which one might expect to be better studied and more
richly annotated than their human equivalents. Whatever the reason, neither Mus musculus nor
Pan troglodytes made it into the investigation reported in Chapter 5 on page 75.

5.2.4 An updated reciprocal BLAST implementation

Having identified a set of proteomes which were roughly complete, I was again faced with building
the BLAST+ databases and running the necessary reciprocal BLAST jobs. To recap the method
briefly, I aimed to run a reciprocal BLAST of each unique human protein sequence against each of
the other 84 proteomes which passed the filter. A reciprocal top hit would be taken as indicating
the presence of a human orthologue in the target species’ BLAST+ database, which would therefore
be counted as “present” in the trait matrix. Owing partly to considerations of access to computing
equipment, and partly to the desire to enable other investigators ro replicate and extend this work,
I chose to use a cloud computing service for this updated protocol. I omit the details here, because
in most regards it remains the same as the protocol employed in Chapter 2. However, for those to
whom any modifications might be of interest, the updated procedure is detailed in Appendix D.

11Contrast this with the counts from RefSeq 36, reported in Chapter 2: 51 405 chimpanzee proteins, as against 37 946
human (without removing duplicates).
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5.3 Results

As with the data in the Chapter 2 investigation, I present my results graphically, for the most part.
Figure 5.1 on page 85 shows how many orthologues to human proteins were found (using the
reciprocal BLAST protocol) in each of the 84 non-human eukaryotes in the study. Each species is
also ranked out of 84, from highest to lowest orthologue count. Ordering is alphabetical, by genus,
then specific name. Major branches (kingdoms) within the eukaryote tree are colour coded12.

Of at least as much importance as the number of orthologues themselves is the number of proteins
common to all, which together or separately will make good candidate sequences for phylogenetic
inference (using their RNA template sequences). This study revealed 18 such proteins, shown
below.

NP_006422.1 : T-complex protein 1 subunit beta isoform 1
NP_002786.2 : proteasome subunit beta type-3
NP_000962.2 : 60S ribosomal protein L7
NP_000969.1 : 60S ribosomal protein L23
NP_001012321.1 : 40S ribosomal protein SA
NP_060561.3 : elongator complex protein 3
NP_009057.1 : transitional endoplasmic reticulum ATPase
NP_000973.2 : 60S ribosomal protein L21
NP_057388.1 : probable ribosome biogenesis protein RLP24
NP_004757.1 : coatomer subunit beta’
NP_001240308.1 : 60S ribosomal protein L15 isoform 1
NP_001003.1 : 40S ribosomal protein S8
NP_000959.2 : 60S ribosomal protein L4
NP_001257411.1 : 26S proteasome non-ATPase regulatory subunit 11
NP_057439.2 : probable ATP-dependent RNA helicase DDX47 isoform 1
NP_001001.2 : 40S ribosomal protein S6
NP_001020092.1 : 60S ribosomal protein L9
NP_038203.2 : isoleucine—tRNA ligase, cytoplasmic

12The use of 10 colours for the 10 branches is admittedly possibly excessive, as they are not so easy to distinguish.
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5.4 Discussion

In terms of the findings of the new investigation, in overall terms these results are preliminary
only, a precursor to running updated implementations of the phylogenetic and likelihood analyses
reported in Chapters 3 and 4. The aim of such a full investigation, thus brought up to date, would
have been the more accurate identification of functionally interacting proteins, with higher likeli-
hood, based on a better control set of presumptive non-interactors. I contend that the more diverse
set of proteins found to be common to all species in the study to this point would have provided a
credible springboard for a renewed, full investigation of similar type.

Another consideration relating to the reimplemented protocol reported above lies in its demon-
stration that the availability of modern cloud computing services such as Amazon’s EC2, among
an increasing number of others, brings Bayesian and likelihood methods within the reach of the
typical phylogenetic researcher, even for the inference of large phylogenies (potentially involv-
ing hundreds of species). Not only that, but such services greatly aid the sharing of HPC13 code,
since it becomes relatively trivial for researchers to configure similar instances of an operating
environment, without relying on in-house systems managers at multiple academic institutions.

13High Performance Computing
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Orthologue totals by species

RefSeq release 58

Zygosaccharomyces rouxii CBS 732
Yarrowia lipolytica CLIB122
Volvox carteri f. nagariensis

Vanderwaltozyma polyspora DSM 70294
Ustilago maydis 521

Tuber melanosporum Mel28
Trichoplax adhaerens
Tribolium castaneum

Toxoplasma gondii ME49
Theileria parva strain Muguga

Thalassiosira pseudonana CCMP1335
Tetrapisispora phaffii CBS 4417

Sorghum bicolor
Selaginella moellendorffii

Schizosaccharomyces pombe 972h−
Schizophyllum commune H4−8

Schistosoma mansoni
Scheffersomyces stipitis CBS 6054

Saccharomyces cerevisiae S288c
Postia placenta Mad−698−R
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Figure 5.1: Nos. of human orthologues found in other species in 2013, colour keyed
by major phylogenetic grouping. Counts appear next to the bars (ranks in parentheses).
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Chapter 6

Conclusion

6.1 Network evolution

In attempting to divine the implications of this study, we may reflect that it remains incomplete,
and that this adds a heavy ladleful of provisionality to any inferences we may draw. It does seem to
demonstrate that there is a level of predictive power in themethod; certainly some of ourmore quo-
tidian predictions—such as the signature of a power law in the degree distribution of the inferred
correlated evolution network—appear to be borne out. This is not to say that such a conclusion is
mundane: far from it, actually, because an approximate power law is exactly what wewould expect
if the network were an analogue of the actual protein interaction networks that have already been
teased out from multiple curated wet-lab investigations. So in that sense we have a method that
yields up a network with similar topological characteristics to those biomolecular networks which
have been inferred by more traditional means. This is a result of some note for a study whose raw
material is just that—a set of raw protein and nucleic acid sequences downloaded from the NCBI’s
servers, without any recourse to annotation of the associated proteins’ functions themselves. So
potentially we have a method for the de novo prediction of individual functional linkages between
proteins based on the digital alphabet of a set of amino acid sequences alone. We have not had to
augment the method with structural prediction algorithms, or other sources of information exo-
geneous to the sequences themselves. This alone speaks to the applicability and the accessibility
of the method, which within the formalism of a strict workflow is in principle available to a very
broad academic community.
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6.2 Data quantity and resolving power

Of course, here the method has been used to elucidate a network topology, which has interesting
features in its own right, but which is only a particular outcome of a protocol with more general
applicability. With refinement, might we not be able to use this protocol to pinpoint individual
functional relationships of medical or even biotechnological significance? Perhaps the results are
too tentative, and we canot have sufficient confidence that in the case of a particular protein pair,
we are not just dealing with so much noise. Yet arguably, the salient feature of the weakly posi-
tive results is not their weakness, but that they are positive at all. Something is there. And how
rich really are our input data? In the just over three years between the late 2009 and early 2013
reciprocal BLAST runs, the number of species whose proteomes were inferred to be complete in
RefSeq remained unchanged, at 85. While the later protocol for determining “completeness” was
undoubtedly more accurate, more to the point is that the RefSeq project is focussed on curational
accuracy, with its primary emphasis on quality over quantity, in offering investigators a reliable
consensus sequence for key model organisms. In reality, both the quantity and annotational qual-
ity of protein sequences in GenBank has increased considerably in this period; as attested by the
2013 build of the trait matrix, the quantity of protein records in RefSeq does not reflect this. Ar-
guably the conservative instinct in RefSeq’s curators is sound (the power to curate may not scale
linearly even with the quality of the data, let alone the quantity), yet it allows the possibility that
RefSeq is no longer the best source, because it leaves too much out.

What of the now many other eukaryotic genomes said to be complete1? Not all proteomes will
be fully annotated of course, but of those that appear to be complete in RefSeq based on the ORF
count comparison method, most are in a much more provisional state than that of Homo sapiens, as
reflected in the counts falling into each sub-category. It may have been such a curational impreci-
sion which caused the apparent discrepancy between the number of proteins recorded respectively
for human and chimpanzee in the 2009 study (using RefSeq release 36), in which the chimpanzee
number appeared grossly overstated at over 50 000. These were “proteins” whose state of anno-
tation was overwhelmingly provisonal. The particular issue affecting the chimpanzee proteome
appears now to be more or less resolved.

Consider now the effect of adding new species to the study, assuming that the proteomic data for
each such species are truly reliable. The very limited subset of eukaryotes with whose proteomes
I have been working affords some opportunities to observe concurrent losses of proteins in unre-
lated species, but these are at best very rare occurrences in the natural course of events, even over
evolutionary time. Wewill also see retentions, which we are unlikely to be able to identitify, of pro-

1186 according to GOLD at the time of writing (June 2013)
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teins which are functionally redundant owing to the loss of a partner protein but which selection
has not yet eliminated. We would like to afford ourselves the opportunity of observing indepen-
dent, concurrent losses in as many species as possible, to increase the chance that we will observe
anything at all. If we double the number of species, we may not precisely double our chances of
seeing events of correlated loss (this will depend also on the place of any additional species within
the phylogeny), but we do increase the probability: the acuity of our method depends crucially on
its having sufficient example species to correlate these unusual correspondences. Even in cases
where we see correlated loss, more species means a better chance of seeing even more: a threefold
independent loss of protein pairs is a surer reckoner of functional interdependence than a twofold
loss. The method stands to gain much from the input of more and improved data, to the point
where it may become of genuine predictive utility in fields far outside the inference of network
topology.

6.3 Unrealised promise in the 2013 method?

In the light of the above, it is instructive to reflect on what was discovered in the later 2013 trait
study. Bombyx mori has already been identified as a “rogue” species which should never have
made it into the 2009 study. Yet the effect of admitting it may have been rather more profound
than simply to reduce the diversity of the proteins available for running the phylogeny. The mere
fact that it was there at all, and correctly positioned on the phylogeny among the other insects,
means that in all probability, several thousand falsely identified correlated loss events2 had crept
into the study, most of which were purely artefactual—an artefactual consequence of poor data
screening on my part.

The positive aspect of this analysis of past mistakes, of course, is to wonder whether the 2013 study,
if it were carried further (as with the 2009 study), might not show a stronger statistical effect in
correctly identifying funtional linkages between proteins, and in inferring the network based on
this identification. It seems not unreasonable to propose that continued investigation along this
line might yet bear fruit. Or if not, that at least we would have a stronger foundation for doubting
the usefulness of the method itself.

2Even had B. mori’s apparently reduced proteome not been illusory, its inclusion in the study would still have been
inappropriate. The correlated loss events would still have been evident, but in the case where an entire genome un-
dergoes a significant generalised reduction, correlated loss of any particular protein pair (of which there will of course
have been many) is quite unlikely to denote true functional linkage, even when the same pair is lost independently on
another branch of the tree, in which case the anomalous inclusion of B. mori would have served only to mislead.
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6.4 Potential methodological modifications

As new commercial DNA sequencing technologies, such as IonTorrent [Merriman et al., 2012],
come on stream, the rate at which new genomic data become available is likely to undergo a still
sharper rate of increase than it has already experienced to date. Yet for our method, the extra step
of inferring the proteome, even if it involves relying to an extent on approximate computational
techniques, is still necessary. A length of genomic sequence which is no longer transcribed, and
has passed out of purifying selection altogether, may in theory yet be a top BLAST hit for our
source organism’s fully transcribed DNA sequence, and the reciprocal step might also succeed—
potentially leading to many false positives. So despite the suffiency of raw sequence data, the
method is constrained by a curational bottleneck in that we must be as sure as is possible that
each proteome is roughly complete but not overstated. In fact, the reciprocal BLAST protocol, in
producing a binary result, is somewhat self-limiting.

What if we were to specify a threshold for the level of homology? Perhaps if we could weight the
results in the trait matrix—the weights varying inversely with genetic distance—we might expect
genomic sequences no longer under purifying selection (because they are no longer transcribed)
to have been subject to sufficient drift over evolutionary time that they would score very weakly.
And yet, by the same token, proteins in organisms at a greater distance from us would tend to
score lower than equivalent proteins in organisms with whom we as human beings share a more
recent last common ancestor. One approach might be to use a nucleic acid reciprocal BLAST as our
primary orthology filter and set a homology threshold as the second stage, which would ultimately
therefore still yield a binary result—our presence/absence “trait”. Could we not in that way use
BLAST at the nucleic acid level (i.e. blastn) to derive our putatively orthologous protein sets? This
would free us from the tyranny of curation, which cannot hope to keep pace with the availability
of raw genome sequence data. The quality of the method depends on both the quality and the
quantity of input sequence data.

6.5 New networks, new insights

If we can produce stronger evidence that we are able reliably to make inferences about functional
linkages between proteins3, we then have the option of extending the existing study in several
tempting directions, e.g. by exploring modularity, and bipartite representations, including data

3I.e. by rerunning the phylogeny with our more diverse set of proteins and then rerunning the likelihood analysis
without the anomalous species—of which we know there to have been at least one in the investigation described in
Chapter 2.
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describing multiple relationships.

What exact form these networks might take is still cryptic, and all the more interesting for it. Are
we potentially looking at a sort of power-law-distributed epistasis, modulated by the distribution of
numbers of participants in functional modules of various sorts, including physical protein clusters?
It will be easier to begin an investigation of this type on the foothills, owing to the limitations
of computing power which apply even in 2015. By “the foothills”, I mean that we might seek to
begin with a comprehensive binary inference of pairwise correlated evolution, in much the manner
whose methodology, as well as suggested enhancements from which it could benefit, are outlined
in this report. We might go on to apply more complex transition matrices using combinations of
multiple binary traits (i.e. protein presence/absence), to discern the outline of multiple interactions.
Other subtleties might be more difficult to capture: what is the nature of a multiple interaction?
Is it more like a phylogenetic tree?—essentially comprising not, as in the case of the phylogeny,
two bifurcations giving rise first to a common ancestor and a terminal node and then two further
terminal nodes from the common ancestor, but, analogously, a kind of hierarchy wherein protein A
interacts with a protein complex containing proteins B and C, and arising from the latters’ prior
interaction exclusively with each other? In other words, is the biomolecular network in general
constrained to follow certain paths only to functional interdependence? How shall we discern
whether this is the case, in general, using phylogenetic methods? How shall we represent and
utilise the insights that might emerge? The line of investigation which I have reported on here is
but one of many avenues, yet, with the growing understanding of phylogenetic methods among
biologists and ecologists, the accessibility of powerful in-house and cloud computing resources, and
a spreading appreciation in thewider scientific community for the aesthetic appeal and explanatory
power of the network paradigm, it is an approach that might just be coming of age.





93

Appendix A

Network assembly: new rules?

A.1 Aims: Observing the rules

The question of what determines the topology of molecular networks within the cell remains open.
An original aim of this project was to use the inferred history of the protein-protein correlated evo-
lution network to test the various mechanisms proposed—prominent among which is the notion
of preferential attachment, with or without selection acting on the topology itself. For exam-
ple, it has been proposed that selection acts to preserve the scale-free character of protein in-
teraction networks because such topologies are robust against perturbations, i.e. random nodal
loss [Barabási and Albert, 1999]. Others argue that preferential attachment operates blindly, sim-
ply forging and maintaining scale-free molecular networks as an emergent consequence of node
throughput (i.e. nodal migration into and out of the network) [Wagner, 2003].

Pagel, Meade and Scott [2007] have proposed a different model, which they characterise as “vari-
able rates of attachment”. Its distinguishing feature is that rates of acquisition of attachments
within the network vary among proteins but not over time; in fact each protein has its own partic-
ular fixed rate of attachment in the network, which does not change in proportion to its existing
degree. This contrasts with the “rich get richer” model of preferential attachment. These authors
used ancestral state reconstruction to model changes over evolutionary time in a protein-protein
interaction network based on correlated evolution. They derived a formula based on their model
and adjusted its parameters so as to give a best fit to their protein degree data: they discovered
that the model gave a better fit than a simple power law.

My intention was to extend the variable rates of attachment model by using my own correlated
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evolution network together with a revised formula describing network topology. Although this
aspect of the project has not yet been fully implemented, I nonetheless feel that it is worthwhile
taking the trouble to describe my proposed methodology. I argue that my proposed refinements
might be used to challenge the ascendancy of preferential attachment in the academic discourse if,
as I anticipate, the intuition that it is problematic in the biomolecular realm is well-founded.

A.2 Proposed methods: Breaking the rules

I propose a development of the equation of Pagel, Meade and Scott, to describe the emergence
of network topology under the variable rates of attachment model. My approach is based on the
incorporation of the equation for the Poisson distribution, which correctly describes the emergence
of connectivity distribution in the (unrealistic) case of random, unbiased attachment. In terms of
the usual variable used to denote nodal degree k, under random attachment the probability of any
given node having degree k would be given by

p (k) =
k̄ke−k̄

k!
(A.1)

My desire is to answer as comprehensively and accurately as possible the question, “What is is
the probability that a node picked out at random will possess a given integer connectivity (k) in
an arbitrarily large randomly connected network, where the ratio of links to nodes, i.e. half the
average nodal degree, or k̄/2, is known?”

What the Poisson formula specifically provides is a set of probabilities for each value of k—which
always sum to 1, whatever the value of k̄; the formula is correct for the ideal of random attachment
with uniform stickiness. The modified integral incorporating gamma stickiness which I present
towards the end of this section also sums to 1 for all values of k.

The Poisson formula above is an accurate predictor of degree distribution under random attach-
ment; although the random attachment model itself is in no way a description of biomolecular
reality, the formula would give the degree distribution under purely hypothetical conditions of
perfectly random attachment. To this extent it is the correct null model; compared with the purely
exponential distribution p (k) = e−λk, which is generally used to describe the probability that a
node has a given degree under random attachment, its decline is steeper, but tends towards expo-
nential as k increases well beyond k̄1. Although the exponential distribution is widely discussed in
the context of random networks, it is only an approximation for degree distribution under random

1Interestingly, in the special case that k̄ takes an integer value, p (k) has joint maxima at k and k−1
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attachment, and at that, one which works well only in the tail.

I would therefore argue that if we seek to use the variable rates of attachment model to account
for the (approximately) power-law distribution of protein degree in an organism, then our starting
point, or null model, should be the correct model for degree distribution under random attachment,
or Eq. (A.1) above, rather than the simplistic p (k) = e−λk.

If protein stickiness (relative fixed rate of attachment, if you like) has a probability density con-
forming to a gamma distribution, and we denote the coefficient of stickiness as ζ (zeta), we get

f (ζ) =
ζα−1e−ζ/β

βαΓ (α)
(A.2)

If we also impose the restriction that the mean value of the stickiness coefficient itself (ζ̄) be unity,
its effect can then be logically distinguished from that of average connectivity, k̄. This gives us

∫
f (ζ) · ζ · dζ∫
f (ζ) · dζ

= 1 (A.3)

In fact, because we know that
∫
f(ζ) · dζ = 1, we can simply say

∫
f (ζ) · ζ · dζ = 1 (A.4)

In practice, I have found that Eq. (A.4) is satisfied when αβ = 1. It also appears to be the case that,
more generally, αβ = ζ̄ . Under gamma stickiness plus random attachment, we now get a new
function for degree distribution defined by the integral

p(k) =

∫
f (ζ)

((
ζk̄
)k e−ζk̄

k!

)
· dζ (A.5)

or, to state it fully,

p (k) =

∫ (
ζα−1e−ζ/β

βαΓ (α)

)((
ζk̄
)k e−ζk̄

k!

)
· dζ (A.6)

where αβ = 1. More simply,
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p (k) =

∫ (
ζα−1e−ζα

(1/α)α Γ (α)

)((
ζk̄
)k e−ζk̄

k!

)
· dζ

=

∫ (
ζα−1e−ζααα

Γ (α)

)((
ζk̄
)k e−ζk̄

k!

)
· dζ

=

∫ (
ζα−1e−ζ(α+k̄)αα

(
ζk̄
)k

Γ (α) k!

)
· dζ

(A.7)

It may be possible to solve this integral analytically, and I present a preliminary result below.

p (k) =
(1 + α)−β−k Γ (β + k)

αβΓ (β) k!
(A.8)

As far as I was able to progress empirical work on this, which owing to time constraints was not
very far, I succeeded in obtaining a degree distribution curve which looks very like a power-law
distribution. However, it is not exactly a power-law distribution, in that seemingly, its deviation
from the linear signature of a power law on log-normal axes is systematic, having the form of a
slightly concave function; in this notable regard it recapitulates the general shape of the plots in
Figs. 4.7 to 4.9 on pages 71–73. I believe that if we are confident in, and wish to pursue, random
attachment with variable rates, then it is important that we start from the right set of axioms.
Arguably, my suggested variant of the formula for degree distribution under random attachment
with uniform stickiness, which is explicitly derived from that of Pagel, Meade and Scott, is a tenable
candidate for one such axiom.

My proposal was therefore to reformulate the variable rates of attachment model to incorporate
the Poisson process, which has more explanatory power than a simple exponential model. Curve
fitting to test the model could be performed numerically. Preferential attachment has itself been
taken by some researchers as axiomatic, but the approach suggested here, in combination with
the historical perspective offered by ancestral state reconstruction in the light of ever-improving
data, has the power to lend sophistication and weight to the already attractive and highly plausible
variable rates model.
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Appendix B

Multiple alignment procedure: technical notes

MUSCLE can handle several genes, so we want ideally to include as many genes in the input as
are shared among all species. This we can determine from the presence database, which records
the output from our reciprocal BLAST. Look at the field present_qty as it applies to all species in
the analysis; ideally, any species that are in the database but not required in the inputs for the
phylogeny (e.g. multiple Drosophila species) are not required to have the gene, so one would need
to look at the appropriate substrings of the field presence_string. It is quite likely that this would
make no difference, but it would be better to check, as there is a possibility that more genes could
be used.

retrieve_and_align_multiple_genes.plwas the original programwhich not only retrieved the pro-
teins and RNAs, but went on to align the proteins by calling ClustalW (using BioPerl), before in
turn calling AAtoDNA to spit out RNA alignments as well. So effectively this one program took the
relevant genes and species and produced inputs ready for generating the phylogeny, thus incor-
porating several logical stages. Partly because we prefer to use MUSCLE over ClustalW, and partly
because a process with discrete stages is easier to understand and debug, the preferred program is
now generate_rna_alignment_inputs.pl, which generates only the protein and RNA FASTA files—
one per gene, containing as many sequence records as there are species. We then use MUSCLE to
produce protein alignments in FASTA format. Once the derived RNA alignment is generated, one
has the option to chop out the third base in each codon (one would also chop out every third dash
for gaps). This was implemented in retrieve_and_align_multiple_genes.pl, but is implemented
separately for the MUSCLE alignments (see below); although it is not strictly necessary in either
case, the third base is under relatively little constraint and carries correspondingly little phyloge-
netic signal. Leaving it in also increases run times.
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Note that both retrieve_and_align_multiple_genes.pl and generate_rna_alignment_inputs.plneed
editing for the desired genes. They also both require BioPerl 1.6 or higher; for some reason they can-
not iterate through the species underBioPerl 1.5.2, although theymightwell work underBioPerl 1.5.1

as this was the environment within which the original code was developed. We can use MUSCLE

(assuming it is installed—check this!) to generate the protein alignments. Run muscle_align.sh to
generate files (one per gene) with the compound extension .protein.aln.fasta.

Note that to trim the alignments down after stripping the third base, we could have used the pro-
gram Gblocks, but it is arcane and possibly too stringent even with its most relaxed settings, which
is why a simple “topping and tailing” was preferred. Also, strictly speaking, NEXUS [Maddison
et al., 1997] format input is required to infer the phylogeny, but this can be achieved by converting
the output FASTA files. Alternatively, we could output the alignments in NEXUS format as easily
as we currently do in FASTA, since we are using BioPerl.
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Appendix C

Extracting ORF counts from GOLD

In order to extract ORF counts for the investigation reported in Chapter 5, I first needed access to
the GOLD data, ideally in a way that would be reproducible by future investigators. In the Chap-
ter 2 investigation, it had been possible to download the bulk of the then-current GOLD data in the
form of a comma-separated-variable (CSV) file, from the GOLD web site. In April 2013 however
(by which time the GOLD site had undergone a redesign as part of GOLD version 4.0 [Pagani et al.,
2012]), although the documentation spoke of such a download, it was nowhere to be found1. An
attempt to contact the GOLD maintainers by email, requesting a download link, was unsuccessful;
ORF count and associated data by species appeared to be available on-screen only. I could simply
have copied the data, which would have been time-consuming in itself, but arguably a pragmatic
option if the experiment were not going to be designed to be repeated. However, favouring fu-
ture reproducibility in as painless a way as possible, I instead decided to write a “screen scraper”2

program in Perl, to automate the process of retrieving the ORF counts.

C.1 Issues with GOLD client-side code

Here I encountered some difficulties. I could specify that the GOLD results be limited to com-
plete genomes, and in turn to eukaryotes only, with just a couple of interactive mouse clicks
on the GOLD search page. However, the correct display of the page proved to be JavaScript-
dependent [Flanagan, 2002]. In other words, because JavaScript runs within the browser rather
than on the web server, client-side code was being executed to generate the requisite table of

1This appears to have been addressed: in June 2013 a CSV download link became available on the GOLD home page.
2A screen scraper is a program written to parse data embedded within HTML output designed for the screen rather

than for data processing directly.
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species names, ORF counts, sequencing centres, etc. Screen scraping typically relies on sending
an HTTP [Leach et al., 1999] request to a web server and parsing the HTML markup wrapped up
in the response; Perl offers several add-on libraries for processing this markup, transforming the
various elements of the World Wide Web’s tree-like “Document Object Model” (or DOM) into ob-
jects which are easy to handle programatically. The library I used was HTML::Tree. The problem
in this case with sending a request to the web server (from within the Perl program) was that the
markup returned was incomplete; JavaScript code is embedded in the markup, or at least called
from tags embedded within the markup, and does not run until the response from the server has
loaded, after which the DOM itself is transformed into the required state after rendering the table
of species data. The difficulty is that Perl lacks a JavaScript interpreter (a feature common to any
modern web browser) within which to run the downloaded code. Thus the markup seen by Perl is
the intermediate version sent by the server and not the final, JavaScript-generated version which
contains the species table. How then to generate the end-state DOM prior to parsing it with Perl?

C.2 Automating Firefox to populate code-dependent HTML

The solution was to use the browser itself to generate the finalised markup. Firefox in particular has
a vast array of add-on programs available thanks to its popularity, longevity and open API3, which
makes it possible for a huge community of developers to make available their own independent en-
hancements to Firefox’s out-of-the-box functionality. Traditionally, such code contributions were
made in the form of plug-ins, which tend to be written in C, have their own process space and take
over over from Firefox in the rendering of certain content—such content often being served in a
proprietary format, exclusive to large software companies. Firefox still offers an API for plug-ins,
but latterly, in an attempt to open the field to smaller-scale, incremental and distributed innova-
tion, Firefox offers an alternative API for extensions, which run in Firefox’s own interpreter, are
written in JavaScript and XUL4 and natively extend the browser’s capabilities. One of the more
unusual such extensions is moz-repl5, which offers a command-line interface for issuing Javascript
commands to the browser. This interface is exposed over a UNIX port to which one can attach
using a simple Telnet [Postel and Reynolds, 1983] client. Essentially, one connects to port 4242
with the telnet command; after installing moz-repl 1.1 as an add-on to Firefox 19.06, Linux-derived

3Application Programming Interface
4“XML User interface Language” [Feldt, 2007], a dialect of XMLmarkup developed by the Mozilla Foundation, which

developed Firefox itself out of the old Mozilla browser code base.
5This is an elision of “Mozilla” and “REPL”, itself an acronym for “Read-Eval-Print-Loop”, which refers to a program-

ming environment wherein a command is read and evaluated immediately before a response is returned to the calling
interface, without an intervening compilation step—effectively, a command-line interpreter.

6moz-repl 1.1 does not work with Firefox 20.0 and upwards, which require moz-repl 1.1.2.
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Telnet clients worked well in general7 but the DOS command line version seemed prone to undi-
agnosable problems and errors. However, because the objective was still to use Perl for the screen
scrape, I sought also to enable Telnet programatically. This was achieved with the use of another
Perl module, Net::Telnet, which uses the same Telnet implementation on whichever platform it is
run. In any case, it worked well with moz-repl. The process is not fully automatic, because it is nec-
essary to open Firefox interactively to enable themoz-repl port. With Firefox open, the Perl program
(gold_digger.pl) can be run, and the scrape performed after JavaScript has rendered the table. At
one point the program pauses, because the user still has to click an option to retrieve all completed
eukaryotic genomes; this step could probably have been automated but the use of a third-party
JavaScript library8 on the GOLD pages made the necessary JavaScript syntax somewhat cryptic.
Nevertheless, using moz-repl to retrieve the resultant markup, it was possible to parse it as normal
with HTML::Tree. This allowed me to extract values enclosed in the HTML tags and generate a
CSV file containing ORF counts by taxon ID. The Perl code listing which implements this process,
gold_digger.pl, is provided in Appendix G.

I then loaded the CSV file into a database table, which enabled the ORF figures to be compared
with the protein counts from RefSeq by means of a simple SQL query.

7This includes clients originally written for Linux but ported to Windows—so moz-repl can be run successfully on a
Windows system with a non-Microsoft Telnet client.

8YUI, the Yahoo User Interface library [Wellman, 2008].
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Appendix D

Amazon EC2 BLAST with MIT StarCluster

From the total 35 922 human proteins (including the 13 human mitochondrial proteins), I identified
31 452 unique sequences using a simple SQL select distinct statement. The average size of target
proteomes1, based on a total of 1 079 891 non-human sequences (each one uniquewithin the bounds
of its own genome) and dividing by 84 gives 12 856, to the nearest whole number. After undertaking
some performance testing on a home machine with a single core Intel Pentium M processor and
1GB RAM, running Ubuntu Linux 13.04 with BLAST 2.2.27+ and BioPerl 1.6.9, it appeared that each
reciprocal BLAST round, generating a single row of the trait matrix from a unique human source
sequence, was taking about 10 to 12 minutes on average. Assuming an optimistic 10 minutes’ run
time per human protein, this would require just over 218 days, i.e. more than 7 months, to run on
this one machine. Plainly, as before, I required the capacity to distribute the BLAST jobs across
multiple nodes: I required a computing cluster.

Wishing to have both access to and control over such a cluster, I investigated a couple of options,
including building my own ephemeral cluster using a dedicated master with slave nodes booting
fromCDs2, but this did not seem easy, practical or a particularly good solution given themagnitude
of the computation needed and the limited hardware resources available to me. My preferred
avenue was therefore to investigate buying some cluster computing time as an online service. The
recent trend towards “cloud computing” [Weinhardt et al., 2009] has seen a plethora of computing
services become available to home, business and academic users on both free and paid-for bases.
One of several such services provided by Amazon.com is its EC2 “Elastic Compute Cloud” service,
which in simple terms offers arbitrarily large amounts of computing capacity in virtual Linux or

1As with the human (source) proteome, before creating the target proteomes, duplicate sequences were removed to
save processing time. Unique instances can be mapped to potentially multiple RefSeq IDs by means of a database query.

2I.e. any machines used could in principle have continued to be used for their normal purposes when booted from
their own hard disks (and not slaved to the cluster)—hence “ephemeral”, rather than “virtual”.
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Windows environments running on Amazon’s own servers “in the cloud”. The compute instances
offered come in a variety of default configurations, each of which may be further configured after
purchase. Amazon also has a “free channel”, which enables an individual or organisation free use
for a year of a small compute instance of very limited memory and processing power. Nonetheless
it is fully configurable as a web server, for example. So it provides a sandbox within which to
experiment prior to purchasing time on a larger compute instance or group of instances. I secured
a free instance with a view to exploring the possibilities.

I subsequently discovered StarCluster [Ragan-Kelley et al., 2013] from MIT, which provides an
interface for neatly securing Amazon’s cluster resources, and also enables bidding on nodes rather
than paying Amazon’s fixed prices. If one is prepared occasionally to be outbid, and for one’s job to
have to wait until the price falls, instances of very considerable computing power (e.g. 8 nodes and
32GB of RAM) can be secured for a relatively low price. The type, number of nodes and bid can be
specified on the StarCluster command line; StarCluster itself can be run locally or on a free channel
Amazon instance, which was my preferred option. Configuration was difficult, e.g. setting up
customised images to be propagated to each node in the cluster, but was accomplished with some
care and attention to detail. Bidding proved to be quite a game—e.g. by default, StarCluster sets
up instances of a single type, with one master and however many slave nodes one requires, in the
Amazon cloud. One problem is that large instances are absolutely expensive, and the master node
comes at a fixed (high) price rather than a bid price. Yet larger instances are often relatively cheap
in terms of “bang for the buck”. So one viable strategem is initially to buy a slaveless cluster with
a small (cheap) master node at Amazon’s fixed price, and add the other (large) nodes at a bid price
later. This I did, before running my BLAST analysis in Amazon’s cloud, using the two programs in
Appendices H and I (the first of which serially batches the second to the Oracle Grid Engine3 queue
manager).

3Formerly the Sun Grid Engine [Gentzsch, 2001].
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Visualising the network



106 Appendix E. Visualising the network

Figure E.1: Visualisation of correlated evolution network 2
(2 657 HPRD protein pairs filtered on control set)
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1 # ! / u s r / b i n / p e r l
2
3 # Changes made 17 th August 2 0 0 7 :
4 #
5 # 1 . The l o o p c o n s t r u c t u s ed t o p r o c e s s bo th p r o t e i n and rna f i l e s has been removed ,
6 # as we a r e i n t e r e s t e d on l y i n p r o t e i n s .
7 # 2 . ”my” d e c l a r a t i o n s s o r t e d s o t h ey app ly u n i v e r s a l l y and e x c l u s i v e l y t o v a r i a b l e s
8 # u s ed on l y w i t h i n l o o p s .
9 # 3 . B r a c e s s t r i p p e d ou t o f s p e c i e s ’ f i l e n am e s .

10 #
11 # Changes made 20 th August 2 0 0 7 :
12 #
13 # 4 . Ar ray s o f s e q u e n c e s now b u i l t and w r i t t e n ou t on a per−i npu t−f i l e , r a t h e r than
14 # per−d i r e c t o r y b a s i s .
15 # 5 . U s e r now ne e d s t o s upp l y MySQL username and pa s swo r d s a s f i r s t and s e c o nd
16 # command−l i n e arguments , r e s p e c t i v e l y .
17 #
18 # Changes made 21 s t August 2 0 0 7 :
19 #
20 # 6 . Embedded s l a s h e s i n s p e c i e s names c o n v e r t e d t o u n d e r s c o r e s t o a l l ow f i l e s t o
21 # be w r i t t e n ou t s u c c e s s f u l l y .
22 #
23 # Changes made 4 th S ep t embe r 2 0 0 7 :
24 #
25 # 6 . Embedded c o l o n s i n s p e c i e s names c o n v e r t e d t o u n d e r s c o r e s t o a l l ow f i l e s t o
26 # be w r i t t e n ou t s u c c e s s f u l l y .
27 #
28 # Changes made 9 th O c t o b e r 2 0 0 7 :
29 #
30 # 7 . F u l l s t o p s i n s p e c i e s names c o n v e r t e d t o u n d e r s c o r e s t o a l l ow f i l e s t o
31 # be w r i t t e n ou t s u c c e s s f u l l y ; m u l t i p l e u n d e r s c o r e s c o n v e r t e d t o s i n g l e s .
32 #
33 # Changes made 12 th May 2 0 0 8 :
34 #
35 # 8 . $ s e q t y p e t ak en ou t o f l o op , a s e f f e c t i v e l y i t ’ s c o n s t a n t .
36 #
37 # Changes made 17 th December 2 0 0 8 :
38 #
39 # 9 . $ s p e c i e s ( f i l e s t em ) now has taxon i d added i n a f t e r a p e r i o d , f o l l o w i n g
40 # v a r i o u s s e a r c h e s and r e p l a c e s on t h e name p a r t o f t h e s tem .
41 #
42 # Changes made 16 th May 2 0 0 9 :
43 #
44 # 1 0 . A c oun t i s no l o n g e r u s ed t o i n c r emen t f i l e names u n t i l t h e f i l e i s n o t
45 # found , s i n c e some numbers a r e mi s s i ng , and t h e p r o c e s s can ’ t s k i p o v e r
46 # t h e gaps , hopp ing t o t h e n e x t d i r e c t o r y i n s t e a d !
47 #
48 # Changes made O c t o b e r 2 0 1 2 :
49 #
50 # 1 1 . Adapted f o r Po s t g r eSQL , and new Re f S e q f i l e n ame f o rma t .
51
52 use Cwd ;
53 use Bio : : SeqIO ;
54 use DBI ;
55
56 $dbh = DBI−>c onn e c t ( ’ DBI : Pg : dbname= e v o l u t i o n ’ , $ARGV [ 0 ] , $ARGV[ 1 ] ) or d i e
57 ’DB connec t i on e r r o r : check your username / password combo ! ’ ;
58 $ s t h = $dbh−>prepa r e ( ” s e l e c t spec ies_name , t a xon_ i d from r e f s e q . c a t a l o g where r e f s e q _ i d = ? ” ) ;
59
60 $cwd = getcwd ( ) ;
61 p r i n t ” $cwd \ n \ n ” ;
62
63 $ s eq type = ’ p r o t e i n . f a a ’ ;
64 @phyla = qw ( f ung i i n v e r t e b r a t e p l a n t p ro to zoa ver tebra te_mammal i an v e r t e b r a t e _ o t h e r m i c r o b i a l ) ;
65
66 f o r e a c h my $phylum ( @phyla ) {
67
68 p r i n t ” P r o c e s s i n g $phylum s p e c i e s . . . \ n ” ;
69
70 op end i r ( PHYLUMDIR , $phylum ) ;
71 my @seq f i l e s = g r ep { m/^ $phylum \ . \ d + \ . $ s eq type$ / } r e a d d i r ( PHYLUMDIR ) ;
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72 f o r e a c h my $ s e q f i l e ( @s e q f i l e s ) {
73
74 # p r i n t ” P a r s i n g $ s e q f i l e . . . \ n ” ;
75
76 my % f i l e _ s e q s = ( ) ;
77 my $ i n f i l e = Bio : : SeqIO−>new ( −f o rma t => ’ F a s t a ’ ,
78 − f i l e => ” $phylum / $ s e q f i l e ” ) ;
79
80 wh i l e ( my $sequence = $ i n f i l e −>nex t_ s eq ) {
81 my $ r e f s e q _ i d = $sequence−>d i s p l a y _ i d ( ) ;
82 $ r e f s e q _ i d =~ s / ^ . * r e f \ | / / ;
83 $ r e f s e q _ i d =~ s / \ | . * $ / / ;
84
85 $s th−>exe cu t e ( $ r e f s e q _ i d ) ;
86 my $ s p e c i e s _ r e f = $s th−>f e t c h r ow_ a r r a y r e f ( ) ;
87 my $ s p e c i e s = $ s p e c i e s _ r e f − >[0] ;
88 $ s p e c i e s =~ s / ( \ s | \ / | : | \ . | \ * ) / _ / g ;
89 $ s p e c i e s =~ s / _ +/ _ / g ;
90 $ s p e c i e s =~ s / ( \ ( | \ ) | \ [ | \ ] | ’ ) / / g ;
91 $ s p e c i e s . = ’ . ’ . $ s p e c i e s _ r e f − >[1] ;
92
93 i f ( e x i s t s $ f i l e _ s e q s { $ s p e c i e s } ) {
94 push ( @{ $ f i l e _ s e q s { $ s p e c i e s } } , $ sequence ) ;
95 } e l s e {
96 $ f i l e _ s e q s { $ s p e c i e s } = [ $sequence ] ;
97 }
98 }
99

100 whi l e ( ( my $key , my $va lue ) = each ( % f i l e _ s e q s ) ) {
101 my $open_pre f = ’ > ’ ;
102 i f ( −e ” $phylum / $key \ . $ s eq type ” ) {
103 $open_pre f = ’ >> ’ ;
104 }
105 my $ s p e c i e s _ f i l e = Bio : : SeqIO−>new ( − f i l e => ” $open_pref$phylum / $key \ . $ s eq type ” ,
106 −fo rmat => ’ F a s t a ’ ) ;
107
108 f o r e a ch my $ou t s eq ( @$value ) {
109 $ s p e c i e s _ f i l e −>wr i t e _ s e q ( $ou t s eq ) ;
110 }
111 }
112 }
113 c l o s e d i r ( PHYLUMDIR ) ;
114 }
115 $s th−> f i n i s h ( ) ;
116 $dbh−>d i s c onn e c t ( ) ;
117 p r i n t ”Done . \ n ” ;
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1 # ! / u s r / b i n / p e r l
2
3 # g o l d _ d i g g e r . p l
4 #
5 # Th i s s c r i p t r e q u i r e s F i r e f o x wi th moz−r e p l t o be runn ing on t h e l o c a l h o s t .
6 # Won ’ t work i f t h e r e a r e any o t h e r moz−r e p l s e s s i o n s open , e i t h e r !
7
8 use HTML : : Tree ;
9 use Net : : T e l n e t ;

10
11 my $goldmine = ’ h t t p : / /www. genomesonl ine . org / cg i−b in /GOLD/ index . c g i ’ .
12 ’ ? p age_ r eque s t ed =Complete+Genome+ P r o j e c t s&s u b s e t _ r e q u e s t e d =EUKARYAL ’ ;
13 my $mozza = new Net : : T e l n e t ( Host => ’ l o c a l h o s t ’ ,
14 Por t => 4242 ,
15 Timeout => 30 ,
16 Prompt => ’ / r ep l > / ’ ,
17 # Dump_log => ’ rep l_dump . l o g ’ ,
18 # Op t i o n _ l o g => ’ r e p l _ o p t . l o g ’ ,
19 # I n p u t _ l o g => ’ r e p l _ i n . l o g ’ ,
20 # Ou t pu t _ l o g => ’ r e p l _ o u t . l o g ’ ,
21 Telnetmode => 0 ,
22 Cmd_remove_mode => 0 ) or d i e ”Oh dear ; no connec t i on ! ” ;
23
24 my $ok = $mozza−>cmd ( ” con t en t . l o c a t i o n . h r e f = \ ” ” . $go ldmine . ” \ ” ” ) or d i e
25 ”Oh dear : command 1 f a i l e d ! ” ;
26
27 p r i n t ” \ nYou must now go to F i r e f o x and s e l e c t ALL euka ryo t e s b e f o r e p roceed ing ! ” ;
28 p r i n t ” \ nHit <CR> when you ’ r e done . . . ” ;
29 my $ s t a l l = <STDIN > ;
30 p r i n t ” \ n ” ;
31
32 $ok = $mozza−>cmd ( ” con t en t . document . body . innerHTML ” ) or d i e
33 ”Oh dear : HTML r e t r i e v a l f a i l e d ! ” ;
34
35 # I t ’ s we i rd , bu t you have t o i s s u e a s e c o nd command t o g e t t h e f i r s t ’ s r e s p o n s e .
36
37 my @pyri te = $mozza−>cmd ( ) or d i e ”Oh dear : dummy command f a i l e d ! ” ;
38
39 =pod
40
41 The s e b i t s don ’ t seem t o work ; onchange do e sn ’ t even work i n t e r a c t i v e l y , s o some
42 we i r d e v e n t a t t a chmen t model may be i n u s e by t h e yu i l i b r a r y .
43
44 $ok = $mozza−>cmd ( ” c o n t e n t . document . g e t E l emen t By I d ( ’ yui−pg0−0−rpp ’ ) . s e l e c t e d I n d e x = 5 ” ) ;
45 $ok = $mozza−>cmd ( ” c o n t e n t . document . g e t E l emen t By I d ( ’ yui−pg0−0−rpp ’ ) . onchange ( ) ” ) ;
46 $ok = $mozza−>cmd ( ” c o n t e n t . document . g e t E l emen t By I d ( ’ yui−pg0−0−rpp ’ ) . v a l u e = ’ 1 0 0 0 ’ ” ) ;
47 = cu t
48
49 $ok = $mozza−> c l o s e ( ) or d i e ”Oh dear : cou ld not c l o s e moz−r e p l s e s s i o n ! ” ;
50
51 my $ l i n e c n t = 0 ;
52 my $nugge t ty = ” ” ;
53 f o r e a c h my $nugget ( @pyri te ) {
54 chomp $nugget ;
55 $nugge t ty . = $nugget ;
56 $ l i n e c n t ++ ;
57 }
58 # p r i n t @pyr i t e ;
59 # p r i n t $ nug g e t t y ;
60 p r i n t ” \ nNo o f HTML l i n e s in ou tpu t : $ l i n e c n t \ n ” ;
61 p r i n t ”No o f a r r ay e l emen t s : ” . s c a l a r ( @pyri te ) . ” \ n ” ;
62 p r i n t ” Length o f HTML in c h a r a c t e r s : ” . l e n g t h ( $nugge t ty ) . ” \ n ” ;
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63
64 my $ g o l d t r e e = HTML : : Tree−>new ( ) ;
65 $go l d t r e e −>pa r s e ( $nugge t ty ) ;
66 my @rows = $go l d t r e e −>look_down ( ’ _ t ag ’ , ’ t r ’ ) ;
67 p r i n t ”No o f t a b l e rows : ” . s c a l a r ( @rows ) . ” \ n ” ;
68
69 my @todata = l o c a l t i m e ( t ime ) ;
70 $ t o d a t a [ 5 ] += 1 9 0 0 ;
71 $ t o d a t a [ 4 ] + + ;
72 my $ today = s p r i n t f ( ” %04d%02d%02d ” , ( $ t o d a t a [ 5 ] , $ t o d a t a [ 4 ] , $ t o d a t a [ 3 ] ) ) ;
73 open ( GOLDDATA, ’ > ’ , ” go ld_$ { today } . d a t a ” ) ;
74
75 my $cn t = 0 ;
76 f o r e a c h ( @rows ) {
77 my @columns = $_−>look_down ( ’ _ t ag ’ , ’ t d ’ ) ;
78 i f ( s c a l a r ( @columns ) == 13 ) {
79
80 my $ s p e c i e s _ e l emen t = $columns [1]−> look_down ( ’ c l a s s ’ , ’ yui−dt− l i n e r ’ ) ;
81 my $spec i e s_name = $ spe c i e s _ e l emen t −>a s _ t e x t ( ) ;
82
83 my $ taxon_e l ement = $columns [3]−> look_down ( ’ c l a s s ’ , ’ yui−dt− l i n e r ’ ) ;
84 $ taxon_e l ement = $taxon_e lement−>look_down ( ’ _ t ag ’ , ’ a ’ ) ;
85 my $ t axon_ i d = $taxon_e lement−>a t t r ( ’ h r e f ’ ) ;
86 $ t axon_ i d =~ s / ^ . * = / / ;
87
88 my $o r f _ e l emen t = $columns [4]−> look_down ( ’ c l a s s ’ , ’ yui−dt− l i n e r ’ ) ;
89 my $ o r f _ q t y = $or f _e l emen t−>a s _ t e x t ( ) ;
90 $ o r f _ q t y =~ s / ^ . * Kb / / ;
91 $ o r f _ q t y =~ s / \ s . * $ / / ;
92
93 # Output on l y r e c o r d s wi th ORF c o u n t s − o t h e r w i s e you ’ l l g e t s p e c i e s d u p l i c a t e s
94 $ o r f _ q t y ne ” ” && p r i n t GOLDDATA ” $ t axon_ i d \ t $ spe c i e s _name \ t $ o r f _ q t y \ n ” ;
95
96 $cn t ++ ;
97 }
98 }
99

100 c l o s e ( GOLDDATA ) ;
101 p r i n t ” S p e c i e s count : $ cn t \ n ” ;
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cluster_presence_absence.pl

1 # ! / u s r / b i n / p e r l −w
2
3 # c l u s t e r _ p r e s e n c e _ a b s e n c e . p l
4 #
5 # Th i s s c r i p t t a k e s an i n pu t l i s t o f R e f S e q IDs , and f o r each one s u bm i t s a
6 # B i o P e r l r e c i p r o c a l BLAST j o b by making a sy s t em c a l l t o t h e O r a c l e Gr id
7 # Eng ine . J o b s remain queued u n t i l a compute node becomes f r e e ; t h e more
8 # a v a i l a b l e nodes , t h e f a s t e r t h e t o t a l i t y o f j o b s w i l l be p r o c e s s e d .
9

10 use Bio : : Seq ;
11 use Bio : : SeqIO ;
12
13 $ r o o t _ s p e c i e s _ t i = $ARGV [ 0 ] ; # Taxon ID on ly
14
15 @roo t_con ta ine r = g l o b ” . . / combiner / p r e b l a s t / * . $ r o o t _ s p e c i e s _ t i . unique . f a a ” ;
16 # @ r o o t _ c o n t a i n e r = g l o b ” / mnt / sgeadmin / p r e b l a s t / * . $ r o o t _ s p e c i e s _ t i . un ique . f aa ” ;
17 $ r o o t _ s p e c i e s _ f i l e = $ r o o t _ c o n t a i n e r [ 0 ] or d i e ” Seq f i l e not found f o r $ r o o t _ s p e c i e s _ t i ” ;
18
19 $ r o o t _ s p _ s e q s _ f h = Bio : : SeqIO−>newFh ( −f o rma t => ’ f a s t a ’ ,
20 − f i l e => $ r o o t _ s p e c i e s _ f i l e ) ;
21
22 $seq_coun t = 0 ;
23 wh i l e ( < $ r oo t _ sp_ s eq s _ f h >) {
24 $seq_coun t ++ ;
25
26 # S e t t h e f o l l o w i n g c o u n t e r s t o p r o c e s s a c c e s s i o n s w i t h i n a range
27
28 $seq_coun t >= 1 && $seq_coun t < 100000 &&
29 sy s t em (
30 ” qsub ” , ”−V” , ”−b ” , ” y ” , ”−cwd ” ,
31 ” p e r l ” ,
32 ” onegene_pre sence_absence . p l ” ,
33 $ r o o t _ s p e c i e s _ t i ,
34 ” \ ” ” . $_−>d i s p l a y _ i d ( ) . ” \ ” ” ,
35 $_−>seq ( ) ,
36 $seq_coun t
37 ) ;
38 }
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onegene_presence_absence.pl



118 Appendix I. onegene_presence_absence.pl

1 # ! / u s r / b i n / p e r l −w
2
3 # o n e g e n e _ p r e s e n c e _ a b s e n c e . p l
4 #
5 # Runs r e c i p r o c a l BLAST f o r one p r o t e i n ( gene p r o d u c t ) a t a t ime : s h ou l d be
6 # i n v ok e d i t e r a t i v e l y w i t h i n a ba t c h s c r i p t .
7
8 use Bio : : Seq ;
9 use Bio : : Too l s : : Run : : S t a ndA l on eB l a s t P l u s ;

10 use Sys : : Hostname ;
11
12 $hostname = hostname ;
13 $hostname =~ s / \ . . * / / ;
14
15 $ b l a s t _ d b _ d i r = ’ . . / b l a s t ’ ;
16 # $ b l a s t _ d b _ d i r = ’ / mnt / sgeadmin / b l a s t ’ ;
17
18 # Fo r r o o t s p e c i e s , s u pp l y taxon ID
19 ( $ r o o t _ s p e c i e s _ t i , $ t h i s _ i d , $ t h i s _ s e q , $ o r d i n a l i t y ) = @ARGV;
20
21 @roo t_db_con ta ine r = g l o b ” $ b l a s t _ d b _ d i r / * _ $ r o o t _ s p e c i e s _ t i . phr ” ;
22 $ r o o t _ s p e c i e s _ d b = $ r o o t _ d b _ c on t a i n e r [ 0 ] or d i e ”BLAST db not found f o r $ r o o t _ s p e c i e s _ t i ” ;
23 $ r o o t _ s p e c i e s _ d b =~ s / \ . phr$ / / ;
24
25 op end i r ( BLASTDIR , $ b l a s t _ d b _ d i r ) ;
26
27 $open_pre f = ’ > ’ ;
28 $ p r o t s _ ou t = ” $ { hostname } _ p r o t e i n s . $ { o r d i n a l i t y } . p r e s ence ” ;
29 i f ( −e $p r o t s _ ou t ) {
30 $open_pre f . = ’ > ’ ;
31 }
32 open ( PROTSOUT , ” $ { open_pre f } $ p r o t s _ ou t ” ) ;
33
34 $ r o o t _ s p _ s e q _ob j = Bio : : Seq−>new ( −seq => $ t h i s _ s e q ,
35 −i d => $ t h i s _ i d ) ;
36
37 $ s p e c i e s _ c n t = 0 ;
38 my @ t r a i t _ l i s t = ( ) ;
39
40 p r i n t ”BLASTING $ t h i s _ i d . . . \ n ” ;
41 SPECLOOP : f o r e a c h my $ s p e c i e s _ d b ( g l o b ” $ b l a s t _ d b _ d i r / * . phr ” ) {
42 $ s p e c i e s _ d b =~ s / \ . phr$ / / ;
43 # ## p r i n t ” BLASTing $ s p e c i e s _ d b . . . \ n ” ;
44
45 i f ( $ s p e c i e s _ d b eq $ r o o t _ s p e c i e s _ d b ) {
46 $ t r a i t _ l i s t [ $ s p e c i e s _ c n t ] = 1 ;
47 } e l s e {
48 $ t r a i t _ l i s t [ $ s p e c i e s _ c n t ] = &r e c i p r o c a t e ( $ r oo t _ sp_ s eq_ob j , $ r o o t _ s p e c i e s _ db , $ s p e c i e s _ d b ) ;
49 }
50
51 $ s p e c i e s _ c n t ++ ;
52 }
53
54 p r i n t PROTSOUT &g e t _ a c c e s s i o n ( $ r oo t _ sp_ s eq_ob j , 3 ) ;
55 p r i n t PROTSOUT ” \ t $_ ” f o r e a c h ( @ t r a i t _ l i s t ) ;
56 p r i n t PROTSOUT ” \ n ” ;
57
58 c l o s e PROTSOUT ;
59 c l o s e d i r BLASTDIR ;
60
61 # p r i n t ” A c c e s s i o n s p r o c e s s e d : $ a c c _ c n t \ n ” ;
62 p r i n t ”Done . \ n ” ;
63
64
65 sub r e c i p r o c a t e {
66
67 my ( $ r oo t _ sp_ s eq_ob j , $source_db , $ t a r g e t _ d b ) = @_;
68
69 my $ r o o t _ s p _ a c c e s s i o n = &g e t _ a c c e s s i o n ( $ r oo t _ sp_ s eq_ob j , 3 ) ;
70
71 my $ t a r g e t _ h i t _ a c c e s s i o n = &b l a s t _ i t ( $ r oo t _ sp_ s eq_ob j , $ t a r g e t _ d b ) ;
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72
73 my $ r e c i p r o c a l _ h i t _ a c c e s s i o n = ’ ’ ;
74
75 my $ t a r g e t _ h i t _ s e q _ o b j ;
76
77 i f ( $ t a r g e t _ h i t _ a c c e s s i o n ne ’ ’ ) {
78
79 # I d e a l l y , you s h ou l d u s e b l a s t d b cmd from BLAST+ 2 . 2 . 2 8 o r above .
80 # I n s t a l l and u s e i t l o c a l l y i f t h a t ’ s no t your d e f a u l t r e l e a s e !
81
82 open FASTA_IN , ” b l a s tdbcmd −dbtype p ro t −db $ t a r g e t _ d b −en t ry $ t a r g e t _ h i t _ a c c e s s i o n | ” ;
83 my $ t a r g e t _ h i t _ s e q _ i o = Bio : : SeqIO−>new ( −f o rma t => ’ f a s t a ’ ,
84 −fh => \ * FASTA_IN ) ;
85 $ t a r g e t _ h i t _ s e q _ o b j = $ t a r g e t _ h i t _ s e q _ i o −>nex t_ s eq ( ) ;
86 c l o s e FASTA_IN ;
87
88 $ r e c i p r o c a l _ h i t _ a c c e s s i o n = &b l a s t _ i t ( $ t a r g e t _ h i t _ s e q _ o b j , $ source_db ) ;
89 }
90
91 my $p r e s en t = ( $ r o o t _ s p _ a c c e s s i o n eq $ r e c i p r o c a l _ h i t _ a c c e s s i o n | | 0 ) ;
92
93 # p r i n t $ s p e c i e s _ c n t . ’ ’ . $ p r e s e n t . ’ ’ . $ s o u r c e _ d b . ’ ’ . $ t a r g e t _ d b . ’ ’ .
94 # $ r o o t _ s p _ a c c e s s i o n . ’ ’ . $ t a r g e t _ h i t _ a c c e s s i o n . ’ ’ .
95 # $ r e c i p r o c a l _ h i t _ a c c e s s i o n . ” \ n ” ;
96
97 r e t u r n $p r e s en t ;
98 }
99

100
101 sub b l a s t _ i t {
102
103 my ( $ s ou r c e_ s eq_ob j , $ t a r g e t _ d b ) = @_;
104
105 # p r i n t $ s o u r c e _ s e q _ o b j −> i d ( ) . ” ” . $ t a r g e t _ d b . ” \ n ” ;
106
107 my $ h i t _ a c c e s s i o n = ’ ’ ;
108 my @params = (
109 −db_name => $ t a r g e t _ d b
110 ) ;
111
112 # map { p r i n t ” $_ \ n ” } @params ;
113
114 my $ b l a s t _ o b j = Bio : : Too l s : : Run : : S t andA loneB l a s t P l u s −>new ( @params ) ;
115 my $ b l a s t _ r e s u l t = $ b l a s t _ o b j −>b l a s t p (
116 −query => $ sou r c e_ s eq_ob j ,
117 −method_args => [
118 ’−eva l u e ’ => 0 . 0 0 0 0 0 1
119 ]
120 ) ;
121
122 my $num_hits = $ b l a s t _ r e s u l t −>num_hits ( ) ;
123
124 # ## p r i n t $ s o u r c e _ s e q _ o b j −> i d ( ) . ” ” . $ t a r g e t _ d b . ” No . h i t s = ” . $num_hi t s . ” \ n ” ;
125
126 i f ( $num_hits > 0 ) {
127 my $ h i t _ o b j = $ b l a s t _ r e s u l t −>n e x t _ h i t ( ) ;
128 $ h i t _ a c c e s s i o n = $h i t _ o b j −>name ( ) ;
129 my $h i t _ r ank = $h i t _ o b j −>rank ( ) ;
130 my @hi t _a c c e s s i on = s p l i t ( / \ | / , $ h i t _ a c c e s s i o n ) ;
131
132 # Th i s t ime we u s e 1 r a t h e r than 3 b e c a u s e on l y t h e R e f S e q key−va l u e
133 # p a i r was r e t u r n e d above .
134
135 $ h i t _ a c c e s s i o n = $ h i t _ a c c e s s i o n [ 1 ] ;
136 # ## p r i n t ” F i r s t h i t a c c e s s i o n i s $ h i t _ a c c e s s i o n , ranked $ h i t _ r a n k \ n ” ;
137 }
138 $ b l a s t _ o b j −>c l eanup ( ) ;
139
140 r e t u r n $ h i t _ a c c e s s i o n ;
141 }
142
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143
144 sub g e t _ a c c e s s i o n {
145
146 # Gen e r a l l y , a c c _ t y p e 1 i s a GI and a c c _ t y p e 3 i s a R e f S e q ID . You p r o b a b l y
147 # want t h e l a t t e r , f o r more s t r a i g h t f o r w a r d c om p a t i b i l i t y wi th HPRD . And in
148 # f a c t , i t s e ems t h a t e i t h e r works wi th b l a s t d b cmd .
149
150 my ( $ s eq_ob j , $ a c c_ type ) = @_;
151
152 my $ a c c e s s i o n = $seq_ob j−>d i s p l a y _ i d ( ) ;
153 my @access ion = s p l i t ( / \ | / , $ a c c e s s i o n ) ;
154 $ a c c e s s i o n = $ a c c e s s i o n [ $a c c_ type ] ;
155
156 r e t u r n $ a c c e s s i o n ;
157 }
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