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ABSTRACT

4DEnsembleVar is a hybrid data assimilation method which purpose is not only to use ensemble flow-dependent

covariance information in a variational setting, but to altogether avoid the computation of tangent linear and adjoint

models. This formulation has been explored in the context of perfect models. In this setting, all information from

observations has to be brought back to the start of the assimilation window using the space-time covariances of the

ensemble. In large models, localisation of these covariances is essential, but the standard time-independent

localisation leads to serious problems when advection is strong. This is because observation information is advected

out of the localisation area, having no influence on the update.

This is part I of a two-part paper in which we develop a weak-constraint formulation in which updates are allowed at

observational times. This partially alleviates the time-localisation problem. Furthermore, we provide—for the first time—a

detailed description of strong- and weak-constraint 4DEnVar, including implementation details for the incremental form.

The merits of our new weak-constraint formulation are illustrated using the Korteweg-de-Vries equation

(propagation of a soliton). The second part of this paper deals with experiments in larger and more complicated

models, namely the Lorenz (1996) model and a shallow water equations model with simulated convection.

KEYWORDS: hybrid data assimilation, ensemble-variational methods, model error

1. Introduction

The 4-dimensional ensemble-variational data assimilation (DA)
scheme, 4DEnVar, is a hybrid DA method currently used (and
still being researched) in Numerical Weather Prediction (NWP),
and it is at the forefront of the next-generation DA methods. As
with other hybrid methods, the basic motivation behind 4DEnVar
is to use the flow-dependent background error covariance matrix
from sequential methods based on the Kalman Filter (KF)—like
the Ensemble Transform Kalman Filter (ETKF, Bishop et al.,
2001; Wang et al., 2004) and the Local Ensemble Transform
Kalman Filter (LETKF, Hunt et al., 2007)—and apply it in the 4-
dimensional variational framework (4DVar) first proposed by Le
Dimet and Talagrand (1986), and studied in Talagrand and
Courtier (1987). What makes 4DEnVar different from all other
hybrids, however, is the fact that it alleviates the need to compute
tangent linear models (TLM’s) and adjoint models (AM’s).

The use of ensemble information in a variational framework
was proposed by Lorenc (2003) and Zupanski (2005). Since
then, several formulations have been proposed, experimented
on, and used by operational centres like the UK Met Office

and the Canadian Meteorological Centre (Environ Canada).
The idea of these hybrid methods is to overcome certain
restrictions of the basic 4DVar, for instance, the use of a static
background error covariance matrix, which is usually a clima-
tological error covariance matrix Bc. Although it is possible
to generate slowly-varying Bc’s—e.g. difference covariances
for different seasons–, the fast variations—e.g. those in the
time-frame of an assimilation window—are not captured.
Hence, climatological or slow-varying background matrices
do not describe the flow-dependent errors of the day.
Sequential ensemble-based methods, e.g. LETKF, can describe
these features. Nonetheless, the sample covariances obtained

in these ensemble methods—which we denote as Pb—contain
sampling errors and are seldom full rank, which is a problem
climatological covariances do not have. It seems logical, then,
to find ways to combine the advantages of both families of
methods. Clayton et al. (2013) developed a hybrid 4DVar
which combines the climatological background error covar-
iance matrix with the flow dependent background error covar-
iance matrix generated by the LETKF. Fairbarn et al. (2014)
and Goodliff et al. (2015) then showed that a fully flow
dependent background error covariance matrix outperforms a*Corresponding author. e-mail: j.AmezcuaEspinosa@reading.ac.uk
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climatological or hybrid covariance in the 4DVar framework
(4DVar-Ben). The former used model II of Lorenz (2005) with
240 variables, while the latter used the 3-variable Lorenz
(1963) model with increasing non-linearity.

A non-trivial requirement for the implementation of 4DVar is
generating TLMs and AMs for both the evolution and observation
operators. Liu et al. (2008) developed the 4DEnVar technique,
which overcomes this need. After a series of matrix transforma-
tions, the role of these matrices can be substituted by using four-
dimensional space-time covariance matrices. In fact, the idea that
an ensemble can be used to generate space-time covariances to use
within an assimilation windowwas first proposed in the context of
the Ensemble Kalman Smoother of Van Leeuwen and Evensen
(1996) and Evensen and Van Leeuwen (2000).

A recent study byLorenc et al. (2015) showed difficulties for the
performance of 4DEnVar in larger systems, in comparison to that
of 4DVar with hybrid background covariances. The authors point
to the fact evolution and localisation of the covariance matrix do
not commute. This means that it is not the same to evolve a
localised a covariance matrix, or to evolve first and then localise.

So far, the work on 4DEnVar has been done considering a
perfect model scenario, i.e. in a strong-constraint (SC) setting. In
this work, we introduce a weak-constraint (WC) 4DEnVar. As
explored by Tremolet (2006), the choice of control variables in
WC4DVar is not unique. For reasons that will be thoroughly
discussed in the paper, we use what we label an ‘effective model
error formulation’, which stems from Tremolet’s (2006) constant
bias formulation.

This work is presented in two parts. Part I describes the
4DEnVar formulation in detail. We discuss its advantages over
traditional DA methods, as well as its short-comings. We pay
special attention to the problem of localising time cross-cov-
ariances using static localisation matrices. We illustrate this
problem by experimenting with the Korteweg de Vries (KdV)
equation for the evolution of a soliton (see e.g. Zakharov and
Faddeev, 1971). In part I we also introduce our WC4DEnVar
and discuss a proper localisation implementation for this
method. We show that performing updates at times other
than the initial one (as one does in the SC case), partially
alleviates the impact of incorrectly localised time cross-covar-
iances. Simple DA experiments are performed in this model.

In part II we move into larger models. We start with a detailed
exploration of parameters (e.g. observation frequency, observation
density in space, localisation radii, etc) using the well-known
Lorenz (1996) chaotic model. Then we use a modified shallow
water equations (SWE)model with simulated convection (Wursch
and Craig, 2014), which allows to test our method in a more
realistic setting. This is a larger, more non-linear model and serves
as a good test bed for convective data assimilation methods.

The layout of this paper is as follows. Sections 2 and 3 describe
in details the methodology of the 4DEnVar framework. Section 2
covers the SC case, and in Section 3 we introduce our
WC4DEnVar formulation. In Section 4 we use the KdV model

and use it to illustrate the time evolution of the background error
covariance matrix, as well as the problems that come from static
localisation of cross-time covariance matrices. In Section 5 we
perform some brief DA experiments. Section 6 summarises the
work of this part.

2. The variational methods

2.1. Strong-constraint 4DVar

In this section we formulate the SC4DVar method, which
forms the basis of any subsequent approximation. Consider
the discrete-time evolution of a dynamical system determined
by the following equation:

xt ¼ m0!tðx0Þ (1)

where x 2 RNx is the vector of state variables, and m0!t is a

map RNx ! RNx which evolves the state variables from time 0
to time t. For the moment, we consider this model to be

perfect. The initial condition x0 is not known with certainty,
and can be considered a random variable (rv). In particular, we

consider it to be a Gaussian rv, i.e. x0,Nðx0;b;BÞ, where x0;b

is a background value or first guess (usually coming from a

previously generated forecast), and B 2 RNx�Nx represents the
background error covariance matrix, which is full rank and
positive definite. One often replaces this matrix with a clima-
tological background error covariance Bc. There are several
ways to obtain Bc it (e.g. Parrish and Derber, 1981; Yang
et al., 2006); see e.g. Bannister (2008) for a review.

The system is observed from time to time. For a given
observational time, the observation equation is:

yo;t ¼ hðxtÞ þ ηt (2)

where yo 2 RNy is the vector of observations and h : RNx ! RNy

is the observation operator. For simplicity we consider this opera-
tor constant through time.We use the term ‘observation period’ to
denote the number of model time steps between consecutive
observation vectors. The observations contain errors, which are

represented by the rv ηt 2 RNy�Ny. We consider this error to be

Gaussian and unbiased: ηt,Nð0;RÞ, where R 2 RNy�Ny is the
observation error covariance matrix.

Let us consider a given time span from t ¼ 0 to t ¼ τ, which
we label ‘assimilation window’. By incorporating information
from the background at t ¼ 0 and the observations within this
window, we can find a better estimate (analysis) for the value

of the state variables at every time step x0; x1; � � � ; xτ. Since
the model is perfect (SC4DVar), this reduces to finding the
minimiser of a cost function that only depends on the initial

condition x0:
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Jðx0Þ ¼ 1
2
ðx0 � xb;0ÞTB�1ðx0 � xb;0Þ

þ 1
2

Xτ
t¼1

ρtðyo;t � hðm0!tðx0ÞÞÞTR�1ðyo;t � hðm0!tðx0ÞÞÞ

(3)

where the first term corresponds to the contribution from the
background and the second term corresponds to the contributions
from observations. To avoid an extra index to distinguish between
time instants with and without observations, we introduce the
indicator function ρt ¼ 1 if t is a time instant with observations,
and ρt ¼ 0 if t is a time instant with no observations.

The complexity in minimising (3) depends on the particular
characteristics of the operators h and m. For general non-linear

operators, Jðx0Þis not convex and may have multiple minima,
leading to a difficult minimisation process. Another issue comes
from the condition number of B. If this is large (i.e. the largest and
smallest eigenvalues of B are separated by orders of magnitude),
numerical minimisation methods can require many iterations for
convergence. To solve these problems one can use a precondi-
tioned formulation to reduce the ellipticity of the cost function.
Moreover, an incremental formulation can be used to perform a
quadratic approximation the original cost function, leading to a
problemwith a uniqueminimum. This linearisation process can be
iterated several times; these iterations are the so-called outer loops.

To write down the preconditioned incremental problem, let us
express the initial condition as an increment δx0 2 RNx from the
original background value, and then precondition the increment:

x0 ¼ xb;0 þ δx0 ¼ xb;0 þ B1=2v0 (4)

where v0 2 RNx is the new control variable. Since B is full
rank and symmetric, one can find the (unique) symmetric

square root B1=2 2 RNx�Nx without further complications. In

this case, δx0 2 RNxand v0 2 RNx . Then, one can approximate
(3) by performing the following first order Taylor expansion:

yo;t � hðm0!tðx0ÞÞ � dt �HM0!tB1=2v0

where

dt ¼ yo;t � hðm0!tðxb;0ÞÞ (5)

is the departure of the observations with respect to the evolution
of the background guess throughout the assimilation window. To
compute these departures one uses the full (generally non-linear)
evolution and observation operators. We notice that two matrices
appear in the equation. These are the TL observation operator

H ¼ @h
@x

2 RNy�Nx (6)

and TLM of the discrete-time evolution operator

M0!t ¼ @m0!t

@x
2 RNx�Nx (7)

which is also known as the transition matrix from time 0 to time
t. Both Jacobian matrices are evaluated with respect to the

reference trajectory, i.e. the evolution of xb;0. Then, the pre-
conditioned incremental form of SC-4DVar can be written as:

Jðv0Þ ¼ 1
2
ðv0ÞTv0 þ 1

2

Xτ
t¼1

ρtðdt �HM0!tB1=2v0ÞTR�1ðdt �HM0!tB1=2v0Þ

(8)

This is a quadratic equation which only depends on v0. In
order to find its global minimum it suffices to find the gradient
and set it equal to zero. The gradient of (8) is:

�v0Jðv0Þ ¼ v0 �
Xτ
t¼1

ρtðB1=2ÞTðM0!tÞTHTR�1ðdt �HM0!tB1=2v0Þ

(9)

2.2. Strong-constraint 4DEnsembleVar

Writing TLM’s and AM’s for large and complex models is a
complicated process. Moreover, the calculations involving both
TLM’s and AM’s are computationally expensive. To alleviate
these problems, 4DEnVar was introduced. Once more, let us
consider an assimilation window from t ¼ 0 to t ¼ τ, with
several observational times equally distributed throughout the
assimilation window. Consider that at time t we have an ensem-
ble of Ne forecasts. This ensemble can be initialized at time t ¼
0 with the analysis coming from an LETKF running in parallel
to the 4DEnVar system. At any time we can express the back-
ground (or forecast) ensemble as the matrix:

Xb;t ¼ xb;t1 ; � � � ; xb;tNe

h i
2 RNx�Ne (10)

from which an ensemble mean can be calculated at any
time as:

�xb;t ¼ 1

Ne
Xb;t1 2 RNx (11)

where 1 2 RNe is a vector of ones. Finally, a normalized
ensemble of perturbations can be computed as

X̂
b;t ¼ xb;t1 � �xb;tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ne � 1
p ; � � � ; x

b;t
M � �xb;tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1

p
#
2 RNx�Ne

"
(12)

In the EnVar framework we replace the background error
covariance B at the beginning of an assimilation window by
the sample estimator:

Pb;0 ¼ X̂
b;0ðX̂b;0ÞT (13)

In applications (e.g. NWP) it is often the case that Ne � Nx,

so Pb;0 is a low rank non-negative definite matrix, which has
consequences we discuss later. A straightforward implementa-

tion of 4DEnVar is to equate B1=2 ¼ X̂
b;0
. Then, we can do

the following substitution:
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HM0!tB1=2 � HM0!tX̂
b;0 � HX̂

b;t � Ŷ
b;t

(14)

An advantage of using ensemble estimators is that we can
directly construct the ensemble of perturbations Ŷ

b;t 2 RNy�Ne

using the full non-linear operators and the ensemble Xb;t in the
way described, e.g., in Hunt et al. (2007). Briefly, one can write:

Yt ¼ yt1 ¼ hðf 0!tðx01ÞÞ; � � � ; ytNe
¼ hðf 0!tðx0Ne

ÞÞ
h i

(15)

and it follows that:

Ŷ
b;t ¼ yb;t1 � �yb;tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ne � 1
p ; � � � ; y

b;t
Ne

� �yb;tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1

p
#
2 RNy�Ne

"
(16)

and the gradient (9) can be written simply as:

�v0Jðv0Þ ¼ v0 �
Xτ
t¼1

ρtðŶb;tÞTR�1 dt � Ŷ
b;t
v0

� �
(17)

and it should be clear that up to this moment we have not
applied localisation. Hence the size of the control variable we
solve for is v0 2 RNe .

A graphic summary of the SC4DEnVar process is depicted
in Fig. 1. This simple schematic depicts the three-stage-pro-
cess of SC4DEnVar. These are:

i. First an ensemble of ‘free’ (DA-less) trajectories of the
model is run for the length of the assimilation window. In
NWP applications these trajectories are available since meteor-
ological centres often have an ensemble forecast system.

ii. Second, the 4DVar minimisation process is performed
using 4-dimensional cross-time covariances instead of TLM’s
and AM’s. These cross-time covariances are computed from
the family of free model runs of step i.

iii. Finally an LETKF (or any other ensemble KF) is run
throughout the assimilation window to create new initial condi-
tions for the next window. The mean of this LETKF is replaced
by the solution of 4DEnVar, considered to be more accurate, i.e.
the ensemble keeps its perturbations but it is re-centred.In this
implementation, two assimilation systems need to be operated
and maintained. There are other hybrid systems such as
ECMWF’s ensemble DA system (Bonavita et al., 2012) which
are self-sufficient, but they require the use of TLM’s and AM’s.

2.2.1. Applying localization. The quality of Pb;t depends
on the size of the ensemble. In particular, the quality of this
estimator is quite poor when Ne � Nx, or at least when it is
smaller than the number of positive Lyapunov exponents in
the system. A common practice is to eliminate spurious
correlations by tampering the covariance matrix in the
following manner (Whitaker and Hamill, 2002):

Pb;t ¼ X̂
b;tðX̂b;tÞT ! ~Pb;t ¼ X̂

b;tðX̂b;tÞT
� �

� Lxx (18)

where � denotes the Schur (element-wise) product, and Lxx 2
RNx�Nx is the so-called localisation matrix. The element
Lxxf gij is a decreasing function of the physical distance

between grid points i and j. This is usually chosen as the

Fig. 1. Schematic depicting the three stage process of 4DEnVar. In part i an ensemble of ‘free’ (DA-less) trajectories of the model is run for the

length of the assimilation window. In part ii the 4DVar minimisation process is performed using 4-dimensional cross-time covariances instead of

tangent linear and adjoint models. In part iii an LETKS is run to the end of the assimilation window to create new initial conditions for the next

window. The mean of this LETKS is replaced by the solution of 4DEnVar, considered to be more accurate.
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Gaspari and Cohn (1999) compact support approximation to a
Gaussian function.

In the gradient of the 4DVar cost function the product

BHT 2 RNx�Ny appears. In the ensemble setting, this product

corresponds to Pb;t
x;y, which can be computed and localised as:

Pb;t
xy ¼ X̂

b;tðŶb;tÞT ! ~P
b;t
xy ¼ X̂

b;tðŶb;tÞT
� �

� Lxy (19)

which clearly requires a new matrix Lxy 2 RNy�Nx . For linear
observation operators, the two localisation matrices are related
simply as:

Lxy ¼ LxxH
T (20)

In order to write a localised version of (17) we require factor-
isations of both ~P

b;t
and ~P

b;t
xy . Buehner (2005) showed that one

can get the factorisation

X̂
b;tðX̂b;tÞT

� �
� Lxx ¼ ~̂X

b;t
ð ~̂X

b;t
ÞT (21)

with

~̂X
b;t

¼ diagðxb;t1 ÞL1=2
x ; � � � ; diagðxb;tM ÞL1=2

x

h i
2 RNx�rNe (22)

where the operator diag converts a vector into a matrix with
said vector in its main diagonal and zeros elsewhere,

Lx
1=2 2 RNx�ris the square root of the Lxx, and

r ¼ rank ðLxxÞ. If the localisation only depends on the dis-
tance amongst grid points (i.e. there is not a special cross-
variable localisation or vertical localisation) then r ¼ Ng, i.e.

simply the number of grid points. Constructing Lx
1=2 can be

done relatively easily via the following eigenvalue
decomposition:

Lxx ¼ CΓCT (23)

where C 2 RNx�Nx is the unitary matrix of eigenvectors, and

Γ 2 RNx�Nx is a diagonal matrix containing the eigenvalues,
and we have used the fact that Lxx is symmetric. Then:

L1=2
x ¼ CΓ1=2 (24)

If there are many variables per grid point, the decomposition
can be performed by blocks. Also, it is often more convenient
to work with a truncated localisation matrix with a given rank
r <Ng. This is discussed thoroughly in Appendix 1.
In the case of ~P

b;t
xy we need to write

X̂
b;tðŶb;tÞT

� �
� Lxy ¼ ~̂X

b;t
ð ~̂Y

b;t
ÞT (25)

with ~̂X
b;t

defined as before, and

~̂Y
b;t

¼ diagðyb;t1 ÞL1=2
y ; � � � ; diagðyb;tM ÞL1=2

y

h i
(26)

where L1=2
y 2 RNy�r can easily be found as:

L1=2
y ¼ HL1=2

x ¼ HCG1=2 (27)

The actual implementation we use can be found in Appendix
1. It is closer to Lorenc (2003) and his so-called α-control-
variable formulation. Wang et al. (2007) proved that both
formulations are equivalent.

2.2.2. Localisation in 4-dimensional cross-time covariances.
Recall that we have to compute the product BðM0!tÞTHT, which

we replace by the sample estimator X̂
b;0ðŶb;tÞT. Note that these

covariances involve both the ensemble of state variables at time 0,
and the ensemble of equivalent observations at time t. Hence,
different products should be localised with different localisation
matrices:

ðX̂b;0ðŶb;0ÞTÞ � L0;0
xy ; ðX̂

b;0ðŶb;1ÞTÞ � L0;1
xy ; � � � ; ðX̂

b;0ðŶb;τÞTÞ � L0;τ
xy

(28)

Computing the static matrix L0;0
xy is not difficult since it

requires no information about the flow. However, there is no

simple way of computing an optimal L0;t
xy , since that would

require taking into account the dynamics of the model.

Generally, the implementation of SC4DEnVar uses L0;0
xy for

all time steps, which can result in an unfavourable perfor-
mance with respect to SC4DVar (Lorenc et al. 2015). This is
a crucial impediment for an adequate performance of
SC4DEnVar with long assimilation windows. We will illus-
trate this issue in detail in Section 4, where we provide a
concrete example.

2.3. Weak-constraint 4DVar

Let us revisit the discrete-time dynamical system studied
before, but this time not assuming perfect model. The evolu-
tion equation becomes:

xt ¼ mðt�1Þ!tðxt�1Þ þ νt (29)

In this case mðt�1Þ!t is the map RNx ! RNx which evolves the

state variables from time t � 1 to time t, and νt 2 RNx is a rv
representing the model error. Let it be a Gaussian rv centred in

zero (unbiased), i.e. νt,Nð0;QÞwhere Q 2 RNx�Nx is the
model error covariance matrix.

Tremolet (2006) provides a detailed account on the way to
include the model error term into the 4DVar cost function. As
he points out, there is no unique choice for control variable in
this case. For our implementation, we choose a variation of
what he labels model-bias control variable. Consider the fol-
lowing representation of the true value of the state variables at
any time:

xt ¼ m0!tðx0Þ þ bt (30)
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i.e. the state variables at any time can be written as the perfect
evolution of the initial condition—given by the discrete-time
map m0!t—plus an effective model error bt 2 RNx , which con-
tains the accumulated effect of the real mode errors at each model
step, along with their evolution. While Tremolet (2006) consid-
ered the effective model error to be constant for all observational

times throughout the assimilation window (bt ¼ b"0 � t � τ),
we let it vary for different observational times.

For a linear model mt0!t ¼ Mt0!t, the relationship between
the statistical characteristics of the model error nt at every time

step from 0 to t and those of the effective model error bt at t
can be found in the following way:

νt, 0;Qð Þ ! bt, 0;Qt ¼
Xt
t0¼0

Mt0!tQðMt0!tÞT
 !

(31)

which is not an easy relationship, but later we will discuss
simpler—and more modest—ways to approximate Qt. For the
moment we consider this error to be unbiased.

Let us express the WC4DVar cost function as:

Jðx0; β1:τÞ¼ 1
2
ðx0 � xb;0ÞTB�1ðx0 � xb;0Þ þ 1

2

Xτ
t¼1

ðβtÞTðQtÞ�1βt

þ 1

2

Xτ
t¼1

ρtðyo;t � hðm0!tðx0Þ þ βtÞÞTR�1ðyo;t � hðm0!tðx0Þ þ βtÞÞ

(32)

where the function now depends upon x0 and

β1:τ ¼ β1; � � � ; βτ� �
. Notice that all the (perfect) model evolu-

tions m0!t start at time 0. This is why we have chosen (30) as a
definition of our control variables. If we chose the model error
increment for every time step νt, we would find a cost function

with terms of the form mt0!tðxt0 Þ, i.e. perfect model evolutions

initialised at different model time steps, where xt
0
contains the

effects of all ν for previous model time steps. This would com-
plicate the problem considerably, especially when using
ensembles.

As in the 4DVar case, we can write down a preconditioned
incremental formulation. Recalling that:

ðBtÞ1=2 ¼ M0!tðB0Þ1=2 (33)

we express the control variables as:

x0 ¼ xb;0 þ δx0 ¼ xb;0 þ B1=2v0

bt ¼ 0þ δbt ¼ ðBtÞ1=2vt (34)

which allows to perform the following first order Taylor
expansion:

yo;t � hðm0!tðx0Þ þ βtÞ� dt � HM0!tðB0Þ1=2v0 � HðBtÞ1=2vt

� dt � HðBtÞ1=2ðv0 þ vtÞ
(35)

where dt ¼ yo;t � hðm0!tðxb;0ÞÞ as in the SC case. The incre-
mental preconditioned form of the cost function for WC4DVar is:

Jðv0:τÞ¼ 1
2
ðv0ÞTv0 þ 1

2

Xτ
t¼1

ððBtÞ1=2vtÞTðQtÞ�1ðBtÞ1=2vtÞ

þ 1
2

Xτ
t¼1

ρtðdt �HðBtÞ1=2ðv0 þ vtÞÞTR�1ðdt �HðBtÞ1=2ðv0 þ vtÞÞ

(36)

We can write the gradient as the following vector:

�Jðv0:τÞ ¼

v0 �Pτ
t¼1

ρtðBtÞ1=2THTR�1ðdt �HðBtÞ1=2ðv0 þ vtÞÞ

ðB1Þ1=2TðQ1Þ�1ðB1Þ1=2v1 � ρ1ðB1Þ1=2THTR�1ðd1 �HðB1Þ1=2ðv0 þ v1ÞÞ
..
.

ðBτÞ1=2TðQτÞ�1ðBτÞ1=2vτ � ρτðBτÞ1=2THTR�1ðdτ �HðBτÞ1=2ðv0 þ vτÞÞ

2
666666664

3
777777775

(37)

where the control variable is v0:τ 2 Rðτþ1ÞNx .
It would seem that the size of the problem has grown con-

siderably with respect to the SC case. Nonetheless, let us look
closer at the structure of (37). Remember that ρt ¼ 1 only if t
belongs to those time steps with observations (a set we denote as
tobsf g), and ρt ¼ 0 otherwise. Hence the sum in the first block-

element of �v0:τJðv0:τÞ only has τobs (total number of observa-
tional times) terms. For all the other block elements we have two
terms: the first corresponding to the model error contribution
and the second contribution to the observational error contribu-
tion. For all time steps with no observations, this later term is
null. In these time steps there is nothing to make the model error
to be different from its background value, which was zero by
construction. Therefore vt ¼ 0 for all time steps without obser-
vations, and consequently we can redefine our control variable

from v0:τ to v0:τobs ¼ v0; v tobsf g� � 2 Rð1þτobsÞNx . Hence, the num-

ber of control variables—as well as the computational cost of
the problem—scales with the number of observational times
included in a given assimilation window.

2.4. Weak-constraint 4DEnsembleVar

As in the SC case, we want to find a way to avoid computing
TLM’s and AM’s. In the absence of localisation, we substitute

ðBtÞ1=2 ¼ X̂
b;t

and HðBtÞ1=2 ¼ Ŷ
b;t

to yield the gradient of the
cost function as:

�Jðv0:τobsÞ ¼

v0 �Pτobs
t¼1

ðŶb;tÞTR�1ðdt � Ŷ
b;tðv0 þ vtÞÞ

ðX̂b;1ÞTðQ1Þ�1
X̂

b;1
v1 � ðŶb;1ÞTR�1ðd1 � Ŷ

b;1ðv0 þ v1ÞÞ
..
.

ðX̂b;τobsÞTðQτobsÞ�1X̂
b;τobsvτobs � ðŶb;τobsÞTR�1ðdτobs � Ŷ

b;τobsðv0 þ vτobsÞÞ

2
666666664

3
777777775

(38)
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where the control variable is v0:τobs 2 Rð1þτobsÞNe . As in the SC
case, the actual implementation details can be found in
Appendix 1.

In the SC case, the influence from observations at different
times leads to a single increment that is computed at initial
time xb0 ! xa0, and the analysis trajectory comes from the
evolution of the new initial condition. Roughly speaking, the
information from observations at time t impact changes at time

0 via the covariance ðX̂0
Ŷ

tÞ � L0;t
xx . Since we do not have L0;t

xx

we simply use L0;0
xx . This is not too inaccurate for observations

occurring relatively close (in a time-distance sense) to the

beginning of the assimilation window. However using L0;0
xx

instead of L0;t
xx can lead to considerable errors as t grows.

Hence, this issue is of particular importance for long assimila-
tion windows with observations close to the end of the
window.

In the WC formulation we propose, the impact of an obser-
vation at time t influences the state variable at t ¼ 0 and at
time t ¼ tobs. So although we still have an incorrectly localised

expression of the form ðX̂0
Ŷ

tÞ � L0;t
xx , we also have a correctly

localised term ðX̂t
Ŷ

tÞ � Lt;t
xx, where obviously Lt;t

xx ¼ L0;0
xx . We

have not solved the problem of localisation, but we try to
ameliorate it by allowing for increments at time steps in
which observations occur.

The way our formulation works, we have jumps (from
background to analysis) at the initial time and at the time of
the observations. We have not experimented with how to get a
smooth trajectory for the whole assimilation window. A first
approach would be to modify the initial conditions, and then
distribute the updates at observational times amongst the time
steps between observations, following a procedure similar to
the Incremental Analysis Update of Bloom et al. (1996). This
would avoid the sharp jumps from background to analysis at
the times of the observations.

2.5. A note on Qt

We have not said anything about the computation of Qt, i.e.

the covariance matrix of the effective model error βt. In
principle, it could be calculated if we had access to two

ensembles: one evolved with no model error using (1): X0:τ
per,

and one evolved with model error using (29): X0:τ
imp. For any

time t we can use the expression (30) to write the imperfect
state in terms of the perfect state at that time plus an effective

error βt:

βt ¼ xtimp � xtper (39)

We can compute the first two moments of this error as:

E½βt	 ¼ E½xtimp	 � E½xtper	
Qt ¼ Cov½βt	 ¼ Cov½xtimp � xtper	

(40)

and the previous expressions can be approximated by evaluat-
ing sample estimators:

�β
t ¼ ðXt

imp � Xt
perÞ1

Q̂
t ¼ ðX̂t

imp � X̂
t
perÞðX̂

t
imp � X̂

t
perÞ

T (41)

There are two issues to do with these calculations. First of all,
we need two ensembles running at the same time. This is not
too demanding; in fact we could divide a moderate size
ensemble into two groups and run each of these groups with
and without model error respectively. The major complication,
however, is the evaluation of

~̂Q
t
Þ�1 ¼ ðX̂t

imp � X̂
t
perÞðX̂

t
imp � X̂

t
perÞT

� �
� Lxx

� ��1
�

(42)

in an efficient way. Some of the difficulties include the size of
the resulting matrix, as well as the rank of the matrix. We have
not done exploration in this direction. Instead we have chosen
a rather simple parametrisation of this error as:

Qt / tQ (43)

which can be interpreted as considering the accumulated
model error to behave like the Wiener process. This is exact
for a linear model with m ¼ I, i.e. when the evolution model is
the identity. A more precise approximation—or indeed an
efficient way to compute the actual value—is beyond the
scope of this paper.

3. Illustration of the time-propagation of
information: TLM vs 4D cross-time covariances

3.1. The KdV equation

In this section we illustrate the effects of using a static loca-
lisation matrix to localise time cross-covariances. We perform
experiments using the Korteweg de Vries (KdV) system as
model. The KdV equation is a non-linear partial differential
equation in one dimension:

@u
@t

þ u
@u
@s

þ @3u
@s3

¼ 0 (44)

where t denotes time, sis the spatial dimension, and u is a one-
dimensional velocity field. This equation admits solutions
called solitons, which correspond to the propagation of a
single coherent wave, see e.g. Shu (1987) or Zakharov and
Faddeev (1971).

This system has been used before for DA experiments in the
context of feature DA and alignment error (e.g. Van Leeuwen,
2003; Lawson and Hansen, 2005). This system can be challen-
ging for DA, since the propagation of coherent structures
renders the linear and Gaussian assumptions in both the back-
ground and observational error to become less accurate.
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Nonetheless, the system is suited to show the emergence of
asymmetric off-diagonal elements in the time cross-covariance
matrices. Hence, we will use it for illustrative purposes and
simple DA experiments. More detailed experiments are shown
in part II of this paper with more appropriate models.

We reduce (44) into an ordinary differential equation (ODE)
by discretising s into Ng grid points s ¼ ½s1; � � � ; sj; � � � ; sNg 	
separated by Δs, and perform a central and 2nd-order-accurate
finite-difference approximation to both the dispersion and
advection terms (after writing the latter in conservative form).
Denoting uj ¼ uðsjÞ and u ¼ ½u1; � � � ; uj; � � � ; uNg 	, we can write:

duj
dt

¼ f ðuÞ ¼ uj�2 � ujþ2

2ðΔsÞ3 þ uj�1

4Δs
uj�1 � 4

ðΔsÞ2
 !

� ujþ1

4Δs
ujþ1 � 4

ðΔsÞ2
 !

(45)

We choose Ng ¼ 15 grid points and Δs ¼ 1, and allow for
periodic boundary conditions, i.e. uj;ujmodðNgÞ, where mod

denotes the modulo operation. We use a 4th-order Runge-
Kutta method with time step Δt ¼ 0:25 to numerically inte-
grate (45) in time. This integration renders a discrete-time

map m0!t.
The initial condition of a perfect soliton is given by:

ujðt ¼ 0Þ ¼ 3Asech2
ffiffiffi
A

p

2
ðsj � soÞ

 !
(46)

where so ¼ 5 is the center of the soliton at t ¼ 0, and 3A
corresponds to the maximum velocity of the soliton. We
choose A ¼ 1 (the propagation speed) which, combined with
our steps Δt ¼ 0:25 and Δs ¼ 1, yield a Courant number
C ¼ 0:75. Figure 2 is a Hovmoller plot showing the time
evolution of the soliton through the domain. The horizontal
axis represents different grid points, the vertical axis repre-
sents time (evolving from bottom to top), and the shading is
proportional to the velocity at each grid point.

For our experiments we require the discrete-time TLM (or
transition matrix) M0!tof the model. We first obtain the con-

tinuous-time TLM F ¼ @f
@s . This is a hollow circulant matrix in

which the jth row has all elements equal to zero except for:

F½j; ðj
 2Þ	 ¼ � 1
2ðΔsÞ3

F½j; ðj
 1Þ	 ¼ � 1
2Δs uj�1 
 1

ðΔsÞ3
(47)

where we recall that the indices are modular. Obtaining the
transition matrix M from the continuous-time TLM F involves
a straightforward solution of a matrix differential equation, see
e.g. Simon (2006).

3.2. Covariance propagation

Let us start by obtaining the nature run of our system. As
initial condition we use the profile described in (46), and we
evolve the model until t ¼ 100 (i.e. 400model steps). The
result of this run is illustrated in Fig. 2, this model run will
later be used as the nature—or true—run of our DA experi-
ments. The soliton propagates from left to right of the domain,
taking about Δt ¼ 15 (60time steps) to complete a loop around
the domain.

We now examine the time propagation of a given Bc. We
construct this matrix following the method of Yang et al.
(2006), which we describe briefly in Appendix 2. We obtain

a circulant matrix, which normalized values for the jth row are:

Bc½j; :	 ¼ ½� � � ; 0:0;�0:1274; 0:3060; 0:5220; 1:0; 0:5220; 0:3060;�0:1274; 0:0; � � �	
(48)

Since we have the transition matrix of the model, we can
explicitly compute both the covariance of the state at any
time t as:

Bt ¼ M0!tB0M0!tT (49)

and the cross-covariance between time t ¼ 0 and time t as:

Covðx0; xtÞ ¼ B0M0!tT (50)

Fig. 2. Hovmoller plot showing the perfect evolution of a soliton

produced by a numerical integration of the KdV equation over a

periodical domain of 15 grid points.
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We evaluate both (50) and (49) for different lead times t, and we
plot these matrices in Fig. 3. Each individual panel is a covar-
iance matrix, the horizontal and vertical axes are grid point
locations. Let us start with the top row, which shows

Covðx0; xtÞ for different lead times t ¼ 0; 1; 5; 10; 15f g (one
for every column). The initial covariance is the circulant matrix
shown in (48), but as the time increases we notice that off-
diagonal features become more prominent. We notice a region
of high values (shown in blue) developing above the main
diagonal and the appearance of negative values (shown in
white) along the main diagonal. The resulting matrices are not
symmetric starting from t ¼ 1, and this asymmetry grows as
time passes. This is particularly evident after 10 and 15 steps.

The third row shows Bt for different lead times
t ¼ 0; 1; 5; 10; 15f g. In this case, all the matrices are symmetric
by construction. There is a development of (symmetric) off-
diagonal negative elements (shown in white), but most of the
information remains concentrated close to the main diagonal.
The magnitude of the matrix elements increases as time passes.
As expected uncertainty grows in time.

Recall that we computed both Covðx0; xtÞ and Bt using B0

and the actual transition matrix M0!t. The objective of
4DEnVar, however, is to compute these quantities using ensem-
ble estimators, which contain spurious correlations if the ensem-
ble size is small and lead to the need for localisation. The second
and fourth rows of figure 3 show the effect of localisation of

Covðx0; xtÞ and Bt respectively, using a localisation matrix L00
xx

which follows a Gaspari and Cohn (1999) function with half-

width λ ¼ 1 grid points (centred in the main diagonal). As we

can see in row 2, the localised versions of Covðx0; xtÞ can lose
most of the important information, and this problem becomes
more pronounced as the time lag increases. The localised ver-

sions of Bt, shown in the bottom row, lose less information,
since the most distinguishable features were close to the main
diagonal.

To appreciate better the effect of localisation with different
half-widths, in Fig. 4 we depict the values of the 6th row of the
covariance matrices. The left panel of the first row shows

Covðx0; xtÞ½6; :	. Each one of the different lines shows a differ-
ent lead-time. Consider we are observing all variables, and look
at the red line in the figure. We see a peak corresponding to grid
point 10: this means that, for a lead-time of 15 time steps, the
most useful information to update grid point 6 (at t ¼ 0) comes
from the observation at grid point 10. This is no surprise, since
the general direction of the flow is from left to right. Actually, for
all lead-times we see that the most important information to
update grid point 6 comes from observations in the grid points
to the right. When localising the covariances this information is
lost. This is not too crucial for relative large-scale localisation
cases (middle column), but becomes very evident for strict
localisation (right column). In both of these panels, the shape
of the localisation function is shown in light gray for reference.

The left panel of the second row of Fig. 4 shows the 6th of

Bt (actually we normalise and create a correlation-type matrix
for ease of comparison, since the magnitudes in this matrix
grow with time), and again different lines show a different

Fig. 3. Analytical evolution of the covariance Bt and cross-time covariance Covðx0; xtÞ for the KdV model for different times (columns). The

horizontal and vertical axes of each panel are the grid point locations. The first row shows Covðx0; xtÞ and the second shows its localised version.

The third row shows Bt and the fourth shows its localised version.
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lead-times. In all cases the dominant element is that corre-
sponding to grid point 6. New features do develop (with

respect to the original B0, i.e. the black line), but none is
dominant. When localising with both a large- (middle column)
and small- (right column) scale the information is not lost as
crucially as before.

4. DA experiments under a perfect scenario

4.1. Setup

For these experiments, we extend the nature run generated
before until t ¼ 200 (i.e. we have 800 model steps). We create
synthetic observations by taking the value of the variables at
all grid points and all model time steps, and adding an uncor-

related random error with zero mean and R ¼ σo2I, with

σo2 ¼ 0:1. For the experiments we use subsets of these obser-
vations, both in time and space.

We observe every 3rd grid point; hence we have 5 observed
grid points and 10 unobserved grid points. This sparse observa-
tional density (in space) makes the situation challenging, and the
quality of the off-diagonal elements in the covariance matrices
are quite important to communicate information from observed to
unobserved variables. We experiment with several observational
periods. We report the results of 3 cases: observations every 2
model steps, every 5 model steps, and every 10 model steps.

We test the following formulations: 3DVar, SC4DVar,
ETKS, LETKS, SC4DEnVar and LSC4DEnVar. The L at the
beginning of the EnVar methods denote the localised versions.
ETKS and LETKS (S for smoother instead of filter) denote the
‘no-cost smoother’ versions of both ETKF and LETKF (see
Kalnay and Yang, 2010 for a description).

Even though the nature run is generated with a perfect
model, we also use WC methods for the sake of comparison.
We use the effective error WC4DVar, as well as WC4DEnVar
and LWC4DEnvar. In this case, we model the (fictitious)
effective model error as a zero-center Gaussian rv
with Q ¼ 0:01 Bc.

For the ensemble and hybrid methods we use a tiny ensem-
ble size of Ne ¼ 3. With this choice we try to mimic realistic
situations where Ne � Nx. This chosen value of Ne should
render low-quality sample estimators. The adaptive inflation
of Miyoshi (2011) is used, with an initial value of ρ0 ¼ 0:05.
Inflation is generally applied in the following manner:

X̂
b ! ð1þ ρÞX̂b

Pb ! ð1þ ρÞ2Pb
(51)

but following Miyoshi (2011), the inflation values are different
for each grid point and it evolves with time.

For the localised methods, a Gaspari-Cohn function with half-
width λ is used. We explored several values and kept the optimal
one, which depends on the period of observations in each experi-
ment. For the localised EnVar methods, we truncated the

Fig. 4. Elements of the 6th row of the matrices Covðx0; xtÞ (top row) and Bt (bottom row), for different times (different colors). The first

column shows the unaltered elements, while the middle and right columns show these elements after being localised using Gaspari-Cohn functions

of different half-widths (gray lines).
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localisation matrix at 11 eigenvalues. Truncation with 9 to 15
kept eigenvalues was tried and gave similar results (not shown).

For the variational and hybrid methods, we use one observa-
tional time per assimilation window. We use the incremental
pre-conditioned forms discussed earlier, and we do not use outer
loops in any of these methods. We later performed experiments
with 2 observational times per assimilation window and this did
not change the main results (hence not shown).

4.2. Results

The results of these experiments are depicted in Figs. 5–7.
Each figure has 3 columns and 2 rows. The top row corre-
sponds to results of observed grid points, while the bottom
row corresponds to results of unobserved grid points. Three
panels are shown in each case:

i. The left panel shows the time evolution of the truth (black
line) over 41 � t � 49, as well as the analysis trajectories
reconstructed by the different DA methods (shown in different
colors). As example of an observed variable we choose grid
point 1; observations are shown as gray circles. As example of
an unobserved variable we show grid point 3.

ii. The middle panel shows the evolution of the analysis
RMSE with respect to the truth (over 41 � t � 49) using:

RMSEðtÞ ¼
XN
n¼1

xanðtÞ � xtruen ðtÞ	 
2
N

" #1
2

(52)

where we use the mean of the analysis ensemble for (L)ETKS,
and the unique analysis trajectory for the Var and EnVar
methods. The index n runs over observed and unobserved
grid points depending on the case. The horizontal gray line
shows the standard deviation of the observational error.

iii. The right panel shows summary statistics for the analy-
sis RMSE. We eliminate the period 0 � t � 10 (40 time steps)
as a transient. For the remaining time steps we compute the

1st, 2nd(median) and 3rd quartiles of the analysis RMSE. These
are depicted—for each and every method—using an upward-
pointing triangle, a circle, and a downward-pointing triangle
respectively. Again, the standard deviation of the observa-
tional error is shown with a horizontal gray line.

4.2.1. Observations every 2 model steps. This is a
relatively easy DA scenario. The results are shown in Fig. 5.
For both observed and unobserved variables, the RMSE values
of all DA methods is well under the level of observational error.
The best performing methods are SC4DVar and WC4DVar,
followed by SC4DEnVar, LSC4DEnVar and LWC4DEnVar.
Localisation (slightly) improves the performance of

Fig. 5. Using different DA methods in the KdV model for an observation period of 2 model steps. The left panels show the time evolution of

the nature run (black line) and the analysis trajectories generated by different DA methods (color lines). The top row shows the case of grid point 1

(observed variable, observations are represented with gray circles), while the bottom row shows the case of grid point 3 (unobserved variable).

The middle panels show the time evolution of the analysis RMSE. The top panel corresponds to observed variables, while the bottom panel

corresponds to unobserved variables. For both cases, the horizontal gray line is the standard deviation of the observational error. The right panels

show summary statistics for observed (top panel) and unobserved variables (bottom panel). We show intervals containing the first, second

(median) and third quartiles of the analysis RMSE distribution in time.
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SC4DEnVar, especially for the unobserved variables. 3DVar
performs slightly better than 4DVar (both SC and WC), which
is understandable since the observations are frequent. Both
ETKS and LETKS perform worse than the Var and EnVar
methods. Localisation does not help the performance of ETKS.
We explored some values of localisation and settled with
λ ¼ 1:0, although we did not perform an exhaustive search.
This same value was used in the EnVar methods. The worst
performing method is WC4DEnVar (with no localisation),
which is understandable since it contains the fictitious (and in
this case unnecessary) model error, on top of the sample error

from the ensemble part. Nonetheless, its performance is greatly
improved by localisation.

4.2.2. Observations every 5 model steps. We increase the
observational period to 5 model steps, the results are shown in
Fig. 6. We start noticing a distinction in the performance of the
DA methods. As expected, 3DVar is now the worst performing
method for both observed and unobserved variables. Again, both
SC4DVar andWC4DVar are the best methods, with SC4DEnVar
and WSC4DEnVar next. Localisation damages the performance
of SC4DEnVar, leading to larger RMSE’s in general. We started

Fig. 6. Same as Fig. 5 but with an observational period of 5 model time steps.

Fig. 7. Same as Fig. 5 but with an observational period of 10 model time steps.
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seeing this phenomenon with an observational period of Δt � 4
model time steps. For WC4DEnVar localisation improves the
performance considerably. The performance of ETKS and
LETKS is slightly better than that of the Var methods. Again,
for (L)ETKS and the EnVar methods we used a localisation half-
width of λ ¼ 1:0.

4.2.3. Observations every 10 model steps. This rather
large observational period presents a DA challenge. The
results are presented in Fig. 7. 3DVar is the worst-performing
method, with an RMSE considerably higher than the
observational error for both observed and unobserved
variables. SC4DVar and WC4DVar perform considerably
worse than for the previous observational frequencies, both
observed and unobserved variables. The observations are
infrequent and the assimilation window is too long. Hence,
the linearisation we perform in the incremental form loses
validity and would require the use of outer loops. In this case
both ETKS and LETKS are amongst the best performing
methods, and localisation helps reduce the RMSE slightly.

SC4DEnVar is still the best method, and the use of the
ensemble information allows the variational solution to find a
global minimum with no need for outer loops. Nonetheless, we
see that the inclusion of localisation damages the performance of
the method. WC4DEnVar has a very bad performance when not
localised. One could think that having more degrees of freedom
(control variables) in the fitting could always help, but this is not
the case when they provide wrong information. After localising,
the performance improves considerably for both observed and
unobserved variables.

For these experiments, the half-width used in the localisa-
tion of both (L)ETKS and the hybrid methods is λ ¼ 3.

5. Conclusion and summary

In this paper we have explored the ensemble-variational DA for-
mulation. As a motivation, we have discussed the problem of
localising time cross-covariances using static localisation covar-
iances, and we have illustrated this effect with the help of the KdV
model. These time cross-covariances develop off-diagonal features
that are erroneously eliminated when using localisation matrices
that do not contain information of the direction of the flow.

Our main contribution is the introduction of an ensemble-varia-
tional method in a weak-constraint scenario, i.e. considering the
effect of model error. For simplicity, we have chosen as control
variable the effective model error at the time of observation.

We have discussed the implementation of the model-error
term in the cost function using ensemble information. Our for-
mulation leads to updates at the beginning of the assimilation
window and at the observation times within the assimilation
window. We only require one ensemble initialised at the begin-
ning of the window, and that the size of the problem does not
scale with the number of model steps. However, we require

computing the correct statistics of this effective model error.
We offer a modest approach for this effect. Our experiments
also suggest that having updates at times different than the start
of the window helps ameliorate (but does not solve) the problem
of having badly-localised time cross-covariances.

The results presented in this part I encourage us to explore
the performance of our methods in a more thorough manner in
more appropriate models. This is the subject of part II.
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Appendix 1. Localisation in 4DEnVar

There are two issues associated with localisation in 4DEnVar.
i. The way we have written our formulation in terms of

diagonalisations and matrix products –following Buehner
(2005)– is very clear from an algorithmic point of view.
However, the computational implementation is much more
efficient using weighted linear combinations of ensemble
members. We can write the observational contribution from
time t to the cost function as:

ð ~̂Y
b;t
ÞTR�1ðdt � ~̂Y

b;t
v0Þ ¼

ðL1=2
y ÞTðŷb;t1 � zyÞ

ðL1=2
y ÞTðŷb;t2 � zyÞ

..

.

ðL1=2
y ÞTðŷb;tNe

� zyÞ

2
666664

3
777775 (53)

where zy 2 RrNe is defined as:

zy ¼ R�1 dt �
XNe

ne¼1

ŷtne � ðL1=2
y v0ne Þ

 !
(54)
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We can implement a localised version of WC4DEnVar if we

use the same matrices ~̂X
b;t

and ~̂Y
b;t

that we defined for the SC
case.

The observational contributions in the gradient of the cost
function can be efficiently computed as in (53). For the model
error contributions at time t, we compute the contributions as:

ð ~̂X
b;t
ÞTðQtÞ�1 ~̂X

b;t
vt ¼

ðLx
1=2ÞTðx̂t1 � zxÞ

ðLx
1=2ÞTðx̂t2 � zxÞ

..

.

ðLx
1=2ÞTðx̂tNe

� zxÞ

2
66664

3
77775 (55)

where zx 2 RrNe can be found as:

zx ¼ ðQtÞ�1
XNe

ne¼1

xtne � ðL1=2
x vtne Þ (56)

ii. Localisation increases the size of the EnVar problem. The
localised version of (17) is written as:

�v0Jðv0Þ ¼ v0 �
Xτ
t¼1

ρtð ~̂Y
b;t
ÞTR�1 dt � ~̂Y

b;t
v0

� �
(57)

where the size of the control variable v0 has now increased to

v0 2 RNeNg , assuming that rankðLxxÞ ¼ Ng and writing

v0 ¼ ½v01; � � � ; v0Ne
	T, with v0ne 2 RNg . The increase in size is not

a serious problem, however, ifwe realise thatNeNg is an only upper

bound, and in fact it is often easier to work with a truncated matrix
square root.

Recall that

Lxx ¼ CΓCT ! L1=2
x ¼ CΓ1=2

and let us discuss how fast the eigenvalues γnf g decay. For
this, let us consider the half-width values in three cases:

a. The case λ ! 1 corresponds to no localisation, where
Lxx becomes a matrix of ones. The rank of this matrix is 1.
There is only a non-zero eigenvalue γ1 ¼ 1 and only one
eigenvector, corresponding to the vector of ones. This is
clearly equal to doing no localisation at all.

b. The case λ ¼ 0 corresponds to a strict localisation
where variables in a grid point are only affected by obser-
vation at that very grid point. Then Lxx becomes the iden-
tity matrix. The rank of this matrix is Nx. There are Nx

non-zero eigenvalues, all of them with a value of 1, and Nx

eigenvectors.
c. Localisation matrices with finite λ�0 fall somewhere

in the middle. For the type of localisation used in this paper
–where only the distance amongst grid points determines
the localisation value– Lxxis a circulant matrix, and it fol-
lows that in this case the columns of C are Fourier modes:
column 1 corresponds to a constant (zeroth harmonic),
columns 2 and 3 correspond to the first harmonic (one
column for sine and one for cosine), columns 4 and 5

correspond to the second harmonic, and so forth. The asso-
ciated eigenvalues in Γ decrease as the order of the harmo-
nic increases. Then, one can retain only the first 1þ 2k
columns of C, and the first 1þ 2k eigenvalues of Γ,

rendering v0 2 Rð1þ2kÞNe .
Let us illustrate this in Fig. 8 with an example. For a

system with Nx ¼ 100 grid points, we generate localisation
matrices Lxx using different half-widths λ ¼ 1; 2; 3; 4; 5
(shown with different line styles in the figure), and we
perform their spectral decompositions. The top panel
shows the eigenvalues, in decreasing order of magnitude,
for each one of the different half-widths. The decay in
magnitude is slow for λ ¼ 1, but it becomes considerably
faster as the half-width increases. The bottom panel shows
the cumulative sum of these eigenvalues. For λ>1 it quickly

approaches its maximum value

�PNx

n¼1
λn ¼ Nx

�
, and many

eigenvalues contribute to this sum only marginally, espe-
cially for larger localisation half-widths.

Small eigenvalues can be discarded in favour of speeding
up the computation time, creating a simpler minimisation
problem. The minimisation becomes easier for two reasons.
First the size of the control vector decreases. Second, consid-
ering small grid point-per-grid point variations (a consequence
of keeping all eigenvalues) can result in a more difficult
minimisation problem.

To determine the number of eigenvalues to keep, a simple
idea is to chose the value n that fulfils:

Xn
j¼1

γj ¼ cNx (58)

where the eigenvalues γj are ordered by decreasing magnitude,
and 0<c<1 is a fraction of our choice. The closer to one this
fraction is, the closer our cropped localisation matrix will be to
the original one. The Nx in the right hand side of (58) comes

from the fact that
PNx

j¼1
γj ¼ Nx.

In Fig. 9 we have illustrated this choice for two fractions:
0:5in the left panel and 0:9 in the right panel. For different
total number of grid points Nx (lines with different colors),
we show the ratio n

Nx
required as a function of the localisa-

tion radius λ (half-width of the Gaspari Cohn function). As
expected this normalized quantity depends only on the
localisation radius, and it is a decreasing function. This
corresponds perfectly with our previous discussion of the
two limiting cases.

An example of the reduction in computational cost can be
seen, for example, at λ ¼ 4. If our desired fraction is 0:9,
we would need to keep around 11% of the total number of
eigenvalues. If our desired fraction were 0:5 the required
fraction would be reduced to 5%.
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Fig. 8. Eigenvalue spectrum of a localisation matrix Lxx for Nx ¼ 100 grid points, with different localisation half-widths (different lines). The

top panel shows the eigenvalues in descending order, while the bottom panel shows their cumulative sum.

Fig. 9. Construction of Lxx in SC and WC4DEnVar. For different number of grid points N and different localisation half widths (horizontal

axis), the vertical axis shows the ratio of retained eigenvalues n over N, in order to cover a given fraction of the total sum of eigenvalues. For the

left panel this fraction is 0:5, in the right panel it is 0:9.
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Appendix 2. Generating Bc

The method used in Yang et al. (2006) is is outlined next. The
purpose is to create a climatological background error covar-
iance matrix in an iterative manner.

1. The process starts by proposing a guess matrix Bc0. This can
be as simple as the identity matrix. However, we start with a

circulant matrix, with the jth row being

Bc0½j; :	 ¼ ½� � � ; 0; 0:25; 0:5; 1; 0:5; 0:25; � � �	.
2. We perform a 3DVar assimilation experiment using

observations every 5 model time steps, with all grid points
observed being observed. This is done for 100 assimilation

cycles, and we use the proposed Bc0.

3. At this point we have 100 forecast values (valid at the
assimilation instants) which can be compared to the nature
run. We use these values to find a full-rank sample estimator

Pb ! Bc.
4. We replace our previous value of Bc with the one just

computed from sample statistics and repeat steps 2 and 3;
we perform 10 iterations (in fact, we found convergence
after 5).

5. We repeat the whole procedure 20 times, each with a
different set of pseudo-observations. We average the 20
estimators and that yields the final estimator of Bc.
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