
A weak-constraint 4DEnsembleVar. Part II:
experiments with larger models 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Goodliff, M., Amezcua, J. and Van Leeuwen, P. J. (2017) A 
weak-constraint 4DEnsembleVar. Part II: experiments with 
larger models. Tellus A, 69 (1). 1271565. ISSN 1600-0870 doi:
10.1080/16000870.2016.1271565 Available at 
https://centaur.reading.ac.uk/68434/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1080/16000870.2016.1271565 

Publisher: Co-Action Publishing 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



Full Terms & Conditions of access and use can be found at
http://tandfonline.com/action/journalInformation?journalCode=zela20

Download by: [University of Reading] Date: 11 April 2017, At: 01:13

Tellus A: Dynamic Meteorology and Oceanography

ISSN: (Print) 1600-0870 (Online) Journal homepage: http://tandfonline.com/loi/zela20

A weak-constraint 4DEnsembleVar. Part II:
experiments with larger models

Michael Goodliff, Javier Amezcua & Peter Jan Van Leeuwen

To cite this article: Michael Goodliff, Javier Amezcua & Peter Jan Van Leeuwen (2017) A weak-
constraint 4DEnsembleVar. Part II: experiments with larger models, Tellus A: Dynamic Meteorology
and Oceanography, 69:1, 1271565

To link to this article:  http://dx.doi.org/10.1080/16000870.2016.1271565

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 20 Jan 2017.

Submit your article to this journal 

Article views: 91

View related articles 

View Crossmark data

http://tandfonline.com/action/journalInformation?journalCode=zela20
http://tandfonline.com/loi/zela20
http://dx.doi.org/10.1080/16000870.2016.1271565
http://tandfonline.com/action/authorSubmission?journalCode=zela20&show=instructions
http://tandfonline.com/action/authorSubmission?journalCode=zela20&show=instructions
http://tandfonline.com/doi/mlt/10.1080/16000870.2016.1271565
http://tandfonline.com/doi/mlt/10.1080/16000870.2016.1271565
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2016.1271565&domain=pdf&date_stamp=2017-01-20
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2016.1271565&domain=pdf&date_stamp=2017-01-20


A weak-constraint 4DEnsembleVar. Part II:
experiments with larger models
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1Department of Meteorology, University of Reading, Reading, Berkshire, UK RG6 6BB; 2NCEO, University of

Reading, Reading, Berkshire, UK

(Manuscript received 9 January 2016; in final form 29 November 2016)

ABSTRACT

In recent years, hybrid data-assimilation methods which avoid computation of tangent linear and adjoint models by

using ensemble 4-dimensional cross-time covariances have become a popular topic in Numerical Weather

Prediction. 4DEnsembleVar is one such method. In spite of its capabilities, its application can sometimes become

problematic due to the not-trivial task of localising cross-time covariances. In this work we propose a formulation

that helps to alleviate such issues by exploiting the presence of model error, i.e. a weak-constraint 4DEnsembleVar.

We compare the weak-constraint 4DEnsembleVar to that of other data-assimilation methods. This is part II of a two-

part paper. In part I, we describe the 4DEnsembleVar framework and problems with localised temporal cross-

covariances associated with this method are discussed and illustrated on the Korteweg de Vries model. We also

introduce our weak-constraint 4DEnsemble-Var formulation and show how it can alleviate—at least partially—the

problem of having low-quality time cross-covariances. The second part of this paper deals with experiments on larger

and more complicated models, namely the Lorenz 1996 model and a modified shallow-water model with simulated

convection, both of them under the presence of model error. We investigate the performance of weak-constraint

4DEnsembleVar against strong-constraint 4DEnsembleVar (both with and without localisation) and other traditional

methods (4DVar and the Local Ensemble Transform Kalman Smoother). Using the analysis root mean square error

(RMSE) as a metric, these methods have been compared considering observation density (in time and space),

observation period, ensemble sizes and assimilation window length. In this part we also explain how to perform

outer loops in the EnVar methods. We show that their use can be counter-productive if the presence of model error is

ignored by the assimilation method. We show that the addition of a weak-constraint generally improves the RMSE of

4DEnVar in cases where model error has time to develop, especially in cases with long assimilation windows and

infrequent observations. We have assumed good knowledge of the statistics of this model error.

Keywords: data assimilation, hybrid methods, convective data assimilation

1. Introduction

This is the second part of a study to introduce a new hybrid
ensemble-variational (EnVar) data assimilation (DA) method,
which takes into consideration the presence of model error.
We have denominated this method a weak-constrained
4DEnsembleVar (WC4DEnVar).

In part I of this work we provided a review of the 4DEnVar
framework in the strong-constraint (SC) case. We paid parti-
cular emphasis on the localisation process and we illustrated
the problems associated with localising 4-dimensional time

cross-covariances using static localisation matrices, especially
when the assimilation window is long.

We then proposed making use of additive model error and
implement localised 4DEnVar in the weak-constraint (WC)
framework. In particular, we based our method in the model-
bias correction formulation of WC4DVar—see Tremolet
(2006)—and we provided a discussion on the rationale behind
our choice of control variable. We showed that our method
distributes the analysis increments over more time instants in
the assimilation window (other than the initial time), and
hence it alleviates—at least partially—the problems generated
by wrongly localised time cross-covariances. For this purpose
we used the Korteweg de Vries (KdV) model for the perfect
evolution of a coherent structure (a soliton).*Corresponding author.e-mail: m.goodliff@pgr.reading.ac.uk
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In the present paper (part 2) we study the behaviour of this
promising DA method in more elaborated settings. First we
experiment on a stochastic implementation of the Nx-variable
Lorenz 1996 (L96) model (Lorenz, 1996, 2005). In this model
we can explore the use of localisation with a range of small
ensemble sizes. The moderate size of the model also allows us
to perform detailed studies on a combination of parameters such as
localisation radii, observational frequency in time, observational
density in space, number of observations per assimilation window,
and the use of outer loops in the minimisation procedure for the
EnVar methods. As with this model, we have both the tangent
linear and adjoint models (TLM andAM, respectively), we can do
comparisons to SC4DVar and WC4DVar.

The second model we use is a one-dimensional modified
shallow-water equation (SWE) model developed by Wursch
and Craig (2014) which simulates convection, and can be imple-
mented stochastically. This accessible and relatively inexpensive
model has recently been used as a test-bed for convective-scale
DA (Perianez et al., 2014). This model provides a challenging
environment for experimentation. For instance, its three variables
(velocity, height and rain) possess considerably different time
and length scales. Rain is a non-negative–definite variable with a
non-Gaussian distribution which presents challenges to conven-
tional DAmethods. We do not compare with 4DVar (either SC or
WC) because we do not have the TLM or AM in this case.

This paper is organized as follows. Section 2 gives a brief
description of the use of outer loops for WC4DEnVar, and the
differences with respect to their implementation in the varia-
tional framework. Section 3 contains the experiments with the
L96 model. Section 4 describes the modified SWE and shows
the results of our experiments with this model. Section 5
provides a summary of our work and main results. Section 6
concludes the work and gives ideas for future avenues of
research. In this paper we use notation that has already been
defined in part I. Only new symbols are defined explicitly. Any
time we mention the WC formulation (either in the 4DVar or
4DEnVar context), we refer the model-bias correction version.

2. Outer loops in WC4DEnVar

We explore the use and performance of outer loops in the
hybrid EnVar schemes. For a detailed discussion on inner and
outer loops, the reader is referred to Tremolet (2004).

To implement outer loops inWC4DEnVar, the control variables
in our preconditioned incremental minimisation problem are:

x0 ¼ xg;0 þ B1=2v0 ¼ xb;0 þ B1=2ðvg;0 þ v0Þ
βt ¼ βg;t þ Btð Þ1=2vt ¼ Btð Þ1=2ðvg;t þ vtÞ (1)

where the superscript g stands for guess, and we have used x0;g ¼
x0;b þ B1=2v0;g and βt;g ¼ 0þ Btð Þ1=2vt;g. With these control
variables, we can write the gradient as the following vector:

where dt are now computed as:

dt ¼ yt � h m0!tðx0;b þ B1=2vg;0Þ þ Bt;1=2vg;t
h i

(3)

For the ‘zeroth’ outer loop, we have vg;0 ¼ 0 and vg;t ¼ 0"t.
For all subsequent outer loops the ‘guess’ values are equal to
the analysis values obtained in the previous outer loop.

For variational methods, in every outer loop the TLMs

M0!t and AMs M0!t
� �T

are re-computed, because the refer-

ence trajectory has been updated. This means that for the

EnVar methods the covariances X̂0Ŷt and X̂tŶt have to be
recomputed, which requires re-running the free ensemble from
the new guess for both initial conditions and model error
innovations. In practice, this can be very costly and sometimes
infeasible. For this reason, in the EnVar methods these covar-
iances are fixed through all outer loops.

The implementation of outer loops in the SC case is similar
to the process outlined; the only difference is that the model
error terms are not included.

3. Experiments with Lorenz 96

In this section we evaluate in detail the performance of
WC4DEnVar and compare it to the performance of other DA
methods, in particular that of SC4DEnVar (with and without loca-
lisation). We choose the widely known L96 model with Nx grid
points. This non-linear and chaotic system is described by the
solution of the following set of ordinary differential equations
(ODEs):

dxn
dt

¼ ðxnþ1 � xn�2Þxn�1 � xn þ F (4)

for n = 1 . . . Nx. The indices are modular, i.e. xj ¼ xmodðj;NxÞ. The
first term on the right-hand side of eq. (4) represents non-linear
advection, the second term represents damping, and the third

�Jðv0:τÞ ¼

vg;0 þ v0 �Pτ
t¼1 ρ

tðBtÞ1=2THTR�1ðdt �HðBtÞ1=2ðv0 þ vtÞÞ
ðB1Þ1=2TðQ1Þ�1ðB1Þ1=2ðvg;1 þ v1Þ � ρ1ðB1Þ1=2THTR�1ðd1 �HðB1Þ1=2ðv0 þ v1ÞÞ

..

.

ðBτÞ1=2TðQτÞ�1ðBτÞ1=2ðvg;τ þ vτÞ � ρτðBτÞ1=2THTR�1ðdτ �HðBτÞ1=2ðv0 þ vτÞÞ

2
6666664

3
7777775

(2)
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term represents forcing, with F = 8. In particular we use Nx = 24
grid points, a size that requires localisation and that allows us to
perform long-enough experiments (to get robust statistics) and to
explore the impact of different parameters in the DA methods.

To make this model imperfect we implement the follow-
ing map:

xt ¼ f ðt�1Þ!tðxt�1Þ þ νt (5)

where f ðt�1Þ!tðxÞ represents the deterministic solution of eq,
(4) using a 4th-order Runge–Kutta method over a time step Δt
= 0.01—Lorenc et al. (2015) recommends Δt ≤ 0.025 for the
perfect-model case—and νt,Nð0;QÞ represents the model
error contribution. For the model error covariance matrix Q
we use a circulant matrix whose jth row is:

Q½j; :� ¼ σmodel
2½� � � ; 0; 0; 0:25; 1; 0:25; 0; 0 � � �� (6)

where we choose σ2model ¼ ð0:15Þ2. This is the model error
variance within a Δt = 0.01 time step (i.e. this number is
already scaled by Δt).

We perform identical twin experiments. To generate the true
run we initialise the model by starting from an initial condition
selected as a random perturbation of the (unstable) fixed point
of the system, with perturbations coming from a rv N(0,I). The
model is run for 200 time steps to eliminate any transient, and
this is the initial condition for the true run, which we label
x0,truth. This nature run consists of 700 time steps. In Fig. 1 we
show the time evolution for the variables—represented with
different colours—in the interval 0 ≤ t ≤ 5.

It is important to quantify the variability inherent to our
model. We do this by evolving two trajectories: the true
trajectory in the interval 0 ≤ t ≤ 200 and a perturbed trajectory

started from a nearby initial condition. Then we compute the
RMSE (root mean squared error) for every time step as:

RMSEt ¼
XNx

t¼0

ðxt;ref � xt;truthÞ2
Nx

(7)

The climatological saturation error is computed as the time
mean of this time-dependent RMSE, yielding a value of

RMSE
clim ¼ 5:70ð0:828Þ (8)

where the value in parentheses indicates the standard deviation
over all time steps.

After defining the truth, synthetic observations are gener-
ated by perturbing the true run every time step with a random
variable ηt,ð0;RÞ, where R ¼ 2I 2 RNx;Nx . That is, the obser-
vational error is spatially uncorrelated and has a standard

deviation σobs ¼ ffiffiffi
2

p
. For our experiments, we take subsets

of them, both in space and time.
We also generate a climatological error covariance Bc,

which we will need in our DA experiments. We construct
this matrix following the method of Yang et al. (2006). A
brief description of this method is described in Appendix B of
the first part of this paper. To create this matrix we use
observations in all grid points, and every two model steps.
The Bc obtained was post-processed by averaging each off-
diagonal in the matrix. This assumes that the background error
covariance between two grid points only depends on the dis-
tance between them. The resulting Bc is a circulant matrix, for
which the value for the jth row are:

Bc ½j; :� ¼ ½� � � ; 0:0; 0:4646; 1:3789; 3:9338; 1:3789; 0:4646; 0:0; � � ��
(9)

3.1. First experiments

3.1.1. A densely covered grid. We need to make sure that
all of our DA methods are working, especially the ones we
have proposed in part I of this paper. Hence, our first
experiment has very simple settings: observations at every
single grid point and every time step. The results of this
experiment are shown in Fig. 2.

We compare the following DA methods: 3DVar, SC4DVar
and WC4DVar, ETKS and LETKS, SC4DEnVar and
WC4DEnVar, LSC4DEnVar and LWC4DEnVar. The ensem-
ble and hybrid methods use adaptive inflation (Miyoshi 2011).
To emulate real situations where ensemble sizes are limited,
for the ensemble and hybrid methods we use an ensemble size
Ne = 4. The localised versions of these methods use λ = 2. For
the variational and hybrid methods we use 0 outer loops, and
there is only one observational time in an assimilation win-
dow. In the hybrid methods we use 11 eigenvalues for L1=2

x

Fig 1. Time evolution of the nature run for the imperfect L96

model in the interval 0 ≤ t ≤. We choose four grid points which we

depict in different colours.

A WEAK-CONSTRAINT 4DENVAR: PART II 3



(similar results were obtained with {9,13,15}, which we do
not show for brevity).

Figure 2 has three panels. The left panel shows the time
evolution of x(2). The true evolution is shown in grey, and the
grey dots correspond to the observations. The coloured lines
show the analysis trajectories obtained by the different DA
methods: see the legend for correspondence. The middle panel
shows the time evolution of the analysis RMSE computed
over all grid points. There are two horizontal grey lines; the
lower one corresponds to the observational error standard
deviation, while the upper one corresponds to the climatolo-
gical RMSE computed earlier. In the right panel we show
summary statistics (over time) for the analysis RMSE. In
particular, we show an interval formed of the 25% percentile
(upper triangle), median (circle) and 75% percentile (lower
triangle). We eliminate the first 200 model steps as a transient
and compute the statistics over the last 500 model steps only.

In this ‘easy’ setup most of the methods perform well, with
RMSEs well under the observational error level. The perfor-
mance of the three variational methods is practically indistin-
guishable. For the ensemble and hybrid methods, the effect of
having a small sample size shows up in all of the non-localised
methods. The RMSE of ETKS, SC4DEnVar and WC4DEnVar
is larger than the observational error level. These RMSE
values show large variations in their time evolution. It is
important to note that the RMSE of WC4DEnVar is consider-
ably larger than that of ETKS, which is understandable
because the same small ensemble size—and hence noisy cov-
ariance information—is being used to update variables at two
time steps. As expected, any problems coming from small
sample sizes are immediately fixed with the introduction of
localisation. The RMSEs for LETKS, LSC4DEnVar and
LWC4DEnVar are below observational level, with LETKS
performing the best. The time evolution of the RMSE in

these localised methods is quite steady, the jumps that
occurred without localisation are not present.

3.1.2. The land–sea configuration. Let us move to a more
challenging situation. We use the configuration shown in
Fig. 3. This is the so-called land–sea configuration in
which half of the grid points are observed (black grid
points) and half of the grid points are not observed (white
grid points). For our analysis we divide the grid into three
sets: the eight central observed grid points are denominated
‘observed grid points’, the eight central unobserved grid
points are denominated ‘unobserved grid points’ and the
four grid points (two observed and two unobserved) in
each one of the two boundaries (i.e. eight grid points in
total) are denominated ‘boundary grid points’. We do this
separation considering that the behaviour of the RMSE in
each of these sets will be different. In the (central)

Fig 2. DA experiments in the L96 imperfect model with observations every time step and at every grid point. The left panel shows the true

trajectory of variable x(2) (grey line), as well as the observations (grey dots). The coloured lines show the analysis trajectories by different DA

methods (see legend). The middle panel shows the time evolution of the analysis RMSE. The right panel shows non-parametric statistics (25

percentile, median and 75 percentile) computed over time for each method.

Fig 3. Land sea configuration used for our DA experiments.

Twelve variables are observed and 12 are unobserved. We divide the

grid into three types of variables: observed, unobserved and boundary

variables.
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unobserved grid points the analysis trajectories are closer to
a free run. The boundary grid points, on the other hand, do
feel the impact of observations. If the information
communicated has high quality, the analysis should be
close to the truth. If the information is poor, the
trajectories will be off the truth and will not be smooth
(which is different from free runs). We choose the number
of boundary grid points considering that the decorrelation
length scale of the system is about 1 grid point.

We perform experiments with two observational frequen-
cies: 1 model step. We keep the same settings as in the
previous case: no outer loops, Ne = 4, λ = 2, and one observa-
tional time per assimilation window. We eliminate the first 200
model steps of the experiment as a transient and compute
statistics for 2 ≤ t ≤ 7.

The results of these experiments are shown in Fig. 4 (obser-
vational period of 1) and Fig. 5 (observational period of 2).
Each figure has three rows and two columns. The top row
shows results for the observed grid points, the middle row for
the unobserved grid points and the bottom row for the

boundary grid points. The left column shows the time evolu-
tion for the RMSE of the analysis trajectory obtained by each
DA method (different colours), while the right column shows
the non-parametric summary statistics.

This spatial configuration leads to large differences in the
performance of the methods. For the observed variables,
3DVar, SC4DVar and WC4DVar perform similarly well,
and the time evolution of the analysis RMSE is steady.
ETKS does not perform well without localisation, but this
is obviously improved by LETKS. We did not optimise the
localisation half-width, which explains why the RMSE does
not reach to the levels of the variational methods. The best
of the hybrid methods is LWC4DEnVar. The other three
methods have RMSEs close to the climatological error,
and localisation does not seem to help SC4DEnVar. In
fact, LSC4DEnVar performs worse in the case of observa-
tions every two steps.

For the unobserved grid points, the RMSE of the three
variational methods, LETKS and LWC4DEnVar are close to
the climatological error. The time evolution of the analysis

Fig 4. Analysis RMSE results for the imperfect L96 model under the land–sea configuration with observations every model step. We show the

time evolution (left columns) and the summary statistics (right columns) for the different variables (rows). Different coloured lines correspond to

different methods (see legend).
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RMSE of these methods is not as smooth as for the
observed variables. The RMSE values of non-localised
methods—ETKS, SC4DEnVar and WC4DEnVar—are
above the climatological level. This is understandable
since our small sample size (Ne = 4) can introduce spurious
long-term correlations and lead to incorrect innovations in
the unobserved region. This is not undone by localisation in
the case of LSC4DEnVar. The time evolution of the RMSE
of these methods is volatile.

In the boundary grid points we observe the largest variability
in the time evolution of the analysis RMSE for all methods. For
variational methods, the intervals shown for the summary statis-
tics are large, especially for 3DVar. ETKS and LETKS perform
similarly (again, this may be improved by optimising λ). The
RMSE values for SC4DEnVar and WC4DEnVar are larger than
the climatological error, as was the case for unobserved variables.
For boundary variables, localisation clearly acts in different ways
for these methods. LSC4DEnVar has the largest RMSE of all
methods, while LWC4DEnVar has a RMSE value comparable to
that of the variational methods. For both observational frequen-
cies localisation seems to be bad for SC4DEnVar. Even with
observations every two steps, it seems like a short time for

advection to interfere with static localisation. This result can be
a combination of the small sample size, a badly tuned localisation
radius, and variability in the performance of the methods for
boundary grid points. For this reason, we perform a much more
detailed parameter exploration in the following subsection.

3.2. Exploring parameters

In the previous experiments we gave particular values to
different parameters of the DA methods. Let us fix the obser-
vational grid as the one land-sea configuration and the obser-
vation frequency at two model steps. We explore the
sensitivity to all other parameters. For this purpose we present
a series of ‘mosaic plots’, i.e. two-dimensional plots in which
the values of two parameters are varied simultaneously, and
we display the RMSE value of every corresponding combina-
tion. Note that the variation in the colour scheme is not linear.
We give extra resolution to the values 0.2 ≤ RMSE ≤ 2 (recall
that σobs ¼

ffiffiffi
2

p � 1:71), and less resolution for 2 < RMSE ≤ 7
Anything corresponding to RMSE > 7 is plotted in white, and
is considered an unsuccessful experiment. We choose this
value based on the mean climatological RMSE (and its

Fig 5. Same as Fig. 4, but with observations every two model steps.
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standard deviation) computed before. We run the DA methods
for 1200 model steps and eliminate the first 200 time steps as
a transient. We then compute the RMSE of the analysis tra-
jectories for the remaining 1000 time steps, and present the
median in the plot. We do this separately for observed (left
panels in all plots), unobserved (middle panels in all plots) and
boundary grid points (right panels in all plots).

3.2.1. Ensemble methods. First we take a look at the
performance of LETKS. The results of this experiment are
presented in Fig. 6. For each panel, the horizontal axis

indicates different ensemble sizes: Ne =
{4,6,8,10,12,14,16,18}, while the vertical axis corresponds to
different localisation half-widths: λ=
{0.5,1.1.5,2,2.5,3,3.5,4,4.5}. The results of these experiments
confirm our intuition: small ensemble sizes require quite strict
localisation to eliminate spurious information, while larger
ensemble sizes contain less noisy information and hence
perform well in a large range of localisation values. As
expected, the largest RMSE values are those of the
unobserved grid points, the second largest values are those
of the boundary points, and then lowest values correspond to

Fig 6. Median analysis RMSE over 1000 time steps for LETKS with the imperfect L96 with land–sea configuration and observations every two

time steps. Different ensemble sizes (horizontal axis) and different localisation half-widths (vertical axis) are tested. Each panel represents a

different kind of variable.

Fig 7. Median analysis RMSE over 1000 time steps for variational methods with the imperfect L96 with land–sea configuration and

observations every two time steps. The top row shows results for SC4DEnVar, while the bottom row shows results for WC4DEnVar. Different

numbers of observational times per analysis window (horizontal axis) and numbers of outer loops (vertical axis) are tested.

A WEAK-CONSTRAINT 4DENVAR: PART II 7



the observed grid points. For really small ensemble sizes, strict
localisation half-widths λ ≤ 2.0 are required to ensure a
successful DA process.

3.2.2. Variational methods. Let us move to the experiments
using variational DA methods. The results of these experiments
are shown in Fig. 7, with the top row corresponding to SC4DVar
and the bottom row corresponding to WC4DVar. The horizontal
axis corresponds to the number of observational times in each
assimilation window (labelled opw, observations per window):
opw = {1,2,3,4,5,6,7} (which changes the size of the
assimilation window), and the vertical axis corresponds to the
number of outer loops. For SC4DVar with no outer loops, it
seems that the optimal number of observational times in an
assimilation window is 3 to 7. We especially observe this in
the case of the observed variables. Interestingly, as we introduce
outer loops the quality of the analysis decreases drastically
(except for the case with only one observational time and one
outer loop). This is true for observed, unobserved and boundary
variables. In fact, for the case of unobserved variables the outer
loops take all value from the assimilation (RMSE > 7). This is
not the same in the WC4DVar case, where we observe that the
assimilation is pretty robust to the number of outer loops. For
WC4DVar, longer assimilation windows are favoured. In fact,
the best results occur with more than three observational times
per assimilation window. For WC4DVar the RMSE values for
observed variables are consistently under the observational error
level, the RMSE values of unobserved variables are constantly
around the climatological level, and the RMSE values for the
boundary variables are always in between. These results suggest
that the re-centring process of the outer loops can be damaging
when using a SC4DVar in the presence of moderate model error.

More experimentation on this regard is needed, but it is beyond
the scope of this work.

3.2.3. Non-localised EnVar methods. Let us move on to the
EnVar methods; first we take a look at these methods with no
localisation. We show the results of these experiments in Fig. 8.
The figure has two sides: the left side corresponds to no outer
loops, while the right side corresponds to three outer loops. As
usual the top row corresponds to SC4DEnVar and the bottom
row to WC4DEnVar. The horizontal axis in each mosaic plot
corresponds to the ensemble size Ne = {4,6,8,10,12,14}, while
the vertical axis corresponds to the number of observational
times within the assimilation window: opw = {1,2,3,4,5} (this
changes the size of the assimilation window). We first look at
the observed variables. The RMSE value rarely goes below
observational level regardless of the ensemble size (at least for
the sizes studied). When outer loops are introduced, the
performance of SC4DEnVar is damaged, while that of
WC4DEnVar improves (see the right top corner of the
corresponding panel). For unobserved variables, in both SC
and WC4DEnVar difficulties are encountered, with usual cases
of RMSE > 7. We speculate that long-range spurious
correlations lead to fictitious increments that damage the
assimilation. The number of ‘successful’ DA cases, however,
is slightly larger for the WC4DEnVar case. The presence of
outer loops damages the assimilation considerably in the two
cases. For the boundary variables and no outer loops the RMSE
value of WC4DEnVar is close to climatology, whereas for
SC4DEnVar there are cases with RMSE > 7. This is
understandable considering the spurious information coming
from such noisy sample estimator for the 4D covariance
matrices. The presence of outer loops considerably damages
the performance of SC4DEnVar. The presence of outer loops

Fig 8. Median analysis RMSE over 1000 time steps non-localised EnVar methods (top row for SC4DEnVar, bottom row for WC4DEnVar) with

the imperfect L96 with land–sea configuration and observations every two time steps. No outer loops (left half) and three outer loops (right half)

are used. For each panel, we vary the ensemble size (horizontal axis) and the number of observations per window (vertical axis).
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in WC4DEnVar damaged (slightly) the performance of the
method, but it only led to a failed DA experiment in one
combination of parameters.

3.2.4. Localised EnVar methods. Finally, let us perform a
last set of experiments addressing the performance of
LSC4DEnVar and LWC4DEnVar. The results of these
experiments are depicted in Fig. 9. The top half of the figure
corresponds to the results with no outer loops, while the

bottom half corresponds to the results with three outer loops.
As usual, there are two rows (top for LSC4DEnVar, bottom for
WC4DEnVar) and three columns (each for a different type of
grid point). In each panel we have stacked three mosaic plots
on top of each other. Each corresponds to a different ensemble
size, increasing vertically. We have focused in small ensemble
sizes: Ne = {4,6,8}, which are challenging for these methods.
The two horizontal axes of each panel correspond to
observations per window opw = {1,2,3,4,5} (which change

Fig 9. Median analysis RMSE over 1000 time steps EnVar methods (top rows for LSC4DEnVar, bottom rows for LWC4DEnVar) with the

imperfect L96 with land–sea configuration and observations every two time steps. No outer loops (top half) and three outer loops (bottom half) are

used. Different columns show different variables (left for observed, middle for unobserved and right for boundary variables). In each panel we

show the variation with respect to three parameters: observations per window and localisation half-width in the horizontal axes, and ensemble size

in the vertical axis.
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the length of the assimilation window) and localisation half-
width λ = {1,1.5,2,2.5,3,3.5,4,4.5}.

Let us start with the case of no outer loops. As the
ensemble size increases the performance of the methods
improves, and this is true for the three types of variables.
In the case of observed variables LSC4DEnVar performs
slightly better than LWC4DEnVar, although it is important
to notice that the best results are for LWC4DEnVAr in the
case of one observation per window and λ = 1.0. For
LSC4DEnVar, larger localisation half-widths allow for
more observational times per window (up to a point).
Notice that the case of two observations per window allows
for the biggest range of localisation half-widths. For the
unobserved grid points we notice that LSC4DEnVar strug-
gles to keep the RMSE within the climatological level, with
many white cases (RMSE > 7). LWC4DEnVar is more
robust, because only the case M = 4 struggles. This is
also true for the boundary grid points; in this case,
LWC4DEnVar is successful for all configurations, while
LSC4DEnVar struggles in some cases (this reduces as the

ensemble size grows). The introduction of outer loops
degrades the performance of the DA methods in both
cases, but it is much more damaging for the LSC4DEnVar
case. This coincides with the fact that outer loops were not
beneficial with SC4DVar in the presence of model error
which is ignored by the assimilation system.

In the 4DVar cases, the outer loops damaged the SC
(when the minimisation ignored the presence of model
error), but not the WC (when the minimisation included
the model error, albeit in a simplified manner). In the
EnVar case, outer loops damage the results for both LSC
and LWC cases, although the problem is considerably worse
for LSC. There have been studies on convergence of outer
loops in 4DVar (e.g. Tremolet, 2007), which have shown
that over-solving the inner loop minimisation can trap the
incremental algorithm away from the true minimum by
fitting observational noise and introducing spurious gradi-
ents. We think that in our case spurious gradients may be
introduced by the localisation, but a more detailed study is
needed before stating conclusions.

(a) U (b) H

(c) R

Fig 10. Hovmuller plots for the SWE model (with model error) showing the evolution of the truth. Each plot shows the time steps on the y-axis

and the grid point number on the x-axis. The colour bars show the velocity, the height and the rain, respectively.
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4. Experiments on the shallow-water model

In this section we discuss the implementation and working of
WC4DEnVar in a non-linear SWE model which includes
equations that mimic the formation of convective cumulus
clouds and rain. The model by Wursch and Craig (2014) was
developed to give a computationally friendly model which is
inexpensive to run but physically plausible. The model is
based on the SWEs:

@u
@t

þ u
@u
@x

þ @ϕ
@x

¼ K
@2u
@x2

; (10)

@h
@t

þ @uðH þ hÞ
@x

¼ K
@2h
@x2

; (11)

where eq. (10) is the momentum equation and eq. (11) is the
continuity equation. Here, u is the fluid velocity, H is the
thickness of the undisturbed layer (without waves), h now
represents the deviation from that level due to the wave
motion, K is the diffusion coefficient and ϕ ¼ gðH þ hÞ is
the geopotential. This SWE model can be run with or without
model error. The right-hand side of eqs (10) and (11) para-
metrises the subgrid processes, which cannot be modelled
directly.

In nature, convective clouds are caused by boundary layer
air rising due to disturbances, causing it to reach a level of free
convection. In our experiments, we are triggering convective
cloud through the wave motion when the layer height becomes
larger than Hc. The SWEs are modified to represent cumulus
cloud convection and rain as follows:

@u
@t

þ u
@u
@x

þ @ðϕþ rÞ
@x

¼ K
@2u
@x2

þ F (12)

where

ϕ ¼ ϕc þ gH; Z >Hc

gðH þ hÞ; otherwise

�
(13)

in which r represents the rain variable. To create convective
updraft, a forcing term F has been added to the model eq. (12).
The evolution equation for rain is:

@r
@t

þ u
@r
@x

¼ Kr
@2r
@x2

� αr� β @u
@x ; Z >Hr and @u

@x <0
0; otherwise

�
(14)

where ϕc is a constant geopotential corresponding to the
chosen Hc, which is the height at which clouds are formed.
In the modified momentum equation, momentum is adjusted
by gradients in the rain rate mimicking the influence of down
drafts due to the rain. When Z > Hr the momentum gradient
couples back to the rain rate proportional to β representing the
influence of updrafts on rain intensity. Hr > Hc to delay rain
formation by about 15 minutes, and leading to a cloud life
time of 1–2 hours. Finally, the term proportional to α provides
a simple Newtonian damping of the rain intensity.

The parameters in these equations are chosen such that the
system evolution appears chaotic, with values Hc = 90.02m,
Hr = 90.4m, β = 1/300, α = 2.5 × 10–4 s–1, ϕc ¼ 899:77m2s�2,
K = 8000, Kr = 0.15K.

For our numerical implementation, we write the equations
in conservative form. The model is discretised in space using a
second-order central difference scheme except for the diffu-
sion terms. For these, we use upwind differences. In time,
we use

xtþ1 ¼ mt!ðtþ1ÞðxtÞ þ νtþ1 (15)

where mt!ðtþ1Þ is a map which evolves the model from t to I +
1 by using the 4th-order Runge–Kutta method over one time
step (with Δt = 0.025). The model error n is a random vector
chosen from a Gaussian distribution such that n: N(0,Q) where
Q is the covariance matrix for one time step. This method is
known as the hybrid Runge–Kutta 4th-order method and is
given in Hansen and Penland (2006).

The horizontal distance between grid points is dx = 500m
and the time step length is dt = 40s. Hovmuller plots of the
model trajectories are shown in Fig. 10.

4.1. Generation of the error covariance matrices

The climatological background error covariance matrix was
generated using the method of Yang et al. (2006) and
described in Appendix 2 of the first part of this paper. We
applied localisation to eliminate round-off error and spurious
correlations.

To smooth this matrix, we used a Schur product such that

~B ¼ B � Lxx (16)

where ~B is our localised background error covariance matrix
and Lxx is our localisation matrix, which in this case is created
using a step function with length of five grid points. The
resulting matrix is shown in Fig. 11.

The observation error covariance matrix is given as

R ¼ σ2uI 0
0 σ2hI

� �

with R 2 R2Ny;2Ny where σ2u ¼ 0:0252ðms�1Þ2, σ2h ¼ 1m2.
Also, we assume that all observations are uncorrelated.

The model error covariance matrix is given as

Q ¼
γ2uG 0 0
0 γ2hG 0
0 0 γ2rG

0
@

1
A

with Q 2 R3Nx;3Nx where γ2u ¼ 1
32 diagð~BuÞ, γ2h ¼ 1

32 diagð~BhÞ,
γ2r ¼ 1

32 diagð~BrÞ and G is a circulant matrix with the first

row [1, 0.5, 0.25, 0, . . . 0, 0.25, 0.5]. The purpose of this
choice is to allow small-scale communication among neigh-
bouring grid points, representing missing model physics due to
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sub-grid-scale processes. We also did experiments where

γ2u ¼ 1
80 diagð~BuÞ, γ2h ¼ 1

80 diagð~BhÞ, γ2r ¼ 1
80 diagð~BrÞ as com-

parison. The results found were similar to the ones in this
paper and will not be shown.

4.2. Experiments and results

In this section, we present a comparison between SC4DEnVar,
LSC4DEnVar, WC4DEnVar and LWC4DEnVar. For large
non-linear models, 4DEnVar can run into problems as seen
in Lorenc et al. (2015). Our experiments on the KdV (Part I)
and the L96 models showed how incorporating the WC can
help alleviate problems which occur in SC4DEnVar, and in
this section we investigate whether these results still stand on
the larger, more realistic and non-linear SWE system. The
model has 100 grid points and three variables per grid point.
Hence, localisation is essential and is cropped in the same
manner as in the Lorenz 96 experiments, keeping n = 13
eigenvectors, which corresponds to k = 6 harmonics and the
mean value. Experimenting with other numbers n = {11,15}
lead to similar results.

To obtain accurate covariances in the 4DEnVar methods,
adaptive inflation is used following the method of Miyoshi
(2011). We use Ne = 20 ensemble members.

The number of observed variables is a very important factor
for the performance of the DA methods. To mimic a more

realistic setting we will only observe velocity and height, u
and h, respectively. Grid point observations for variables u and
h will come in two forms,

● Observing all grid points
● Observing every 10th grid point, i.e. there are groups

of 9 unobserved grid points between two observed
ones. Observing every 10th grid point is a harder
data assimilation problem as the correlation length
scale of our system is approximately 4.

Observations were taken to be a Gaussian and unbiased
perturbation from the truth,

yi ¼ hðxiÞ þ hi; (17)

where yi 2 RNx is our vector of observations at time i, h :

RNx ! RNy is our observation operator (not to be confused

with layer thickness) and ηi,Nð0;RÞ is our observation error.
We perform experiments using assimilation windows with
{1,2,5} observations per window and with
{5,20,40,60,. . .,200} time step observation periods. This
should show the propagation of errors increasing over longer
observation periods. The assimilation window length is given
as the observation period multiplied by the number of obser-
vations. For example, two observations per window with an
observation period of 60 time steps would have a window

Fig 11. Climatological B matrix for the SWE model (with model error) over 100 grid points. See text for the description of its generation. Each

panel shows the covariances between variables of the correspoding row and column in the figure.
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Fig 12. This plot shows the RMSE (y-axis) of all data assimilation methods for velocity, u, and the x-axis is the observation period. In the top

three plots, all grid points are observed and in the bottom three plots only 1 in 10 grid points are observed. The two plots on the left show one

observation per window, the middle two show two observations per window and the two on the right show five observations per window.

Fig 13. This plot shows the RMSE (y-axis) of all data assimilation methods for height, h, and the x-axis is the observation period. In the top

three plots, all grid points are observed and in the bottom three plots only 1 in 10 grid points are observed. The two plots on the left show one

observation per window, the middle two show two observations per window and the two on the right show five observations per window.
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length of 120 model steps. The methods are run over 50
assimilation windows, averaging results from the last 30 win-
dows to ignore any transient information.

To compare these methods, we use as a metric the RMSE
defined before. Figures 12, 13 and 14 show the RMSE for all
methods for variables u, h and r, respectively.

In Fig. 12 we show comparisons for the methods on the
velocity variable, u. The analysis RMSE of all methods
increases the observation period increases. Over all observa-
tion densities (in time and space) we see that localisation gives
improvement in RMSE over non-localised methods. This
improvement is due to elimination of long distance spurious
correlations (Whitaker and Hamill, 2002; Ott et al., 2004). At
all observation periods, LWC4DEnVar out performs all other
methods. As the observation period increases, both WC frame-
works give a lower RMSE than their SC counterparts. This is
expected because for longer windows the initial conditions
become less important in the presence of model error.

Figure 13 looks at the performance of the methods for the
variable height, h. In the case where all grid points are observed
(for u and h), localisation can be seen to improve the performance
in all regimes with the WC framework. For the SC, the perfor-
mance is improvedwith short observation periods andwith all grid
points observed, but as the observation period increases, this
improvement deteriorates and in some cases LSC4DEnVar can
be outperformed by SC4DEnVar. For sparse observations in space
(observing 1:10 grid points), all methods perform similarly until
the observation period length reaches a certain length. For observa-
tion periods greater than this length, theWCoutperforms the strong

constraint method. This is due to the slow nature of the height
variable in the model. The accumulated model error develops
slowly, giving the strong constraint a reasonable analysis in com-
parison. Once the accumulatedmodel error has developed, theWC
can help improve the analysis. Localisation with sparse observa-
tions (in space) shows little to no improvement. In all regimes, the
LWC4DEnVar has a lower RMSE than all other methods except
when observations are sparse (in space) and observation periods
are small. Under this regime, all methods perform similarly.

Finally, Fig. 14 presents the results for rain, r, which is our
unobserved variable. Under all regimes (except five observations
per window), localisation shows improvement in performance of
the EnVar methods. The improvement is greater for smaller
observation periods, then becomes less obvious as the observation
period increases. For assimilation windows with five observa-
tions, localisation has no impact after an approximate observation
period of 120 time steps. The localised versions outperform the
non-localised ones in all regimes studied. The LWC4DEnVar
outperforms the LSC4DEnVar in most regimes, except when
the observation period is larger than 120 time steps. When the
number of observations per window increases, LSC4DEnVar can
outperform LWC4DEnVar. We have no clear argument on why
this should be the case; this requires further study.

5. Summary

In this paper we have explored the performance of a weak-
constraint 4DEnsembleVar with and without localisation on

Fig 14. This plot shows the RMSE (y-axis) of all data assimilation methods for rain, r, and the x-axis is the observation period. In the top three

plots, all grid points are observed and in the bottom three plots only 1 in 10 grid points are observed. The two plots on the left show one

observation per window, the middle two show two observations per window and the two on the right show five observations per window.
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the Lorenz 96 and a one-dimensional shallow-water model
with simulated convection.

The most extensive and detailed experiments were per-
formed using the imperfect L96 model with 24 variables.
Simple experiments with observations every time step and at
every grid point showed the importance of localisation for the
ensemble and hybrid methods. We evaluated the time evolu-
tion of the analysis RMSE, as well as non-parametric statistics
over 500 model steps. The variational, localised ensemble and
localised hybrid methods were all able to achieve RMSE
values lower than the observational error level.

We then proceeded to experiment with a more challenging set
up: the land–sea configuration which includes 12 observed and
12 unobserved grid points. To analyse the results we divided the
24 grid points into three sets: eight ‘observed’ variables, eight
‘unobserved’ variables and eight ‘boundary’ variables. We took
to observational frequencies: observations every time step and
observations every two time steps. The results for both cases
were similar. For this land–sea configuration it is clear how
long-range spurious correlations can ruin the analysis for both
boundary and unobserved variables leading to RMSE values
larger than the climatological level. For the hybrid methods the
introduction of localisation helps in theWC case, but it increases
the RMSE for the SC case. This is similar to what we had
observed in the case of the KdV experiments. It was shown
how LSC4DEnVar has a very noisy time evolution for its
analysis RMSE, while this evolution is considerably smoother
for WSC4DEnVar. This behaviour is closer to that of the pure
variational methods that use TLMs and AMs.

The last set of experiments with the L96 system aimed at testing
the sensitivity to different parameters: ensemble size, localisation
half-width, number of observational times in the assimilation
window and number of outer loops. This was done over a larger
time (1000 model steps). The experiments with LETKS showed
that the permissible localisation half-width values reduce with the
number of ensemble members, i.e. smaller ensembles must be
localised more strictly. A very important finding for 4DVar was
that, in the presence of model error which is ignored in the
assimilation process—i.e. using SC4DVar, even though the
model is imperfect—the use of outer loops can damage the assim-
ilation. This is not the case with WC4DVar, which gives good and
robust results in spite of using the approximate model-bias correc-
tion formulation to include model errors.

We finally experimented with the EnVar methods. Trying to
mimic real situations, we focused our analysis on very small
ensemble sizes. Localisation is indispensable to achieve good
results, but we showed that it can severely damage the perfor-
mance of LSC4DEnVar, especially in unobserved and boundary
variables. This is not the case in LWC4DEnVar (except for the
smallest ensemble size). For the observed variables, the results
were in general better for LSC4DEnVar. The presence of outer
loops damaged LSC4DEnVar, while the performance of

LWC4DEnVar was largely unchanged and for some combina-
tions of parameters it improved the performance of the method.

The SWE experiments have shown, in the presence of
model error in systems that require localisation, how the WC
framework helps to alleviate problems with the localisation of
cross-time covariances which appear in the strong constraint
framework. We have shown that the addition of a weak con-
straint generally improves the RMSE of 4DEnVar in cases
where accumulated model error has time to develop, espe-
cially in cases where observations are sparse (in time and
space).

6. Discussion

Numerical Weather Prediction (NWP) models are large and non-
linear. Operational centres have started experimenting with hybrid
methods, in particular the 4DEnVar, to try to improve forecast
predictions (Fairbairn et al., 2014; Lorenc et al., 2015). On smaller
models, 4DEnVar shows big improvements over traditional meth-
ods. In NWPproblems are generated due to the non-linearity of the
system and 4DEnVar, which uses temporal cross-covariances,
excludes non-zero elements far from the diagonal in the covar-
iance matrices when only spatial localisation is applied. The UK
Met Office has tried to solve this problem using a hybrid back-
ground error covariance matrix over a climatologically generated
background error covariance matrix as this can help incorporate
errors of the day and add more flow-dependency to the back-
ground error covariance matrix. Meteo-France has tried to advect
the localised background error covariances backwards with the
flow to solve the localisation issues (Desroziers et al., 2016). This
study used a simple model for Lagrangian advection, in which the
authors had to balance the complexity of the advection model with
the computational expense of the method.

In the present paper, we showed how adding a WC with
localisation can be an effective way to track the evolution of
the covariances, keeping a large part of the information which
is lost in the SC framework.

Although these experiments show promising results for an
LWC4DEnVar, there are several interesting areas for future
work. The addition of incremental analysis updates (Bloom
et al. 1996) could increase accuracy of the LWC4DEnVar by
smoothing the trajectories over time. In terms of model error,
our choice of the model error covariance matrix as Qt ! tQ
can be improved and more accurately defined and we do not
use any bias in the effective model error, which would be
present in NWP. We have only considered model error incre-
ments at observation times. However, the true run has a
stochastic input at every time step. Estimating these incre-
ments would lead to a more accurate estimation. For the
moment, computational expenses (storage and operations)
render this objective unworkable.
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