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Abstract
The daily relationship of electricity and gas demandwith temperature inGreat Britain is analysed
from1975 to 2013 and 1996 to 2013 respectively. The annualmean and annual cycle amplitude of
electricity demand exhibit low frequency variability. This low frequency variability is thought to be
predominantly driven by socio-economic changes rather than temperature variation.Once this
variability is removed, both daily electricity and gas demand have a strong anti-correlationwith
temperature (relec=−0.90 , rgas=−0.94). However these correlations are inflated by the changing
demand–temperature relationship during spring and autumn.Once the annual cycles of temperature
and demand are removed, the correlations are = -r 0.60elec and = -r 0.83gas .Winter then has the
strongest demand–temperature relationship, duringwhich a 1 °C reduction in daily temperature
typically gives a∼1% increase in daily electricity demand and a 3%–4% increase in gas demand.
Extreme demand periods are assessed using detrended daily temperature observations from1772. The
1 in 20 year peak day electricity and gas demand estimates are, respectively, 15% (range 14%–16%)
and 46% (range 44%–49%) above their average winter day demand during the last decade. The risk of
demand exceeding recent extreme events, such as during thewinter of 2009/2010, is also quantified.

1. Introduction

Predicting electricity and gas demand is important for
ensuring there is sufficient supply to meet demand.
This is particularly important during extreme demand
periods, when the risk of energy shortages and whole
sale energy prices rise (National Grid 2014, van Goor
and Scholtens 2014).

Energy demand is driven by weather and a variety
of socio-economic factors (Psiloglou et al 2009,
Soldo 2012). Temperature is the dominant weather
driver of electricity and residential gas demand in
many developed countries (Sailor et al 1998, Mir-
asgedis et al 2006, Timmer and Lamb 2007, Cho
et al 2013), where lower temperatures produce heating
demand and higher temperatures create air condition-
ing demand (Hahn et al 2009). Inclusion of additional
weather variables has been shown to modestly
improve demand predictability, such as relative

humidity, solar radiation, wind-speed and other
derived variables (Psiloglou et al 2009, Soldo 2012,
Szoplik 2015). Socio-economic factors affecting elec-
tricity and gas demand include energy prices, con-
sumer behaviour, income, gross domestic product
(GDP), manufacturing, population and building char-
acteristics (Henley and Peirson 1997, Psiloglou
et al 2009, Szoplik 2015).

Previous studies have found a near-linear, negative
relationship between temperature and electricity
and gas demand in the UK (Hor et al 2005, Bessec and
Fouquau 2008, Psiloglou et al 2009, Summerfield
et al 2015). Energy demand is shown to vary across a
range of timescales, with clear daily, weekly and
annual cycles (Taylor and Buizza 2003, Taylor 2010,
van Goor and Scholtens 2014). In addition, UK elec-
tricity demand exhibits a long term trend (Hor
et al 2005). However these studies either use high tem-
poral resolution, but short length data sets, or longer
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data sets of lower temporal resolution. For example
Hor et al (2005) and Bessec and Fouquau (2008) con-
sider the relationship over 26 and 15 years respectively
but only use monthly data, while the daily and sub-
daily studies of Psiloglou et al (2009) and Henley and
Peirson (1997) only consider 5 and 1 year of data
respectively.

This study therefore aims to better quantify the
relationship between demand and temperature in
Great Britain (GB), at a daily timescale, using the long-
est demand records available (38 years for electricity,
16 years for gas). A comparison of the annual, seasonal
and monthly relationships is given. In addition, the
risk of demand extremes in GB is quantified for the
first time, by creating an artificial extension of the
demand data back in time using observed temperature
observations and the recent demand–temperature
relationships.

2.Observed data sets

2.1.Demanddata
Daily electricity demand data for GB was provided by
National Grid, the grid operator, for 1971–2013 in giga
(1012)watt hours (GWh). This dataset for GB has been
generated by combining two separate demand data-
sets, one for England and Wales and one for GB (see
supplementary material for further details). Data is
considered from 1975 onwards due to the coal mining
strikes and power cuts during the early 1970s. Annual
GB electricity demand increased almost monotoni-
cally from1975 until 2006, thereafter a reduction up to
the present is apparent (figure 1, upper). A clear annual
cycle is visible, with on average a maximum monthly
demand in January and a minimum in August, and
more clearly seen infigure 2 for one year, 2010–2011.

Daily gas demand data (in GWh) for GB was also
provided by National Grid for the shorter period
1996–2013. The gas demand represents the total of
non-daily metered demand (mainly domestic usage),
daily metered demand (for large industrial premises)
and shrinkage (gas leaks, theft). It does not include gas
consumers directly connected to the national trans-
mission network, such as gas-fired power stations and
large industrial units (National Grid 2012a, Wilson
et al 2013). Compared to electricity, there is little low
frequency variability in gas consumption over this
more limited period (figure 1, lower). However there is
a clear annual cycle of gas demand with on average a
peak in January and minimum in August, as seen in
vanGoor and Scholtens (2014).

As noted by Taylor and Buizza (2003), a strong
weekly cycle in electricity demand is evident, with
reduced demand during weekends and holidays
(figure 2, grey line). Weekend and holiday days have
on average 15%–20% less electricity demand than
week days. While for gas demand a much smaller
weekly cycle is seen, with on average only 5%–10% less

demand on non-working days. The difference is con-
sistent with a higher proportion of electricity demand
relating to industrial activity, which reduces over the
weekend (DECC2013).

2.2. Temperature data
To explore the relationship between GB energy
demand and temperature, the Central England Temp-
erature record (CET, Parker et al 1992) is used. This
observational dataset gives the average temperature of
an area enclosed by Lancashire, London and Bristol
and daily data are available from1772. Shorter datasets
covering the whole of GB are available, but as
population and demand are weighted to the south of
GB, the CET dataset is deemed suitable. In addition
the CET record captures the temperature variability
seen in other parts of the UK (the daily correlation
between CET and the average temperature in Scotland
or Wales is very strong, r = 0.93 and r = 0.99,
respectively), in agreement with Croxton et al (2006).
The variability in temperature associatedwith both the
annual cycle and daily fluctuations, is much greater
than any low frequency variability (figures 2 and 3).

As described previously, temperature is the domi-
nant weather driver of electricity demand. However
this cannot be the case for the low frequency electricity
demand variability seen in figure 1. The steady
increase in annual electricity demand up to the mid-
2000s would need to be accompanied by a reduction in
temperatures over the same period, this is not seen in
figure 3. The long term trend in electricity demand
leads to a large amount of scatter in the week-day
demand–temperature relationship (figure 4, left),
which is in contrast to the strong relationship seen in
individual years (figure 12 in supplementarymaterial).
Therefore to better quantify how demand varies with
temperature, this low frequency, non-temperature
driven demand variability needs to be identified and
removed.

3. Low frequency demand variability

3.1. Identification and drivers
A number of different methods have been used to
model or remove long term trends in demand,
including using a linear-regression with GDP (Hor
et al 2005, Mirasgedis et al 2006 and Psiloglou
et al 2009), nonlinear regression (De Felice et al 2013),
normalising by population or taking the deviation of
demand for a particular day or month relative to the
mean for that year (Sailor et al 1998, Hor et al 2005,
Bessec and Fouquau 2008).

There is a strong positive correlation between
GDP and electricity demand prior to 2006 ( =r 0.98,
see figure 5) in agreement with Hor et al (2005). How-
ever from 2007 onwards there is little correlation
( =r 0.07). The reduction in demand since the mid
2000s is thought to be due to thefinancial crisis, energy
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saving measures, an increase in embedded generation
(demand that is not seen by the grid operator) and a
move away from heavy industry (DECC 2012 and
National Grid 2014). The latter three factors would
reduce the relationship between GDP and energy
demand and may explain the change in relationship
seen after 2006. As for electricity, gas demand has a
positive but weaker correlation with GDP prior to
2007 ( =r 0.42) and little correlation after ( =r 0.07).

The time varying and complex combination of
socio-economic drivers of demand suggests that using
an individual driver (such as GDP) to model and then
remove the long term demand trend is not appro-
priate. Rather the trend is modelled using a 5 year
centred running mean demand. This low frequency

demand variability effectively represents the combina-
tion of different socio-economic drivers on demand
and is subsequently removed prior to comparison
with temperature (described in section 4.1.1). A five
year centred running mean demand is chosen to be
not too long, while minimising the impact of an
extreme demand season (which could be weather dri-
ven) on the yearly demand evolution.

The long term trend and magnitude of the annual
cycle of demand are identified using Fourier analysis
(see Wilks 2006), benefitting from the quasi-sinusoi-
dal nature of the annual cycle of demand. To construct
an evolving background demand ( ( )y t ), the demand
in any year (April–March) is analysed using a Fourier
representation of the form:

Figure 1.Upper: processedGB electricity demand timeseries (GWh, black)with harmonicfit (red), January 1975–June 2013. Lower:
processed daily GB gas demand (GWh, black) timeseries with harmonic fit (red),March 1996–March 2013. Demand duringweekends
and holiday periods has been replacedwith linear interpolated values, see text.
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w

3652 days. A second order representation
is necessary to capture the asymmetries in the annual
cycle of demand. This produces yearly values of each
parameter on the right-hand side of equation (1). To
produce a smoothly evolving background demand,
the evolution of each of these parameters is smoothed.
A1, B1, A2, and B2 are smoothed by fitting a linear
regression line through the annual values between

1975 and 2013. Yearly mean demand (y ) is smoothed
by taking a 5 year running mean due to its nonlinear
form (red line, figure 6 left), as described earlier. For
the two years at either end of the timeseries y is
represented by a 3 year average. Low frequency
variability is therefore defined as variability with a
timescale of greater than about 5 years, while high-
frequency variability is defined as variability on a daily,
seasonal and inter-annual timescale.

Here, the focus is on the week-day (Monday–Fri-
day) temperature–demand relationship, and includ-
ing non-working days would have undesirable effects

Figure 2.GB electricity demand (upper) andGB gas demand (middle) timeseries (grey), equivalent with interpolation over weekends
and holidays (black) and harmonicfit (red), April 2010–March 2011,GWh. Lower: CET timeseries for the same year (°C, black), and
harmonic fit (red).
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on the Fourier representation. Consequently, prior to
fitting the Fourier expansion, weekend demand is
replaced with the average of the adjacent Monday and
Friday. Similarly, demand during bank holidays and 3
days either side, is replaced with linearly interpolated
values between adjacent non-holiday days. This pro-
cess maintains the length of the record for the sake of
the Fourier analysis. The processed and original
demand timeseries are shown in black and grey in
figure 2 respectively.

3.2. Results
The slowly evolving background electricity and gas
demand timeseries, resulting from the Fourier fitting
and smoothing, are shown in red in figure 1. The
Fourier representation successfully captures both the
low frequency demand variability and its changing
annual cycle.

The Fourier representation also allows the ampl-
itude of the annual cycles of electricity and gas demand
and their evolution to be compared. The first Fourier

Figure 3.CET timeseries (°C, black)with harmonic fit (red), for the period January 1975–March 2013. This is the period forwhich
demand observations are available.

Figure 4. Left: scatter plot of daily temperature (°C) andGB electricity demand (GWh) between January 1975 andMarch 2013, during
week days and non-holidays, coloured by season. The Pearson correlation coefficient (r) is given for the annual relationship, with
linear fits for each season and annually. Right: as left but detrendedGB electricity demand and detrendedCET.
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component (the annual cycle) can alternatively be
written as w f-( )C tcos1 1 , with amplitude (C) and

phase shift (f), where = +( )C A B1 1
2

1
2 and

f =tan B

A
1

1
. Gas demand has a large annual cycle,

where its amplitude (C1) is ∼60% of the long term
mean demand and changes little over the recorded
period (figure 1 lower, see supplementary material for
further details). In contrast the annual cycle of elec-
tricity demand is considerably smaller and reduces by
approximately a third over the last 38 years (figure 6
right, also seen in figure 1 upper). In 2012 the ampl-
itude was only 14% of the mean demand of that year.
Between 2005 and 2012, approximately two-thirds of
residential gas consumption was for space heating
compared to less than a quarter for electricity
(DECC 2013, see their table 3.02, Domestic data),
explaining the greater sensitivity of gas demand to
temperature and its larger annual cycle. The reduction
in the amplitude of the annual cycle of electricity
demand is associatedwith summer demand increasing
at a faster rate thanwinter demand, with the difference
reducing by on average 1.7 GWh/year, or approxi-
mately 7% per decade (figure 13, supplementary mat-
erial). An equivalent reduction in the seasonal cycle of
temperature is not seen, rather non-meteorological
drivers are likely responsible.

4.Demand–temperature relationships

The desire to understand the current risk of demand
extremes has determined how the demand–temper-
ature relationship is established.

4.1.Methodology
4.1.1. Demand—removing the low frequency variability
Low frequency demand variability, associated with
socio-economic changes, weakens the demand–

temperature relationship and is therefore removed.
This is achieved by replacing the slowly varying back-
ground demand field with a constant annual cycle
demand background. The two stages undertaken to
achieve this are:

= -
= +

R D B
D R B

,
,d c

where:
D=Demand (black line infigure 1).
B=Slowly varying background demand (red line

infigure 1).
R=Residual demand.
Bc=Repeating climatological mean annual

demand cycle (red line in figure 7).
Dd=Detrended demand, where the low fre-

quency variability has been removed (black line in
figure 7).

The resultant detrended demand (Dd) timeseries is
shown in figure 7. This process has effectively retained
the high frequency demand variability and the clima-
tological annual cycle, while removing long term var-
iations in both annual mean demand and annual cycle
magnitude. For example the demand spike in winter
1986–1987 or the anomalously high demand through-
out winter 1978–1979 are still present in this detren-
ded demand timeseries. The detrended demand
timeseries is available in supplementarymaterial.

4.1.2. Temperature—removing the long term trend
Temperature variability occurs across all timescales,
from sub-daily to centennial. Decadal scale variability
in atmospheric temperature (as seen in figure 8) is
driven by slowly varying climate dynamics, including
the Atlantic Multi-decadal Oscillation and the El Nino
Southern Oscillation (Fraedrich and Muller 1992,
Knight et al 2006) and external forcings including
aerosols and solar variability. Such variations in

Figure 5.The relationship betweenUKGDP (millions of £ s) and annualmeanGB electricity demand (left) andGB gas demand
(right) inGWh. The Pearson correlation coefficient (r) for different periods is given.
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temperature are important to include when calculat-
ing the risk of demand extremes. However longer scale
temperature variability, which is presumed to be
predominantly associated with anthropogenic climate
change, makes the likelihood of cold winter days lower
today (Brown et al 2008, Bindoff 2013, Hart-
mann 2013). To account for this non-stationarity, the
long term temperature trend needs to be removed
prior to establishing the demand–temperature rela-
tionship and the risk of extremes (as discussed in
Coles 2001).

A long term trend in CET can also be modelled
using a Fourier expansion, as shown in red in figure 3
for the recent period. The same approach as for
demand is used (see section 4.1.1), with a few impor-
tant differences. Firstly, the evolution of the annual
mean temperature is represented by a third order
polynomial (blue line, figure 8), to better capture the
long term trend. Secondly, the evolution of Ax and Bx
is not modelled, rather climatological average values
are used, giving a constant annual cycle. Conse-
quently, the resulting ‘detrended temperature’ time-
series has only had the long term trend removed, while
decadal and higher frequency variability remains,
including any changes in the annual cycle.

The relationship between detrended demand and
detrended temperature can now be established. The
relationship is determined using all years of data, this
approach therefore assumes the relationship remains
constant through the data period. The relationship is
only considered over working week-days (excluding
weekends, bank holidays and 3 days either side of bank
holidays).

4.2. Results
4.2.1. Annual relationship
The removal of low frequency demand variability leads
to a much stronger week-day relationship between
electricity demand and detrended temperature,
increasing the correlation from −0.61 to −0.90

(figure 4, right and top row table 1), which is now
similar to that seen within individual years. This
suggests that the key relationship between demand
and temperature has been retained while the socio-
economic influences on demand have been success-
fully removed. The strength of the relationship is now
comparable to that of raw gas demand and temper-
ature, where = -r 0.94 (figure 9). Low frequency gas
demand variability is small, consequently its removal
barely modifies its annual correlation with temper-
ature (table 2). The daily relationships are seen to be
slightly nonlinear, with the negative relationship
levelling off above ∼17 °C, similar to that found in
Psiloglou et al (2009) and Summerfield et al (2015).

4.2.2. Seasonal andmonthly relationships
The electricity demand–temperature relationships for
each season also improve substantially after removal of
low frequency demand variability, for example the
winter correlation increases from −0.19 to −0.80
(table 1). Modest correlation increases are also seen
after detrending the gas demand (table 2). A strong
anti-correlation between daily detrended temperature
and electricity demand is found in winter, spring and
autumn (magnitude - 0.80, figure 10), with a much
weaker correlation in summer ( = -r 0.28), in agree-
ment with Psiloglou et al (2009). Electricity demand
saturation at extreme low temperatures, as claimed by
Hor et al (2005), is not seen. Gas demand is strongly
related to temperature in each season, with stronger
correlations than those of electricity, particularly in
summer (table 2 and figure 14, left-hand column,
supplementary material). The impact of removing the
long term trend in temperature on these relationships
is small (see supplementary material for further
details).

For both electricity and gas demand, the all days
correlation is higher than that of individual seasons.
This reflects the large annual cycle in temperature and
the fact that the annual cycle in demand is not fully

Figure 6. Fourier harmonic parameters of electricity demand analysis. Left: annualmean demand (y , black), its 5 year runningmean
(red). Right: first harmonicwave amplitude (C1, GWh, black) and its smoothed representation (red). The smoothedC1 is calculated
from the linear representations ofA1 andB1.
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Figure 7.Upper: detrendedGB electricity demand timeseries (GWh, black) and climatological annual cycle (red), April 1975–March
2013. Lower: detrendedGB gas demand timeseries (GWh, black) and climatological annual cycle (red), January 1996–March 2013.

Figure 8.AnnualmeanCET (°C, black) used in the Fourier expansion, and a third order polynomial fit (blue).
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explained by the annual cycle in temperature. During
spring or autumn the relationship between demand
and temperature changes (see figure 10 and figure 14
in supplementary material). For example, the March
relationship is nearer to that seen in winter, while the
May relationship is more similar to that found in sum-
mer. A day with a temperature of 7 °C would on aver-
age give an electricity demand of∼900 GWh inMarch,
∼850 GWh in April and ∼800 GWh in May. However
during winter or summer, the monthly relationships
are very similar. The change in relationship within a
season cannot be caused by temperature. One hypoth-
esis is that during spring and autumn, for the same
daily average temperature, a difference in daylight
hours could modify the demand for lighting and pos-
sibly also for heating.

The strength of the seasonal relationships during
spring and autumn is better established using the resi-
dual relationships (where the annual cycles have been
removed, see figures 14 and 15 in supplementary mat-
erial). The all days correlation is now lower or equiva-
lent to that of the individual seasons ( = -r 0.60 for
electricity and = -r 0.83 for gas, see last column in
tables 1 and 2). Winter now has the strongest

relationships, with approximately two-thirds of the
variability in electricity demand being linearly accoun-
ted for by temperature variability ( = -r 0.81) and
over four-fifths of gas demand variability
( = -r 0.90). Temperature sensitivity in winter is now
similar or higher than that seen in spring and autumn,
contrary to that seen when the annual cycle is present.
Over the data period, a 1 °C decrease in daily temper-
ature during winter months will typically give rise to a
10–12 GWh increase in daily electricity demand (∼1%
increase, established using the monthly linear fits in
figure 10) and a 105–115 GWh increase in daily gas
demand (3%–4% increase). Temperature sensitivity is
at aminimum in summer (see supplementarymaterial
for further details).

5. Extreme demandperiods

In preparation for each winter, National Grid esti-
mates both the magnitude of extreme electricity and
gas demand conditions and total generation capacity,
to ensure sufficient supply. For electricity demand,
they estimate the 1 in 20 year peak day demand, where
peak day is defined as the maximum daily demand
during a financial year. They also estimate the average
cold spell peak demand, which is defined as the peak
demandwithin a year which has a 50% chance of being
exceeded as a result of weather variation alone
(National Grid 2012b). As part of the gas winter
security assessment, the 1 in 50 year peak daily, weekly,
monthly and seasonal mean demand is estimated
(National Grid 2014).

5.1.Methodology
The longer a demand timeseries the better the
quantification of its extremes. The observations of
electricity and gas demand cover 38 years and 16 years
respectively. However amuch longer artificial demand
timeseries can be generated using the entire detrended
CET record (1772–2013) and the modern detrended
temperature–demand regression relationships (as
described in section 4.2). These artificial daily demand
estimates, give the demand that would have occurred
given historical temperatures, but are consistent with
demand from a modern energy system. The winter
mean regression relationship is chosen because of the

Table 1. Summary of correlations between daily GB electricity demand and daily CET, between 1st January 1975 and 31stMarch 2013,
consideringweek-day andnon-holiday days only (column1). Column 2, the same however the correlation is between detrended demand
and detrendedCET. Column 3, the same as column 2, except the respective annual cycles have been removed.

Data Raw correlation Detrended correlation Deseasonalised,

detrended correlation

All days −0.61 −0.90 −0.60

Winter days −0.19 −0.80 −0.81

Spring days −0.40 −0.82 −0.64

Summer days −0.01 −0.28 −0.12

Autumndays −0.44 −0.86 −0.62

Figure 9. Scatter plot of daily temperature andGB gas
demand betweenMarch 1996 andMarch 2013, duringweek
days andnon-holidays, coloured by season. The Pearson
correlation coefficient (r) is given for the annual relationship,
with linearfits for each season and annually.
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interest in high demand extremes. The risk of recent
extreme demand periods is assessed by counting the
number of artificial events since 1772 where demand
equals or exceeds the recent event of interest.

The mean absolute error between regression pre-
dicted and actual demand over the observed period is
small. Bootstrap sampling is employed to quantify
uncertainty in the demand estimates, resulting from
uncertainty in the regression model and the limited
sample size. For further details on the mean error and
bootstrap sampling see supplementary material. All
extreme demand estimates are presented as a percent-
age difference from the average winter day demand
over the last decade (December 2003–February 2013,
hereafter referred to as ‘climatology’), as calculated by
the regression model. The climatological electricity

and gas demand are 980 GWh and 2951 GWh
respectively.

5.2. Results
5.2.1. Daily extremes
Over the 241 years, the top 1% of electricity demand
days in winter have a demand estimate which is at least
10.8% (10.4%–11.1%) above climatology (figure 11
and table 3). The 1 in 20 year peak day electricity
demand estimate is 15% (14%–16%) above climatol-
ogy, while the average cold spell demand estimate is
10.2% (9.8%–10.6%) above climatology. The coldest
day in the record occurred on the 20th January 1838,
with a detrended temperature of −11.7 °C, giving an
electricity demand estimate 17% (12%–21%) above
climatology.

Table 2. Summary of correlations between daily GB gas demand and daily CETbetweenMarch 1996 andMarch 2013. See table 1 for details.

Data Raw correlation Detrended correlation Deseasonalised,

detrended correlation

All days −0.94 −0.95 −0.83

Winter days −0.83 −0.91 −0.90

Spring days −0.88 −0.91 −0.83

Summer days −0.60 −0.76 −0.65

Autumndays −0.91 −0.94 −0.87

Figure 10. Scatter plot of daily detrended temperature (°C) and detrendedGB electricity demand (GWh), duringweek days and non-
holidays between 1st January 1975 and 31stMarch 2013, coloured bymonth. The Pearson correlation coefficient (r) and the linearfit
through eachmonth and thewhole season (black) are also shown.
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Equivalent statistics are given in table 3 and
figure 11 for gas demand. The deviations from clima-
tology are greater for gas than electricity, which is con-
sistent with gas demand being more sensitivity to
temperature change. The 1 in 20 year peak day gas
demand estimate is 46% (44%–49%) above climatol-
ogy, while the 1 in 50 year demand estimate is 50%
(47%–54%) above.

5.2.2.Monthly and seasonal extremes
December 2010 is a recent, extremely cold month
(Maidens et al 2013). The detrended temperature was
on average −1.5 °C, giving temperature driven elec-
tricity and gas demand estimates of, respectively, 5.7%
(4.9%–6.4%) and 19% (18%–21%) above climatol-
ogy. Over the 241 year period, a month with at least as
much electricity or gas demand as December 2010 is
estimated to occur on average once every ∼34 years
(20–60 years). Months with greater demand would
have occurred in the past given the temperatures
experienced. For example January 1795 was the
coldest month since 1772, with a detrended average
temperature of−2.9 °C. Such conditions would give a
monthly average electricity and gas demand estimate
7.2% (6.4%–7.9%) and 24% (22%–26%) above clima-
tology respectively.

Winter 2009/2010 is a recent extremewinter (Cat-
tiaux et al 2010, Fereday et al 2012), when the average

daily detrended temperature was 1.6 °C. Estimates of
winter mean temperature driven electricity and gas
demand are, respectively, 2.3% (1.8%–2.7%) and 8%
(7%–9%) above climatology. Over the 241 year per-
iod, a winter with at least as much electricity or gas
demand as 2009/2010 is estimated to occur on average
once every∼18 years (12–27 years).Winter 1962/1963
was the coldest winter since 1772, with an average
detrended temperature of−0.6 °C.Under such condi-
tions, winter average electricity and gas demand is esti-
mated to be, respectively, 4.6% (4.2%–5.1%) and 16%
(15%–17%) above climatology.

The 1 in 50 year peak gas demand week, month
and season are estimated to be 35% (33%–37%), 20%
(18%–22%) and 9% (8%–11%) above climatology
respectively. It is of interest to note that due to the long
term trend in temperature, the risk of a December
2010 or a winter 2009/2010 demand has approxi-
mately halved.

6. Conclusions

Observed daily electricity and gas demand in GB have
been analysed between 1975–2013 and 1996–2013
respectively. The daily relationships between week-
day energy demand and temperature have been
established and their variation with month and season
investigated. Low frequency, non-temperature related

Figure 11. Left: the cumulative frequency distribution of the deviation ofwinter daily GB electricity demand for 1772–2013, from the
averagewinter dayʼs demand (December 2003–February 2013, ‘climatology’). The results presented are from the regression bootstrap.
The red lines indicate the top 1%ofwinter demand days. Right: as left but GB gas demand.

Table 3.Theminimumpercentage increase of average daily demand during the top 1%ofwinter days,months andwinters
between 1772 and 2013, relative to the recent decadeʼs daily wintermean demand value of 980 GWh for electricity and
2951 GWh for gas. The dates ofmaximumgas and electricity agree. The 5%–95%uncertainty range frombootstrap sam-
pling is given in brackets (see section 7.4 in supplementarymaterial).

Averaging Elect. demand Elect. demand Gas demand Gas demand Date of

period Top 1% Max Top 1% Max Max

WinterDay 10.8% (10.4–11.1) 16.6% (12.2–20.7) 33% (31–34) 57% (47–66) 20 January 1838

Month 5.6% (5.0–6.3) 7.2% (6.4–7.9) 19% (18–21) 24% (22–26) January 1795

Winter 3.2% (2.7–4.0) 4.6% (4.2–5.1) 11% (9–13) 16% (15–17) 1962/1963
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demand variability is represented by a slowly evolving
truncated Fourier expansion, and is removed prior to
establishing the relationship with temperature. Artifi-
cial estimates of daily demand are made back to 1772
using detrended temperature observations and the
modern detrended demand–temperature regression
relationships. The current risk and magnitude of
extreme demand events has then been quantified. The
main conclusions are given below:

• From 1975–2006 annual electricity demand
increases almost monotonically, after which a
reduction is seen. Over the same period the annual
cycle amplitude of electricity demand reduces by a
third, which is associated with summer demand
increasing at a faster rate thanwinter demand.

• Both daily electricity and gas demand are strongly
anti-correlated with daily mean temperature
( = -r 0.90elec , = -r 0.94gas ), once low frequency
non-temperature related variability in demand has
been removed. However these correlations are
inflated by the demand–temperature relationships
changing throughout spring and autumn. Once the
annual cycles of temperature and demand are
removed, the correlations drop to = -r 0.60elec

and = -r 0.83gas .

• Winter has the strongest demand–temperature
relationship (relec=−0.81 , rgas=−0.90), and
high temperature sensitivity. Over the data period, a
1 °C reduction in daily temperature in winter
typically gives a ∼1% increase in daily electricity
demand and a 3%–4% increase in gas demand.

• A higher proportion of gas demand is consumed for
domestic heating compared to electricity, which is
consistent with its stronger anti-correlation with
temperature, its larger relative annual cycle, its
weaker weekly cycle and its greater sensitivity to
temperature change.

• The 1 in 20 year peak day electricity demand
estimate is 15% (14%–16%) above the average
winter day demand. The 1 in 20 and 1 in 50 year
peak day gas demand estimates are 46% (44%–49%)
and 50% (47%–54%) above the average winter day
respectively. Today the risk of a month having at
least asmuch electricity or gas demand asDecember
2010 is estimated to be one in ∼34 years (20–60
years). The risk of a winter having at least as much
electricity or gas demand as the 2009/2010 winter is
estimated to be one in ∼18 years (12–27 years). The
long term trend in temperature means the risk of a
December 2010 or a winter 2009/2010 demand has
approximately halved.

This improved understanding of the demand–
temperature relationships and the risk of extremes
should aid operational management and longer term
planning ofGBʼs energy system.
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