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Abstract. We discuss applications of a recently developed
method for model reduction based on linear response the-
ory of weakly coupled dynamical systems. We apply the
weak coupling method to simple stochastic differential equa-
tions with slow and fast degrees of freedom. The weak cou-
pling model reduction method results in general in a non-
Markovian system; we therefore discuss the Markovianiza-
tion of the system to allow for straightforward numerical
integration. We compare the applied method to the equa-
tions obtained through homogenization in the limit of large
timescale separation between slow and fast degrees of free-
dom. We numerically compare the ensemble spread from a
fixed initial condition, correlation functions and exit times
from a domain. The weak coupling method gives more ac-
curate results in all test cases, albeit with a higher numerical
cost.

1 Introduction

Many models of physical systems are too complex to be
solved analytically, or even numerically if a large range
of temporal and spatial scales is involved. For some high-
dimensional dynamical systems it is, however, possible to de-
rive lower-dimensional reduced models (Givon et al., 2004;
Huisinga et al., 2003). The reduced model is easier to solve
analytically and faster to integrate numerically, while still
preserving some of the essential characteristics of the full
system. This line of research lies at the heart of many ap-
plications, for example, in molecular dynamics (Hijón et al.,
2009; Lu and Vanden-Eijnden, 2014) and climate modeling

(Lucarini et al., 2014; Imkeller and Von Storch, 2001; Palmer
and Williams, 2009).

The derivation of a reduced model is possible, for exam-
ple, in the presence of a timescale separation between slow
resolved and fast unresolved variables, as is assumed in the
homogenization method (Pavliotis and Stuart, 2008). This
method applies to slow–fast systems of the form

ẋ = f0(x,y)+
1
ε
f1(x,y)

ẏ =
1
ε2 g1(x,y)+

1
ε
β(y)ξ(t), (1)

in the limit of infinite timescale separation ε→ 0, where
ξ denotes a standard Brownian motion (i.e., the equations
should be considered equivalent to a stochastic integral in
the Itô interpretation) (Khas’minskii, 1963; Papanicolaou,
1976). It is evident from the dynamical equation that the y
variables evolve on a faster timescale than the x variables.
For finite values of ε, there is an intricate feedback between
the evolution of the x and y variables. The situation simpli-
fies in the limit of ε→ 0 where the slow variables do not
evolve on the timescales on which y strongly fluctuates. As
a result, the slow dynamics converge to a stochastic evolu-
tion, where the effect of y is completely replaced by statis-
tical quantities related to the motion of y for a fixed value
of x. On a more technical note, the precise expression for
the quantities entering in the reduced dynamics can be eas-
ily obtained through an expansion in ε of the backward Kol-
mogorov equation (the adjoint of the Fokker–Planck equa-
tion) ∂tv(x, t)= (L0+L1 /ε+L2 /ε

2)v(x, t) corresponding
to the slow–fast dynamics (where L0 = f0∂x , L1 = f1∂x and
L2 = g1∂y + (β/2)∂2

y ) (Pavliotis and Stuart, 2008).
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The method of homogenization has found a great number
of applications in different fields of physics and mathematics
(Pavliotis and Stuart, 2008). Many physical systems, how-
ever, do not feature a timescale separation. As an example,
the climate system has variability on many different tem-
poral (and spatial) scales, but no clear spectral gaps can be
identified (Mitchell, 1976). This creates fundamental diffi-
culties in the theoretical investigation of climate dynamics
and in the construction of climate models. As a result, ap-
proximate equations are used for dealing with scales of mo-
tions belonging to a range of scales of interest, and numer-
ical models are able to explicitly resolve only a fraction of
the full range of scales. The dynamics taking place on scales
that are too small and/or fast to be resolved need to be pa-
rameterized. Consider the case of convective motion in the
Earth’s atmosphere. Convective clouds are significant for the
climate, yet can only be resolved at a spatial resolution of
10–100 m (Sakradzija et al., 2015), whereas climate models
only resolve scales of the order of 100 km (Intergovernmen-
tal Panel on Climate Change, 2013). Unresolved convective
motion however features a so-called gray zone, a range of
timescales overlapping with the dynamical timescales of the
resolved large-scale flow (Sakradzija et al., 2015); therefore,
homogenization can not be applied. It is a formidable chal-
lenge to derive dimension reduction methods that do not re-
quire a timescale separation. One should underline that when
facing a lack of timescale separation, we would like to be
able to construct self-adaptive parameterizations as opposed
to empirical ones, so that when the resolution of a numeri-
cal model is changed we do not need to redo the exercise of
fitting a reduced model.

Going beyond the familiar setting of infinite timescale sep-
aration requires a novel approach to the derivation of closed
equations for the reduced system. Recently, we have devel-
oped a model reduction technique that does not rely on the
presence of such a separation (Lucarini et al., 2014; Wouters
and Lucarini, 2012, 2013). The alternative method for model
reduction makes use of a weak coupling approach, in which
response theory (Ruelle, 2009, 1997) is used to derive a clo-
sure. The systems of interest follow dynamics determined by

ẋ = εψx(x,y)+ fx(x)

ẏ = εψy(x,y)+ gy(y), (2)

where x is the variable of interest. Exploiting the weak cou-
pling form of this equation, response theory can be employed
to expand expectation values of x-dependent observables un-
der the invariant measure in orders of ε. This expansion
yields a series in terms of ε, reminiscent of the Dyson series
in scattering theory, each representing a sequence of inter-
actions between the x and y subsystems, corresponding to a
certain Feynman diagram (Maggiore, 2005).

The truncation of this series up to a given order yields
an approximation of the response of the x subsystem to the
coupling to the y subsystem. More importantly, it allows to

determine the statistical quantities of the y system that dic-
tate this response. The first-order correction to the dynam-
ics of the x system can be written as the expectation value
ε
∫

dyψx(x,y)ρy(y), where ρy is the invariant density of the
uncoupled ẏ = gy(y) dynamics. At second order, two correc-
tion terms appear: one due to double ψx interactions from y

to x, determined by a correlation function of the uncoupled
y dynamics, and a feedback term, determined by a response
function of the uncoupled y dynamics. This knowledge can
then be exploited to derive a surrogate dynamic for x that re-
produces the effect of the coupling of x to y up to second or-
der in ε. This theory has been originally developed assuming
that the uncoupled systems are Axiom A dynamical systems.
This assures, thanks to properties such as structural stabil-
ity, the existence of linear and higher-order response (Ruelle,
1998, 1997). The theory can, however, be equally applied in
the case where the uncoupled dynamics are stochastic, with
only the requirement to have a physical measure (an ergodic
measure is called physical if, for a set of initial conditions of
nonzero Lebesgue measure, the temporal average of a typi-
cal observable converges to the spatial average over this mea-
sure). Interestingly, the results obtained using response the-
ory match what one can derive by constructing a perturbative
expansion of the dynamics of the system using the Mori–
Zwanzig projection method (Wouters and Lucarini, 2013).

Previously, we have proposed a surrogate dynamical equa-
tion for the x variable that introduces an ε-dependent per-
turbing term to the dynamics fx to match the response of the
statistics of the full system. The perturbing term contains a
non-Markovian memory term and a correlated noise, with the
memory kernel and correlation functions depending on the
statistics of the uncoupled dynamics ẏ = gy . In a recent study
of the applicability of the weak coupling approach to a sim-
ple ocean–atmosphere system, the method has been shown to
give a good result for sufficiently weak coupling between the
ocean and the atmosphere (Demaeyer and Vannitsem, 2016),
even if it is clear that a systematic investigation of the perfor-
mance of the weak coupling approach is indeed still needed.

We remark that Chekroun et al. (2015a, b) have recently
proved that, indeed, constructing reduced-order models en-
tails introducing deterministic, stochastic and memory cor-
rection to the dynamics of the variables of interest.

Here, we will apply and extend the weak coupling ap-
proach of Wouters and Lucarini (2012, 2013) for the de-
velopment of parameterizations for various stochastic triad
models. Triad interactions arise from quadratic nonlinearities
with energy-conserving properties (see, e.g., Gluhovsky and
Tong, 1999). The triad models considered here appear in ap-
plications of the homogenization technique to construction
of parameterizations in climate modeling (see, e.g., Majda
et al., 2001, 2002; Franzke et al., 2005; Franzke and Ma-
jda, 2006; Dolaptchiev et al., 2013b, a). The non-Markovian
memory kernel in the weak coupling approach will be calcu-
lated for these simple stochastic multiscale models and ap-
proximated by a Markovian stochastic process, in order to

Nonlin. Processes Geophys., 23, 435–445, 2016 www.nonlin-processes-geophys.net/23/435/2016/
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allow for easier numerical implementation. The systems we
investigate can be written in both the weak coupling form of
Eq. (2) and the slow–fast form of Eq. (1); therefore, direct
comparison is possible and will be performed on a number
of metrics, namely initial ensemble spread, correlation func-
tions and exit times from an interval. We intend our results to
be of relevance for providing sound foundations for stochas-
tic parameterizations in weather and climate models (Palmer
and Williams, 2009; Franzke et al., 2015; Berner et al., 2016).

2 The additive triad

The first model we look at is the stochastically forced ad-
ditive triad. This system is a low-dimensional model that
has nonlinear interactions reminiscent of those occurring
between the Fourier modes of a fluid flow. It is stochasti-
cally forced to mimic the interaction with further unresolved
modes. The system has three variables: one slow variable x
and two fast variables y1 and y2. The fast dynamics are dom-
inated by two independent Ornstein–Uhlenbeck processes.
The dynamical equations for this triad are

dx
dt
= B(0)y1y2

dy1

dt
= B(1)xy2−

γ1

ε
y1+

σ1
√
ε
ξ1(t)

dy2

dt
= B(2)xy1−

γ2

ε
y2+

σ2
√
ε
ξ2(t). (3)

By scaling the time by powers of ε, this process is of the
form of Eq. (1), with f0 = 0, and also of the form of Eq. (2),
with fx = 0. The processes ξi are independent Brownian
motions in the Itô sense. Here and below, a differential
equation featuring a Brownian motion will be interpreted
as the equivalent stochastic integral. In addition, we require∑
iB

(i)
= 0, which guarantees energy conservation in the

case γi = σi = 0.

2.1 Homogenization

On the timescale t , when increasing the timescale separa-
tion 1/ε to infinity, we have trivial dynamics of the averaged
equations ˙̄x = B(0)〈y1y2〉ρOU = 0 where ρOU is the Gaussian
invariant measure of the fast Ornstein–Uhlenbeck process
generated by taking B(i) = 0 for i = 1,2,3. In the setting of
homogenization, one looks at the convergence of the distri-
bution of paths on a longer timescale. The time is scaled to
the diffusive timescale θ = εt and on this longer diffusive
timescale, deviations from the averaged dynamics develop.

By expanding the backward Kolmogorov equation for the
slow–fast system in orders of ε, a Kolmogorov equation
for only the slow variables can be derived (see Pavliotis
and Stuart, 2008). The dynamical equation corresponding to
this Kolmogorov equation is, in this case, a one-dimensional

Figure 1. Convergence to the homogenized equations for the ad-
ditive triad (Eq. 3) in θ = εt timescale. The red solid and double-
dotted dash lines show the analytically calculated mean and 2σ
intervals, respectively, for an ensemble evolving according to the
homogenized equation (Eq. 4) from an initial condition x =−5.
The blue dashed and dotted lines show the mean and 2σ inter-
vals for a 10 000 member ensemble of the additive triad (Eq. 3)
for ε = 0.5 from an initial condition (x,y1,y2)= (−5,0,0) with
B(0) =−0.75, B(1) =−0.25, B(2) = 1, γ1 = 1/δ, σ1 =

√
2/δ,

γ2 = 1 and σ2 =
√

2 with δ = 0.75. The green dash-dotted line and
the green shaded area show the same for ε = 0.125.

Ornstein–Uhlenbeck process (Majda et al., 2002):

∂x

∂θ
= C0x+

√
2A0ξ(θ), (4)

where

C0 =
B(0)

γ1+ γ2

(
B(1)

σ 2
2

2γ2
+B(2)

σ 2
1

2γ1

)

A0 =
B(0)

2

γ1+ γ2

σ 2
1

2γ1

σ 2
2

2γ2
.

See Fig. 1 for an illustration of the homogenization principle
for the additive triad (Eq. 3). The mean and variance of the
triad converge to those of the Ornstein–Uhlenbeck process
(Eq. 4) for small ε.

2.2 Weak coupling limit

We will now discuss the weak coupling method as described
in Wouters and Lucarini (2012, 2013). By rescaling the time
as τ = ε−1t , we can write the stochastically forced addi-
tive triad equation (Eq. 3) as a two-dimensional Ornstein–
Uhlenbeck system, weakly and nonlinearly coupled to a triv-

www.nonlin-processes-geophys.net/23/435/2016/ Nonlin. Processes Geophys., 23, 435–445, 2016
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ial zero-gradient x system:

dx
dτ
= εψx(y1,y2)

dy1

dτ
= εψy,1(x,y)− γ1y1+ σ1ξ1(τ )

dy2

dτ
= εψy,2(x,y)− γ2y2+ σ2ξ2(τ ), (5)

with ψx(y1,y2)= B
(0)y1y2 and ψy(x,y)=

(B(1)xy2,B
(2)xy1)

T . The stochastic parameterization
derived in Wouters and Lucarini (2012, 2013) is given by a
non-Markovian equation:

dx̃
dτ
= εη(τ)

+ ε2

∞∫
0

ds R(s, x̃(τ − s)), (6)

where the memory kernel R(s, x̃) and first two moments of
the stochastic process η(τ) are derived using the weak cou-
pling method to the following statistics of the uncoupled y
Ornstein–Uhlenbeck dynamics:

〈η(τ)〉 = 0
C(τ) : = 〈η(0)η(τ )〉

= 〈ψx(y1,y2)ψx(y1(τ ),y2(τ ))〉ρOU (7)
R(τ,x)= 〈ψy(x,y1,y2).∇yψx(y1(τ ),y2(τ ))〉ρOU , (8)

where the evolution of y1 and y2 into y1(τ ) and y2(τ ) are
taken to be the uncoupled Ornstein–Uhlenbeck dynamics
dyi /dτ =−γiyi + σiξi . For the case of the additive triad
(Eq. 3), we have

C(τ)= (B(0))2〈y1(0)y1(τ )〉〈y2(0)y2(τ )〉ρOU

= (B(0))2 exp(−(γ1+ γ2)τ )
σ 2

1
2γ1

σ 2
2

2γ2
(9)

and

R(τ,x)= B(0)B(1)x〈y2(0)(∂y1y1(τ ))y2(τ )〉ρOU (10)

+B(0)B(2)x〈y1(0)y1(τ )(∂y2y2(τ ))〉ρOU

= xB(0) exp(−(γ1+ γ2)τ )

(
σ 2

2
2γ2

B(1)+
σ 2

1
2γ1

B(2)

)
.

2.2.1 Markovian parameterization

Due to the identical timescale γ1+ γ2 in both memory and
noise correlation, the memory equation (Eq. 6) can be trans-
formed to a Markovian parameterization. We want to find
a parameterizing two-level Markovian dynamical system of

the form

dz1

dτ
= εC1z2

dz2

dτ
=−γ z2+ σzξ(τ )+ εC2z1, (11)

such that the second-order response of this system to changes
in ε is the same as the response of Eq. (6). In other words, we
want to determine the parametersC1,C2, γ and σz in Eq. (11)
such that the correlation and memory functions of the fast
equation in Eq. (11) are equal to Eqs. (9) and (10), respec-
tively. The correlation function C(τ) and memory function
R(τ,z1) of the fast equation of Eq. (11) are

C(τ)= 〈(C1z2(0))(C1z2(τ ))〉 = C
2
1e
−γ τ σ

2
z

2γ
(12)

R(τ,z1)= 〈(C2z1)∂z2(C1z2(τ ))〉 = C1C2z1e
−γ τ , (13)

where the evolution of z2 to z2(τ ) is now given by dz2/dτ =

−γ z2+σzξ(τ ). By equating these functions to their counter-
parts in Eqs. (9) and (10), we see that by choosing

C1 = B
(0)

C2 =
σ 2

2
2γ2

B(1)+
σ 2

1
2γ1

B(2) = β2B
(1)
+β1B

(2)

γ = γ1+ γ2

σ 2
z = 2

σ 2
1

2γ1

σ 2
2

2γ2
(γ1+ γ2)= 2β1β2γ,

the reduced z1 dynamics of the parameterized dynamical sys-
tem (Eq. 11) in the weak coupling method are of the same
form as those of the stochastic triad (Eq. 3).

This Markovian reduced equation (Eq. 11) is in fact a re-
formulation of the non-Markovian equation (Eq. 6). To see
this, we write an explicit solution for z2 as a function of the
history of z1 and ξ as

z2(τ )= e
−γ τ z2(0)

+

τ∫
0

dt ′
(
σzξ(t

′)+ εC2z1(t
′)
)
e−γ (τ−t

′).

This solution can then be inserted into Eq. (11) to obtain

dz1

dτ
= εC1e

−γ τ z2(0)

+ εC1

τ∫
0

dt ′(σzξ(t ′)+ εC2z1(t
′))e−γ (τ−t

′), (14)

which agrees with Eq. (6), with the first two terms being
an Ornstein–Uhlenbeck process with the required correlation
plus a memory term with the required memory kernel.

Nonlin. Processes Geophys., 23, 435–445, 2016 www.nonlin-processes-geophys.net/23/435/2016/
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Figure 2. Left: comparison of the ensemble spread for the orig-
inal additive triad system for ε = 0.25 from an initial condition
(−5,0,0) (the ensemble mean is the blue dashed line, 2σ inter-
val is the blue shaded area), the two-level Ornstein–Uhlenbeck pro-
cess from the weak coupling method (Eq. 11) from an initial condi-
tion (−5,0) (ensemble mean: red dash-dotted line, 2σ interval: red
dash–dot-dotted lines) and the one-level Ornstein–Uhlenbeck pro-
cess from homogenization (Eq. 4) from x =−5 (ensemble mean:
green solid line, 2σ interval: dotted lines). Right: comparison of
the autocorrelation functions of the slow variable 〈x(t)x(0)〉 in
the full triad for ε = 0.5 (blue dash-dotted line), 〈z1(t)z1(0)〉 in
the weak coupling model (green solid line) and 〈x(t)x(0)〉 for
the homogenized equation (red dashed line). Both plots use pa-
rameter values B(0) =−0.75, B(1) =−0.25, B(2) = 1, γ1 = 1/δ,
σ1 =

√
2/δ, γ2 = 1 and σ2 =

√
2 with δ = 0.75; the ensemble size

is 1000.

This Markovian formulation allows for a straightforward
numerical implementation of the parameterization, com-
pared to the non-Markovian equation (Eq. 6) which requires
one to store the history of the process in memory.

A comparison of the performance of the two model reduc-
tions is shown in Fig. 2. Shown are the spread of an ensemble
initiated at a fixed value for the slow variables x = z1 =−5
and the autocorrelation function of the slow variables. The
weak coupling method clearly gives better results.

By correctly rescaling time and taking the limit of ε→ 0
in the Markovian parameterization (Eq. 11), one can further-
more verify that in this limit it converges to the homogeniza-
tion of the original triad equation (Eq. 4).

3 The slowly oscillating additive triad

The additive triad, as specified in Eq. (3), can be generalized
to allow for an additional interaction between the y variables
on the slow timescale that is independent of x. The dynamical
equations for this slowly oscillating triad are

dx
dt
= B(0)y1y2

dy1

dt
= B(1)y2x−

γ1

ε
y1+ωy2+

σ1
√
ε
ξ1(t)

dy2

dt
= B(2)xy1−

γ2

ε
y2−ωy1+

σ2
√
ε
ξ2(t). (15)

3.1 Homogenization

The homogenized equation is similar to the one for the addi-
tive triad (Eq. 3) (see Eq. 4), with an added constant forcing
Cr in the reduced stochastic differential equation (SDE):

∂x

∂θ
= C0x+Cr+

√
2A0ξ(t)

Cr =
B(0)

γ1+ γ2
ω

(
σ 2

2
2γ2
−
σ 2

1
2γ1

)
. (16)

3.2 Weak coupling limit

The coupling functions ψx and ψy are now

ψx(y)= B
(0)y1y2

ψy(x,y)= x

(
B(1)y2
B(2)y1

)
+ω

(
y2
−y1

)
.

The correlation function (Eq. 7) of the coupling to x, deter-
mining the correlations of the parameterization noise σ is

〈ψx(y)ψx(y(τ ))〉 = B
(0)2
〈y1(0)y1(τ )〉〈y2(0)y2(τ )〉

= B(0)
2

exp(−(γ1+ γ2)τ )
σ 2

1
2γ1

σ 2
2

2γ2
.

The response function (Eq. 8) of ψx to ψy , determining the
memory kernel of the parameterization, is similar to the one
for the additive triad (see Eq. 10), with an added exponential
function, the integral of which gives the same constant Cr of
the homogenized equations:

R(τ,x)= 〈ψy(x,y)∂yψx(y(τ ))〉

= exp(−γ τ)(D1x+D0)

D1 = B
(0)

(
B(1)

σ 2
2

2γ2
+B(2)

σ 2
1

2γ1

)
= γC0

D0 = ωB
(0)

(
σ 2

2
2γ2
−
σ 2

1
2γ1

)
= γCr.

Combined, this then results in the following non-Markovian
parameterized equations:

dx̃
dτ
= εη(τ)+ ε2

∞∫
0

dsR(s, x̃(τ − s))

= εη(τ)+ ε2

∞∫
0

ds exp(−γ s)(D1x̃(τ − s)+D0)

= εη(τ)+ ε2

∞∫
0

ds exp(−γ s)̃x(τ − s)+ ε2Cr. (17)

www.nonlin-processes-geophys.net/23/435/2016/ Nonlin. Processes Geophys., 23, 435–445, 2016
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Table 1. The relative error on the mean exit time |E1(τ )−
E0(τ )|/E0(τ ) where E0(τ ) is the mean exit time from [−1,1] of
the full triad system (Eq. 15) and E1(τ ) is the mean exit time of the
parameterized systems of Eqs. (18) and (16), with B(0) =−0.75,
B(1) =−0.25, B(2) = 1, ω = 0.25, γ1 = 1/δ, σ1 =

√
2/δ, γ2 = 1

and σ2 =
√

2 with δ = 0.75. These values are calculated from 1000
independent trials.

ε 0.5 0.25 0.125

Homogenization 0.403 0.184 0.0982
Weak coupling 0.205 0.0839 0.0589

3.2.1 Markovian parameterization

The non-Markovian equation (Eq. 17) can again be Marko-
vianized by a two-level Ornstein–Uhlenbeck process of the
form

dz1

dτ
= εC1z2

dz2

dτ
=−γ z2+ σzξ(t)+ ε(C2z1+C3). (18)

The corresponding correlation and memory terms are

C(τ)= C2
1e
−γ τ σ

2
z

2γ
(19)

R(τ,z1)= C1e
−γ τ (C2z1+C3). (20)

We can therefore take

C3 =D0 /C1

= ω

(
σ 2

2
2γ2
−
σ 2

1
2γ1

)
.

In the limit ε→ 0 in the Markovian parameterization
(Eq. 18), we again recover the homogenized equations
(Eq. 16).

3.3 Exit times

When comparing initial ensemble spread and autocorrela-
tion functions for the slow variable of this system with the
weak coupling parameterization (Eq. 18) and the homoge-
nized system (Eq. 16), the results are similar to those pre-
sented for the additive triad above. Additionally, here we per-
form a comparison of a rare event statistic: the first exit time
of the slow variable from an interval [−1,1] when the slow
variable is initialized at 0.

The results in Tables 1 and 2 show that the statistics of
exit times are approximated significantly better in the weak
coupling parameterization.

Table 2. The relative error on the standard deviation of the exit times
|σ1(τ )− σ0(τ )|/σ0(τ )where σ0(τ ) is the standard deviation of exit
times from [−1,1] of the full triad system (Eq. 15) and σ1(τ ) is
the standard deviation of exit times of the parameterized systems
of Eqs. (18) and (16). Parameters are chosen as in Table 1. These
values are calculated from 1000 independent trials.

ε 0.5 0.25 0.125

Homogenization 0.420 0.217 0.115
Weak coupling 0.232 0.0814 0.0395

4 The rapidly oscillating additive triad

A further generalization of the additive triad (Eq. 3) is to in-
troduce an interaction between the y variables on the fast
timescale (Dolaptchiev et al., 2013a). The dynamical equa-
tions for the rapidly oscillating triad are

dx
dt
= B(0)y1y2

dy1

dt
= B(1)y2x−

γ1

ε
y1+

ω

ε
y2+

σ1
√
ε
ξ1(t)

dy2

dt
= B(2)xy1−

γ2

ε
y2−

ω

ε
y1+

σ2
√
ε
ξ2(t). (21)

Note the difference in scaling on the oscillatory terms ωyi
compared to Eq. (15). The invariant measure of the fast sys-
tem is a correlated Gaussian measure,

ρ(y)= exp(−yT (2S)−1y)/Z,

determined by

0S+ (0S)T =6T6,

with

0 =

(
γ1 −ω

ω γ2

)
and

6 =

(
σ1 0
0 σ2

)
.

Homogenization leads to a solvability condition on the
system of Eq. (21), whereby the mean of B(0)y1y2 under the
fast process has to equal zero. This condition is fulfilled if
either ω = 0 or σ 2

1 /γ1 = σ
2
2 /γ2. The homogenized equation

is now given by

ẋ = γωx+
√

2Aωξ(t), (22)
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with

γω = bB
(1)S22+ 2(aB(1)+ cB(2))S12+ bB

(2)S11 (23)

Aω = B
(0)(3aS11S12+ b(S11S22+ S

2
12)+ 3cS22S12) (24)

b =
B(0)(

ω2

γ1
+
ω2

γ2
+ γ1+ γ2

)
a = (−ω/ 2γ1)b

c = (ω/ 2γ2)b .

4.1 Weak coupling

The coupling functions of Eq. (21) have the following form:

ψx(y1,y2)= B
(0)y1y2 (25)

ψy(x,y1,y2)= x(B
(1)y2,B

(2)y1)
T . (26)

The correlation function 〈ψx(y1,y2)ψx(y1(t),y2(t))〉 ap-
pearing in the weak coupling expansion can again be cal-
culated explicitly. Solutions of the fast Ornstein–Uhlenbeck
system ẏ =−0y+6ξ can be written as

yi(t)= [e
−0ty(0)]i +

t∫
0

dτ [e−0(t−τ)6ξ(τ)]i .

Inserting this expression into the autocorrelation function
gives

Cω (t) : = 〈ψx (y1,y2)ψx (y1(t),y2(t))〉

=

(
B(0)

)2
〈y1(0)y2(0)y1(t)y2(t)〉

=

(
B(0)

)2 ([
e−0t

]
11

[
e−0t

]
21 (3S11S12)

)
+
([
e−0t

]
11

[
e−0t

]
22+

[
e−0t

]
12

[
e−0t

]
21

)
·

(
S11S22+ 2S2

12

)
+
([
e−0t

]
12

[
e−0t

]
22 (3S22S12)

)
+

(
B(0)

)2
R12

t∫
0

dτ1dτ2

〈[
e−0(t−τ1)6ξ (τ1)

]
1

·

[
e−0(t−τ2)6ξ (τ2)

]
2

〉
,

since the noise ξ is white and has zero mean.
The memory term Rω(τ,x) can be calculated by perform-

ing integration by parts on the response function, resulting in
a fluctuation–dissipation-type expression:

Rω(τ,x)=

〈(
−
∇.
(
ρψy

)
ρ

)
ψx(τ )

〉
= B(0)x 〈

+ B(2)
[
S−1

]
22

)
y1(0)y2(0)

+ B(2)
[
S−1

]
12
y2

1(0)
)
y1(τ )y2(τ )

〉
.

4.1.1 Markovian parameterization

Guided by the Markovian form of the previous triad systems,
we again want to derive a Markovian parameterization with
a reduced one-level Ornstein–Uhlenbeck system as the fast
component:

ż1 = εC1z2

ż2 = εC2z1− γ z2+ σzξz(t). (27)

In this case, there is no exact match between the autocorrela-
tion and response functions of this Markovian system and the
non-Markovian weak coupling parameterization. The choice
of the parameterization parameters is therefore not exactly
determined and one needs to choose a parameterization such
that the autocorrelation and response functions of the cou-
pling function in the fast component of the full system are ap-
proximated in some sense. A further restriction comes from
the fact that in the limit ε→ 0 the limiting path distribution
of the full system is determined by the homogenized equa-
tion (Eq. 22) and we therefore want to retain this limiting
behavior in the parameterized system. To have this limiting
property, we have the following constraints on the parameters
in Eq. (27):

C2
1σ

2
z

2γ 2 = Aω

C1C2

γ
= γω,

where Aω and γω are the forcing and friction parameters ob-
tained through homogenization (see Eqs. 23–24). With the
remaining free parameters we can match the response and
correlation functions in a more precise manner; for example,
by matching the values of these functions at time t = 0. In
this way, we get

C2 =
Ry(0)
C1

γ = Cω(0)

and

σ 2
z =

2γCω(0)
C2

1
,

where Ry = Rω/x. This leaves the parameter C1 undeter-
mined. With the above choice of C2, γ and σz, the mem-
ory and correlation functions of the system of Eq. (27) no
longer depend on C1. The weak coupling method therefore
can not give further guidance in determining its value. The
numerical results appear to be insensitive to the choice of
C1. The results presented here are for the case where we take
C1 = B

(0).
A simulation of the ensemble spread from a fixed initial

condition is shown in Fig. 3. It demonstrates that the weak
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Figure 3. Left: comparison of the ensemble spread for the origi-
nal oscillating triad system of Eq. (21) for ε = 0.25 from an initial
condition (−1,0,0) (the ensemble mean is the blue dashed line, 2σ
interval the blue shaded area), the two-level Ornstein–Uhlenbeck
process from the weak coupling method of Eq. (27) from an ini-
tial condition (−1,0) (ensemble mean: red dashed line, 2σ inter-
val: red dotted lines) and the one-level Ornstein–Uhlenbeck process
from homogenization (Eq. 22) from x =−5 (ensemble mean: green
solid line, 2σ interval: dotted lines) B(0) =−0.75, B(1) =−0.25,
B(2) = 1, ω = 1/ 12, γ1 = 1/δ, σ1 =

√
2/δ, γ2 = 1 and σ2 =

√
2

with δ = 0.75. The ensemble size is 4000. Right: cumulative his-
tograms of exit times from [−1,1] for the rapidly oscillating triad
(Eq. 21) with ε = 0.5, the homogenized equation (Eq. 22) and
the two-level Ornstein–Uhlenbeck process from the weak coupling
method (Eq. 27), calculated from 1000 independent trials.

Table 3. The relative error on the mean exit time
|E1(τ )−E0(τ )|/E0(τ ) where E0(τ ) is the mean exit time
from [−1,1] of the full triad system of Eq. (21) and E1(τ ) is the
mean exit time of the parameterized systems of Eqs. (22) and (27).
The parameters are the same as those used for Fig. 3. These values
are calculated from 1000 independent trials.

ε 0.5 0.25 0.125

Homogenization 0.534 0.262 0.118
Weak coupling 0.322 0.127 0.0619

coupling parameterization (Eq. 27) outperforms the homog-
enized reduced system of Eq. (22). A longer simulation (not
plotted here) shows that over time the difference between the
methods decreases and all three systems relax to nearly the
same invariant measure.

4.2 Exit times

The same experiment on exits from an interval has been per-
formed as described in Sect. 3.3. The results are displayed in
Table 3. As before, the weak coupling reduced system gives
a much better result when compared to the homogenized sys-
tem.

Table 4. The relative error on the standard deviation of the exit
times |σ1(τ )− σ0(τ )| /σ0(τ ) where σ0(τ ) is the standard deviation
of exit times from [−1,1] of the full triad system of Eq. (21) and
σ1(τ ) is the standard deviation of exit times of the parameterized
systems of Eqs. (22) and (27). The parameters are the same as those
used for Fig. 3. These values are calculated from 1000 independent
trials.

ε 0.5 0.25 0.125

Homogenization 0.583 0.286 0.118
Weak coupling 0.362 0.109 0.0503

5 The multiplicative triad

A final type of interactions is given by the multiplicative triad
equations (Majda et al., 2002):

dx1

dt
= B(1)x2y

dx2

dt
= B(2)x1y

dy
dt
= B(3)x1x2−

γm

ε
y+

σm
√
ε
ξ(t), (28)

which describe the interplay between two x modes and a
stochastically forced single y mode. In the absence of forcing
and dissipation, energy conservation is satisfied if

∑
iB

(i)
=

0. In the system of Eq. (28), the y mode can be eliminated
directly by integrating the last equation of Eq. (28):

y(t)= e−
γm
ε
ty(0)

+

t∫
0

dt ′
(
σm
√
ε
ξ(t ′)+B(3)x1(t

′)x2(t
′)

)
e−

γm
ε
(t−t ′).

By inserting this result in the equations for the x variables,
one obtains

d
dt

(
x1(t)

x2(t)

)
=

(
B(1)x2(t)

B(2)x1(t)

)e− γmε ty(0)+
t∫

0

dt ′

(
σm
√
ε
ξ(t − t ′)+B(3)x1(t − t

′)x2(t − t
′)

)
e−

γm
ε
t ′
}
. (29)

Note that the first two terms on the right-hand side result
from a Ornstein–Uhlenbeck process with zero mean and sta-
tionary time autocorrelation function given by

σ 2
m

2γm
e−

γm
ε
t .
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5.1 Weak coupling

The coupling functions for the multiplicative triad are

ψx(x,y)= (B
(1)x2y,B

(2)x1y)
T ,

ψy(x)= B
(3)x1x2.

The coupling terms in the x equations are separable:

ψx,i(x,y)= aiψ
′

x,1,i(x)ψ
′

x,2,i(y) (30)

with 〈ψ ′x,2,i(y)〉ρOU = 0, where

a1 = B
(1),ψ ′x,1,1(x)= x2,ψ

′

x,2,1(y)= y,

a2 = B
(2),ψ ′x,1,2(x)= x1,ψ

′

x,2,2(y)= y.

The resulting parameterization in the weak coupling ap-
proach (Wouters and Lucarini, 2012, 2013) is

dxi
dτ
= εaiψ

′

x,1,iηi(τ )+ ε
2

∞∫
0

dsRi(s,x(τ − s)), (31)

with a noise term ηi with zero mean and correlation given by

〈ηi(0)ηj (τ )〉 = 〈ψ ′x,2,i(y)ψ
′

x,2,j (y(τ ))〉ρOU =
σ 2
m

2γm
e−γmτ .

The memory kernel has the form

Ri(s,x)= 〈ψy(x,y) · ∇yψx,i(x(s),y(s))〉ρOU ,

R(s,x)= B(3)x1x2e
−γ s

(
B(1)x2(s)

B(2)x1(s)

)
.

Thus, Eq. (31) can be written as

d
dτ

(
x1(τ )

x2(τ )

)
=

(
B(1)x2(τ )

B(2)x1(τ )

)
{σ(τ) (32)

+

∞∫
0

dsB(3)x1(τ − s)x2(τ − s)e
−γms

 ,
which is exactly the same result as in Eq. (29), if we rescale
time and assume x1(t)= x2(t)= 0 as the initial condition
for t < 0. In this case, the weak coupling approach recov-
ers exactly the full model. The original three-component sys-
tem was reduced to a two-component non-Markovian sys-
tem but there is no efficiency gain using the parameterization
since the corresponding Markovian system is again a three-
component one.

5.2 Homogenization

Introducing a longer timescale θ = ε2τ in Eq. (32) and taking
the limit ε→ 0, one recovers the homogenization result in

Stratonovich formulation:

d
dθ

(
x1
x2

)
=
B(3)

γ
x1x2

(
B(1)x2
B(2)x1

)
+
σm

γm

(
B(1)x2
B(2)x1

)
ξ(θ). (33)

The latter corresponds to an Itô stochastic differential equa-
tion of the form

d
dθ

(
x1
x2

)
=
B(3)

γ
x1x2

(
B(1)x2
B(2)x1

)
+
σ 2
m

2γ 2
m

B(1)B(2)
(
x1
x2

)
+
σm

γm

(
B(1)x2
B(2)x1

)
ξ(θ). (34)

An extensive numerical comparison of the statistics of the
multiplicative triad and the homogenized model has been
performed in Majda et al. (2002). It demonstrates a good
agreement on various quantities, such as autocorrelation
functions up to values of ε = 0.4. For details, we refer to Ma-
jda et al. (2002).

6 Conclusions

In this work, we have worked out a first application
of the weak coupling response method of Wouters and
Lucarini (2012, 2013) to a multiscale stochastic system.
Through the choice of system, we were able to perform both
homogenization and the weak coupling reduction on this sys-
tem, thereby allowing for a direct comparison between the
two reduction methods.

The response method yields a non-Markovian equation,
making it cumbersome to integrate numerically. We have
demonstrated here that, for the systems studied, the non-
Markovian equation can be further reduced to a Markovian
equation. Even with this further reduction the system gives
a better match to the original system than the homogenized
equations.

In the case of the additive triad (Eq. 3), the system of
Eq. (11) that is obtained through the Markovianization pro-
cedure is of intermediate complexity, between the full sys-
tem of Eq. (3) and the homogenized limit of Eq. (4). In the
systems studied here, the retention of a fast timescale in the
reduced system means that the reduction in simulation com-
plexity is modest (one variable instead of two and a linear
coupling instead of a nonlinear one). In the case of the mul-
tiplicative triad (Eq. 28), the weak coupling parameteriza-
tion recovers exactly the full model and there is no efficiency
gain. In many applications of practical relevance, however,
the number of degrees of freedom of the unresolved variables
is considerably larger than those of the slow variables of in-
terest. A reduction to a system of one or a few variables will
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constitute a significant reduction in complexity in this case.
This approach can be compared to the superparameterization
approach to convection, where convection is parameterized
by a model that is still dynamical in nature, yet significantly
simpler than the full convective motion (Randall et al., 2003;
Grooms and Majda, 2013, 2014).

The methodology discussed here provides a framework
for deriving rather then heuristically constructing (stochas-
tic) parameterizations for multiscale systems, even if further
investigations are indeed needed (see the promising results
by Demaeyer and Vannitsem (2016)).

7 Data availability

The plots and data for this article were generated
using Jupyter 4.0.6, Python 3.4.3, NumPy 1.8.2 and
Matplotlib 1.4.2. The source code is available under
doi:10.5281/zenodo.167533.
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