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Abstract It is generally agreed that the human brain is

responsive to environmental influences, and that the male

brain may be particularly sensitive to early adversity.

However, this is largely based on retrospective studies of

older children and adolescents exposed to extreme envi-

ronments in childhood. Less is understood about how nor-

mative variations in parent–child interactions are associated

with the development of the infant brain in typical settings.

To address this, we used magnetic resonance imaging to

investigate the relationship between observational measures

of mother–infant interactions and regional brain volumes in

a community sample of 3- to 6-month-old infants (N = 39).

In addition, we examined whether this relationship differed

in male and female infants. We found that lower maternal

sensitivity was correlated with smaller subcortical grey

matter volumes in the whole sample, and that this was

similar in both sexes. However, male infants who showed

greater levels of positive communication and engagement

during early interactions had smaller cerebellar volumes.

These preliminary findings suggest that variations in

mother–infant interaction dimensions are associated with

differences in infant brain development. Although the study

is cross-sectional and causation cannot be inferred, the

findings reveal a dynamic interaction between brain and

environment that may be important when considering

interventions to optimize infant outcomes.

Keywords Mother–infant interaction � Infant brain
structure � MRI � Infancy � Sex differences � Maternal

sensitivity � Infant cerebellum

Introduction

Parent–infant interactions are critical for child develop-

ment. For instance, sensitive and responsive early care is

linked to optimal behavioural and cognitive outcomesV. Sethna, I. Pote, D. G. M. Murphy, M. C. Craig and G.
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(Cabrera et al. 2011; Lugo-Gil and Tamis-LeMonda 2008);

in contrast, parental insensitivity increases the risk of

children developing psychopathology in later life (Murray

et al. 2010). Although the biological mechanisms mediat-

ing these associations are not entirely understood, it is

generally agreed that the human brain is most vulnerable to

environmental influences (De Bellis et al. 2001; Schore

2001)—including parent–infant interactions (Rifkin-Gra-

boi, et al. 2015)—early in development.

For example, elevated levels of stress hormones stem-

ming from early-life adversity are thought to lead to altered

brain development through the accelerated loss of neurons,

disrupted pruning, inhibition of neurogenesis (Teicher et al.

2006; Tupler and De Bellis 2006), and perhaps also altered

anatomical ‘connectivity’ (Sarkar et al. 2014). Prior reports

also suggest that early childhood maltreatment is associ-

ated with later fronto-limbic abnormalities (Belsky and de

Haan 2011; Hart and Rubia 2012); smaller corpus callosum

and total brain volumes, and increased ventricular volumes

(De Bellis et al. 2002; Teicher et al. 2004). It has also been

suggested that the male brain is particularly vulnerable to

such insults (De Bellis and Keshavan 2003; Tupler and De

Bellis 2006). For example, smaller cerebral volumes have

been reported in older male children exposed to childhood

maltreatment (Belsky and de Haan 2011).

However, existing studies in humans mainly document

outcomes following extreme adversity in infancy (i.e.,

institutional rearing or severe maltreatment), and are ret-

rospective in design. Also, the high prevalence of psy-

chopathology (72%) in these retrospective analyses of

older cohorts (De Bellis et al. 2001) makes it difficult to

determine whether the structural brain differences observed

explain the aetiology of psychopathology or are caused by

it and/or its treatment [for example, medication exposure

may confound interpretation (Tupler and De Bellis 2006)].

Thus, the results of these high-risk samples do not reveal

how normative variations in early parent–child interactions

influence child brain structure in the early postnatal period.

This is an important omission, considering the com-

pelling evidence that an early sensitive caregiving envi-

ronment likely provides an optimal emotional context for

children’s early brain maturation and subsequent cognitive

abilities (Bernier et al. 2010). Furthermore, the postnatal

period is characterized by rapid brain development.

Specifically, the first year of life is the period of greatest

brain volume growth in typical children—total brain vol-

ume at 2–4 weeks of age is approximately 36% of adult

volume, and by 1 year it is approximately 72% of adult

volume (Knickmeyer et al. 2008). Brain plasticity during

this period makes the infant brain particularly sensitive to

environmental influence, especially the social-affective

environment (Schore 2001). Variations in maternal care are

thought to help shape neural structures and circuits, and

subsequently psychological outcomes (Roth and Sweatt

2011); and there is reasonable consensus that maternal

sensitivity in the first year of life has a key impact on

development (de Wolff and van Ijzendoorn 1997). Defined

as the timely and accurate response to the infant’s com-

municative cues, maternal sensitivity predicts positive

social relationships and enhanced cognitive abilities in the

infant (Wade et al. 2015); and sensitive caregiving during

the first year is critical for the maturation of the infant’s

stress response system (Gunnar and Cheatham 2003; Hane

and Fox 2006).

Therefore, the relationship between normative variations

in parenting and brain structure in children has now started

to be examined (Kok et al. 2015; Moutsiana et al. 2015;

Rao et al. 2010; Rifkin-Graboi, et al. 2015; Whittle et al.

2014). For example, higher levels of parental sensitivity in

early childhood have been linked with larger total brain and

grey matter volumes in children at 8 years of age (Kok,

et al. 2015). In another study, insecure attachment at

18 months was associated with greater amygdala volumes

at 22 years (Moutsiana et al. 2015). In contrast, a study of

structural MRI data from twenty 6-month-old infants, has

demonstrated a link between maternal sensitivity and hip-

pocampus volume (Rifkin-Graboi et al. 2015)—specifi-

cally, reduced maternal sensitivity was associated with

larger volumes. While these studies are important first

steps, some had a lengthy period between caregiving

measures and brain MRI acquisition (Kok et al. 2015;

Moutsiana et al. 2015), and others used adolescent samples

(Whittle et al. 2014). In infancy and childhood, the changes

in brain volume over time occur in parallel to maturation of

cognitive, motor and socio-emotional processes (Shulman

2016; van Soelen et al. 2012). By examining the brain and

the factors that influence it at the same time, we can begin

to identify possible causes of altered brain growth and

behaviour, as well as potential treatment targets and

biomarkers that are predictive of outcomes.

In the current study, we used magnetic resonance

imaging (MRI) to investigate whether mother–infant

interactions observed in a community sample of mothers

and their 3- to 6-month-old infants, are related to variations

in regional brain volumes. In addition to studying an

association between maternal behaviours and infant brain

volume, it is important to know whether—or not—infant

behaviours are related to brain volumes as this may help us

understand what brain systems drive infant behaviour and/

or respond to infant behaviour changes. Such information

may eventually help us develop objective predictive tools

to identify infants who might benefit from early interven-

tion to improve outcomes. Moreover, since there is a

bidirectional link between maternal sensitivity and infant

behaviours (Beebe et al. 2016; Feldman 2007; MacLean

et al. 2014), it is also possible that infant behaviours relate
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to brain development indices. Therefore, we predicted that

there would be a relationship between both maternal and

infant behaviours and regional brain volumes. Owing to

limited prior information in infancy, with both larger and

smaller regional brain volumes reported in relation to early

caregiving, and no previous evidence in relation to infant

behaviours, the direction of this relationship was not a

priori predicted.

Finally, where an association between brain regions and

mother–infant interactions was observed, we conducted an

exploratory examination of potential sex differences in

these relationships. As preclinical and clinical studies of

adverse rearing conditions (i.e., exposure to childhood

maltreatment) indicate that the male brain is influenced

more by the early environment (Belsky and de Haan 2011;

Glaser 2000), we predicted that any relationship between

maternal and/or infant behaviour and brain would be

stronger in males.

Methods

Participants

Participants were 43 mother–infant dyads recruited from

the local community in London. The aim was to capture

data from infants aged around 4 months. For logistical

reasons, infants were eligible for the study if they were

aged between 3 and 6 months, born at term (gestational age

[36 weeks) with no congenital abnormalities. Mothers

had to have a working knowledge of the English language,

and be free of any current or past major psychiatric illness,

or any antenatal or obstetric complications potentially

altering infant development (for example, perinatal

asphyxia). Exclusion criteria included contraindications for

MRI scanning (for example, metallic implants or pace-

makers). Written informed consent was obtained from

mothers for the protocol approved by the UK National

Research Ethics Committee (REC 08/H0718/76,

06/MRE02/73 and 12/LO/2017).

A total of four MRI scans were excluded from the

analysis due to poor image quality driven by motion arte-

facts (n = 3), and an incidental brain anatomical anomaly

(n = 1). Hence, the final sample included 39 infants (mean

age = 4.83 months, SD = 1.15 months; 51.3% male) with

data on both measures, i.e., mother–infant interactions and

brain volumes from MRI scans. Of the total sample, 51.3%

(n = 20) were male, and there was no difference in infant

age at scan between the sexes (p = 0.577). Maternal and

infant demographic characteristics for the total sample, and

split by infant sex, are presented in Table 1.

Procedures

Mother–infant interactions

Observations of mother–infant interactions were video-

recorded for 5 min using a standard assessment protocol of

face-to-face play (Murray et al. 1996b)—with the infant

placed in an infant seat. Mothers were instructed to play

with and talk to their infant as they normally would, but

without using any toys or objects. Maternal and infant

behaviours were coded by two trained raters using the

Global Rating Scales (GRS, Murray et al. 1996b), which

are sensitive to impaired interactions even in low-risk

samples (Gunning et al. 2004).

The first five uninterrupted continuous play minutes of

videotaped mother–infant interaction were coded as in

previous studies (Halligan et al. 2013). Maternal commu-

nication modalities coded were sensitivity and affect.

These dimensions were included since maternal sensitivity

is known to predict infant and child cognitive outcomes,

and high levels of negative affectivity disrupt the infant’s

regulatory capacity and quality of parent–infant relation-

ships, leading to maladaptive child outcomes (Murray et al.

1996a; Murray and Trevarthen 1986). Additionally, two

infant dimensions were included—communication and

affective state—both of which are critical for shaping

cognitive outcomes (Cates et al. 2012).

In line with previous work, the dimensions were scored

on a standard five-point scale, where 1 corresponds to

‘‘poor’’ interactive maternal or infant behaviour and 5 to

most ‘‘optimal’’ behaviour. Dimensions of mother–infant

interactions were derived as per standard use in previous

studies (Murray et al. 1996a; Stein et al. 2012).

(1) Sensitivity Maternal response to the infant’s com-

munication cues; the extent to which it is contingent

and appropriate to the infant’s needs and experi-

ences; also including attitude and feelings towards

the infant. Maternal sensitivity was characterized by

warmth, acceptance, non-demanding, and non-intru-

sive behavioural dimensions.

(2) Affect Maternal demonstration of affective state,

including positive and negative affectivity (i.e.,

depressive-like expressions). Affective state was

characterized by level of maternal enjoyment, effort

and vitality, degree of self-consciousness, and the

extent of anxiety in the interaction.

(3) Communication Infant’s level of engagement and

communication (i.e., positive vocal and non-vocal

behaviour directed towards the mother). Communi-

cation included the amount of visual contact, and

positive vocalizations, in addition to other forms of
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communication (for example, mouthing, movement

of limbs).

(4) Fretfulness Infant’s affective state and level of

distress.

Inter-rater intraclass correlations (Shrout and Fleiss

1979) were measured on a randomly selected 20% of the

interactions, and ranged from 0.741 to 0.993, indicating

good-to-excellent inter-rater reliability. Discrepancies

between raters were discussed, and final ratings were

determined in collaboration with members of the Winnicott

Research Unit who were involved in the development of

the scale. ICCs stated for the GRS scales utilized absolute

scores and were calculated prior to adjustments to rat-

ings—that is, they include the original values by raters.

MRI data acquisition

MRI data were acquired on a 1.5-T General Electric

scanner (GE Medical Systems, Milwaukee, WI, USA),

equipped with an 8-channel head coil. Infants were scanned

in natural sleep; further details can be found in Blasi et al.

(2011). A T2-weighted fast spin echo (T2w) sequence with

the following imaging parameters was acquired: number of

slices = 20; slice thickness = 4 mm; slice gap = 2 mm;

repetition time = 3000/4500 ms; echo time = 115 ms;

field of view = 180 mm; flip angle = 90�; matrix

size = 256 9 224. The structural sequence used for this

study was necessarily a short scan acquired alongside

functional MRI. All images were analysed blind to mother–

infant interaction ratings.

Image processing and volumetric segmentation

The T2w MR images were first skull-stripped using label

propagation and decision fusion of three manual brain

masks (Heckemann et al. 2006). Segmentations of the

masked images were then performed using an atlas-based

method, which adapted the Statistical Parametric Mapping

(SPM v.8) software, and a probabilistic neonatal brain atlas

(Kuklisova-Murgasova et al. 2011) as an input to the SPM

software. The SPM segmentation model unifies tissue

classification, image bias correction and non-linear atlas

registration (Ashburner and Friston 2005). Iterated Condi-

tional Modes were employed to optimize the Gaussian

mixture model (GMM) parameters for the tissue intensity

distributions, the bias field parameters and the atlas

deformation parameters. The GMM parameters were esti-

mated using an expectation–maximization algorithm

(Fombonne 2009) and a Levenberg–Marquardt algorithm

(Courchesne et al. 2000), to obtain the bias field and

deformation parameters. Subsequently, the segmentation of

cerebrospinal fluid (CSF) was refined by thresholding the

masked T2w image based on the mean of the intensity

distribution calculated using the SPM posterior probability

map of CSF. The partial volume misclassifications by this

intensity-based SPM segmentation model were corrected

using second order Markov random fields, which enabled

Table 1 Maternal and infant demographic characteristics for the whole sample and by infant sex

Whole sample (N = 39) Males (n = 20) Females (n = 19) Sex difference

statistic (p value)

Infant demographics

Age at MRI (months); mean (SD) 4.83 (1.15) 4.73 (1.20) 4.94 (1.11) t = -0.563, p = 0.577

Gestational age at birth (weeks); mean (SD) 39.71 (1.95) 39.85 (1.83) 39.57 (2.11) t = -0.445, p = 0.659

Birth weight (g); mean (SD) 3390.51 (527.48) 3490.50 (424.05) 3285.26 (612.19) t = -1.22, p = 0.229

Weight at MRI (g); mean (SD) 7105.30 (1302.95) 7262.51 (1172.48) 6939.81 (1440.83) t = -0.77, p = 0.450

Maternal demographics

Age (years); mean (SD) 33.82 (4.45) 33.90 (4.48) 33.74 (4.53) t = -1.13, p = 0.911

Ethnicity; n (%) v2 = 4.47, p = 0.214

White 32 (82.1) 18 (90.0) 14 (73.7)

Asian 4 (10.3) 1 (5.0) 3 (15.8)

Black 1 (2.6) 1 (5.0) 0 (0.0)

Mixed race 2 (5.1) 0 (0.0) 2 (10.5)

Educational level; n (%) v2 = 1.25, p = 0.536

GCSE and A-levels 2 (5.1) 1 (5.0) 1 (5.3)

Vocational college 4 (10.3) 1 (5.0) 3 (15.8)

Higher education 33 (84.6) 18 (90.0) 15 (78.9)

SD standard deviation, GCSE General Certificate of Secondary Education, A-Levels General Certificate of Education Advanced Level, Higher

education undergraduate and postgraduate degree
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spatial constraints to be imposed by configuring a three-

dimensional connectivity tensor (Erskine et al. 2013).

Following this automated protocol, one rater examined all

images in a final manual editing process using ITK-SNAP

(v.2.2) (Yushkevich et al. 2006).

This process yielded volumes of the following brain

regions (Fig. 1): (a) CSF (including both CSF, third ven-

tricle and fourth ventricle); (b) lateral ventricles (including

the cavum septum pellucidum and vergae); (c) midbrain

(including the cerebral peduncle, substantia nigra, brain-

stem and pons); (d) cerebellum; (e) subcortical grey matter

(including the caudate, putamen, globus pallidus and tha-

lamus), and the remaining (f) total grey and white matter.

Further grey and white matter segmentation was not con-

ducted given the difficulty in accurately classifying these

tissue classes at this age (Hazlett et al. 2012). Finally, a

measure of (g) intracranial volume was also obtained by

summing all regions (a–f). All regional brain volumes were

expressed as proportions of intracranial volume, and these

‘corrected’ measures were used in the analyses.

Volumetric segmentations: intra-rater reliability

The reliability of the volumetric segmentations was con-

firmed by intra-rater intraclass correlations between the

final segmentations, and a repeat measurement of a random

20% selection of the automatically segmented images. For

the intracranial volume, the intraclass correlation of the

intra-rater variability was 0.998 (p\ 0.001), indicating

excellent reproducibility. Similar results were found for the

individual correlations of each brain region: CSF (0.989,

p\ 0.001), lateral ventricles (0.965, p\ 0.001), midbrain

(0.918, p\ 0.001), cerebellum (0.948, p\ 0.001), sub-

cortical grey matter (0.923, p\ 0.001), and total grey and

white matter (0.984, p\ 0.001). The ICCs stated were

derived from absolute measurements.

Statistical analysis

Data were analysed using the IBM SPSS (Statistical Pack-

age for the Social Sciences) Software Package (v.22) (SPSS

Chicago, IL, USA). We examined the relationships between

mother–infant interactions and brain volumes across the

entire cohort; when these were present we then examined the

relationship in male and female infants separately.

First, descriptive data were examined to confirm that

these conformed to assumptions of normality. Regional

brain volume measures were ‘corrected’ (expressed as

proportions of intracranial volume) and the sexes com-

pared. Next, a set of planned bivariate correlation analyses

between the maternal and infant interaction indices and

brain volumes was calculated. A threshold of at least a

moderate effect size (r[ 0.3) with the significance level

set to p\ 0.05 was selected as preliminary evidence for a

relationship between behaviour and brain volume (Cohen

2013; Kotrlik and Williams 2003). Second, after a

Fig. 1 Volumetric

segmentation of a 4-month-old

brain. a T2-weighted axial MRI

image of a 4-month-old infant

brain. b The final result of the

volumetric segmentation, with

label maps for CSF (pink),

lateral ventricles (light blue),

midbrain (green), cerebellum

(yellow), subcortical grey matter

(dark blue), and total grey and

white matter (red)
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Bonferroni correction for multiple correlations, where a

significant association emerged, the association between

interaction dimension and brain volume was further

examined using the PROCESS macro tool (Hayes 2013).

We estimated whether the interaction term between each

mother and infant behaviour and sex (i.e., maternal inter-

action dimension 9 sex and infant behaviour 9 sex) was

associated with brain structure volume. Infant age and

weight at time of scan were included as covariates, to

adjust for age and weight differences in brain volume

(Parikh et al. 2013). We also controlled for maternal edu-

cation (an index of socio-economic status), which has been

linked to brain structure (Brito and Noble 2014). PRO-

CESS applies bias-corrected bootstrapping intervals to

probe the interaction term and make inferences about

indirect effects, rather than relying on the normality

assumption. The number of bootstrap samples used to

determine 95% bias-corrected bootstrap confidence inter-

vals was 10,000. PROCESS also produces the conditional

effects of the independent variable at the two values of a

binary moderator (sex: male = 0, female = 1).

Results

Table 2 shows the means, standard deviations, and sex

differences for mother–infant interaction dimensions and

brain volumes. Significant sex differences were found in

the raw measures of the subcortical grey and intracranial

volumes; in both instances, male infants had larger vol-

umes than females—subcortical grey: (males:

mean = 36.17, SD = 4.16; females: mean = 33.05,

SD = 2.36; t (37) = 2.89, p = 0.007), and intracranial

volume (males: mean = 888.56, SD = 88.54; females:

mean = 825.20, SD = 102.68; t (37) = 2.07, p = 0.046).

Relationship between mother–infant interaction

dimensions and brain volumes

Maternal affect

Maternal affect was positively correlated with total grey and

white matter volume, and negatively correlated with CSF

volume (r = 0.33, p = 0.042; r = -0.33, p = 0.039,

respectively). Thus, infants exposed to negative affect (i.e.,

depressive-like expressions) had smaller total grey and white

matter volumes, and larger CSF volumes. However, these

associations did not survive correction for multiple testing.

Maternal sensitivity

Furthermore, a positive association of moderate effect size

was found between maternal sensitivity and subcortical

grey matter volume (r = 0.54, p\ 0.001) in the whole

sample—i.e., infants interacting with less sensitive mothers

had smaller subcortical grey volumes. The association

survived correction for multiple comparisons (Bonferroni

corrected p value =0.001). When adjusting for covariates

(infant age, weight and maternal education) the association

remained statistically significant (B = 0.002, p = 0.046),

and there was no evidence that infant sex moderated the

association between maternal sensitivity and subcortical

grey matter volume, as the interaction term (maternal

sensitivity 9 sex) was not significant (p = 0.806). Fur-

thermore, none of the covariates were associated with the

outcome (i.e., subcortical volume) in the model tested.

Infant communication

There was a significant negative correlation of moderate

effect size between infant communication and cerebellar

volume (r = -0.48, p = 0.002) in the whole sample—i.e.,

greater infant communication and engagement during

mother–infant interactions was associated with smaller

cerebellum volumes. This association also survived cor-

rection for multiple comparisons (Bonferroni corrected

p value =0.020), and remained significant when adjusting

for covariates (B = -0.01, p = 0.003). Covariates asso-

ciated with the outcome (i.e., cerebellum volume) in the

model tested included infant age (p\ 0.001) and sex

(p = 0.019)—implying larger cerebellum, in older, male

infants. Furthermore, the interaction term (infant commu-

nication 9 sex) in this model was significant (B = 0.01,

p = 0.017), indicating that infant sex moderated the asso-

ciation between infant communication and cerebellum

volume (R2 increase due to the interaction = 0.09,

F = 6.32, p = 0.017). While the conditional association

between infant communication and cerebellum volume was

significant in male infants (B = -0.05, p = 0.003), sug-

gesting smaller cerebellar volumes with increased com-

munication; there was no such evidence in female infants

(B = 0.00, p = 0.762).

Infant fretfulness

Infant fretfulness was not significantly correlated with

regional brain volumes

Discussion

In this cross-sectional exploratory study, we show that

variations in typical mother–infant interactions are asso-

ciated with differences in infant brain volumes. Specifi-

cally, we found that lower maternal sensitivity was

correlated with smaller subcortical grey matter volumes in
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both sexes. In contrast, male infants with higher levels of

communication during early interactions had smaller

cerebellar volumes.

Prior studies of extreme neglect, leading to paediatric

post-traumatic stress disorder, have reported that childhood

maltreatment is associated with smaller total grey and

white matter volumes, and larger frontal lobe CSF vol-

umes, especially in males (De Bellis and Keshavan 2003;

De Bellis et al. 2002). A more recent investigation of

normal variations in parental care and brain structure (at

8 years of age) has revealed a similar relationship between

early childhood parental sensitivity and total brain and grey

matter volumes (Kok et al. 2015). More specifically, and

when compared to other brain regions, the subcortical grey

matter appears to be particularly ‘responsive’ to early

environmental influences. For example, the basal ganglia

and thalami (which comprise the subcortical grey) are very

sensitive to hypoxic events in utero (Okereafor et al. 2008;

du Plessis and Volpe 2002; Shalak and Perlman 2004); and

infants so exposed, tend to have poor neurodevelopmental

outcomes.

Our work extends these findings to show that a rela-

tionship between maternal sensitivity and infant brain

development is present from as early as 3 months. How-

ever, these findings are correlational and do not necessarily

indicate a causative link between early care and infant

brain structure. Also, we cannot say firmly whether this

relationship has ‘positive’ or ‘negative’ developmental

implications. Neither can we be certain whether smaller

regional brain volumes are a consequence of poorer par-

enting quality, or whether infants with smaller regional

brain volumes influence their mothers’ interactions. It is

also possible that since infant and mother are closely

genetically related, the associations observed could be

mediated through shared genetic variants, including an

inherited brain volume and behavioural style.

We do suggest, however, that the infant stress response

system, which undergoes rapid development in the first

year of life, is likely to be involved. For example, in the

early postnatal period when the hypothalamic–pituitary–

adrenal (HPA) axis of infants is labile, sensitive parenting

is associated with either smaller increases or less prolonged

activations of the infant HPA axis, when subjected to mild

stress (Albers et al. 2008). Therefore, exposure to negative

(for example, insensitive or intrusive) parental behaviours

may constitute a source of stress for the infant, and activate

the infant’s adrenocortical axis (Atkinson et al. 2013). The

subsequent elevation in cortisol may influence brain vol-

ume and ‘connectivity’ in the growing child (Sarkar et al.

2014). Furthermore, mothers who are more sensitive in the

postnatal period have been reported to demonstrate secure

mental representations of attachment during pregnancy,

which in turn may impact upon the HPA axis and the intra-

uterine environment (Kinsella and Monk 2009). Hence,

associations between maternal behaviours and infant brain

volume may have their origins even earlier in development,

Table 2 Mother–infant interaction dimensions and brain volumes: whole group descriptive statistics and comparisons by infant sex

Whole sample (N = 39) Males (n = 20) Females (n = 19) Sex difference

Mean (SD) Mean (SD) Mean (SD) t p value

Interaction dimensionsa

Maternal dimensions

Sensitivity 3.48 (0.54) 3.51 (0.52) 3.45 (0.56) -0.30 0.765

Affect 4.25 (0.53) 4.26 (0.54) 4.23 (0.52) -0.21 0.836

Infant dimensionsa

Communication 3.52 (0.91) 3.76 (0.86) 3.28 (0.91) -1.70 0.098

Fretfulness 4.11 (0.69) 4.06 (0.66) 4.15 (0.74) 0.40 0.695

Brain volumes, cm3

Total grey and white matter 586.12 (69.66) 603.53 (69.35) 567.80 (66.92) 1.64 0.110

Midbrain 13.90 (1.91) 14.42 (1.83) 13.35 (1.89) 1.79 0.082

Subcortical grey 34.65 (3.71) 36.17 (4.16) 33.05 (2.36) 2.89 0.007

Cerebellum 74.83 (11.91) 77.11 (12.51) 72.43 (11.06) 1.24 0.224

Lateral ventricles 14.27 (4.58) 15.01 (4.54) 13.49 (4.62) 1.03 0.308

Cerebrospinal fluid 133.94 (40.70) 142.36 (44.95) 125.07 (34.68) 1.34 0.189

Intracranium 857.71 (99.72) 888.58 (88.54) 825.20 (102.68) 2.07 0.046

a Low scores indicate poor interactions (for example, lower levels of sensitivity, increased depressive affect, fewer communication attempts and

increased infant fretfulness)
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but future studies including objective measures of the HPA

axis and a comprehensive characterization of maternal

psychopathology during pregnancy are needed to better

understand the mechanisms involved. In addition, as

maternal sensitivity is thought to be a stable trait over time

(Feldman 2010), follow-up of these dyads would help to

determine whether the relationship we observed between

maternal sensitivity and the infant brain persists or shifts as

children grow.

An important aspect of our study design was that it

also permitted examination of a possible link between

infant behaviour (for example, communication and fret-

fulness) and brain volume. We found that a smaller

cerebellum volume is associated with better infant

communication, and this relationship was particularly

evident in male infants. Again, we emphasize that the

causal direction of this relationship is not known—i.e.,

does cerebellar development drive communication, or

vice versa? Regardless, a link between cerebellar

development and communication is not surprising given

its key role in emotion processing and executive func-

tioning (Schmahmann et al. 2007). For example, the

cerebellum has been proposed to have a key role in the

temporal processing of events and in allocating atten-

tional resources in ‘real-time’ to guide or prepare

behaviour (Schwartze and Kotz 2016). In addition, the

cerebellum responds to auditory stimulation including

spoken language (Buckner 2013). Together, these attri-

butes likely make a key contribution to organizing

effective communication during face-to-face interaction,

and our data suggest that the link between cerebellum

and communication is present from early infancy. Fur-

thermore, that our results reveal a relationship primarily

in males might also have been expected, as the devel-

opmental trajectory of the cerebellum is sexually

dimorphic. The male cerebellum develops more slowly

than the female (Tiemeier et al. 2010), potentially

making the former more vulnerable to early adverse

environments. Consistent with this, cerebellar pathology

is a hallmark of neurodevelopmental disorders, such as

ASD, which also shows marked sex differences (Wang

et al. 2014). Finally, our sample size and current study

design precludes an in-depth analysis of potential pro-

cesses which might explain the link between infant

behaviour and brain volume; including, for example, the

role of maternal sensitivity which could be considered in

future research.

Our study has a number of limitations. First, as noted

above, our results are correlational and causality cannot be

inferred. Second, although in line with the current literature

(Rifkin-Graboi et al. 2015), our sample size was modest

and replication in larger samples will be necessary. Third,

the infants in our study were mainly from white European

‘middle-class’ families, educated to degree level, and

therefore, we cannot be certain that these results generalize

to families of different ethnicities and educational back-

grounds. Fourth, we did not define a priori regions of

interest since we do not yet have extensive knowledge of

all brain areas affected by normative variations of parent-

ing in infancy. Fifth, our primary goal in this initial study

was to establish if there were brain regions linked to

mother-infant interactions across the group, and then,

having done that, to explore if there were sex differences in

those specific regions. This approach helped us avoid type

1 error when running multiple tests. However, it risked

generating type 2 errors of incorrectly retaining a false-

negative finding. Therefore, we cannot exclude the possi-

bility that there are sex differences in regions without main

effects; and in our ongoing studies we are recruiting much

larger cohorts in order to look at each sex separately across

multiple brain regions. We hope this will provide adequate

power to explore regional associations with sex and par-

ent–child interactions in detail. Finally, there were also

technical constraints to our study. The scanning of very

young infants is challenging and the structural sequences

used were of relatively low resolution. Hence, our overall

volumetric measurement may miss the fine-grained struc-

tural differences that might be detectable in larger samples,

or through higher resolution scanning protocols. Further-

more, and in line with previous studies of this age range

(Hazlett et al. 2012), another limitation was the inability to

differentiate between grey and white matter volume, due to

ongoing myelination in these young infants.

Nonetheless, the current analyses provide a Proof of

Principle that early mother–infant interactions are associ-

ated with variations in infant brain development. If correct,

our finding that early sensitivity (a modifiable factor) is

linked to the development of brain regions (known to

impact upon emotional and cognitive development), opens

up the potential to influence infant developmental

trajectories.
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