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ABSTRACT  

The use of genetically engineered (GE) crops promises to deliver remarkable results from an 

environmental, economic and human health point of view. Presently, the world area planted with GE crops is 

devoted mainly to three sorts of genetic alteration, herbicide tolerance, insect resistance (IR) or a 

combination of both. In this thesis, the discussion focuses on genetically engineered insect resistant (GEIR) 

crops expressing toxins from the soil bacteria Bacillus thuringiensis (Bt) producing Crystalline (Cry). The 

prevailing scientific opinion is that although GEIR crops carry a certain degree of uncertainty, the potential 

risks are not considerably different to those associated with insecticides. Given the current understanding, the 

actual dispute about the risks is based mainly on the potential long-term effects, including gene slipover, 

development of pest resistance and the impact on non-target organisms. A further concern is that insect 

species that are not susceptible to the expressed toxin will develop into secondary pests and cause significant 

damage to the crop.  

In this thesis, the causes and impact of secondary pest outbreak are reviewed, analysed and 

incorporated within a novel bio-economic modelling framework. The bio-economic model takes into 

consideration the dynamics of two pest insects competing for the same resource and the resultant impact on 

maize farmers’ net returns. The modelling developed culminates with the inclusion of spatial features 

explicitly represented. The resulting bio-economic spatially explicit population model evaluates the 

development and impact of an invasive species that is not susceptible to the insecticide toxin expressed by 

the transgenic crop. This work provides insights and future recommendations for academic research, policy 

makers and farmers regarding the control and management of a new incursion of hazard (non-native) species. 

The research undertaken in this thesis aims to fill an important research gap on the impact of secondary pests 

GEIR crops, in particularly Bt maize. Overall, the results show that the use of Bt maize could indeed bring 

economic benefits to farmers while decreasing the burden of insecticides. It is also demonstrated that farmers 

need to be conscious of the possibility of an outbreak of a secondary pest and the consequences of this on 

yields and farm profits. Depending on several factors, it may take a number of years for secondary pests to 

proliferate to relevant levels of importance, thus the need to understand pest dynamics.  
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 GENERAL INTRODUCTION CHAPTER 1.

1.1 Contextualizing biotechnology, agriculture and the present research  

The application of biotechnology in agriculture, sometimes referred to as gene revolution (Raney 

2007), can potentially mitigate some of the backlashes caused by agriculture intensification in the 20th 

century (Tilman 1999). The potential wide benefits include a decrease in pesticide burden, reduction of water 

requirements, enhanced crop capacities in less viable soil conditions and nutritional enhancement of essential 

crops (Gura 1999, Wolfenbarger and Phifer 2000). Presently, the world area planted with GE crops, 179.7 

million hectares, is mainly devoted to three sorts of genetic alteration: herbicide tolerance
1
 (53% of the global 

GE area), insect resistance (IR) (14%) or a combination of both (33%) (James 2015). In this thesis, the 

discussion will focus on genetically engineered insect resistant (GEIR) crops expressing toxins from the soil 

bacteria Bacillus thuringiensis (Bt) producing Crystalline (Cry). 

Given the current level of understanding, the actual dispute of risks and benefits is mainly based on 

the potential long-term effects, such as gene slipover, development of pest resistance and the impact on non-

target organisms (NTOs) (Garcia and Altieri 2005, Smale 2006, Lövei et al. 2009). It has been argued that 

ecological shifts may take several years to manifest (Ho et al. 2009), and that the dispersion GEIR crops’ 

contents vary temporally and spatially on a case-by-case basis, which may not reflect the results obtained in 

laboratory studies (Andow et al. 2006, Lövei et al. 2009). A further concern is that other insect species that 

are not susceptible to the expressed toxin will develop into secondary pests and cause significant damage to 

the crop (Sharma and Ortiz 2000, Wu and Guo 2005). The consummation of these concerns will certainly 

affect other trophic chains which, depending on the magnitude of the impact, could become of high economic 

and ultimately of ecological relevance.  

Understanding the spatial patterns of landscape processes and the driving forces that affect flora and 

fauna dynamics and persistence is essential to effective pest management (Lawler et al. 2006, Melbourne and 

Hastings 2008). The incorporation of these dynamics into economic models is an effective way to evaluate 

optimal control strategies. Several models have been developed to provide management solutions combining 

economics and ecology (Keller 2009). These models contribute to a reduction in control or eradication costs 

by recommending cost-effective management procedures. The spatial dimension of bio-economic spatially 

explicit models provides not just new insights into biological processes. But also, by predicting the potential 

distributions and establishment ecological niches, the area upon control should focus is significantly lessened 

(Mack et al. 2000).  

                                                           

1 For further insights on genetically engineered herbicide tolerant crops, the reader is directed to Mazur and Falco 

(1989), Firbank et al. (2003) and Ammann (2005)  
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The thesis is structured as follows: in this first chapter, a brief introduction to the topic is given, and 

the objectives and research questions are outlined. Chapter two provides an overview of the relevant 

literature concerning secondary pests in the context of GEIR crops. Chapter three introduces the study 

context giving brief background information on the maize sector in Spain, and describing the surrogate 

species used in the modelling work. Chapter four provides a comprehensive study of the main causes and 

consequences of secondary pests in the context of GEIR crops, which serves as the basis for the work 

undertaken in the rest of the thesis. Chapter five develops a bio-economic model to analyse interactions 

between primary and secondary insect populations and the impact of different management strategies on 

insecticide use and economic impact over time. Chapter six expands the previous model to integrate spatial 

dynamics of both species using Aragon as a case study, in which the spatial characteristics of the region are 

explicitly incorporated. In particular, this chapter focuses on economic impact for the farmers, as accrued 

from the spread of an invasive species under different control strategies. Lastly, chapter seven summarizes 

and discusses the overall results including the implications for famers, stakeholders and policy makers. 

Recommendations for future research are also provided based on the findings of this thesis. 

1.2 AMIGA project 

This research is part of, and was funded by, the EU FP7 “Assessing and Monitoring the Impacts of 

Genetically Modified Plants on Agro-ecosystems” (AMIGA) project. AMIGA’s main objective is to develop 

a framework that establishes protection goals and baselines for European agro-ecosystems, and to improve 

understanding and awareness of the potential long term environmental effects of genetically engineered 

plants. This thesis forms part of the working pack number 10, “Economic and financial assessment of 

transgenic crops in the EU”, contributing in specific to task 10.3, “To estimate potential “external” economic 

impacts at the farm level in relation to wider agroecosystem function”.  

 

1.3 Research objective and research questions 

This thesis aims to provide a better understanding of the secondary effects of genetically engineered 

insect resistant (GEIR) crops, namely Bt maize, on the agroecosystem and economic returns to farmers. Spain 

has been chosen as study region because it is the leading transgenic adopter in Europe. The spatial model is 

applied to the Aragon since, within Spain, it is the region with the greatest Bt maize hectarage. Furthermore, 

due to the prevailing edaphoclimatic conditions maize farmers are confronted with serious pest problems, 

mainly from corn borers. Paradoxically, it is the high specificity and efficiency of Bt Cry toxins against corn 

borers that may offer ideal ecological conditions for the outbreak of secondary pests. There is the possibility 

that non-susceptible pests will take advantage of the expansion of GEIR crops and resultant absence of the 

primary pests (Eizaguirre et al. 2010). The modelling work presented in this thesis follows an ex-ant 
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assessment perspective. The importance of predicting the biological behaviour of a primary and secondary 

pest, to provide the best management strategy, is stressed. The optimal pest control strategy depending on 

several ecological and economic specifications is explored.  

Specifically, the thesis addresses the following research questions: 

1) What are the main causes of a secondary pest outbreak in the context of GEIR crops? 

2) What are the implications on insecticide use and related economic returns to famers when Bt 

maize is adopted? 

3) What is the impact of a number of pest management options on primary and secondary pest 

populations?  

4) What are the regional economic implications for maize farmers in Aragon if the secondary 

pest is an invasive species, considering the actual and different conventional/Bt maize 

proportion?  

5) To what extent does non-spatial insecticide optimization provide a robust method for 

considering pests’ spatial dynamics control? 

To address the questions outlined above, the thesis is divided into four main research parts. Firstly, 

chapter two and three review the general literature and provide a contextualization of the study. Next, chapter 

four provides an extensive and specific literature review on the mechanisms that may be responsible for a 

secondary pest outbreak the context of GEIR. Three main conjectural causes are raised and discussed: i) a 

reduction in broad-spectrum insecticide applications; ii) reduction of natural enemies, and iii) niche 

replacement. The lessons learned in this chapter are used through the remaining thesis, i.e. they form the 

basis for the mathematical modelling formulation developed further.  

 In the third part of the thesis, chapter five, a bio-economic model is developed to analyse the 

interactions between primary and secondary insect populations and the impact of different management 

options on insecticide use and economic returns over time. The farmers’ economic decision model 

component determines the future insecticide intensity as a function of fixed economic inputs, crop yields and 

pest dynamics. The final farmers’ goal is to optimize the insecticide intensity with respect to an objective 

function criterion, the net present value (NPV), after 25 years. This methodology allows for the incorporation 

of several control techniques simultaneously (e.g. insecticides and Bt maize). By changing the relevant 

parameters (e.g. prices or control thresholds) numerous scenarios are analysed through sensitivity analysis. 

This model is applied to an agricultural landscape (whose area is normalized to one hectare) populated by a 

profit maximizing farmer.  

The fourth part, chapter six, expands the bio-economic model to include a variety of spatial features, 

using a coupled reaction-diffusion system. Specifically this chapter focuses on the maize farmers’ economic 

impact due to the spread of an invasive species under different control strategies based on the application of 
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insecticides in the region of Aragon, Spain. This work provides a robust tool prepared to receive and 

incorporate pests’ specific ecological spatial data to predict its impact on farmers’ future net returns in a 

given area. Thus, chapter six not only provides new insights to understanding pest specific biological 

processes, but also attempts to predict the potential invasion distributions and the resultant establishment of 

ecological niches, i.e. the area upon pest control should focus.  

1.4 Summary 

GEIR crops, like other technical innovations in agriculture, may bring a range of effects on the 

agroecosystem which in turn have a range of secondary impacts. The aim of this thesis is to fill an important 

gap in the assessment of GEIR crops: the outbreak of pests that are not susceptible to the toxin expressed by 

the plant. Particular attention is given to the case of Bt maize in Spain. Using data from various sources, a 

spatially explicit bio-economic population model is developed to account for dynamic feedbacks between 

economic decisions and agro-ecological conditions to support farmers’ management decisions. The final goal 

of the research is to provide insights into the effects of alternative control strategies on pest population 

dynamics and farmers’ economic returns, and the impacts of such alternative pest management strategies.  

 LITERATURE REVIEW CHAPTER 2.

2.1 Chapter introduction 

The intensification of agriculture and development of synthetic insecticides in the mid-twentieth 

century more than doubled worldwide grain production in the last third of the 20
th

 century (Krebs et al. 

1999). Conversely, heavy dependence on and overuse of insecticides has had many unintended 

consequences. Insecticides have been responsible for millions of cases of poisoning including several 

hundred fatalities across the globe (Ecobichon 2001). Negative environmental and ecological impacts have 

also been attributed to the use of insecticides, such as a reduction in biodiversity, insect resistance, negative 

effects on non-target species (e.g. natural enemies) and the development of secondary pests (Hardin et al. 

1995, Matson et al. 1997, Vitousek et al. 1997). In spite of this, in 2011, around 1.3 thousand tons of 

insecticidal active ingredients were used around the world (FAOSTAT data 2011). Genetically engineered 

insect resistant (GEIR) crops could effectively offer a viable alternative to mitigate many of the major 

negative side effects and limitations of insecticides. This would support an agricultural revolution that is 

more productive (Conway and Toenniessen 1999) and which maintains healthy and functional ecosystems 

for future generations (Tilman et al. 2001, Poppy and Sutherland 2004). This chapter provides an overview of 

the underlying theory, principles and literature that support this research. Additionally, it introduces the 

general modelling approach that will be used in chapter five and six.  
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2.2 Bacillus thuringiensis  

GEIR crops have been designed to control infestations of primary target pests in fields, through the 

insertion of the soil bacterium Bacillus thuringiensis (Bt) in the plant tissues. Bt is a gram-positive bacterium, 

common in soil, characterised by its ability to produce insecticidal crystal (Cry) proteins (Broderick et al. 

2006). These Cry proteins have a specific toxic activity against larvae of some Lepidoptera, Diptera and 

Coleoptera (Broderick et al. 2006). It has been proposed that larvae exposure to the toxin causes a prolonged 

cessation of feeding and eventual death by starvation
2
. The high expressed concentration of Bt toxin and 

susceptibility of specific species delivers an almost perfect control during the whole growing season, 

protecting the plant during the vegetation period as well as the eventual yield (González-Núñez et al. 2000).  

2.3 The uncertainties of GEIR cropping  

Overall, the existing literature suggests that the benefits of commercialized GEIR crops have exceeded 

the expectations of field pest control failures based on worst-case scenarios so far (Tabashnik et al. 2008, 

Carrière et al. 2010). Additionally, due to the high specificity and efficiency of Bt Cry toxins toward key 

target pest species, it is generally accepted that any eventual detrimental impact on non-target organisms 

(NTO) is lower for Bt crops than for broad-spectrum insecticides (Cattaneo et al. 2006, Marvier et al. 2007). 

In theory, GEIR crops reduce the reliance on insecticides thereby enabling a reduction in farm operations, 

leading to possible economic, environmental and social benefits (Wolfenbarger and Phifer 2000). The 

reduced use of insecticides may allow higher diversity and density of beneficial arthropods (Naranjo 2005a, 

Lu et al. 2012). Still, regardless of fast adoption worldwide, GEIR crops remain a controversial technology 

surrounded by uncertainty and dividing the scientific community (e.g. the following debate: Andow et al. 

2009, Lövei et al. 2009, Shelton et al. 2009).  

The doubts about the sustainability of GEIR crops are mainly based on alleged methodological 

research faults concerning the potential long-term impacts of GEIR crops, such as the development of insect 

resistance and the impact on NTOs (Garcia and Altieri 2005, Smale 2006, Lövei et al. 2009). Two key 

arguments are used to claim that these long-term impacts will be realised: i) ecological shifts can take several 

years to manifest (Ho et al. 2009), and ii) the impact of Bt crops and/or the dispersion of its contents vary 

temporally and spatially on a case-by-case basis, which may not reflect the results obtained in laboratory 

studies (Andow et al. 2006, Lövei et al. 2009). A further concern is that other insect species that are not 

susceptible to the expressed toxin will develop into secondary pests and cause significant damage to the crop 

(Sharma and Ortiz 2000, Wu and Guo 2005). If these impacts materialise it will certainly affect other trophic 

                                                           

2 For further information on the action mechanisms of Cry toxin in the larvae midgut, the reader is directed to 

Broderick et al. (2006), González-Cabrera et al. (2013), Pérez-Hedo et al. (2013) and Muñoz et al. (2014) 
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chains which, depending on the magnitude of the impact, could become of high economic and ultimately of 

ecological relevance.  

2.4 Secondary pest in the context of GEIR 

There are two phenomena in agricultural systems that are considered as ecological backlash events 

that are of relevance to this concept: firstly “resurgence of insect pests” and secondly “outbreaks of 

secondary pests”. The former refers to a situation in which a suppressed pest population unexpectedly 

rebounds to greater numbers following a pest control action, exceeding the economic injury level (Hardin et 

al., 1995). The latter refers to the emergence of a pest other than that originally targeted by an agricultural 

intervention, and can be seen as “replacement” for the primary pest (Hardin et al., 1995; Metcalf, 1980). The 

causes responsible for both phenomena are relatively similar and include reduction in the number of natural 

enemies and removal of competitors (Hardin et al., 1995; Ripper, 1956). To further understand the concept of 

secondary pests, it is necessary to define the concept of a primary pest as the "targeted" pest for which a Bt 

crop is planted. According to FIFRA Scientific Advisory Panel (1998), a secondary pest is a "non-targeted" 

pest that has historically posed a small or non-existent economic threat, but which could be affected directly, 

by a low to high dose expressed in a Bt crop, or indirectly through changes in insecticide use patterns. 

Metcalf (1986) defined secondary pest outbreaks as a “type II resurgence”, which occurs when the primary 

pest is strongly affected by a pest management strategy, yet is replaced by another pest not affected by this 

pest management strategy. While Berryman et al. (1987, p.3) define this event as ‘an explosive increase in 

the abundance of a particular species that occurs over a relatively short period of time’. As a result of a 

secondary pest outbreak, additional pest management tactics are required. In most cases due to its swift and 

unexpected appearance these events will lead to spraying with broad-spectrum insecticides (Gross and 

Rosenheim, 2011).  

2.5 The opportunistic invasive behaviour of secondary pests  

The colonization of agro-ecological systems by invasive species
3
, also known as biological invasions, 

is a growing global issue that can inflict considerable economic and ecological damage (Liebhold et al. 

2015). Invasive pest species have diverse means of introduction, establishment and spatial-dynamics patterns, 

generally influenced by habitat suitability and anthropogenic activities (Byers 2002). They may take 

opportunistic advantage of altered ecosystems and land-use patterns, such as the expansion of monocultures 

(Tilman 1999, Byers 2002), rather than being the drivers of disturbance themselves (Didham et al. 2005). 

                                                           

3 Several other terms have also been used to coin “invasive” species, including “non-indigenous”, “non-native”, 

“exotic”, “noxious” and “alien”. However, according to National Invasive Species Council (2006) only the terms 

“invasive” or “noxious species” should be applied to “non-native” species whose introduction will likely cause a 

“negative impact on economic, environmental, human or animal health”. 
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Conceivably the two most well-known cases with major impact on GEIR maize cropping are the western 

bean cutworm (WBC) (Striacosta albicosta (Smith)) a noctuid moth native to West and Central America 

(Douglass et al. 1957) and the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte 

(Coleoptera: Chrysomelidae). Both these species are considered important secondary pests, since they show 

low susceptibility to most transgenic maize events currently commercialized (Wilson et al. 2005, Eichenseer 

et al. 2008). In the mid 1990s, the WBC began a well-documented expansion of population range size in 

correlation with the introduction of transgenic maize. It has now effectively established itself as a major 

Lepidopteran pest of maize crops in some areas of the Corn Belt in the USA and Canada (Dorhout and Rice 

2010, Michel et al. 2010, Lindroth et al. 2012). 

 Field trials have shown that transgenic crops expressing Cry1Ab and Cry9C toxins had larger 

populations of WBC compared to conventional maize (Catangui and Berg 2006, Dorhout and Rice 2010). It 

is possible that changes in cultural practices (e.g. conservation tillage and reduced insecticide use) due to the 

widespread adoption of Bt maize across these areas might have contributed to the WBC’s rapid expansion 

(Hutchison et al. 2011). The WCR, native to South and Central America, where it was in biological 

equilibrium with its natural enemies, has spread to North America likely due to the intensification of maize 

production (Hummel 2002). While in Europe it was thought to have been introduced via international 

shipments in the 1990s (Kiss et al. 2005), it has since become one of the major pests in maize throughout 

central Europe and its eradication has become impossible (Kiss et al. 2005).  

Nowadays, invasive weeds cause the greatest direct economic losses with substantive control costs in 

crop production followed by pathogens, which affect mainly plants and livestock (Pimentel et al. 2001). 

Invasive insects, although less damaging than the other two groups are still economically important; 

approximately 40% of all insects present in agricultural crops are invasive species (Pimentel et al. 2001, 

Pimentel et al. 2005). Worldwide the costs of control and damage associated with invasive species were 

estimated by Pimentel et al. (2001) to be more than US $1 trillion annually, or 5% of the global economy. In 

Europe, the number of non-native species established has increased exponentially in the past few decades 

(Butchart et al. 2010). Based on the increasing annual trend in international trade (Levine and D'Antonio 

2003), the prospects of reducing this rate are small. More than 3000 new invertebrate species have already 

breached European borders (Hulme et al. 2009), and 11 of these insect species with agricultural interest are 

included in the 100 worst invasive species present in Europe (DAISIE 2016). According to Kettunen et al. 

(2009), the monetary impact of invasive species present in the European continent is estimated to be around 

€12 billion per annum over the last 20 years. 

2.6 Bio-economic modelling perspective  

In recent years researchers have acknowledged that only a multidisciplinary approach could respond 

to the variety of objectives and challenges faced by various fields, including biological conservation, natural 
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resource management and agriculture (Schmolke et al. 2010). Agricultural systems evolve according to a 

variety of global and local driving forces, be they of ecological, economic or political nature. The latest 

development of bio-economic models has aimed to efficiently integrate these viewpoints into a unique 

flexible tool (Carrasco et al. 2010c, Marten and Moore 2011, Atallah et al. 2015).  

Bio-economic models are tools to evaluate ex-post or to estimate ex-ante impact of farm management 

and policy and/or technology change on agriculture, economics and environment. The integration of 

biophysical models and economic mathematical programming models has proven to deliver important, multi-

scaled and multi-disciplinary answers to a wide range of farming systems under various agro-ecological 

scenarios (Janssen and Van Ittersum 2007, Groot et al. 2012). Specifically, in agriculture, a bio-economic 

model relates a system describing farmers’ management decisions to a system that illustrates current and/or 

alternative production inputs (e.g. fertilizers) or pest control choices (e.g. insecticides) in order to obtain an 

optimal output and associated externalities (Janssen and Van Ittersum 2007, Catarino et al. 2015).  

Realism (to a certain extent) is assured with the inclusion of several constraints in the optimization 

procedures: i) farm limitations (e.g. restricted resources); ii) policy constraints (e.g. maximum allowed input 

use); and iii) biological constraints (e.g. pest damage). The model developed in this thesis is based on a 

mechanistic normative modelling approach, which optimizes the decision variables while maximizing the 

objective set. In contrast to empirical models, which try to find relationships in the observed data, 

mechanistic models rely on existing knowledge and theory (Colbach 2010).  

Normative mathematical optimization approaches have the advantage that calibrations with historical 

data are not strictly required, meaning that a sound knowledge of the system is sufficient to construct the 

model (Buysse et al. 2007). Lack of calibration with real data brings a consequent drawback, the resulting 

outcomes do not necessarily guarantee that practical model replications are efficiently reproduced (Buysse et 

al. 2007). However, acknowledging this limitation, the use of mechanistic modelling approach assumes high 

importance in going beyond the collected data. A sound mechanistic framework allows the extrapolation of 

situations (e.g. from one surrogate species to another, changes in production parameters, etc.) including the 

assessment of extreme scenarios, or simply hypotheses of the relationship between model variables.  

This thesis has built on the pioneering work of Lichtenberg and Zilberman (1986)
4
, in which the a 

damage control model considered pesticides as a damage abatement input that has an indirect effect on 

output. In previous studies, pesticides were modelled as a yield-increasing input (Headley 1968, Hall and 

Norgaard 1973). In the LZ approach, damage control inputs do not increase potential output, their influence 

on production is realized by reducing the direct damage, either by humans or in this case by pests. Hence, a 

distinction is made between control methods and other factors of production like land, capital, and labour, 

                                                           

4 For a detailed review on the Lichtenberg and Zilberman (1986) damage control approach see Sexton et al. 

(2007).  
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which also have the capacity to increase the final output. Furthermore, this approach allows for changes in 

the damage control agent productivity over time, i.e. it makes possible the integration of biological dynamic 

systems such as pest population dynamics or resistance building models (Chambers 1988, Babcock et al. 

1992, Carrasco-Tauber and Moffitt 1992). The specifications of this approach are developed further in 

chapter four.  

2.7 The integration of space in bio-economic models 

It has been recognized that incorporating economics into invasive models is an effective way to assess 

control strategies (Finnoff et al. 2009, Epanchin-Niell and Hastings 2010, McDermott et al. 2013). Numerous 

models have been developed to provide management solutions that combine economics and ecology (Keller 

2009). These models can reduce control or eradication costs by recommending cost-effective management 

procedures. However, much of the economic literature on biological invasions regarding pest management 

has not focused on the spatial features of the problem. Biological invasions are by nature related to spatial-

dynamic processes. The spatial dimension of bio-economic spatially explicit models provides not just new 

insights to understanding biological processes, but by predicting potential distributions and establishment of 

ecological niches, the area upon which control should focus is significantly lessened (Mack et al. 2000). 

Although the recent advancement in modelling development has increased our ability to better estimate 

species behaviour, the lack of data is still a limiting factor (Getz and Saltz 2008). This has engendered great 

challenges due to large uncertainty in the model components (Epanchin-Niell and Hastings 2010).  

Spatial heterogeneity is an important factor to consider in the study of populations, ecosystems and 

landscapes (Shaver 2005). Understanding the spatial patterns of landscape processes and the driving forces 

that affect flora and fauna dynamics and persistence is essential to effective pest management (Lawler et al. 

2006). In the case of invasive species it is of primary importance to link spatial patterns and economic 

aspects to ecological processes, such as resources distribution (Tscharntke et al. 2002), competition with 

other species (Hastings et al. 2005) , exposure to predation (Fenichel et al. 2010) and movement patterns of 

organisms (Mazzi and Dorn 2012). However, incorporating spatial aspects into bio-economic analysis is not 

trivial (Seppelt and Voinov 2002, Vinatier et al. 2011).  

There are essentially two different approaches to modelling a population over time and space: 

individual (or agent) based models (IBM) and population based models. The latter has been applied in 

several fields (Bonabeau 2002, Evans and Kelley 2004, Railsback et al. 2006, Matthews et al. 2007), 

including the management of invasive species (Grimm et al. 2005, Epanchin-Niell and Hastings 2010). IBM 

are exclusively computer systems composed of autonomous entities, such as animals, plants or humans, 

capable of taking decisions and interacting with the environment and other individuals (Huston et al. 1988, 

Rebaudo and Dangles 2013). Each individual is explicitly modelled as unique and discrete entity, acting 

according to a set of rules, that may change along its life cycle (Grimm et al. 2006). If their biological 
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features are common and well known (Bousquet and Le Page 2004), for example in a colony of insects, it is 

possible to construct the dynamics of the entire population or group (Jongejans et al. 2008) by tracking and 

aggregating the individual's behaviour, mobility, reproduction, growth and mortality. 

In chapter six, building on the bio-economic model developed in chapter five, the spatial dynamics 

between two competing pest species are modelled based on a reaction-diffusion (RD) system (Okubo 1980). 

In population based models, the movement of a group of organisms is frequently treated as a diffusion 

process using a partial differential equation (PDE) (Okubo and Levin 2013). The intuition behind using PDEs 

is that patterns resulting from the average movement at a population level are not dependent on the individual 

behaviours of organisms (Okubo and Levin 2013). Spread in this methodology is treated as continuous and 

constant (Hastings et al. 2005). This modelling framework requires a robust analytical structure so control 

strategies can be prioritized and directed appropriately (Finnoff et al. 2009). Due to their inherent complexity, 

numerical experiments and simulations are generally required to solve these models (Morozov and Poggiale 

2012). Research models based on a realistic landscape, such as the one here developed, can be used to predict 

species spread behaviour and the associated economic effects.  

2.8 Summary 

In this chapter, the underlying theory, principles and literature that support this research have been 

outlined. It was shown that although GEIR technology may offer benefits to agriculture, it also raises several 

concerns. One of these concerns is the focus of this research; the outbreak of secondary pests in GEIR crops. 

Intensive agriculture and the employment of GEIR crops brings ecological disturbances which secondary 

pests may take advantage of, as they would any other insecticidal control technique. This aspect will be 

discussed in detail in chapter four. Finally the general modelling approach that will be used in chapter five 

and six was reviewed. The following chapter introduces the study region as well as the surrogate species, and 

demonstrates the reasoning behind these choices.  

 

 STUDY CONTEXT  CHAPTER 3.

3.1 Chapter Introduction  

Despite the fact that the global area planted with genetically engineered (GE) crops has increased 

substantially, the European Union (EU) case is rather different. Due to the strict regulations on transgenic 

plants, the cropping area and the number of adopting member states, countries have oscillated considerable. 

Nowadays only Spain is growing significant amounts of the only GE crop allowed, Bt maize. This chapter 



 

 

 

Page | 11 

 

 

 

provides a general view on transgenic crop adoption in Europe and it introduces the motives behind choosing 

Spain as the study context and the surrogate species used.  

3.2 European Union context 

While the world experiences a considerable increase in the number of adopting countries as well as in 

the GE cropping area, in the EU the case is different. The EU has moved towards GM crop biotechnology 

with scepticism, mainly due to the continuing debate among political, scientific and consumer communities. 

In 2015, 19 EU member states (MS) requested a complete ban on GEIR production in all or part of their 

territories. Furthermore, European legislation on transgenic plants requires the completion of extensive 

studies to determine that their release does not pose any risk to human health or the environment. 

Consequently, the national regulatory approaches taken by most EU member states reflect the inclination to 

adopt a highly precautionary
5
 approach given the alleged scientific uncertainties associated with GM use 

(Levidow et al. 2005, Masip et al. 2013). However, by and large economists have argued that this policy 

framework hinders competitiveness in international markets (Masip et al. 2013). The lower yields accrued 

from pest damage and lower prices caused by decrease in product quality may disadvantage maize famers in 

the world market (Gomez-Barbero et al. 2008). Scientific and policy debates on GE crops in the EU have 

focused more on hypothetical environmental health and safety and less on the possible agronomic and 

economic impact on farmers (Ortego et al. 2009, EFSA 2010b, a).  

Due to legislative barriers, since its first introduction in 1998, the cropping area and the number of 

countries adopting GE crops has oscillated (figure 3.1). Nowadays, although several other events are under 

evaluation by the European Food Safety Authority (EFSA), the only GE crop allowed for cultivation in the 

EU is the maize expressing the insecticidal protein Cry1Ab from Bacillus thuringiensis (Bt maize) (EFSA 

2010a). This GE maize presents a high level of resistance to the main corn borers present in the EU 

(González-Núñez et al. 2000). In 2012
6
, Bt maize was cultivated over 116 thousand hectares, in differing 

proportions, in  Spain, Portugal, Czech Republic, Romania and Slovakia countries (James 2013). However, 

Spain is the only EU member state growing significant amounts of Bt maize.  

                                                           

5 The precautionary principle states that in areas where science is limited and outcomes are unpredictable, 

regulatory authorities are justified in taking action to avoid possible negative outcomes (Levidow et al. 2005) 

6 The agro-economic description made through the thesis concerns the year of 2012 as a matter of coherence, in 

line with the maize spatial data used. 
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Figure 3.1 - Hectares of Bt Maize planted from 2003 to 2012 in EU countries (James 2004, 2006, James 

2009, James 2011, James 2013).  

3.3 Area of study  

3.3.1 Spain 

Maize is cultivated widely in Spain. The regions with the largest maize-growing areas are Castile, 

Estremadura and Aragon (105,061, 60,643 and 57,496 hectares respectively in 2012 (figure 3.2), which crops 

more than half of the total Spanish maize area. The production is located almost entirely in irrigated areas 

and fertile land with a high productive potential (MAGRAMA 2015). Average maize yields per hectare from 

irrigated land in Spain are clearly higher than from non-irrigated land (10.4 vs 4.5 tonnes/hectare) 

(MAGRAMA 2015). These yields are usually obtained with reasonable production costs, hence the interest 

of Spanish farmers in producing maize. The most significant inputs are the sowing, fertilization, irrigation 

and plant health checks. Ex post economic analysis of the performance of Bt maize shows that Spanish 

adopters have obtained higher yields, higher gross margins and better quality of harvested product, along 

with a significant decrease in insecticide applications compared with conventional farmers (Gomez-Barbero 

et al. 2008, Riesgo et al. 2012).  
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Figure 3.2 – Proportion of total maize planted within the Spanish region in 2012 in Spain 

(MAGRAMA 2013). The “other regions” (C. Valenciana, Madrid, Balearics and Castile) share among 

them 1105 hectares.  

 

Maize is almost entirely cropped in a monoculture intensive regime, which, allied with Mediterranean 

climate conditions, favours the development of pests and diseases (Vasileiadis et al. 2011). The most 

troublesome agents that cause high control costs are corn borers, soil insects, some secondary pests and, very 

sparsely, mites and aphids (Gil and Castro 2015). Traditionally, pests have been controlled by cultural 

practices and chemicals, such as seed treatments to control soil worms and broad-spectrum insecticides 

(organophosphates and synthetic pyrethroids) against corn borers and the sporadic appearance of other pests 

(Gil and Castro 2015). Nonetheless, farmers continue to face numerous pest management problems. Cultural 

practices are not efficient and the range of active substances available has decreased over time due to 

environmental protection measures and pest resistance (Maiorano et al. 2009). A further issue, as it will be 

shown in section 3.4, is the problematic case of corn borer control based on insecticide applications. Hence it 

is not surprising that Spanish farmers, especially in regions where corn borer pressure is high such as 

Catalonia and Aragon, have quickly adopted Bt maize.  

In Spain, Bt maize cultivation began in 1998 after the approval of the variety Bt-176 by the company 

Syngenta. In 2003 the EU approved cultivation of new Bt maize (MON-810 by Monsanto), leading to a 

substantial increase in the cultivated area (figure 3.1). In 2012, two out of the 11 regions where Bt maize was 
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grown accounted for about 65% of the total planted area (López 2013). These were Aragon in the first place 

(41669 hectares, 75 % adoption rate) and Catalonia in second (33531 hectares, 93% adoption rate) (figure 

3.3).  

 

Figure 3.3 – Evolution, from 2003 to 2012, of Bt maize hectarage within the Spanish autonomous 

regions (MAGRAMA 2013). Each line represents a different Spanish autonomous region.  

3.3.2 Aragon 

Aragon is one of 17 Spanish autonomous communities, situated in the Ebro basin in north-eastern 

Spain with an area of 47.720 km
2
. Within the 2.345 km

2
 of Aragon’s UAA (in 2012), after barley and wheat, 

maize was the most important cereal, and being within the Ebro basin the most important maize area in the 

region. The total cultivated area of maize has fluctuated over the last ten years without a growth or decline 

trend. However, it is clearly noted in figure 3.4 that the area cultivated with Bt maize has increased 

substantially since 2003. From the 55.484 hectares planted with maize in 2012, 75% was Bt maize, 

contributing with 1/3 of the total Bt maize produced in Spain (López 2013). The high adoption likely mirrors 

the farmers’ satisfaction with pest control and the general positive economic returns of the GE variety 

(Gomez-Barbero et al. 2008). 
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Figure 3.4 – Evolution, from 2003 to 2012, of Bt (red line), conventional (green line) and total maize 

(blue line) hectarage in Aragon, Spain (López 2013, MAGRAMA 2013). 

 

Aragon regional edaphoclimatic conditions are ideal for corn borers and other pests to develop, 

causing recurrent production losses. As will be shown in the following section, control of pests, especially 

corn borers, is very difficult. Hence, severe crop losses are not unusual within conventional maize farming 

systems.  

3.4  The surrogate species  

There is broad consensus that the Mediterranean corn borer (MCB), Sesamia nonagrioides (Lefebvre) 

(Lepidoptera: Noctuidae) and the European corn borer (ECB), Ostrinia nubilalis (Hübner) (Lepidoptera: 

Crambidae) are the most economically important maize pests in Spain and in other countries around the 

Mediterranean basin (Cordero et al. 1998, Malvar et al. 2002). Unlike insecticides, Bt maize provides an 

effective control of these two major lepidopteran pests (González-Núñez et al. 2000, Farinós et al. 2011). 

However, in Spain, two other Lepidoptera, the true armyworm (TAW), [Mythimna (Pseudaletia) unipuncta 

(Haworth) (Lepidoptera: Noctuidae)], and the corn earworm, Helicoverpa armigera (Hübner), are considered 

to be important secondary pests causing occasional but severe damage to maize (Eizaguirre et al. 2010, 

Pérez-Hedo et al. 2012). Attempts to analyse and predict TAW’s outbreaks have been constrained by its high 

flying capacity and reproduction rate, and its expansive and unpredictable behaviour. Additionally, under 

normal conditions, the MCB tends to outcompete the TAW (Eizaguirre et al. (2009). In this context, it has 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

H
e
c
ta

re
s
 

Year 

Total

Bt maize

Conventional maize



 

 

 

Page | 16 

 

 

 

been suggested that the increase of transgenic maize could affect the population dynamics of this secondary 

Lepidopteran pests due to the high efficiency of Bt maize against its target pests (López et al. 2000, López  et 

al. 2008, Eizaguirre et al. 2010). This would arise if TAW takes advantage of the absence of the major corn 

borers (Eizaguirre et al. 2010). These species are representative of the problem of secondary pests explored in 

this thesis, as both species compete for the same food resource – maize – and the MCB, although biologically 

stronger than the TAW, is effectively controlled by Bt maize.  

3.4.1 The primary pest – Mediterranean corn borer  

The MCB is here used as an example of a primary pest due to its historical importance and present 

susceptibility – 99% – to the Cry1Ab toxin (González-Núñez et al. 2000, Farinós et al. 2011). The MCB is a 

cosmopolitan multivoltine species with a wide range of host plants, including maize and rice (Kfir et al. 

2002, Eizaguirre and Fantinou 2012). Where maize production areas have increased in these areas in the past, 

the pest has expanded as a consequence (Eizaguirre and Fantinou 2012). However, its distribution and 

population levels are mainly driven by its sensitivity to sub-zero winter temperatures (Gillyboeuf et al. 1994). 

Temperature is central to the number of MCB generations per year, ranging from one or two 

generations on the Atlantic coasts, up to four generation in the coastal regions of the Mediterranean basin 

(Gillyboeuf et al. 1994, Eizaguirre and Fantinou 2012). The influence of local climatic conditions and 

planting times will influence MCB’s incidence and consequent impacts (Eizaguirre et al. 2002). Cold winters 

help reduce the over-wintering population and can contribute to reduced pest pressure in the following 

growing season. Also, advancing maize cropping period, where field conditions allow, tends to provide better 

protection compared with attacks on later plantings (Eizaguirre et al. 2002). MCB development includes four 

stages: egg, larvae, pupae, and adult, and it overwinters as a diapausing larva in maize stalks and roots 

(Gillyboeuf et al. 1994). The effect of photoperiod and temperature on MCB diapause induction and 

development has been extensively studied (e.g. Eizaguirre et al. 1994, Fantinou et al. 1995). In the study area, 

this species usually achieves two complete generations and one incomplete generation per year (Eizaguirre et 

al. 2002, Eizaguirre et al. 2008). According to Gillyboeuf et al. (1994), only about 5 to 25% of the 

overwintering larvae survive to pupate in spring, with the minimum threshold temperature for the pest being 

around 10ºC (Eizaguirre et al. 2008). These factors were used to calculate the species’ intrinsic annual 

growth rate (see appendix 1).  

Both the ECB and the MCB have a similar behaviour within the plant. Larvae cause damage by 

tunnelling into stems or the ear until pupation, weakening the plants and consequently reducing yield (Malvar 

et al. 1993). Additionally, it facilitates the appearance of fungi (e.g. fusarium) and other pathogens through 

the pest feeding wounds, which decrease the product quality (Folcher et al. 2009). Although uncommon, the 

weakened plant could fail, resulting in a total production loss, especially in cases with severe weather 

situations such as stronger winds and more frequent pelting rains or hail (Gil and Castro 2015). Economic 
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losses accrued to MCB in Spain have not been fully quantified, since the injury is indistinguishable from that 

caused by ECB (Eizaguirre and Fantinou 2012). The damage caused by MCB can reach 30% of the maize 

yield, depending on the date of sowing and on the plant development stage when attacked (Butrón et al. 

1999, Malvar et al. 2004, Velasco et al. 2004, Butrón et al. 2009).  

Endophyte larval behaviour critically limits the efficiency of biological and chemical control. In 

conventional maize cropping, MCB control through the use of insecticides is only moderately effective since 

larval development occurs mainly inside the stalk (Albajes et al. 2002). Application timing is crucial for 

control success with insecticides, hence it is not unusual that repeated applications are often necessary 

(Velasco et al., 1999). When considering an efficient scouting and timing, Clark et al. (2000) report an 

insecticide efficacy of between 67 and 80% per application.  

Conversely, farmers recognize that over applying insecticides may kill certain beneficial natural 

predators of MCB and other maize pests, such as spider mites, requiring additional use of other chemicals 

(for a detailed discussion on farmers perspective on insecticide applications to control MCB, see Gómez-

Barbero et al. 2008). Natural enemies, such as ground beetles, spiders, T. busseolae (Hymenoptera: 

Scelionidae), and parasitoids of MCB play an important role in the control of this pest (Alexandri and 

Tsitsipis 1990, Eizaguirre and Pons 2003, Farinós et al. 2008). Predation pressure comes mainly from egg 

parasitoids which may be responsible for up to 65% of egg mortality, depending on natural environmental 

conditions (Alexandri and Tsitsipis 1990, Figueiredo and Araujo 1996, Monetti et al. 2003). Several other 

management strategies, besides insecticides and the use of Bt maize, have been suggested for the control of 

the MCB populations, such as the uprooting and exposure of the diapausing larvae to the winter cold 

temperatures and mating disruption techniques using sex pheromones (Aguilar et al. 1992, Gillyboeuf et al. 

1994, Albajes et al. 2002). 

3.4.2 The secondary pest – True Armyworm 

The TAW is an important cosmopolitan secondary pest of the Noctuidae family in Europe and North 

America (Bues et al. 1986, McNeil 1987). It is an invasive species that was first noticed in Europe in the 19
th
 

century (Bues et al. 1986). The TAW feeds on the leaves of several non-agricultural and cultivated 

gramineous plants, including maize (Guppy 1961). Sporadic outbreaks, where large numbers of larvae march 

across the landscape causing devastating economic impact, have been reported in Spain (López et al. 2000), 

Canada (McNeil 1987), the US (Willson and Eisley 1992), Mexico (Ramírez Dávila and Esquivel Higuera 

2013), among others. In Europe, it is most prevalent in the Mediterranean basin due to the larvae’s low 

ability to survive prolonged temperatures below freezing (Bues et al. 1987). In Spanish climatic conditions 

this species typically completes four generations per year (López et al. 2000). Despite favourable climatic 
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conditions and their high mobility capacity
7
, the inconsistency of TAW prevalence is related to a 

combination of two other factors. Firstly, the existence of natural enemies, and secondly, the implementation 

of tillage practices and regular weed control (Willson and Eisley 1992, Clark et al. 1994). Contrary to MCB, 

this species is highly susceptible to natural enemies, Menalled et al. (1999) note 80% mortality in field 

experiments. It is not uncommon to observe parasitism and other sorts of predation at rates capable of 

maintaining the population below endemic levels (Guppy 1967, Kaya 1985, Laub and Luna 1992).  

Although the devastating effects of Armyworm larvae have been commonly documented, the impact 

on maize yields specifically is not clear due to the erratic nature of outbreaks (Douglas et al. 1981, Hill and 

Atkins 1982, Buntin 1986). The larvae often move from other adjacent weeds or crops to the maize fields 

when food is limited. They seek refuge at the bottom of plants during the day, making visualization rather 

difficult. TAW’s activity usually starts at dusk and goes on for several hours. In the case of maize, the larvae 

chew the leaves and the damage can be serious when populations enter the gregarious phase. Musick (1973) 

reported that six larvae were enough to destroy one plant, while Harrison et al. (1980) noted that an 

infestation level of one larva per plant was sufficient to cause a significant yield impact. Presently the TAW’s 

management recommendations focus on preventive measures such as the constant crop monitoring, bait traps 

and weeding in the surrounding areas of the crop field (Gil and Castro 2015). Crop monitoring is especially 

relevant in dry winters due to a shortage of gramineous weeds. This situation it is likely to create favourable 

conditions for crop invasion. It is recommended that insecticides are used as soon as individuals are spotted. 

The optimal timing of treatment is when the caterpillars are small, a state in which they are more voracious 

and vulnerable to insecticides. 

Several studies have evaluated the efficacy of different Bt maize transgenic lines against the TAW, 

reporting substantial plant damage on the varieties assessed (e.g. Pilcher et al. 1997, Schaafsma et al. 2007, 

Eizaguirre et al. 2010, González-Cabrera et al. 2013, Pérez-Hedo et al. 2013). Eizaguirre et al. (2010) found 

no difference in the number of TAW larvae per plant between Bt and isogenic varieties in the majority of 

field trials. Pérez-Hedo et al. (2013) noted that larvae complete their development, presenting similar growth 

rates, regardless of whether they are fed on a Bt or non-Bt diet. In laboratory experiments González-Cabrera 

et al. (2013) found TAW survival rates of approximately 80% when fed on a diet of Bt maize Cry1Ab. It is 

therefore possible that the increasing use of transgenic maize expressing Cry1Ab toxin might amplify TAW’s 

economic importance (Eizaguirre et al. 2010).  

                                                           

7 Hendrix and Showers (1992) showed that TAW could travel at least 1,300 km from Texas to Iowa during 

northward migration in spring. 
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3.5 Summary 

In this chapter the regional study context as well as the surrogate species were introduced. Low 

transgenic crop adoption in Europe compared with the rest of the world was discussed briefly. However due 

to more flexible laws and agronomic need, Spanish farmers have quickly adopted Bt maize, which has proved 

to be economically beneficial, mainly due to the efficient control of the primary pests MCB and ECB. 

However other secondary pests which are not susceptible to the toxin, such as TAW, may become more 

predominant with the expansion of Bt maize. The following chapter introduces the core of the thesis with an 

extensive and specific literature review of the mechanisms that may be responsible for a secondary pest 

outbreak the context of GEIR. 
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 THE IMPACT OF SECONDARY PESTS ON GENETICALLY CHAPTER 4.

ENGINEERED INSECT RESISTANT CROPS 

4.1 Chapter Introduction 

The intensification of agriculture and the development of synthetic insecticides in the mid-20th 

century enabled worldwide grain production to more than double in the last third of the century. However, 

heavy dependence on and, in some cases, overuse of insecticides has been responsible for negative 

environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance 

to pesticides, negative effects on non-target species (e.g. natural enemies) and the development of secondary 

pests. Genetically engineered insect resistant (GEIR) technology could offer a viable alternative, mitigating 

many of the major negative side effects and limitations of pesticides. Nevertheless, despite the widespread 

adoption and continued increase in the area of GEIR crops grown across the globe, there are still a range of 

questions concerning longer term agro-ecosystem interactions that remain unanswered. For instance, insect 

species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant 

damage to the crop. In this chapter the main causes surrounding secondary pest dynamics in GEIR crops and 

the impact of such an outbreak are reviewed. Regardless of the causes, if non-susceptible secondary pest 

populations exceed economic thresholds the sustainable use of the technology may be in jeopardy. 

Consequently, insecticide spraying will become the only immediate solution at farmers’ disposal, which per 

se will disrupt the agro-ecosystem even further. Based on the literature review, five recommendations for 

future research are outlined that will help to improve knowledge of the possible long-term ecological trophic 

interactions of employing this technology. 

4.2 Secondary pests in GEIR crops 

The development of synthetic insecticides in the mid-twentieth century has enabled worldwide grain 

production to more than double in the last third of the 20
th

 century (Krebs et al. 1999). However, the overuse 

of insecticides has been accountable for numerous environmentally and ecologically negative impacts, such 

as decline in biodiversity, pest resistance and the development of secondary pests (Hardin et al. 1995, Matson 

et al. 1997, Vitousek et al. 1997). It is expected that genetically engineered insect resistant (GEIR) crops 

expressing toxins from the soil bacteria Bacillus thuringiensis (Bt) producing Crystalline (Cry) proteins could 

effectively offer a viable alternative or partially alleviate the major limitations of insecticides. Unlike other 

agricultural technological advances, GE crops have been subject to serious and extensive discussion 

regarding their potential long-term negative impacts (e.g. the following debate: Andow et al. 2009, Lövei et 

al. 2009, Shelton et al. 2009). A large share of the scientific findings and the majority of adopting farmers 

suggest that when compared with insecticides, the ecological and economic benefits of GEIR crops are 

substantial. On the other hand, some scientists supported by evidence from some countries, such as China, 
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claim that the potential long-term impact of GEIR crops could bring irreversible effects and adoption should 

only be undertaken with great caution (Garcia and Altieri 2005, Smale 2006, Lövei et al. 2009). One of these 

concerns relates to insect species that are not susceptible to the expressed toxin developing into secondary 

pests and causing significant damage to the crop (Sharma and Ortiz 2000, Wu and Guo 2005). Such an event 

could have further negative effects of economic and ultimately of ecological relevance.  

The concept of secondary pests is intrinsically linked with that of non-target organisms (NTOs). 

According to Arpaia (2010, p.14), in the context of GEIR, NTOs are “all living organisms that are not meant 

to be affected by newly expressed compounds in GEIR crops, and that can be potentially exposed, directly or 

indirectly, to the GEIR plant and/or its products in the agro-ecosystem where GEIR crops will be released or 

in adjacent habitats”. Although food webs in agro-ecosystems are typically simplified compared to natural 

habitats, they still present complex multi-trophic relationships (Altieri 1999, Arpaia 2010). In any given 

cropping system, numerous species and scores of ecosystem functions can be found with different features 

and ecological functioning (Matson et al. 1997, Hooper et al. 2005), although only a few are capable of 

inducing major losses in crop yield or quality (Price et al. 2011). A lethal or sub-lethal effect of a GEIR crop 

upon one or a group of NTOs might occur through direct exposure (to the Bt toxin) or indirectly due to 

changes in the ecosystem on which that species depends (Snow et al. 2005). In order to assess the impact of 

GEIR crops on NTOs at different trophic levels, ideally scientists would need to be acquainted with the 

majority of arthropod species prevalent in a given agro-ecosystem (Meissle et al. 2010). Lövei et al. (2009), 

in summarising the published literature, concluded that stating that GEIR crops will pose “no harm” to NTOs 

is still a premature conclusion due to the limited number of non-target (beneficial) species currently studied.  

There are two phenomena in agricultural systems that are considered as ecological backlash events 

that are of relevance to this concept: firstly ‘‘resurgence of insect pests’’ and secondly “outbreaks of 

secondary pests”. The former refers to a situation in which a suppressed pest population unexpectedly 

rebounds to greater numbers following a pest control action, exceeding the economic injury level (Hardin et 

al. 1995). The latter, and the focus of this paper, refers to the emergence of a pest other than that originally 

targeted by an agricultural intervention, and can be seen as “replacement” for the primary pest (Metcalf 1980, 

Hardin et al. 1995). The causes responsible for both phenomena are relatively similar and include reduction 

in the number of natural enemies and removal of competitors (Ripper 1956, Hardin et al. 1995). To further 

understand the concept of secondary pests, it is necessary to define the concept of a primary pest as the 

"targeted" pest for which a Bt crop is planted. According to FIFRA Scientific Advisory Panel (1998), a 

secondary pest is a "non-targeted" pest that has historically posed small or even no economic threat, but 

which could be affected directly by a low to high dose expressed in a Bt crop, or indirectly through changes 

in insecticide use patterns. Metcalf (1986), defined secondary pest outbreaks as a “type II resurgence”, which 

occur when the primary pest is strongly affected by a pest management strategy, yet is replaced by another 

pest not affected by this pest management strategy. Berryman et al. (1987, p.3), meanwhile, define this event 

as ‘an explosive increase in the abundance of a particular species that occurs over a relatively short period of 
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time’. In the event of a secondary pest outbreak, additional pest management tactics are required. In most 

cases, due to their swift and unexpected appearance, these events will lead to crop spraying with a broad-

spectrum insecticide (Gross and Rosenheim 2011). As a result of a secondary pest outbreak, additional pest 

management tactics are required. In most cases, due to swift and unexpected pest appearance, these events 

will lead to spraying with broad-spectrum insecticides (Gross and Rosenheim 2011).  

This chapter focuses on the development and effects of secondary pests on GEIR crops. This issue, 

although of high importance, has received only limited attention to date. Only a few studies have addressed 

the impact of controlling one pest on the population of a second pest, and consequent ensuing implications. 

Citing Harper (1991, p.22), “ignoring secondary pests can lead to devastating crop damage that may continue 

over a considerable period of time”. This chapter has three main goals: i) to assess the main causes of a 

secondary pest outbreak in the context of GEIR crops; ii) to review the current impact of a secondary pest 

outbreak due to the use of GEIR crops; and iii) to provide recommendations for future research. 

4.3 Causes for secondary pest outbreaks in GEIR crops 

The employment of Bt crops may carry non-intuitive negative effects on agricultural ecosystem 

interactions and even on farm profits (Sharma and Ortiz 2000, Wolfenbarger and Phifer 2000). Bt toxins have 

a narrow spectrum aimed to control and kill only the target pest and thus are meant to indirectly provide a 

safe environment for the growth of non-target pests (Sharma and Ortiz 2000, Lu et al. 2010). Hence, 

secondary pests, which before were of minor relevance, might now find favourable conditions to develop and 

themselves become major pests. In the spectrum of GEIR crops, three main drivers that may trigger an 

outbreak of secondary pest species were found: i) reduction in broad-spectrum insecticide applications; ii) 

reduction in natural enemy populations; or iii) decrease in inter-specific competition with the target pest.  

i)  Reduction in broad-spectrum insecticide applications 

The introduction of GEIR technology, at least in the early years, brought significant decreases in 

insecticide application among adopters, considerably alleviating the negative impacts associated with such 

insecticides (Meissle et al. 2010, Kouser and Qaim 2011, Krishna and Qaim 2012). Despite warnings from 

several authors (e.g. Sharma and Ortiz 2000, Wu and Guo 2005) that some NTOs could appear in such 

number that they become key insect pests in Bt crop fields, specific measures to combat their population 

increases were not taken. Consequently there have been outbreaks of secondary pests (that are not affected by 

the specific Bt toxin) which were previously controlled by the insecticide applications originally targeting the 

primary pest (Lu et al. 2010, Pemsl et al. 2011). This situation has been particularly evident in Bt cotton 

production in China. Less than 3 years after GEIR introduction in 1998, several pest groups including 

sucking insects like whiteflies, plant hoppers, aphids, mirids and mealy bugs increased in number (Men et al. 

2004 , Yang et al. 2005a). These insects are not affected by the Bt toxin since they feed not on plant cells but 

on sap, resulting in levels of toxin ingestion which are insufficient to cause harmful effects (Romeis and 
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Meissle 2011). Similarly in Bt maize, there is evidence that several secondary pests have acquired higher 

levels of agronomic importance (Gray et al. 2009, Eizaguirre et al. 2010, Erasmus et al. 2010, Pérez-Hedo et 

al. 2012). This has meant that in some cases farmers have had to re-commence insecticide applications 

because GEIR cropping systems have failed to control the insect pest populations. 

ii) Reduction in natural enemy populations 

Agro-ecosystem biodiversity is important not only because of its fundamental ecological, 

environmental and anthropocentric value but also because it is vital to a healthy and sustainable agriculture 

(Matson et al. 1997, Hooper et al. 2005). The employment of Bt crops and the consequent reduction in 

insecticide usage further increases the importance of natural enemies to control secondary pests (Naranjo 

2005a). Natural enemies include predatory insects, such as Coleoptera, Heteroptera and Neuroptera, parasitic 

insects such as Hymenopteran parasitoids and pathogens such as fungi and bacteria. Natural enemies are 

critical to ecosystem functioning because they inhibit the excessive multiplication of several potential pests in 

agricultural systems through ‘biological control’ (Lang et al. 1999, Romeis et al. 2006, Meissle and Romeis 

2009). Natural enemies alone may be sufficient in some cases to keep secondary pest populations under 

economic injury thresholds (Romeis et al. 2006, Snyder et al. 2006). Hence, a major concern related to the 

growing of Bt crops is their potential impact on the abundance of natural enemies (Marvier et al. 2007). The 

selectivity of Cry toxins in some cases is not entirely known, leading eventually to unintended effects on 

beneficial species which may influence other non-susceptible pests (Lövei et al. 2009). Interactions between 

prey and natural enemies are extremely complex; not all herbivores that feed on Bt plants uptake the toxin, 

nor will all natural enemies be negatively affected by prey that have ingested the toxin (Dutton et al. 2002).  

Due to these complex uncertainties regarding ecological risks, many laboratory and field research 

studies have been conducted in order to evaluate the impact of Bt toxins on natural enemies. While several 

laboratory studies reported no significant effects on natural enemies (e.g. Dutton et al. 2002, Meissle and 

Romeis 2009, Li and Romeis 2010 ), others have indicated negative effects (e.g. Hilbeck et al. 1998, 

González-Zamora et al. 2007, García et al. 2012). Results from studies performed at a field level are similar; 

some found no significant impacts (e.g. Pons et al. 2005, Chen et al. 2006, Eckert et al. 2006), while other 

studies reported negative effects (e.g. Meissle et al. 2005, Obrist et al. 2006, Stephens et al. 2012). The 

overall disparity of results across the literature is striking (see Lövei and Arpaia 2005, Marvier et al. 2007, 

Wolfenbarger et al. 2008  for detailed reviews, Lövei et al. 2009, Lang and Otto 2010). The uncertainties are 

mainly focused on the degree of relevance of laboratory studies to the complexity of field-scale agro-

ecosystems (Lövei and Arpaia 2005, Lövei et al. 2009). While natural enemies are present in higher numbers 

in insecticide-free conventional fields compared to Bt fields (Marvier et al. 2007, Naranjo 2009), it is 

nonetheless widely accepted that the use of insecticide applications has substantially larger negative direct 

effects on natural enemies than does the use of Bt crops (Cattaneo et al. 2006, Wolfenbarger et al. 2008, 

Romeis et al. 2009).  
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Natural enemies are affected either directly or indirectly by Bt toxins (Romeis et al. 2006). Direct 

impacts occur through the ingestion of the insecticidal protein (Meissle et al. 2005, Obrist et al. 2006, 

Stephens et al. 2012) however, the mechanism of action of several available Bt toxins is still unknown or 

inconclusive (Lövei and Arpaia 2005, Lövei et al. 2009). Thus, it is conceivable that Bt toxins may cause 

similar negative effects on predators as they do on herbivores (Andow et al. 2006). A recent study, (2012) 

found that Bt proteins were passed from the Cry3Bb Bt-maize plant to the predator (Harmonia axyridis, a 

common coccinellid) via prey consumption (Rhopalosiphum maidis, the corn leaf aphid and Rhopalosiphum 

padi, the bird cherry-oat aphid), which significantly reduced their life span. Furthermore, although not yet 

demonstrated in the context of GEIR, there is some concern regarding toxin bioaccumulation through the 

food chain, possibly driving cascade effects within the ecosystem (Chen et al. 2009). Indirect effects might 

arrive through reductions in prey/host populations or in the nutritional quality of the prey item. Many 

herbivores may also suffer the consequences of uptake of the toxin at a sub-lethal level which can affect life 

parameters such as lifespan and fecundity (Romeis et al. 2004, Meissle and Romeis 2009).  

There is evidence of a significant impact on the performance, development and even survival of 

natural enemies due to the low nutritional quality of prey items after they have ingested Bt proteins (Dutton et 

al. 2002, Obrist et al. 2006, Stephens et al. 2012). Moreover, high mortality rates in the target species may 

cause a reduction in specialized predators, which are important prey for generalist natural enemies (Stephens 

et al. 2012). Additionally, prey species might migrate to non-Bt fields in search of preferable food resources 

(Daly and Buntin 2005, Naranjo 2005a). Thus, if the prey availability for predators in Bt fields is scarce, 

predators might be encouraged to “migrate” to adjacent conventional crops, negatively affecting their 

abundance within Bt fields (Sisterson et al. 2007, Razze and Mason 2012). As a result, any lethal or sub-

lethal impacts on pest predators will disproportionally affect insect population dynamics. Hence, it may be 

possible that these negative impacts will permit the development of secondary pests in the crop itself or even 

in neighbouring crops (Gutierrez et al. 2006, Gross and Rosenheim 2011). Understanding the direct and 

indirect effects of GEIR cultivars on natural enemies is central for the management of insect pests since 

undoubtedly these insects play a major role in biological control of primary and secondary pests (Snyder et 

al. 2006, Naranjo 2009, 2011). 

iii) Decrease in inter-specific competition with the target pest  

Competition certainly plays an important role in regulating the dynamics of herbivorous insects 

(Kaplan and Denno 2007). However, the importance of niche replacement through competition between 

primary and secondary pests has been generally ignored in conventional agriculture (Denno et al. 1995, 

Hardin et al. 1995), and especially in GEIR cropping. GEIR crops, as insecticides, artificially impose a 

disturbance on the ecosystem, hence it is not surprising that niche rearrangement may occur (Catangui and 

Berg 2006). It is possible that when a primary pest is successfully controlled by a Bt toxin, a non-susceptible 

species fills the newly available ecological niche (Hardin et al. 1995, Gross and Rosenheim 2011). This 
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situation occurs in cases where, prior to the pest management treatment, the primary pest is a dominant 

competitor species and the secondary pest is a weak competitor (Shivankar et al. 2007).  

A notorious example of niche replacement is the western bean cutworm (WBC) (Striacosta albicosta 

(Smith)), a noctuid moth native to West and Central America (Douglass et al. 1957). Since the widespread 

planting of Bt maize hybrids has effectively eliminated the intra-guild competition with the European corn 

borer (ECB) (Ostrinia nubilalis), and the corn earworm (CEW) (Helicoverpa zea) (Catangui and Berg 2006, 

Dorhout and Rice 2010) it is possible that a niche was opened for WBC, creating an exclusive habitat for its 

settlement (Catangui and Berg 2006, Dorhout and Rice 2010). To date only one study appears to have been 

specifically conducted to assess the interaction between WBC and other species. Dorhout and Rice (2010) 

assessed several hypothetical intra-guild competition scenarios involving the highly aggressive CEW, the 

ECB and the WBC. It was noted that CEW had a significant negative impact on WBC survival when both 

were fed on a meridic or isoline maize silk diet. However, when both pests where fed a transgenic silk diet, 

WBC presented high survival rates. CEWs are extremely aggressive by nature, compared with the WBC 

(Douglass et al. 1957) and Dorhout and Rice (2010) observed that CEW larvae often killed the WBC larvae 

even when it was present in larger numbers. Competition with the ECB exists because of their similar feeding 

behaviour on the kernels in corn ears (Catangui and Berg 2006). Hence, along with the high flight capacity of 

WBC (Michel et al. 2010), the reduction in direct competition certainly played a fundamental part in its 

territorial expansion. 

Other examples of niche replacement range expansion of secondary pests include: the corn leafhopper 

(Dalbulus maidis) in maize in the absence of the target pest Spodoptera frugiperda in Argentina (Virla et al. 

(2010), in Spain the true armyworm Mythimna unipuncta could have competitive advantage in the absence of 

both the Mediterranean and European corn borer (Malvar et al. 2004, Eizaguirre et al. 2010), in Bt cotton in 

the USA stink bug pests have recently become a severe problem in the absence of target pests H. 

zea and Heliothis virescens (Zeilinger et al. 2011) and lastly, in South Africa Van Wyk et al. (2007) noted 

that Helicoverpa armigera, Acantholeucania loreyi and Eublemma gayneri could also gain competitive 

advantage following the displacement of Busseola fusca from Bt Maize. The niche replacement hypothesis, 

although seeming to make sense from an ecological point of view, still needs to be evaluated in more detail 

(Hutchison et al. 2011). As GEIR cropping expands worldwide it is of high importance to determine the key 

species, of susceptible and non-susceptible pests, which might compete for resources within the same 

transgenic crop.  

4.4 Impact of secondary pests on Bt crops  

In the early years of GEIR cropping, there were reports of increased efficiency in overall production 

due to reductions of insecticide applications ranging from 40-60% alongside increasing crop yields as 

compared with non-adopters (e.g. Fitt 2000, Huang et al. 2002b, Pray et al. 2002, Qaim and Zilberman 2003, 
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Thirtle et al. 2003, Bennett et al. 2004, Gomez-Barbero et al. 2008, Naranjo 2011). This was mirrored by a 

reduction in human insecticide poisoning along with several positive environmental impacts (Huang et al. 

2002b, Pray et al. 2002, Bennett et al. 2003). Nonetheless, there were early concerns about the potential for 

secondary pest outbreaks due to decrease in insecticide applications (Wu et al. 2002, Qaim 2003, Morse et al. 

2005). This chapter focuses on the development of secondary pests in two of the most important GEIR crops, 

Bt maize and Bt cotton.  

Cotton 

Of the 24.3 million hectares cropped with Bt cotton worldwide in 2012, India, China and USA 

accounted for 11.0, 4.2 and 4.1 million hectares respectively (James 2013), with the adoption rate varying 

between 90 and 95% (James 2013). The Bt cotton hectarage in Africa is increasing, for instance, Burkina 

Faso and Sudan cropped 50% (in ha) and 300% (in ha) more Bt cotton, respectively, compared with 2012 

(James 2013). In China, in some areas where the bollworm incidence is higher, the adoption is close to 100% 

(Xu et al. 2008), and undoubtedly Bt cotton has reinvigorated Chinese cotton production. Historically, cotton 

along with rice crops have required the largest number of insecticide applications in the world (Deguine et al. 

2008). Until the end of the 20
th

 century, insecticides were intensively applied to control the cotton bollworm 

(Wu and Guo 2005). However in the early 1990s effective control of this pest became problematic, the cotton 

bollworm became resistant to most insecticides due to overuse (Wu and Guo 2005, Deguine et al. 2008). 

Following the introduction of GEIR technology in 1999, insecticide applications in Bt cotton fields dropped 

from about 61 kg/ha (20 applications), to approximately per year 12kg/ha (6.6 applications) (Huang et al. 

2002b). By 2002 this figure starting creeping up; farmers applied on average 15.6 kg/ha (10.7 applications) 

of insecticides, of which 4.7kg were used against the cotton bollworm, and the remaining against the lygus 

bug and other pests (Pemsl et al. 2011). By 2005, farmers applied roughly the same amount against the cotton 

bollworm, but the amount sprayed against secondary pests had increased by 20%, to a total of 18.6 kg/ha 

(14.2 applications) (Pemsl et al. 2011). Within the space of approximately 10 years, the initial advantage of 

Bt crops had gone; Zhao et al. (2011) reported that Bt adopters were using on average between 16 and 22 

insecticide applications, while conventional cotton farmers were using only 11 to 17 applications on average 

per year. Hence, nowadays those insects once considered of minor relevance are actually the main concern of 

farmers (Pemsl and Waibel 2007). The drop in insecticide use and the ineffectiveness of Bt cotton against 

these secondary pests has led to a reversal of the ecological role of cotton (Lu et al. 2010, Li et al. 2011). 

While before, the main sink for the mirid bug secondary pest was the conventional cotton system, nowadays 

Bt cotton fields are an actual source for these pests (Lu et al. 2010). This has led to a situation where there are 

no major differences in the total quantity and expenditure in insecticide application between Bt and 

conventional cotton farmers (Yang et al. 2005b, Zhao et al. 2011). However, in comparison with the period 

prior to Bt adoption, farmers are generally not worse off. Cotton production is still effective and farmers are 

applying fewer sprayings in early season, consequently with lower instance of human poisoning (Huang et al. 

2014). Moreover, a higher survival of generalist arthropod predators has been recorded (ladybirds, lacewings 
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and spiders), providing additional biocontrol to neighbouring crops, such as maize and soybean (Lu et al. 

2012, Huang et al. 2014). 

Cotton farming in India is comparable with that of China, in both there are numerous small scale 

farmers (Huang et al. 2002b, Qaim et al. 2009). Recent evidence shows that secondary pests now pose a 

major problem (Nagrare et al. 2009), with farmers battling against non-target insects (Stone 2011). 

Ramaswami et al. (2012) found no significant difference between adopters and non-adopters in terms of 

insecticide use and this is consistent with Bt farmers’ perceptions, who have attributed a total of 77% of 

cotton damage to aphids and other sucking pests and only 23% to the primary Lepidopteran pests (Stone 

2011). According to the same author 99% of the famers did use spray against secondary pests. However, it is 

important to note that until now, according to the studies mentioned earlier, the impact of Bt cotton on farm 

profits is clearly superior to conventional cotton.  

Elsewhere in the world similar issues as in the Chinese and Indian cases have been reported in cotton. 

Adopting farmers are either still using significant numbers of insecticide applications in order to control 

secondary pests, or the damage caused by these pests has increased. Some examples include: South Africa 

(Hofs et al. 2006, Schnurr 2012), Burkina Faso (Dowd-Uribe 2014), Pakistan (Jaleel et al.), Australia 

(Wilson et al. 2013), Brazil (Sujii et al. 2013) and Mexico (Traxler and Godoy-Avila 2004).  

In the USA for example, in the mid-southern and south-eastern cotton-producing regions, there has 

been a significant increase in the number of insects considered as secondary cotton pests, such as aphids, 

leafhoppers, mirid plant bugs and stinkbugs (Naranjo 2011). The same author analysed the National Cotton 

Council data, reporting that before Bt cotton adoption, farmers were applying an average of 17 applications 

per hectare, and this figure dropped post-adoption to 5 applications (a 71% reduction). Additionally, Bt 

cotton losses due to pest damage are around 5.4%, a decrease of 27% as compared with pre-1996 levels. 

Nonetheless, while insecticide use to control primary pests has decreased, insecticide applications used to 

control secondary pests such as plant bugs have nearly doubled to approximately four applications per 

hectare in order to achieve adequate control (Naranjo 2011 ). Importantly, in contrast with the Chinese and 

the other cases around the world previously mentioned, most of the secondary pests in the US are being 

effectively managed with sensible use of insecticides and other IPM tactics (Naranjo and Ellsworth 2009).  

Maize 

The economic benefit of Bt maize associated with the regional suppression of specific pest 

populations is significant (Carpenter 2010, Areal et al. 2013). Hutchison et al. (2010) estimated the 

cumulative benefits of controlling ECB with Bt maize over the last 14 years at $6.8 billion for maize growers 

in the US Midwest, with more than 60% of this total – $4.3 billion – accruing to non-Bt maize growers due to 

savings in insecticide applications because of overall suppression of ECB populations. Presently, in the USA 

the most problematic secondary pest in Bt maize is the WBC. Catangui and Berg (2006) reported that yield 
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losses caused by the WBC on transgenic Cry1Ab Bt maize reached 70% in 2003 in South Dakota. This value 

is not surprising, since only one WBC larvae per maize plant at dent stage can reduce yields by 232 kg/ha 

(Appel et al. 1993). The CEW and the fall armyworm, are considered important secondary pests. Their 

moderate survival rates in Bt maize expressing Cry1Ab and Cry1F makes them economically important 

(Archer et al. 2001, Storer et al. 2001, Hardke et al. 2011). According to Speese III et al. (2005), the net 

profit for Bt cultivars is about 13% higher when compared with conventional non-Bt cultivars with five 

applications of insecticides. The same author noted that the overall net profit would about 32% higher if two 

insecticide applications were used with Bt cultivars in order to reduce damage caused by the CEW and sap 

beetles.  

Currently, the only Bt maize allowed for cultivation in Europe contains the transformation event 

MON810 (Monsanto Company) expressing Cry1Ab Bt toxin (EFSA 2010a) although several other events are 

under evaluation by the European Food Safety Authority (EFSA). This transgenic maize presents a highly 

efficient level of resistance to the two primary maize lepidopteran borers present in the EU, the 

Mediterranean and the European corn borer (González-Núñez et al. 2000, Eizaguirre et al. 2010). In 

European conditions, Bt Cry1Ab is not efficient against several secondary pests, such as the western corn 

rootworm and the true armyworm (Gray et al. 2009, Pérez-Hedo et al. 2012). The western corn rootworm 

was first noticed in Europe in the mid-1980s (Bača 1994, Miller et al. 2005) and it has been spreading 

through maize fields across the continent at an average rate of 33 to 40 km per year, depending on climatic 

conditions (Gray et al. 2009, Meinke et al. 2009). Its presence is more common in central, eastern European 

countries and in the Po Valley in Italy where attributable yield losses of about 2–3% have been reported 

(Meissle et al. 2010). According to Wesseler and Fall (2010), the economic benefits of employing an event 

capable of controlling the Western corn rootworm is 472 million euros per year. Several other arthropod 

pests of maize are also present in Europe, although they tend to be more regional and usually less damaging 

to the crop (see  Meissle et al. 2010 for an exhaustive list). Field research concerning secondary pests has 

mainly been conducted in Spain. Recent studies have revealed that the true armyworm is only mildly 

susceptible to Bt maize expressing the Cry1Ab toxin (Pilcher et al. 1997, González-Cabrera et al. 2013) and 

field trials found no substantial differences in the number of M. unipuncta larvae per plant nor in the larvae 

development between Bt and isogenic varieties (Eizaguirre et al. 2010, Pérez-Hedo et al. 2012). Hence, it is 

possible that the increased use of transgenic maize expressing Cry1Ab toxin will further amplify its 

importance due to decreasing conventional insecticide applications, which could in time mean it becomes a 

major pest (Pérez-Hedo et al. 2012, González-Cabrera et al. 2013).  

In South Africa, the first African country to commercially produce Bt crops, some studies have been 

conducted in order to scrutinize the impact of Bt maize on secondary pests (Van den Berg et al. 2013). It was 

noticed that GEIR maize has the potential, when well-managed, to effectively control primary lepidopteran 

pests, such as B. fusca, S. calamistis and C. partellus (Van den Berg and Van Wyk 2007, Van Wyk et al. 

2009, Kruger et al. 2012). However, several important secondary pests are also present in the ecosystem 



 

 

 

Page | 29 

 

 

 

including A. segetum, H. armigera and A. loreyi (Van Wyk et al. 2008, Van Wyk et al. 2009, Erasmus et al. 

2010). Although these secondary pests may show some degree of susceptibility to Cry proteins (their 

densities are usually lower in Bt-maize fields compared to non-Bt fields) their ability to seriously damage the 

crop under field condition is well recognized (Van Wyk et al. 2007, Van Wyk et al. 2008). Similar 

importance is now given to H. armigera in other countries, for example in China, Australia and South Africa 

(Tabashnik et al. 2003, Van Wyk et al. 2008) and to the corn leafhopper, an efficient vector of several plant 

pathogens, in Argentina (Bastos et al. 2007). Ecological explanations for higher attraction to Bt maize in 

some pest species have been found; for example chemical and/or morphological characteristics expressed by 

the Bt maize make it especially attractive to the corn leafhopper secondary pest (Bastos et al. 2007).  

This review suggests that Bt hybrids do not effectively control all Noctuidae pests under field 

conditions due to the emergence of secondary pest species. Further, in both Bt maize and Bt cotton, the 

increased significance of secondary pests is intrinsically linked with insecticide use. On the one hand, as 

previously shown, decreases in insecticide applications can allow non-Bt susceptible insects to increase in 

numbers within the Bt crop. On the other hand, broad-spectrum insecticide spraying is the cheapest and most 

efficient solution for farmers to avoid severe crop damage due to a sudden pest outbreak of a non-target pest 

species. Several other issues are also linked to insecticide use in GEIR crops; such as pest resistance caused 

mainly by a lack of refuge strategies, weak institutional structures, poor education and a lack of 

understanding of the technology (Yang et al. 2005a, Morse et al. 2007, Dowd-Uribe 2014). 

4.5 Outstanding issues  

Regardless of the outbreak cause, if non-susceptible secondary pest populations exceed economic 

thresholds the sustainability of the technology may be in jeopardy. If natural enemies are incidentally 

affected by Bt toxins an ecological opportunity may appear for the emergence of a new pest species which 

had previously been controlled through predation or parasitism. Consequently, insecticide spraying is the 

only immediate solution at farmers’ disposal, which is inherently even more disruptive to the natural 

enemies’ complex. If a secondary pest outbreak occurs due to an unexpected niche replacement, the same 

immediate solution will be used with equivalent impacts. Hence, farmers growing Bt crops will potentially 

re-embark the “insecticide treadmill” as in the 20th century (van den Bosch 1978), leading back to the 

negative impact of insecticides on the environment that GEIR crops were hoped to reduce (Krebs et al. 1999, 

Pemsl et al. 2011).There are serious disadvantages associated with overuse of pesticides, for instance, human 

poisonings, pest resistance and natural enemy mortality (Metcalf 1987, Jeyaratnam 1990, Hardin et al. 1995, 

Graff Zivin and Sunding 2000, Kouser and Qaim 2011). Additionally, pests tend to increase their 

reproductive rate when stressed by sub-lethal quantities of a control agent; a phenomenon known as 

‘‘hormoligosis’’ (Luckey 1968, Morse 1998). It appears that to date ‘‘hormoligosis’’ has not been studied 

within the GEIR crops context, however it is understood to be partly responsible for past outbreaks of 

secondary pests related to the misuse of insecticides (Gross and Rosenheim 2011, Cordeiro et al. 2013, 
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Guedes and Cutler 2014). Research presented in this review suggests that secondary pests are eroding some 

of the economic and ecological benefits of Bt crops. Chinese cotton production is a clear example. In fact it 

was shown that, even in successful GEIR cropping systems (such as Bt cotton in USA), insecticide 

applications remain a strategically important method of controlling secondary pest outbreaks.  

New stacked events expressing several Bt toxins may overcome some of the drawbacks associated 

with secondary pests. Scientists are hopeful that these stacked crops will mitigate some of the concerns raised 

so far for single traits and increase yields still further (e.g. Shi et al. 2013). From an ecological perspective, 

such expectations have yet to be proven, as stacked events may equally cause faster changes in ecosystem 

processes, affecting the resilience of the systems as a whole to adapt efficiently. Furthermore, some agro-

ecosystem responses may occur over a long timeframe, so that only long-term studies could effectively detect 

any effects (see Symstad et al. 2003 for a detailed discussion). For example, continuous exposure to a range 

of Bt toxins throughout the full season may affect prey species and food chains (Groot and Dicke 2002) and 

the occurrence of resistance may be increased in pests with low susceptibility to Bt toxins over time (Brévault 

et al. 2013). This lack of certainty regarding ecological impacts and the complexity of agro-ecosystems has 

led to questions about the conclusions of several studies assessing the impacts of transgenic crops due to their 

simplistic methodological approaches (e.g. Andow et al. 2006, Smale 2006, Lövei et al. 2009, Glover 2010a, 

b, Stone 2011, Kruger et al. 2012, Dowd-Uribe 2014). There is a risk that interactions evaluated over a short 

period are failing to observe potential longer-term impacts (Kouser and Qaim 2011, Pemsl et al. 2011). The 

occurrence of secondary pests is clearly linked with profitability, which in turn is affected by other important 

factors, such as the variability of toxin expression, quality of seeds, development of resistance, environment, 

farm size, regional, social and institution variability, along with farmers’ knowledge/education, skills and 

wealth (Yang et al. 2005a, Smale 2006, Shantharam et al. 2008, Xu et al. 2008, Kruger et al. 2011, Stone 

2011, Kruger et al. 2012, Dowd-Uribe 2014). For example, making an assumption that early adopters are 

similar in terms of performance to late adopters or small-scale farmers may introduce a bias to the results 

(Crost et al. 2007, Ismael et al. 2007, Morse et al. 2007, Stone 2011). Similarly, differences in agricultural 

systems are important factors that are often omitted (Stone 2011); such as irrigated versus non-irrigated fields 

in India (Qaim and Zilberman 2003) and it is likely that such systems have differences in pest abundance and 

insecticide use (Stone 2011)
8
.  

Nor are studies assessing the impact of GEIR crops on NTOs free from criticism over the 

methodological approaches used. Ecological criticisms are mainly based on the reliability of data, poorly 

replicability, low numbers of possible response variables, short temporal frame and failure to take into 

consideration environmental variability across regions (Marvier 2002, Lövei and Arpaia 2005, Andow et al. 

                                                           

8
 For a detailed discussion concerning the general inconsistencies of socio-economic studies around 

transgenic crop adoption see Smale (2006).   
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2006, Shantharam et al. 2008). Undoubtedly laboratory studies are essential in the assessment of the effects 

of Bt crops on NTOs, provided that they are assessed across the full variety of relevant ecological contexts 

(Lövei and Arpaia 2005). In the laboratory or in controlled field cages, most non-field scale studies have 

assessed the impact that the toxin has directly on the predator, on the prey or on the impact of a predator 

through prey consumption (see for example  Marvier et al. 2007, Wolfenbarger et al. 2008, Lövei et al. 2009, 

Lang and Otto 2010). However, the relevance of these findings within the field agro-ecosystem is uncertain 

(Andow and Hilbeck 2004, Lövei and Arpaia 2005) and such studies often fail to account for indirect spatial 

and temporal effects on tritrophic population dynamics (Andow et al. 2006). Further, the occurrence and 

distribution of insect pests in crops are non-uniform, depending instead on factors such as the agro-climate 

conditions, agro-ecology, anthropogenic interventions, introduction of new crops, pest control management 

techniques, and other hard to define random factors (Baker et al. 2000, Sisterson et al. 2005, Velasco et al. 

2007). 

4.6 Conclusions 

Like insecticides, GEIR crops alter agro-ecosystem processes and functioning. In some cases this may 

lead to large and complex landscape-level effects on pest dynamics, a rearrangement of niches, and thus a 

possible outbreak of secondary pests. This review has explored the reasons for, and the results of, secondary 

pest outbreaks in GEIR crops, with a focus on Bt Maize and Bt cotton. Undoubtedly, GEIR crops have led to 

several economic and environmental advantages, but many claim that those gains, although real, have been 

overemphasized (Smale 2006, Stone 2011). Although secondary pest outbreaks are a well-known 

phenomenon in agriculture, this phenomenon has generally been overlooked in transgenic cropping research. 

While GEIR crops are highly efficient at controlling target pest levels, they may not be as effective at 

controlling other pests that have historically posed less or even no threat (Sharma and Ortiz 2000). Here the 

three potential mechanisms related to secondary pests were reviewed: i) a reduction in broad-spectrum 

insecticide applications; ii) a reduction in control by natural enemies; and iii) a decrease in inter-specific 

competition with the target pest.  

It is evident from the literature that, owing to lower insecticide applications, secondary pests that are 

not susceptible to the expressed toxin are becoming an increasing concern in some agro-ecosystems where 

GEIR crops are grown. The potentially negative influence of GEIR crops on natural enemies has generated 

considerable debate among scientists, although there appears to be agreement that a negative impact is 

conceivable (e.g. Andow et al. 2009, Lövei et al. 2009, Shelton et al. 2009). This impact can be direct; 

through the ingestion of the toxin, or indirect; due to changes in the agro-ecosystem on which that species 

depends, such as reduced prey density (Snow et al. 2005, Andow et al. 2006). Less attention has been given 

to niche replacement, notable exceptions are the studies conducted by Dorhout and Rice (2010) and Virla et 

al. (2010). These authors have proposed that direct competition between susceptible and non-susceptible 

species is one explanation for secondary pest outbreaks. However, secondary pests may take several years to 
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develop to a point where they actually become a major concern (Ho et al. 2009). Hence, it has been suggested 

that additional research is needed to evaluate the potential long-term effects of the wide scale adoption of 

new GEIR events and their impact on the ecosystem (Krishna and Qaim 2012). It is important that the 

ecological relevance of such studies is properly addressed (Gatehouse et al. 2011), especially regarding the 

impact on ecological services across the agricultural landscape (Scherr and McNeely 2008) and on the 

resilience of agro-ecosystems on a regional scale (Tscharntke et al. 2005). Based on this review of the 

literature, the chapter concludes with five major issues that require further exploration: 

I. Large-scale, multi-trophic and multi-species field studies should be encouraged in order to reveal 

the potential impacts on ecosystems and their extent (Lang and Otto 2010) since: i) Bt toxin concentrations 

vary throughout the season depending on expressed toxin and the cultivar (Nguyen and Jehle 2009, 

Showalter et al. 2009); ii) Interactions between GEIR fields and adjacent ecosystems will surely occur (e.g. 

natural enemy migration or niche replacement) (Dorhout and Rice 2010, Razze and Mason 2012), which 

might carry direct and/or indirect biotic impacts across the landscape (Lundgren et al. 2009); iii) In the case 

of stacked GEIR crops, potential interactions between the expressed events may occur (Zhao et al. 2005) and 

resistance may be increased in pests with low susceptibility to Bt toxins (Brévault et al. 2013). Hence, 

laboratory and/or single species studies may fail to capture wider trophic impacts as a result of high field 

environmental variability (Lövei et al. 2009) and only a holistic knowledge of pests and the behaviour of 

natural enemies will enable the formulation of a sustainable IPM framework capable of effectively supressing 

secondary pest outbreaks (Sisterson et al. 2007, Lundgren et al. 2009). 

II. The baseline for risk analysis studies should be adjusted. Until now studies have used conventional 

cropping with insecticide treatments as the main basis for comparison of risk of GEIR crops (Sisterson et al. 

2007, Meissle et al. 2011). However, this comparison should be broadened to include other scenarios, such as 

organic or untreated cropping systems (Andow et al. 2006). The assessment of GEIR cropping with other 

IPM strategies, such as crop rotation, tillage, selective insecticides and biological control (Musser and 

Shelton 2003, Deguine et al. 2008, Vasileiadis et al. 2011) would be useful, especially taking into 

consideration the forecasted world food demand (Park et al. 2011b). Failure to take this aspect into 

consideration might lead farmers to neglect other good farming practices (Bergé and Ricroch 2010);  

III. Economic studies should move towards a wider approach, taking into consideration farmers’ 

heterogeneity (Glover 2010a, b). Assessing the mean yield/profits of a crop within an entire country/region 

will likely be biased towards wealthier and better informed/educated farmers (Sanglestsawai et al. 2014). 

Although not directly mentioned in economic studies, it is believed that the issue of secondary pests is 

invariably connected with farm profits. This is especially relevant in developing countries, where institutional 

networks are weak, making the enforcement of laws, policies and agricultural recommendations less effective 

(Shantharam et al. 2008, Xu et al. 2008, Kruger et al. 2011, Stone 2011, Kruger et al. 2012, Dowd-Uribe 

2014). As Stone (2011, page 395) states, “longitudinal, multi-village, multi-ethnic, probabilistically selected, 

ethnographically grounded studies that avoid bias are helpful”. 
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IV. In order to identify possible secondary pests and non-target effects of GEIR crops with insecticidal 

properties, knowledge is required on which arthropod species occur in a given agro-ecosystem (Truter et al. 

2014). Presently, several million hectares of crops with GEIR traits are being grown, hence researchers 

should take advantage of such “large-scale field research” opportunities. Continuous, post-market, 

spatiotemporal monitoring is critical for rapid identification of the development of ecological problems. This 

could lead to timely regulatory decisions and the efficient deployment of mitigation measures (Waage and 

Mumford 2008, Sanvido et al. 2009, Smale 2012). Furthermore, it is suggested that post-market monitoring 

could help build a robust spatiotemporal database of insect species according to their ecological functions 

and occurrence in the specific receiving environments. Such a methodical process would also help to select a 

number of relevant and practical surrogate species for detailed laboratory or field tests (Hilbeck et al. 2014) 

V. The importance of spatially-dynamic, bio-mathematical and -economic multi-species models in 

pre and post GEIR crops risk assessment research has been recognized for some time (Chatterjee 1973, 

Gutierrez and Wilson 1989, Harper and Zilberman 1989, Marino and Landis 1996, Sanchirico and Wilen 

1999). Rigorous assessments of the present and future economic impacts, based on ecological constraints are 

required to provide sound information to policy makers (Keller et al. 2007, Ascough II et al. 2008, Holmes et 

al. 2010, McDermott et al. 2013). It has been suggested that these models combined with empirical 

investigations can provide important insights into the impact of IPM tactics on the behaviour of target and 

non-target organisms (Yang et al. 2009, Vinatier et al. 2011). By allowing the manipulation of key biological 

parameters with economic production and damage functions, it will be possible to analyse potential solutions 

under different IPM scenarios, real or hypothesised (Carrasco et al. 2010c, DeJonge et al. 2012, Liang et al. 

2012). Additionally a robust assessment of the effects of agro-ecosystem heterogeneity on pest population 

dynamics might be obtained when a geographic information system (GIS) approach is added to the model 

(Carrière et al. 2006). From these models it will be possible to assess which insects are most likely to be 

susceptible to landscape or environmental changes (Maiorano et al. 2014, Petrovskii et al. 2014). Hence it is 

important to foster research collaborations between the fields of ecology, mathematics and economics 

(Codling 2014, Crowder and Jabbour 2014). 

4.7 Summary 

In summary, despite the widespread adoption of GEIR and a continued increase in the area grown of 

these crops internationally, there are still a range of questions associated with longer term agro-ecosystem 

interactions that remain unanswered, for instance in relation to secondary pests. These may not be serious 

enough to undermine the use of the technology but do require further exploration so that practical and 

economically viable advice can be given to farmers and so that regulators are aware of potential issues and 

risks during the approval phase. The next chapter develops a bio-economic model to analyse the interactions 

between primary and secondary insect populations and the impact of different management options on 

insecticide use and economic impact over time. 
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 MANAGING MAIZE UNDER PEST SPECIES COMPETITION: IS BT CHAPTER 5.

(BACILLUS THURINGIENSIS) MAIZE THE SOLUTION?  

5.1 Chapter introduction 

Transgenic crops that contain Cry genes from Bacillus thuringiensis (Bt) have been adopted by 

farmers over the last 17 years. Unlike traditional broad spectrum chemical insecticides, Bt's toxicity spectrum 

is relatively narrow and selective, which may indirectly benefit secondary insects that may become important 

pests. The economic damage caused by the rise of secondary pests could offset some or all of the benefits 

associated with the use of Bt varieties. This chapter develops a bio-economic model to analyse the 

interactions between primary and secondary insect populations and the impact of different management 

options on insecticide use and economic impact over time. Results indicate that some of the benefits 

associated with the adoption of genetically engineered insect resistant crops may be eroded ecological 

dynamics are taken into account. It is suggested that secondary pests could easily become key insect pests 

requiring additional measures - such as insecticide applications or stacked traits – to keep their populations 

under the economic threshold. 

5.2 The economic sustainability of GEIR’ cropping  

In 1996, the first generation of genetically engineered insect resistant (GEIR) crops expressing toxins 

(crystalline (Cry) proteins) from the soil bacterium Bacillus thuringiensis (Bt) were made commercially 

available. Since then they have been used worldwide for controlling insect pests of major crops such as maize 

and cotton (James 2013). So far, the benefits of commercialized GEIR crops have exceeded expectations 

(Carrière et al. 2010). It is now broadly accepted that any eventual detrimental impact on non-target 

organisms (NTO) is lower for Bt crops than for conventional crops requiring broad-spectrum insecticides 

(Cattaneo et al. 2006). There is evidence from the use of a number of environmental impact indicators that 

GEIR crops have reduced (or at least have not increased) the impact of agriculture on biodiversity through 

selective targeting and associated reductions in the use of broad-spectrum insecticides (Carpenter 2010, Areal 

and Riesgo 2015). Furthermore, the economic benefit of Bt crops associated with the regional suppression of 

specific pest populations appear to be significant (Gomez-Barbero et al. 2008, Carpenter 2010, Hutchison et 

al. 2010, Areal et al. 2013). The damage caused by stalk-boring feeding insects, such as the European corn 

borer (ECB) [Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae)], is enough to cause a significant 

reduction in maize yields (Malvar et al. 1993, Bohn et al. 1999). Hutchison et al. (2010) estimated the 

cumulative benefits of controlling ECB with Bt maize over the last 14 years at $6.8 billion for maize growers 

in the US Midwest, with more than 60% of this total accruing to non-Bt maize growers. On the other hand, in 

European countries where Bt maize has still not been employed, yield losses without control may reach 30% 
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in areas highly infested with stalk-borer feeding insects (Meissle et al. 2010). According to Park et al. 

(2011a) this represents a loss to farmers of between 157 million and 334 million Euros each year. 

 Despite its wide adoption, the sustainability of Bt crops is still a controversial topic among the 

scientific community. Two concerns are usually raised: i) ecological shifts may take several years to manifest 

(Ho et al. 2009), hence, it is important to understand the long term ecological interactions around GEIR crops 

(Snow et al. 2005) and ii) the impact of Bt crops on NTOs in field conditions may not reflect the results 

obtained in laboratory studies (Andow et al. 2006, Lövei et al. 2009). In particular, researchers have 

predicted that NTOs could appear in such numbers that they may become key secondary insect pests
9
 in Bt 

crop fields (Andow and Zwahlen 2006). Citing Harper (1991, p.22), “ignoring secondary pests can lead to 

devastating crop damage that may continue over a considerable period of time”. Such occurrence of 

secondary pests would require additional spraying with conventional broad-spectrum insecticides, which may 

erode (at least) some of the benefits of GEIR crop technology (Pemsl et al. 2011).  

This chapter develops a bio-economic model to evaluate the impact of a number of pest management 

options on primary and secondary pest populations, as well as on insecticide use and related economic 

outcomes. It uses a production function based on a system of two first order differential equations that 

represent the ecological interactions of the primary and secondary pests with the pest management practices. 

As far as the author is aware, such an approach has not yet been considered in the literature. The model takes 

into consideration the dynamics of two surrogate pest species, the Mediterranean corn borer (MCB) [Sesamia 

nonagrioides (Lefebvre) (Lepidoptera: Noctuidae)], a target pest, and the true armyworm (TAW), [Mythimna 

(Pseudaletia) unipuncta (Haworth) (Lepidoptera: Noctuidae)], a secondary pest. Their effects on the 

production function are used to predict pest control decisions. Optimal insecticide applications under 

deterministic conditions are calculated through a Differential Evolution dynamic nonlinear optimization 

technique
10

 (Storn and Price 1997, Mullen et al. 2011). Furthermore, numerical simulations of various 

scenarios arising from different hypotheses are developed and analysed. In particular, this focuses on 

farmers’ net returns due to the changes in insecticide use and the development of secondary pests on Bt 

maize. The chapter concludes by considering the management implications of the results as well as 

suggesting future research directions.  

                                                           

9 A secondary pest is a "non-targeted" pest that has historically posed small or no economic threat, but which 

could be directly or indirectly affected by changes in insecticide use patterns, such as those caused by Bt cropping, 

associated with the management of a primary pest (FIFRA Scientific Advisory Panel 1998). 

10 Differential Evolution (DE) is a simple yet powerful global optimization method which belongs to the class of 

Evolutionary Algorithms (EA) (Storn and Price 1997, Price 1999). This metaheuristic method attempts to find the 

optimum of the problem by iteratively refining the candidate solution with respect to the objective function (function to 

be optimized) value (Storn and Price 1997, Price et al. 2005). Due to its convergence speed, accuracy, and robustness, it 

is often preferred to other optimization methods (e.g. genetic algorithm and evolutionary programming) in order to solve 

real-world problems over continuous domains (Vesterstrom and Thomsen 2004). 
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5.3 Secondary pest outbreaks in the context of GEIR crops  

Bt toxins have a narrow efficacy spectrum aimed at controlling only the target pest. This offers a safe 

environment for the development of non-target pests (Sharma and Ortiz 2000, Lu et al. 2010), which may 

lead to crop damage (Sharma and Ortiz 2000, Wu and Guo 2005). Depending on the magnitude of the 

impact, the adoption of Bt crops might convey unexpected negative effects on agricultural ecosystem 

interactions and consequently on farm profits (Wolfenbarger and Phifer 2000, Catarino et al. 2015, Catarino 

et al. 2016). In the context of GEIR crops, three main causes may trigger an outbreak of secondary pest 

species: i) a reduction in broad-spectrum insecticide applications (Lu et al. 2010, Pemsl et al. 2011, Stone 

2011); ii) a sufficient reduction in pests’ natural enemies (Naranjo 2005b, a, Marvier et al. 2007); or iii) a 

decrease in inter-specific competition with the lowering of target pest numbers (Catangui and Berg 2006, 

Dorhout and Rice 2010, Virla et al. 2010). These causes are not necessarily independent.  

It is postulated that, whatever the cause of the rise in secondary pest numbers, insecticide spraying 

would be the only immediate solution at a farmers’ disposal. The most notorious case concerns sap-feeding 

bugs on Bt cotton plants in China. Presently, in order to control these secondary pests, Chinese Bt cotton 

farmers are applying about 20 sprayings per season (for more details see Lu et al. 2010, Pemsl et al. 2011). 

Such application rates are similar to those before Bt cotton adoption when insecticides were used mainly to 

control cotton bollworm (Wu and Guo 2005). Insecticide spraying on Bt crops may convey ecological 

disturbances with knock-on consequences, such as the destruction of the primary and/or secondary pest’s 

natural enemies’ complex. Hence, if non-susceptible secondary pest populations exceed economic thresholds, 

the sustainability of Bt technology may be put in jeopardy. The bio-economic model developed in the 

following section demonstrates the interaction and economic impact of such an event. 

5.4 Methodology 

This chapter follows the pioneering work of Lichtenberg and Zilberman (1986)
11

, in which a damage 

control model considered pesticides as a damage abatement input that has an indirect effect on output. In 

previous studies, pesticides were modelled as a yield-increasing input (Headley 1968, Hall and Norgaard 

1973). This approach allows for changes in the damage control agent productivity over time, including the 

integration of pest population (see section 2.6 for further details).  

Mathematical modelling plays an integral part in attempts to understand the dynamics of two species. 

In general, competition can be defined as an interaction in which the survival and reproduction of individuals 

is negatively affected by the interaction with other individuals, from the same or different species. The 

                                                           

11 For a detailed review on the Lichtenberg and Zilberman (1986) damage control approach see Sexton et al. 

(2007).  
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classical theory of ecological competition between two species is usually modelled by a system of nonlinear 

ordinary differential equations (ODE) of first order which is associated with Volterra (Volterra 1928) and 

Lotka (Lotka 1925). The Lotka-Volterra (LV) system models species growth where intra- and inter-specific 

interaction coefficients are introduced into the dynamics. The LV system of equations is usually described by 

a set of deterministic equations involving a small number of variables. In this thesis, it is considered that the 

pest population growth rate is negatively affected by the intra- and inter-specific competition, natural 

enemies and the control parameters, insecticides and Bt toxin. For each species, their specific parameters 

values were obtained from literature (table 5.2). 

5.4.1 Bio-economic model 

Following Lichtenberg and Zilberman (1986), a bio-economic model is designed where pest 

interactions are incorporated into a production function. The damage-abating role of insecticide is taken into 

account explicitly in the production function through an asymmetric treatment of "productive" inputs (z) and 

"damage-abating" insecticide (x): y = F(x, D(z)). D(x) is the so called damage-abatement function, 

representing the role of insecticide in the model, which do not have the potential to increase the output but 

indirectly mitigate yield loss through pest elimination. The effect of pest impact on the output is based on the 

Lotka-Volterra model which defines the population dynamics of two species competing for the same 

resource. Although the Lichtenberg and Zilberman (1986) damage control approach is not free from criticism 

(Lansink and Carpentier 2001, Zhengfei et al. 2006), it has been successfully used in other bio-economic 

models of GEIR crops (Huang et al. 2002a, Pemsl et al. 2008, Qaim 2009) and to model the management of 

invasive alien species (Ceddia et al. 2009).  

The initial model assumptions are as follows. The agricultural product is attacked by two rather 

different pests: the MCB – primary pest (N1) – is a highly competitive pest that is also highly susceptible to 

Bt toxin; and the TAW – secondary pest (N2) – is negatively affected by the first species, but has a higher 

tolerance to the Bt toxin. Both have the same negative impact upon the yield. The dynamic behaviour of both 

species, with and without pest control, is analysed below. It is assumed that the farmer has only two means to 

suppress pests, by adopting Bt varieties and by spraying insecticide when pest densities exceed an economic 

threshold (ET
12

).  

Actual output 

                                                           

12 Economic threshold is defined as the "density at which control measures should be determined to prevent an 

increasing pest population from reaching the economic injury level". The economic injury level was defined by these 

authors as the "lowest population that will cause economic damage" (Stern et al. 1959).  
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Let G(Z) denote the aggregate potential maize output over a landscape, which includes both 

conventional maize (Gc) and GEIR maize (GBt), where Z represents a vector of non-insecticide inputs (i.e., 

labour, seeds, fertilizers etc.). The damage control framework models the actual output, Y, as a function of 

potential output, G(Z), damage, D(N1,N2), and proportion of the total landscape planted with Bt maize (Ω). 

The actual output is given by:   

𝑌 = 𝐺(𝑍)[1 −  𝐷 (𝑁1, 𝑁2)] 

(5.1) 

With:    

 𝐺(𝑍) = (1 − 𝛺)𝐺𝑐(𝑍) + 𝛺𝐺𝑏𝑡(𝑍) 

 𝐺’ > 0, 𝐺’’ < 0 

 

Damage is a function of the density of both pest populations – N1 and N2 – and expresses the fraction 

of yield lost (Dy) due to the sum of damage caused per each species (I). It is assumed that both pests can act 

simultaneously and the nature of the damage is species independent:  

𝐷 = 𝐷𝑁1 + 𝐷𝑁2  (5.2) 

With:   

 𝐷𝑁1 =
𝐼𝑁1

𝑃𝑙𝑎𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 (5.2a) 

 𝐷𝑁2 =
𝐼𝑁2

𝑃𝑙𝑎𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 (5.2b) 

Economic Threshold  

The ET is a practical operational rule difficult to access theoretically, hence the ET was set at a fixed 

level – 25% – below the economic injury level (EIL), as suggested by Pedigo et al. (1986). Following the 

same author, the EIL is composed of four primary variables: w, the cost of management per unit (€/ha); p, the 

product market value per ton (€/ton); Dy, yield lost per larvae (tons/ha); and s, the proportion of larvae killed 

(%).  

𝐸𝑇 =
𝐸𝐼𝐿

4
 (5.3) 

With:  

 𝐸𝐼𝐿 =
𝑤

𝑝𝐷𝑦𝑠
 (5.3a) 
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Population dynamics 

Applying the LV methodology, equation 5.4 demonstrates the case of two species competing for the 

same resource, where 𝑵𝒊 indicates the population density of species (𝒊 = 𝟏, 𝟐;  𝒊 ≠ 𝒋). The parameter 𝒓𝒊 the 

intrinsic growth rate, i.e. the net per capita growth rate at low populations densities when competition is 

negligible; the intra-specific competition coefficient 𝒂𝒊𝒊 measures the effect of species 𝐢 on itself; the inter-

specific competition coefficient 𝒂𝒊𝒋 measures the effect of species 𝒊 = 𝟏 on species  𝒋 = 𝟐; 𝒌𝒊 represents the 

maximum population the involved environment can hold, i.e. the carrying capacity; and 𝒎𝒊 the mortality 

attributed to natural enemies.  

{
 
 

 
 
𝑑𝑁1
𝑑𝑡

= 𝑟1𝑁1 (1 − 𝑏11
𝑁1
𝑘1
− 𝑏12

𝑁2
𝑘1
−𝑚1)

𝑑𝑁2
𝑑𝑡

= 𝑟2𝑁2 (1 − 𝑏22
𝑁2
𝑘2
− 𝑏21

𝑁1
𝑘2
−𝑚2)

 (5.4) 

 In the absence of the competitor, the dynamics of both species follow a logistic model. In this case, as 

the population density increases, the effect of intra-specific competition effectively slows down the rate of 

growth until equilibrium is reached at the environment carrying capacity. In the presence of other species, the 

growth rate also decreases due to interspecific competition. The pressure of the competitor is proportional to 

specific densities and is influenced by the competition coefficient.  

Within this basic framework, two forms of pest control are introduced: the adoption of Bt seeds (Ω) 

and the application of broad-spectrum insecticide (x). The parameter qi (i=1,2) indicates the effectiveness of 

Bt in controlling each pest population. The pest dynamics become:  

{
 
 

 
 
𝑑𝑁1
𝑑𝑡

= 𝑟1𝑁1(1 − 𝑏11
𝑁1
𝑘1
− 𝑏12

𝑁2
𝑘1
− ф𝑢(𝑥)𝑚1 − 𝑞1Ω − фℎ(𝑥))

𝑑𝑁2
𝑑𝑡

= 𝑟2𝑁2(1 − 𝑏22
𝑁2
𝑘2
− 𝑏21

𝑁1
𝑘2
− ф𝑢(𝑥)𝑚2 − 𝑞2Ω − фℎ(𝑥))

 (5.5) 

Farmers’ adoption of Bt technology is assumed to be exogenous and develops according to the 

following logistic function: 

Ω =
𝜆𝑓𝜆𝑖𝑒

𝑟Ω𝑡

𝜆𝑓 + 𝜆𝑖(𝑒
𝑟Ω𝑡 − 1)

 (5.6) 

The insecticide’s effectiveness is specified by h(x) which is a function of the number of insecticide 

applications (𝒙), and by ф, a dummy variable, assuming the value of one if 𝑵𝟏 ≥  𝑬𝑻𝑵𝟏 or 𝑵𝟐 ≥ 𝐄𝐓𝑵𝟐, and 

zero otherwise. Both pests are equally affected by the insecticide. It is important to note the insertion of the 
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new component into the natural enemies’ variability parameters ф𝒖(𝒙) which reflects the negative impact of 

insecticide applications on natural enemies (Equation 5.8).  

Following Shoemaker (1973) and Bor (1995), mortality rate is an exponential function of insecticide 

dosage because high insect mortality requires a large dosage of insecticide. Consequently, the following kill 

efficiency function is:  

ℎ(𝑥) = (1 − 𝑒−𝑥(𝑡)𝑠𝑝) (5.7) 

𝑥(𝑡) =  𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 (5.7a) 

𝑢(𝑥) = (1 − 𝑒−𝑥(𝑡)𝑠𝑛𝑒) (5.8) 

h(x) is assumed to be monotonically increasing in x(t), which represents the application of insecticide 

at time t, and satisfies 𝒉 (𝟎) =  𝟎, 𝒍𝒊𝒎𝑿→∞ 𝒉(𝒙) ≤ 𝟎. It is assumed the farmer applies insecticide as a 

preventative measure (Sexton et al. 2007). Using this approach, the farmer can make an accurate estimation 

concerning the possibility of pests occurring. The parameters a, b, c and d in this expression are estimated 

though the maximization of the farmer’s net present value as specified below. Insecticide applications 

assume a cubic form in order to provide a higher degree of freedom when carrying out the optimization 

process.  

Net present value 

An agricultural landscape (whose area is normalized to one ha) populated by a profit maximizing 

farmer is used to explore the economic implications of different pest management decisions. The problem is 

formulated in terms of the maximization of NPV after 25 years of aggregate landscape profits, subject to the 

pest management problem over a time interval [0, T]. This is accomplished by choosing the appropriate 

amount of insecticide to apply throughout the cropping season according to the economic threshold given in 

the above pest dynamic scenario. The farmer determines his optimal insecticide application at the beginning 

of the planning horizon by choosing the values of parameters a, b, c and d in expression (7a) so as to 

maximize his NPV over the given time horizon. To make the problem more treatable, it is also assumed that 

all other inputs (Z) in the equation below are applied in fixed proportions. 

  



 

 

 

Page | 41 

 

 

 

Letting 𝜹 denote the discount factor, p the output price, uc and uBt the prices of conventional and 

GEIR maize inputs unrelated to damage control, w the price of a unit of insecticide (x), then the problem is:  

𝑚𝑎𝑥
{𝑎,𝑏,𝑐,𝑑}

∫ 𝑒−𝛿𝑡
𝑇

0

 {𝑝𝑔(𝑍)[1 −  𝐷(ℎ(𝑁1, 𝑁2, 𝑞, 𝑋))]  − 𝑍[(1 − 𝛺)𝑢𝑐 + 𝛺𝑢𝑏𝑡] − ф𝑤𝑥} 𝑑𝑡  

 s.t.  

𝑑𝑁1
𝑑𝑡

= 𝑟1𝑁1(1 − 𝑏11
𝑁1
𝐾1
− 𝑏12

𝑁2
𝐾1
− (1 − ф)𝑚1 − Ω𝑞1 − фℎ(𝑥))) 

𝑑𝑁2
𝑑𝑡

= 𝑟2𝑁2(1 − 𝑏22
𝑁2
𝐾2
− 𝑏21

𝑁1
𝐾2
− (1 − ф)𝑚2 − Ω𝑞2 − фℎ(𝑥))) 

With 

ф = {

 1, 𝑁1 ≥ 𝐸𝑇𝑁1
1, 𝑁2 ≥ 𝐸𝑇𝑁2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(5.9)  

 

The model therefore computes aggregate maize output as the potential yield minus the fraction of the 

crop that is lost due to the damage caused by both pest species. The model excludes external social and 

environmental costs of insecticide use for both society and the farmer. Two different scenarios are analysed – 

before and after Bt maize adoption. Each scenario includes the two cases: a) the use of insecticides and b) the 

non-use of insecticides. 

5.4.2 Model parameterization  

Population growth rates for the pests were derived from laboratory data given in peer-reviewed 

scientific publications (see appendix 1 and 2). The laboratory conditions in these experiments represent the 

typical temperature and photoperiod conditions of the Mediterranean basin area. In Spanish conditions, 

researchers have found not more than five larvae of MCB and TAW larvae per plant (Velasco et al. 2004, 

Velasco et al. 2007, López  et al. 2008, Eizaguirre et al. 2010). Hence this value was assumed as the 

maximum larvae number, for each species, per maize plant. Consequently the carrying capacity (𝑲𝟏 and 𝑲𝟐) 

is equal to the maximum possible density of larvae within the cropped field, assuming a plant density of 

90,000 per ha. Due to the large available habitat the intraspecific competition parameter was included within 

the carrying capacity, 𝒃𝒊𝒊=1. Considering a maximum carrying capacity of five larvae per plant and a 

maximum damage of 30 % (as indicated above), it is assumed that each MCB and TAW larvae is able to 

reduce yields by 6% per plant. It has been suggested that due to behavioural characteristics, MCB may 

negatively influence the TAW, however until now this effect has not been quantified (López et al. 2003, 
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Eizaguirre et al. 2009). The chapter evaluates the case in which MCB has a strong negative effect on TAW 

(b21=0.9), while the reciprocal effect is relatively small (b12=0.1).  

The parameters m1 and m2 take into account the impact of natural enemies on MCB and TAW 

populations respectively and the random effect of variable external factors that can affect predatory activity, 

such as temperature, humidity or agricultural practices (Kaya and Tanada 1969). Since little information is 

available about these, it was assumed that m1 and m2 follow random uniform distributions with m1 varying 

between 0.1 and 0.65 and m2 between 0.1 and 0.9. The difference between the ranges of m1 and m2 is 

explained by the cryptic nature of the MCB larvae which reduces its vulnerability to predation (see section 

3.4.1 for further details). Small values of mi reflect a bad year for the occurrence, abundance and subsequent 

predatory activity of natural enemies; high values of mi reflect high levels of pressure by natural enemies and 

efficiency in capturing the pest. The parameter qi (i=1,2) which indicates the effectiveness of Bt in controlling 

each pest population takes values 𝒒𝟏=0.99 and 𝒒𝟐=0.2. These values indicate different pest susceptibility to 

the Bt toxin. It is assumed that 𝑵𝟏 is highly susceptible and that 𝑵𝟐 is weakly susceptible to Bt technology. It 

is hypothesized that full adoption of the Bt variety happens within 10 years (𝒓Ω = 0.8). Initial adoption is set 

as 10% (𝝀𝒊 = 0.1) and the maximum adoption is 80% (𝝀𝒇 = 0.8) reflecting the minimum 20% refuge 

commonly advised. When adoption reaches a plateau, it means that 100% of the agricultural land is under a 

GEIR crop scheme.  

In this study, although potentially very important, any eventual impact of Bt toxin on the natural 

enemies of the case study pests is not taken into account. Nonetheless it should be noted that, at least for 

Cry1Ab, no significant impacts have been reported especially when compared with insecticides (Naranjo 

2005a, Cornell 2010). It is assumed that the farmer applies insecticide with optimal timing, obtaining an 80% 

(𝒔𝒏𝒆) pest control efficiency per application (Hyde et al. 1999, Folcher et al. 2009). It is further assumed that 

insecticides have a 100% efficiency on the natural enemies’ complex (𝒔𝒑 = 1) since it has been reported that 

the effect of insecticides on natural enemies is greater than the effect on pests (Longley and Jepson 1996, 

Van Emden 2014). Insecticide applications change over time according to the expression (7a).  

The parameters for the economic and ecological components of the model are presented in table 5.1 

and table 5.2 respectively. The time horizon considered in the analysis extends over 25 years after the initial 

(hypothetical) adoption of Bt varieties (so T=25). The model is numerically solved with R software (R-Core-

Team 2012) with support from the packages “deSolve” and “RcppDE” (Soetaert et al. 2010, Eddelbuettel 

2015, Soetaert et al. 2015). After calibration, the numerical results appear consistent with data reported in 

recent studies (e.g. Gomez-Barbero et al. 2008, Meissle et al. 2010, Areal et al. 2013). The model sensitivity 

analysis is presented in the following section. 
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Table 5.1 - Economic parameters used in the bio-economic model. 

Parameters Value Units 

Plant density per hectare  90000
a
 Plants/ha 

Potential conventional maize yield (Yc)  11.30
b
 T/ha 

Potential Bt maize yield (YBt) 11.80
b
 T/ha 

Price maize (p) 248.70
a
 €/T 

Conventional seed price (Sc) 253.80
a
 €/ha 

Bt seed price (SBt) 284.40
a
 €/ha 

Fixed costs (uc) 1797.88
a
 €/ha 

Fixed costs (uBt) 1815.88
a
 €/ha 

Insecticide cost per application (w) 18
a
 €/ha/application 

Discount rate (𝛿) 0.05 
d
  

Initial adoption (𝜆𝑖) 0.10
d
  

Full adoption (𝜆𝑓) 0.80 
d
  

a (AGPME 2012); b(Gomez-Barbero et al. 2008); c (MAGRAMA 2014); d assumption; e (Maund 2002)  

 

Table 5.2 - Biological parameters for MCB and TAW used in the bio-economic model. 

Parameters N1 (MCB) N2 (TAW) 

Growth rate (ri)
 

2.02
 a
 3.13

 a
 

Intraspecific competition (𝑏𝑖𝑖) 1
b
 1

 b
 

Interspecific competition (bij)
 
 0.10

b
 0.90

b
 

Susceptibility to Bt toxin (qi)
 
 0.99

c
 0.20

d
 

Susceptibility to insecticide (s) 0.80
e
 0.80

e
 

Minimum natural enemies impact  0.1
b
 0.1

b
 

Maximum natural enemies impact 0.65
b,f

 0.90
b,g 

Maximum larvae per plant 5
h
 5

h
 

Initial population
 
 9×10

4 b
 9×10

4 b
 

Damage per larvae (I)  0.06
b
 0.06

b
 

a appendix 1 and 2; b assumption; c (Hellmich et al. 2008); d (González-Cabrera et al. 2013); e (Hyde et al. 1999, Folcher et al. 

2009); f (Alexandri and Tsitsipis 1990, Figueiredo and Araujo 1996, Monetti et al. 2003); g (Guppy 1967, Kaya 1985, Laub 

and Luna 1992, Menalled et al. 1999, Costamagna et al. 2004); h (Butrón et al. 1999, Malvar et al. 2004, Velasco et al. 2004, 

Butrón et al. 2009) 

 

5.4.3 Model integration procedure - Runge–Kutta 4
th

 order 

Most often, as in the case of this thesis, DE systems cannot be solved analytically. Algorithms based 

on numerical methods are therefore needed. In order to solve the ODE system, the Runge–Kutta 4
th

 order 

(RK4) method was applied (Boyce and Prima 2009). The RK4 is one of several techniques used for 

estimating solutions of DEs based on numerical approximations. In brief, the numeral integration computes 
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from an initial condition, 𝑵(𝒕𝟎) = 𝑵𝟎, numerous successive points that satisfy the evolution equation 
𝒅𝑵𝒊

𝒅𝒕
=

𝒇(𝒕,𝑵𝒊). Using the same notation as in the foregoing, the summary of the steps of RK4 method are the 

following: 

1) For two general 1st order ODE's:  

{

𝑑𝑁1
𝑑𝑡

= f(𝑁1, 𝑁2, 𝑡)

𝑑𝑁2
𝑑𝑡

= g(𝑁1, 𝑁2, 𝑡)

 

With 𝑁i(0) = 𝑁i0 

(5.10) 

2) The 4th order Runge-Kutta
13

 formula's for a system of 2 ODE's are: 

{
𝑁1i+1 = 𝑁1i +

1

6
(𝑠0 + 2𝑠1 + 2𝑠2 + 𝑠3) 

𝑁2i+1 = 𝑁2i +
1

6
(𝑙0 + 2𝑙1 + 2𝑙2 + 𝑙3)

 (5.11) 

Where  

{
 
 
 

 
 
 

𝑠0 = f(𝑁1i, 𝑁2i, 𝑡𝑖) 

𝑠1 = ℎ𝑓 (𝑡𝑖 +
1

2
ℎ, 𝑁1i +

1

2
𝑠0, 𝑁2i +

1

2
𝑙0)

𝑠2 =  ℎ𝑓 (𝑡𝑖 +
1

2
ℎ, 𝑁1i +

1

2
𝑠1, 𝑁2i +

1

2
𝑙1)

𝑠3 =  ℎ𝑓 (𝑡𝑖 + ℎ,𝑁1i + 𝑠2, 𝑁2i +
1

2
𝑙2)

 

And  

{
 
 
 

 
 
 

𝑙0 = f(𝑁1i, 𝑁2i, 𝑡𝑖) 

𝑙1 = ℎ𝑔 (𝑡𝑖 +
1

2
ℎ, 𝑁1i +

1

2
𝑠0, 𝑁2i +

1

2
𝑙0)

𝑙2 =  ℎ𝑔 (𝑡𝑖 +
1

2
ℎ, 𝑁1i +

1

2
𝑠1, 𝑁2i +

1

2
𝑙1)

𝑠𝑙3 =  ℎ𝑔 (𝑡𝑖 + ℎ,𝑁1i + 𝑠2, 𝑁2i +
1

2
𝑙2)

 

5.4.4 Model optimization procedure - Differential evolution algorithm 

A differential evolution algorithm (DEA)
14

 is used as the optimization technique (Storn and Price 

1997). DEAs are a direct and heuristic optimization technique belonging to the class of genetic algorithms 

                                                           

13 The parameters "𝒔" and "𝒍" are not related to future parameters in the thesis, this notation was used merely for 

explanatory purposes. 
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(GAs
15

). In contrast with linear optimization techniques
16

, DEAs can handle any category of objective 

function or constraint defined in discrete, continuous or mixed search space (Mayer et al. 2005). The 

incorporation of stochastic variables (such as the impact of natural enemies), into the optimization model is 

possible using this process. DEAs have been used extensively in the fields of agriculture economics and 

ecology (Taylor and Hastings 2004, Mayer et al. 2005, Groot et al. 2007, Carrasco et al. 2010c). It makes the 

assumption that farmers act optimally, i.e. that they have perfect knowledge of the problem in the given time-

frame. In brief, as every direct search, the DEA generates variations of the parameter vectors, after which a 

decision is made whether or not to accept the newly derived parameters. Under this principle
17

, the new 

vector is accepted if, and only if, it reduces the value of the objective function. In this thesis case, the model 

is run for each possible combination of the parameters to be optimized (equation 5.9) using Monte Carlo 

simulation with Latin Hypercube sampling
18

 until convergence to those that led to the highest mean NPV of 

total costs is achieved.  

5.4.5 Sensitivity analysis 

To assess the influence and importance of the biological parameters 

{𝒓𝟏, 𝒓𝟐,𝒎𝟏,𝒎𝟐, 𝒃𝟏𝟐, 𝒃𝟐𝟏, 𝒃𝟏𝟏, 𝒃𝟐𝟐} on the model results, a global sensitivity analysis (GSA) is conducted 

using the Morris (1991) method
19

 (Saltelli et al. 2000b). The Morris method has been used in several 

dynamic agroecosystem modelling projects (e.g. Confalonieri et al. 2010, DeJonge et al. 2012, Ben Touhami 

et al. 2013). Use of this method of sensitivity analysis aids the selection of parameters which have greater 

influence on the model final output variability. The parameter’s uncertainty distribution values are shown in 

table 5.3.  

  

                                                                                                                                                                                

14 Other direct search algorithms that could be used to optimize the non-line and non-differentiable objective 

function include Nelder-Mead and Hooke-Jeeves methods (Price et al. 2006) 

15 As the name indicates, genetic algorithms are based on the biological concept of genetic reproduction by 

mimicking the natural selection processes of evolution. For further insights please see Davis (1991); And Gen and Cheng 

(2000) 

16 Usually bio-economic model in agricultural problems are based on linear programming techniques (see Janssen 

and Van Ittersum 2007, for an overview). The main limitation behind this approach is the necessity to use only linear 

functions of the variables on the objective and constraints systems. 

17 All basic direct search methods use the greedy criterion to make this decision (Storn and Price 1997) 

18 Latin hypercube sampling is a method of sampling that can be used to produce input values for estimation of 

expectations of functions of output variables (Stein 1987 , McKay et al. 2000) 

19 The GSA was conducted in R software using the ‘sensitivity package’ (Pujol et al. 2015).  
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Table 5.3 – Uncertainty distribution of parameter values used in 

the global sensitivity analysis, Morris method. 

Parameter Nominal Value Uncertainty interval 

r1 2.02 1.01-3.03 

r2 3.13 1.57-4.70 

b11 1 0.5-1 

b22 1 0.5-1 

b12 0.1 0.05-0.15 

b21 0.9 0.45-1 

m1 0.1-0.65 0.05-0.75 

m2 0.1-0.9 0.1-1 

 

The Morris analysis has been used in several dynamic agroecosystem modelling projects (e.g. 

Confalonieri et al. 2010, DeJonge et al. 2012, Ben Touhami et al. 2013). The results generated give two 

measures of sensitivity, firstly the final output mean variation (µ*) in relation to the computed values 

(horizontal axis), and secondly the correspondent effect standard deviation (σ) (vertical axis). Parameters 

with higher µ* will have a stronger influence on the final output, while parameters with a high σ implies 

dependency through nonlinear responses and/or interactions with other parameters (Saltelli et al. 2000a, 

Saltelli et al. 2004). The sensitivity analysis using the Morris method showed that interspecific competition 

between primary and secondary pests (𝒃𝟏𝟏) is the most influential parameter (figure 5.1). Four other 

parameters: natural enemies on secondary pest ( 𝒎𝟐), primary and secondary pest intraspecific competition 

(𝒃𝟏𝟏, 𝒃𝟐𝟐), and the effect of the primary pest on secondary pest {b21} are also noticeably influential, while 

the remaining parameters have a sensitivity about threefold lower (figure 5.1). 
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Figure 5.1 - Results of the Morris method (across 30 trajectories, 16 levels and 8 grid jumps) on mean 

(*) and standard deviation (σ) associated with the NPV after 25 years. Parameters were automatically 

scaled before computing the elementary effects so that all factors would vary within the range [0,1]. It 

was implicitly assumed here that the uncertain model parameters were uniformly distributed. For each 

parameter, the tested range before scaling is shown in table 5.3 

5.5 Results and Discussion 

The NPV maximization over 25 years (Equation 5.9) is solved numerically using the following 

postulated pest management option scenarios. In the first assessed scenario (section 5.5.1), the pest dynamics 

and NPV after 25 years are modelled, with and without insecticide control, assuming that the farmer did not 

have access to Bt maize seeds. In the second scenario (section 5.5.2), a new control technology – Bt maize 

expressing Cry1Ab toxin – becomes available. The adoption rate is not linear (Equation 5.6). It is assumed 

that at time T=0, 10% of the area is covered with Bt maize, reaching an 80% plateau after approximately 11 

years. Assuming that the farmer may lack a full understanding of the capacity and limitations of Bt 

technology, two different cases are tested: the first assumes that the farmer will rely on GEIR technology 

completely and all insecticide applications are stopped; the second assumes the farmer utilizes both of the 

pest control means at his/her disposal, with the Bt maize adopted at the projected rate and insecticide 

applications used whenever pest numbers exceed the ET. The results obtained are also compared with a 

conjectural case where both pests are highly susceptible to Bt toxin. In section 5.5.3, two additional scenarios 
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are explored: 1) a +/- 25% variation of the seven parameters shown to influence pest dynamics 

{𝒓𝟏, 𝒓𝟐, 𝒃𝟏𝟐, 𝒃𝟐𝟏, 𝒒𝟏𝟏, 𝒒𝟐, 𝝀𝒊}; and 2) due to the importance of natural enemies, five additional cases of 

different natural enemies’ densities (representing different levels of ecosystem disruption) are assessed with 

the assumption that the farmer uses a selective insecticide harmless to these enemies. In both additional 

scenarios, a comparison is made between the resulting NPV after 25 years and the number of insecticide 

applications with the results obtained in the optimal pest management control strategy (when insecticide is 

used along with Bt maize). 

5.5.1 Scenario 1: Prior to Bt maize adoption 

This scenario reflects a situation in which conventional maize is grown and Bt maize is not adopted 

(e.g. technology is not accessible), and primary and secondary pests are present in the agro-ecological 

system. Results under this scenario show the evolution of the population dynamics during a period of 25 

years for the primary (MCB) and secondary (TAW) pest without (figure 5.2) and with (figure 5.3) pest 

control (i.e. insecticides). Without pest control the TAW density passes unnoticed for most of the period due 

to strong competition from the MCB and pressure from natural enemies (figure 5.2). This leads to high crop 

damage and a low NPV after 25 years, and is therefore not desirable to the farmer (table 5.4). Figure 5.3 

shows the results under a conventional maize cropping system with the farmer applying insecticide. In this 

case, over 25 years, an average of 3.55 insecticide applications per ha are made (s.d.= 0.61), obtaining a total 

NPV of 8563 €/ha (table 5.4).  

 

Figure 5.2 - Pest dynamics, prior to Bt adoption without insecticides applications, during a 

period of 25 years for the primary and dominant pest, the MCB (red line), and the secondary pest, 

TAW (green line). The blue line represents the economic threshold and the yellow line the 

economic injury level (point at which pest cause economic impact on the culture).  
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Figure 5.3 - Pest dynamics, prior to Bt adoption with insecticides applications, during a 

period of 25 years for the primary (MCB) and secondary (TAW) pest. The blue line represents the 

economic threshold, point at which farmer initiates insecticides application to prevent an 

increasing pest population from reaching the economic injury level (yellow line).  

The small variability in the amount of insecticide used occurs because the farmer is not able (and not 

economically willing) to completely eradicate the pest, but seeks to keep it under the EIL. Having the latter 

goal in mind, the farmer only reacts when a pest reaches the ET. Because the MCB’s proliferation capacity is 

high, its density will always rebound above the EIL obliging the farmer to keep constant attention on the 

fields. Assuming that resistance factors are constant, pest populations will then oscillate in line with 

population numbers in previous years. Accordingly, it is expected that this insecticide application pattern 

continues with (brief) periods in which no applications are needed, as seen in figure 5.4. The drops to zero 

insecticides applications observed in figure 5.4 reflect a brief drop in insect population levels under the ET 

caused by this pest management strategy. 

Table 5.4 – NPV, insecticides applications (mean ± SE) and damage (mean ± SE) 

results accrued from the 4 different scenarios. 

Scenario NPV (€/ha) Insecticide applications Damage (%) 

No pest control 3202  19.00 ± 1.06 

Only insecticide
1
 8563 3.54 ± 0.61 2.80 ± 1.71 

Only Bt 7052  10.58 ± 1.61 

Bt + insecticide
`
 10353 2.01 ± 0.68 1.06 ± 1.94 

1 with: a=4.080582e+00; b=1.918453e-02; c=-2.830495e-03; d=-4.804419e-05  

2 with: a=3.576192e+00; b=-1.986176e-01; c=4.870921e-03; d=-2.525556e-05 
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Figure 5.4 – Insecticides applications over time prior to Bt maize adoption (yellow line) and when Bt 

maize is used (green line). The drops to 0 (zero) insecticides applications reflect an instant drop in 

insect population’s level under the ET. Being the economic threshold the point at which farmer will 

reinitiates insecticides application to prevent the pest population from reaching the economic injury 

level.  

 

5.5.2 Scenario 2: Bt maize adoption 

In the first case, the farmer relies solely on the efficiency of Bt maize, putting aside insecticides 

(figure 5.5). After an initial rise in both pest densities, the TAW population is slightly suppressed by the 

MCB. However due to the increasing presence of Bt toxin, after the MCB population peaks, its density 

steadily declines. MCB population levels below the EIL are reached after the 9
th

 year of adoption. The ET is 

reached around the 12
th

 year of adoption and with 80% of the maize area planted with Bt varieties. This 

translates into a decrease in the MCB’s competition capacity and with a corresponding ascension in TAW 

numbers. In this case, the TAW population becomes the main pest that is always above the EIL, and causes 

serious damage to the crop. The oscillation in TAW numbers is due to the variable pressure of environmental 

factors and natural enemies affecting it. After 25 years, MCB population is marginal and its complete 

eradication is never achieved. However, a quick recovery of the population will occur in the case that Bt 

seeds stop being used. In this case, where Bt maize is used without insecticide, the farmer obtains an NPV of 

just 7052 €/ha after 25 years, which is about 82% of what was achieved when relying solely on insecticide 

(table 5.4). This scenario is slightly unrealistic as it fails to take into consideration the insecticide applications 
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of non-adopting farmers. Nonetheless, it clearly demonstrates the problem of relying on a single pest control 

technique and illustrates what happens when a farmer is not aware of the secondary pest problem. 

More realistically, farmers can be expected to utilize both of the pest control means at their disposal 

(figure 5.5), with the Bt seeds adopted at the projected rate (as in equation 6) and insecticide applications 

used whenever pest numbers exceed the ET. In this case, due to the rapid insecticide action, both pest 

populations suffer an immediate decrease. Competition pressure is evident during the first three years when 

TAW’s population surpasses MCB population. TAW’s population is kept below the EIL but above the ET 

until the end of the time period under consideration. MCB population reaches the EIL after 3 years of 

adoption, and the ET 1 year later, with 54% and 69% of maize area planted with Bt maize respectively. At 

this point due to both control measure pressures, the MCB density steadily falls below the ET until it is 

entirely eradicated after approximately 12 years. It is the MCB decline, hence the lack of competition, that 

causes a plateauing of TAW within the ET and EIL. Here, the farmer continues to apply insecticides, but now 

in order to control TAW (figure 5.6). The insecticide application frequency falls to an average of 2.01 

applications per ha (s.d.= 0.68) (table 5.4). This amount represents a reduction of about 43% in the number of 

insecticide applications compared to conventional maize use. This noteworthy decline can be attributed to the 

use of Bt and its efficiency in controlling MCB, and its provision of a safer environment for the natural 

enemies of TAW. In section 5.5.3, the impact of natural enemies is discussed. The reduction in insecticide 

applications found here is sufficient to compensate the farmer for the extra cost of Bt seeds (roughly 10% 

more expensive than conventional seeds). After 25 years the farmer would realize an NPV of 10353 €/ha 

(table 5.4), which is higher than what is realized with both conventional seeds and using only Bt maize (table 

5.5).  

 Table 5.5 - NPV difference between optimal control strategy and the remaining 3 cases: no 

control, only insecticide used and only Bt maize used (percentage in brackets). 

 No control Only insecticide Only Bt 

Bt + insecticides 7151€ (+223%) 1790€ (+21%) 3301 € (+32%) 
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Figure 5.5 - Pest dynamics subsequent to Bt adoption without insecticides applications during a 

period of 25 years period. The MCB (red line) density suffers a substantial decline and it is 

substituted as the main pest by TAW (green line). The blue line represents the economic threshold, 

point at which farmer initiates insecticides application to prevent an increasing pest population 

from reaching the economic injury level (yellow line). 

 
Figure 5.6 - Pest dynamics, prior to Bt adoption with insecticides applications, during a period of 25 

years for the primary (MCB) and secondary (TAW) pest. Both pests are efficiently controlled below 

the economic injury level (yellow line). Farmer (re)initiates insecticides application whenever either 

pest reached the economic threshold (blue line).  
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For comparison, in the case of Bt maize with stacked traits
20

 conferring a perfect control to MCB and 

TAW, insecticide applications steadily decrease until the farmer stops applying insecticide altogether after 

the 5
th

 year of adoption (at which point 70% of the total maize cropping area is planted with stacked Bt 

maize). The farmer achieves the goal of entirely eradicating both pests and, logically, realizes a higher NPV 

of 10906 €/ha after 25 years (see stacked traits line in figure 5.7). Realistically however, this situation is 

unlikely for two reasons: firstly, agriculture is not a closed system, migration into crop fields by either known 

or unknown pests must be taken into consideration; secondly, as happened in the current assessment, a 

species whose population is significantly subdued so as to in effect be ‘concealed’ by the present insecticide 

or by the effect of a strong competitor, could unexpectedly reappear. 

 

Figure 5.7 - Optimized NPV after 25 years for the 5 cases (no control; only insecticide is used; only Bt 

maize is used; insecticide and Bt maize are used; stacked Bt maize conferring perfect control to both 

pests is used). 

 

 

                                                           

20
 Gene ‘stacking’ or ‘pyramiding’ refers to the process of combining two or more genes of interest 

into a single plant (Halpin 2005). The combined traits resulting from this process are called stacked traits. A 

stacked GE crop contains at least two novel genes, having different modes of action. Hence, by definition, 

crops with stacked traits are more effective than mono-trait varieties due to their wider range of action 

(Edgerton et al. 2012).  
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5.5.3 Further scenarios 

In this section, two further scenarios are explored in which the five key parameters implicated in pest 

dynamics are varied – growth rate (𝒓𝒊), interspecific competition (𝒃𝒊𝒋), susceptibility to Bt toxin (𝐪𝐢), initial 

Bt adoption (𝝀𝒊) and natural enemies (𝒎𝒊). The full results are presented in table 5.6 and 5.7. When 

decreasing the parameters { 𝒃𝒊𝒋, 𝒒𝒊, 𝝀𝒊} by 25%, the NPV is expected to decrease and insecticide applications 

to increase. Similarly, when increasing these parameters by 25%, the NPV is expected to increase and 

insecticide applications to decrease. It is also expected that 𝒓𝒊 would respond in the opposite direction to its 

counterparts. From the 16 results obtained, 14 have expected outcomes. The two unexpected outcomes have 

relatively small deviation values (see values marked with * in table 5.6); although the mean insecticide 

applications varied as expected, the NPV varied in the opposite direction. These unexpected outcomes are 

believed to represent an active response from the farmer to lower/higher pest density in the initial cropping 

period, initiating insecticide applications accordingly.  

Table 5.6 – Difference between the NPV and insecticide applications (mean) obtained 

in the optimal control strategies and those accrued from the ±25 % variation in four 

parameters {𝐫𝐢, 𝐛𝐢𝐣, 𝐪𝐢, 𝛌𝐢} implicated in pest dynamics.  

 Parameters NPV (€) Insecticide applications 

-2
5

%
 d

ev
ia

ti
o
n

 

Growth rate (ri)
1
 -131.36* -0.01 

Interspecific competition (bij)
2
 -7.75 0.01 

Bt susceptibility (qi)
3
 -131.19 0.30 

Initial Bt adoption (λi) 
4
 -48.50 0.03 

   

+
2

5
%

 d
ev

ia
ti

o
n
 

Growth rate (ri)
5
 86.64* 0.02 

Interspecific competition (bij)
6
 2.02 -0.01 

Bt susceptibility (qi)
7
 89.16 -0.27 

Initial Bt adoption (λi)
8
 42.61 -0.06 

1 with: a=3.590208e+00; b=-1.723988e-01; c=3.611697e-03; d=-4.817101e-05 

2 with: a=3.693049e+00; b=-2.168674e-01; c=5.774393e-03; d=-4.310029e-05  

3 with: a=3.666050e+00; b=-1.317110e-01; c=1.864184e-03; d=-2.431446e-05  

4 with: a=3.699506e+00; b=-2.285133e-01; c=7.556475e-03; d=-9.728075e-05 

5 with: a=3.645738e+00; b=-0.254399e-01; c=0.009034e-03; d=-0.000082e-05 

6 with: a=3.646094e+00; b=-2.011897e-01; c=4.619282e-03; d=-2.463909e-05 

7 with: a=3.591855e+00; b=-2.828358e-01; c=8.857541e-03; d=-4.278481e-05 

8  with: a=3.489076e+00; b=-0.185497e-01; c= 0.005118e-03; d=-0.000073e-05  

*not expected  
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Due to the high importance of natural enemies, the individual impact of this parameter is assessed in 

model uncertainty. Five cases were explored representing various levels of disturbance in the ecosystem, 

assuming that the farmer uses a selective insecticide which does not causes harm to natural enemies (table 

5.7). In the first, the impact of natural enemies on pest dynamics varies randomly as in the baseline cases in 

sections 5.5.1 and 5.5.2; in the second, there are no natural enemies present; and in the third, fourth and fifth, 

the impact of natural enemies is low, medium and high respectively. All results are as expected, the higher 

the natural enemies’ impact the lower the need for insecticide applications, yielding a higher NPV. It is 

interesting to note that the previous optimal outcome in terms of NPV (derived from the use of Bt maize with 

a broad-spectrum insecticide) lies between a scenario in which natural enemies are absent, and one where the 

impact of natural enemies on pest populations is low. This result suggests that boosting the population of 

natural enemies through selective use of insecticide, rather than broad-spectrum, has a knock on positive 

impact on NPV. Assuming the utopia around the last scenario, the scenario where mi=0.8 should be pointed 

out, as it reflects a substantial and constant presence of natural enemies. Here, the farmer would ultimately 

cease the insecticide applications, while increasing the NPV by 9% after 25 years. These results indicate that 

pest populations are highly sensitive to natural means of control, and that pest populations could be managed 

with a relatively small increase in natural enemy numbers.  

Table 5.7 – NPV and insecticides applications (mean ± SE) accrued from the five 

different levels of natural enemies impact when selective insecticide is used. 

Scenario NPV(€) Insecticide applications 

NE base variation
2
 10991 0.78 ± 0.64 

No NEs (mi=0)
2
 10231 2.56 ± 0.62 

Low NEs density (mi=0.2)
3
 10680 1.66± 0.49 

Medium NEs density (mi=0.5)
4
 11021 0.91 ± 0.56 

High NEs density (mi=0.8)
5
 11240 0.19 ± 0.58 

1 with: a=2.532052e+00; b=-2.756687e-01; c=9.790500e-03; d=-2.912951e-05 

2 with: a=4.027806e+00; b=-1.970536e-01; c=5.689231e-03; d=-4.987196e-05  

3 with: a=3.091811e+00; b=-2.637044e-01; c=9.885022e-03; d=-4.993487e-05  

4 with: a=2.510126e+00; b=-2.842099e-01; c=1.072332e-02; d=-4.985597e-05  

5 with: a=2.398763e+00; b=-3.420088e-01; c=1.310324e-02; d=-4.992738e-05 

5.6 Conclusions 

The work performed in this chapter corroborates the hypothesis that secondary pests might emerge 

due to a significant reduction in insecticide applications (Lu et al. 2010, Pemsl et al. 2011, Catarino et al. 

2015). The general results suggest that a) a secondary pest can become the key insect pest in unsprayed Bt 

maize compared with sprayed Bt fields, due to the high specificity of Cry1Ab toxin; and b) the damage to 

crops from secondary pests can increase with the expansion of Bt technology if no additional measures – 
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such as insecticide applications or stacked traits – are taken. One of the claimed benefits of Bt crops is that 

they decrease the need to use insecticides, in turn diminishing contamination of food and the environment, as 

well as increasing farm profits. Indeed, the use of Bt maize has a has a knock on positive impact on NPV, as 

well as in the environment by decreasing the need for insecticides. Furthermore, the farmer would 

accomplish the goal of entirely eradicating the MCB after 14 years. Nonetheless, insecticide applications 

would not cease due to the outbreak of TAW, the secondary pest.  

Results from the sensitivity analysis showed that when holding prices, costs and other input 

parameters constant, the results suggest that the parameters related to the secondary pest influence the final 

output more than those related to the primary pest. The uncertainty in the results arises from two main areas: 

a) it is unlikely that available data and model parameters are error-free; and b) no simulation model is an 

entirely true reflection of the physical process being modelled. Results show the need to be conscious of the 

possibility of an outbreak from a secondary pest and the consequences of such an event upon yields and farm 

profits. The results suggest that it may take several years for secondary pests to proliferate to relevant levels 

of importance, thus the need to understand pest dynamics (Ho et al. 2009). The model demonstrates a case 

where the outbreak of a secondary pest in Bt fields is not a random event. It can arise as a natural result of the 

use of Bt technology, and may be predicted with access to accurate data. The model shows that insecticide 

applications and the presence of natural enemies contribute most to achieving a higher NPV. The presence of 

natural enemies is intrinsically related to environmental conditions, and agricultural procedures, which in 

turn will certainly influence the number of insecticide applications needed each year. This is an important 

insight to take into consideration, given that future climate shifts are expected. Hence, alongside the 

deployment of GEIR crops, it is therefore highly advisable to also promote agricultural practices that could 

enhance the presence of natural enemies. When farmers effectively comply with certain procedures, such as 

having a refuge strategy and using extra selective insecticide applications (Meissle et al. 2011), the economic, 

environmental and social benefits can be substantial (Wesseler et al. 2007, Skevas et al. 2010).  

Models of pest dynamics are a valuable tool, especially in a world affected by strong environmental 

and agricultural shifts. For example, forecasted global warming and increases in GEIR cropping could enable 

insect pests to spread into new habitats (Maiorano et al. 2014). A more profound knowledge of how agro-

ecological systems work is needed to evaluate the full benefits of Bt crops. If new agricultural technologies 

are to be used as a viable IPM solution, understanding insect dynamics is vital, and requires an integration of 

ecosystem services into management decisions. For that, further research should accurately estimate, either in 

field trials or in the laboratory, the nature of intra- and inter-specific pest competition. 

5.7 Summary  

In this chapter, a bio-economic model was used to analyse different pest control approaches – Bt 

technology and insecticides – on secondary pest outbreaks. This is a problem that has been largely ignored 



 

 

 

Page | 57 

 

 

 

until now, along with subsequent effects on farm profits. Optimized insecticide applications under 

deterministic conditions were achieved through a dynamic nonlinear optimization technique. The model 

developed in this study is capable of effectively evaluating the impact of GEIR crops on two pest species that 

compete for the same resource. As shown in section 5.5.3, the model enables the incorporation of different 

scenarios, such as insecticide restrictions, new transgenic traits and other means of pest control. The general 

results suggest that although Bt maize can increase economic benefits while decreasing insecticide 

applications, there is a risk that secondary pests might emerge due to a significant reduction in insecticides 

applications (Lu et al. 2010, Pemsl et al. 2011, Catarino et al. 2015). In the following chapter, the model 

developed here will be expanded by incorporating a reaction-diffusion system. This development will allow 

the assessment of the impact on maize resulting from TAW invasion throughout Aragon.  
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 PREDICTING THE PATTERNS AND EFFECTS OF NON-CHAPTER 6.

SUSCEPTIBLE PESTS' INVASION ON BT MAIZE: A BIO-ECONOMIC 

SPATIALLY EXPLICIT POPULATION PERSPECTIVE 

6.1 Chapter Introduction 

The previous two chapters have explored the concept and economic implications of a secondary pest 

outbreak
21

 in Bt (Bacillus thuringiensis) maize expressing Cry1Ab Bt toxin
22

. It was found that the economic 

damage caused by the rise of secondary pests could offset some of the benefits associated with the use of Bt 

varieties. This issue is of special relevance to the largest Bt maize adopter region in Spain, Aragon. Spanish 

researchers (e.g. Eizaguirre et al. 2010) have highlighted their concerns in relation to the possibility of 

invasions of the true armyworm (TAW), Mynthimna unipuncta, becoming more frequent. In chapter five it 

was demonstrated that TAW could gain ecological advantage over Bt maize due to the absence of the 

Mediterranean Corn Borer (MCB), Sesamia nonagrioides, and the low susceptibility of TAW to the Cry1Ab 

toxin. This chapter develops a bio-economic spatially explicit population (BeSEP) model that integrates 

species spatial dynamics with the bio-economic model developed in chapter five. Particularly, this chapter 

focuses on the maize farmers’ economic impact of the spread of an invasive species under different control 

strategies based on insecticide application in the Aragon region, Spain. As in chapter five, a situation where 

the species considered is not susceptible to Cry1Ab toxin, and hence has the potential to become a secondary 

pest in Bt maize, is considered. The chapter has three main objectives: 

i) To develop the BeSEP model that allows the incorporation of spatial dynamics into the bio-

economic modelling developed in chapter five; 

ii) To assess the economic impact on farmer’s profit of various Bt and insecticide application 

regimes in Aragon, considering the following three scenarios:  

a. Spread of TAW from an invasion hotspot area assuming the actual  conventional/Bt 

maize proportion of 2012 in Aragon; 

                                                           

21 A secondary pest is a "non-targeted" pest that has historically posed small or no economic threat, but which 

could be directly or indirectly affected by changes in insecticide use patterns, such as those caused by Bt cropping, 

associated with the management of a primary pest (FIFRA Scientific Advisory Panel 1998). 

22 Although several other events are under evaluation by the European Food Safety Authority (EFSA), the only Bt 

maize currently allowed for cultivation in Europe contains the transformation event MON810 (Monsanto Company), 

expressing Cry1Ab Bt toxin (EFSA 2010a). This transgenic maize presents a high level of resistance to its primary pests 

– the two main maize borers present in the EU, the MCB and the ECB (González-Núñez et al. 2000). 
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b. Spread of TAW from an invasion hotspot area assuming different conventional/Bt 

maize proportions
23

 from above; and, 

c. TAW is endemic throughout the region, although initially suppressed by the 

prevailing pesticide regime. 

iii) To discuss the wider implications of the model output for both Aragon and other regions 

where Bt crops are grown, and to outline management recommendations and future path 

research in order to improve predictions. 

Results indicate that if an invasion is effectively controlled, the use of Bt maize could bring regional 

economic and environmental benefits. Conversely, if the TAW is not detected early the invasive species may 

become so abundant and widespread that containment and eradication will no longer be possible. Under this 

situation farmers would need to adopt additional pest control measures – such as adopting new GE crops or 

increasing insecticide applications. Furthermore, it has been suggested that landscape structure is a critical 

feature affecting population spread. Future research should pay particular attention to the spatial effects of 

invasion, specifically the connectivity between favourable habitats.  

6.2 Biological invasions  

The success of biological invasions depends on environmental and anthropogenic factors. Within the 

environmental factors, climate change (Diez et al. 2012), habitat disturbance – such as storms and fires 

(Didham et al. 2005) – and a lack of natural predators and/or competition in the new habitat (Wilby and 

Thomas 2002) are common pathways that facilitate the movement of species within regions. On the 

anthropogenic side, an increase in international movement of humans and goods (Levine and D'Antonio 

2003), and the quick transformation of landscapes in agricultural land-use patterns (Hobbs 2000), has 

progressively enhanced the importance of the issue of invasive species’ colonisation. The spatial and 

temporal uniformity of landscapes increases habitat connectivity and may benefit the spread process (Tilman 

1999, Byers 2002).  

Although other factors (e.g. decline of native biodiversity (Sala et al. 2000)) may impact management 

decisions, the economic value of an agricultural good is a major argument in the  context of a political 

decision as to when and how to act upon biological invasions (Leung et al. 2002). The strategic control 

decisions associated with an invasion are therefore reliant on an awareness of whether and how the invasive 

species is likely to impact on the economics of production. Hence, it is essential to predict as accurately as 

possible a bio-invasion, particularly one causing undesirable effects on marketable commodities (e.g. 

                                                           

23 The assessed conventional/Bt maize proportions are the following: i) no adoption, i.e. only conventional maize 

is cropped in the region, ii) 50% of the Bt maize famers move to conventional maize faming, iii) 50% of the conventional 

farmers adopt Bt maize, and iv) total adoption, i.e. all farmed maize is Bt. 
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agricultural or silvicultural crops). This can only be achieved with an understanding of the factors linked to 

species invasion that lead to actual establishment, whether anthropogenic factors (Levine and D'Antonio 

2003), biological processes (Mack et al. 2000) or climate change (Diez et al. 2012). In agro-economic 

assessments of biological invasions, a distinction is usually made between two different types of costs and 

benefits: ex-post and ex-ante assessments (Born et al. 2005).  

In ex-post assessment, the evaluation of the success (or failure) of already implemented measures is 

conducted by allocating monetary values to recorded effects such as yield losses and impacts on health and 

on biodiversity (e.g. Pimentel et al. 2001, Pimentel et al. 2005). In ex-ante assessment, which is the approach 

followed in this chapter, an evaluation of possible measures is conducted in order to prioritize where and 

which control strategies are desirable (Epanchin-Niell et al. 2014, Epanchin-Niell and Liebhold 2015). 

However there is a clear imbalance between these two methodologies in favour of ex-post studies (Marbuah 

et al. 2014), although anticipation of the spread behaviour to provide the best management strategy is of clear 

importance. The optimal control approach depends not only on the phase of the invasion process but also on 

the likely introduction zones, or “hotspots” (Mack et al. 2000). The major caveat in forecasting the impact of 

an invasion process lies in availability of data in a system in which the invasion has not occurred yet (Parry et 

al. 2013, Groom et al. 2015) . This barrier may explain why work that explicitly represents space using real 

landscapes in spatial-dynamic bio-economic modelling is scarce; the few examples include Cacho et al. 

(2010) and Carrasco et al. (2012). 

Spatial heterogeneity is an important aspect to consider in the study of populations, ecosystems and 

landscapes (Shaver 2005). Understanding the spatial patterns of landscape processes and the driving forces 

that affect flora and fauna dynamics and persistence is essential to effective pest management (Lawler et al. 

2006). This chapter contributes to the development of spatially explicit bio-economic models with multiple 

insect pests by describing dynamics of two pests in space according to two systems of partial differential 

equations of type “reaction-diffusion”. This work is thought to be unique as no bio-economic modelling work 

has yet spatially explicitly approached the problem of invasive species taking into consideration competition 

between two species in the GM crops context. The main focus is an ex-ante assessment of the economic 

consequences for maize farmers in Aragon relating to a secondary pest outbreak. It takes into consideration 

the direct income effects, specifically the spraying of insecticides and the use of Bt maize, connecting the 

interaction of an invasive and a native species as well as different mitigation control strategies. Both costs 

and benefits caused by the impact of the invasive species are calculated in market price terms. Only direct 

use-values are considered. The wider, and important, scope of the social and ecosystem impact of biological 

invasions are not considered. Numerical simulations of three scenarios are conducted and analyzed. In 

particular, the work focusses on farmers’ net returns due to changes in insecticide use and the impact of pests. 

The chapter concludes by considering the management implications of the results as well as suggesting future 

research directions.  
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6.3 The arrival, establishment and spread of invasive species 

Non-native species must pass through a number of steps in order to become invasive. Biological 

invasions are divided into three main phases: arrival, establishment and spread (Andow et al. 1990, Hastings 

1996). The first phase is characterized by the arrival of a few individuals in a single area of the new habitat 

(Andow et al. 1990). These pioneers need to reach a certain level in order to sustain a local population 

(Grevstad 1999). The initial population may pass undetected due to their small numbers and consequent 

effects. Many invasions do not reach the sufficient density to propagate, failing to become established 

because of inadaptability to the local environment (Kolar and Lodge 2001) and Allee effects
24

 (Blackwood et 

al. 2012). Assuming that the non-native population survives the initial introductory period, it will likely grow 

in numbers, initiating the establishment period. A time-lag is common between initial introduction and 

subsequent population growth (Kowarik 1995, Solow and Costello 2004). The time-lag period can last from 

several decades to just some weeks or months as in the case of the western corn rootworm (WCR), 

Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). This species was introduced via 

international shipment in the 1990’s (Kiss et al. 2005), since then it has become one of the major pests in 

maize throughout central Europe, its eradication impossible (Kiss et al. 2005). Several factors are 

preponderant on the establishment stage length, such as temporary unfavourable environmental conditions, 

interaction with native species, size of introductions or more complex indirect dynamical effects (Kolar and 

Lodge 2001, Lockwood et al. 2005). In the final stage, the invasive species spreads across the landscape from 

the invasion origin. At this stage the invasion is easily noticeable and identifiable by farmers or 

environmental managers (Liebhold et al. 2015). The growth and spread continues until suitable habitat and 

resources become scarce.  

The intrinsic dispersal capacity (or speed), population growth rate and the type of spread process the 

invader follows determines its rate of invasion (Clark et al. 2001). Several different approaches have been 

adopted for estimating spread rates (Okubo and Levin 2013). Here, spread is evaluated in terms of the radial 

rate of invasion (RRI), by averaging the RRI from all simulations, sim (equation 6.1 and 6.2).  

RRI =

(√
𝐴𝑡+𝑛
𝜋

− √
𝐴𝑡
𝜋
)

𝑛
 

(6.1) 

                                                           

24 Allee effects are defined as a decline in individual fitness at low population size or density, which may lead to 

critical population thresholds below which populations crash to extinction (Lewis and Kareiva 1993, Blackwood et al. 

2012) 
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𝑅𝑅𝐼 ̅̅ ̅̅ ̅̅ = ∑
𝑅𝑅𝐼𝑖
𝑠𝑖𝑚

𝑠𝑖𝑚=100

𝑖=1

 (6.2) 

 

Where 𝑨𝒕 is the colony area at time 𝒕, 𝒏 is the length of the observation period, 𝝅 is the numerical 

constant that represents the ratio of a circle's circumference to its diameter on a flat plane surface, and 𝒔𝒊𝒎 is 

the number of simulations performed. Invading organisms may spread through stratified (or jump) dispersal 

or through diffusion-like processes. In short, in stratified dispersal, species spread from the establishment 

point as a continuous process coupled with discontinuous spread where populations jump ahead and form 

isolated populations which may merge in due course (Liebhold and Tobin 2008). Stratified dispersal is 

related to a rare event, where individuals travel long distances over what may be considered an inhospitable 

habitat (Liebhold and Tobin 2008). In the vast majority of the cases, stratified dispersal is closely related to 

human activity such as the WCR case (Vitousek et al. 1997, Kiss et al. 2005). If some pioneers disperse 

according to jump processes, temporarily establishing themselves ahead of the main invasion front, the three 

biological invasions could occur simultaneously (Shigesada et al. 1995). Diffusion relates to the gradual 

population spread, across a suitable environment, resulting from the average movement of all individuals as 

they strive into a new habitat (Okubo and Levin 2013). Insect diffusion is often associated with random 

movement, i.e., each individual is uninfluenced by other individuals and has an equal chance of moving from 

one unit to an adjacent one (Okubo and Levin 2013). The diffusion process is modelled as a reaction-

diffusion (RD) system using partial differential equations (PDE) (Okubo 1980), in which spread is treated as 

continuous and constant (Hastings et al. 2005). Assuming a two-dimensional space, the RD model
25

 is 

expressed as it follows:  

𝜕𝑁𝑖(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝑟𝑖𝑁𝑖 (1 −

𝑏𝑖𝑁𝑖
𝐾𝑖
) + 𝐷𝑖 (

𝜕2𝑁𝑖
𝜕𝑥2

+
𝜕2𝑁𝑖
𝜕𝑦2

) (6.3) 

 

In equation (6.3), the reaction term representing the population dynamics comprises the population 

growth formulated by a logistic growth function, where 𝑁 is the local population density as a function of 

both time and spatial location, 𝒓 is intrinsic optimal growth rate with, 𝒃 represents the effect of intraspecific 

competition, and K the carrying capacity. The diffusion is expressed by the diffusion coefficient term (D), 

and by the sum of the second partial derivatives of 𝑵𝒊 with respect to each of the spatial coordinates (𝒙, 𝒚). 

The RD systems have been widely used in theoretical biology and ecology since the remarkable pioneer 

                                                           

25 See Okubo and Levin (2013) and Shigesada and Kawasaki (1997) for further applications of the 

Fisher model 
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work, describing diffusive spread for one species in one-dimensional environment, performed by 

Kolmogorov et al. (1937), Fisher (1937), Skellam (1951) and more recently by Okubo (1980). The use of 

PDEs allows a complete combination of analytical and simulation approaches (Kareiva et al. 1990, Holmes et 

al. 1994). The intuition behind using PDEs is that patterns at a population level are not dependent on the 

individual behaviours of organisms. 

6.4 Economic impacts and management of biological invasions  

Undoubtedly the impacts of invasive pests are becoming a major economic problem in agriculture. 

The world is getting “smaller”, globalization and especially international trade (Hulme 2009) are linking 

ecological systems daily, hence increasing the prospects for invasion-style processes to thrive (Vitousek et al. 

1997). Fortunately not all exotic species have the ability to successfully establish new communities, to spread 

much further than the original incursion site or to have significant impact (Williamson and Fitter 1996). 

However, for those that cause harm, their impact can be tremendous. In the United States alone, Pimentel et 

al. (2005) estimated that at least 50,000 species have entered the country, causing losses above 100 billion 

dollars per year resulting from agricultural damage. In Europe, according to Kettunen et al. (2009) the 

monetary impact of invasive species is estimated to be around €12 billion per annum over the last 20 years. 

Although these figures include costs of damage and costs of control/management/restoration, it can still be 

said that the costs are underestimated, since they do not account for negative socio-economic or ecosystem 

services (Pimentel et al. 2005, Kettunen et al. 2009). For example, the losses caused by WCR are estimated 

to surpass $1 billion in the US and 500 million in Europe per year (Wesseler and Fall 2010).  

 In recent years research has focused on assessing the economic impact of invasive species. When 

evaluating the economic impact of invasive species it is important to distinguish between ex-ante and ex-post 

assessments. In ex-post assessment, an evaluation of the success (or failure) of implemented measures is 

conducted. Here, monetary values are allocated to impacts such as yield losses and effects on health and 

biodiversity (Turner et al. 2003). A typical example is the work performed by Pimentel et al. (2001) and 

Pimentel (2005), which included in the assessment the costs of a range of implemented strategies along with 

the economic damage caused by biological invasions. In ex-ante assessment, the approach used in this 

research, an evaluation of the economic effect of possible pest control measures is conducted. This type of 

analysis can identify the most cost efficient control strategy. For instance, Cook et al. (2007) developed a 

stochastic bio-economic model that estimated the economic impact over 30 years of an invasive pest, the 

varroa bee mite, before its arrival. These authors estimated that the economic costs avoided would be of 

US$16.4–38.8 million per year. Depending on which stage an invasion is at (section 6.3), different 

management decisions can be taken by government agencies responsible for managing invasive species. 

Decisions can be designed to prevent, eradicate, contain, slow down and/or accept the invasion (Liebhold et 

al. 2015).  



 

 

 

Page | 64 

 

 

 

The question of “where” to allocate control receives little attention, most literature focuses rather on 

“when” and “how” (Epanchin-Niell and Wilen 2012). In predicting the potential spatial distributions and 

establishment of invasion niches, i.e. the hotspots, it is important to rationalise the area under management 

(Mack et al. 2000), hence the costs associated with control. Furthermore, the costs of control (including 

eradication) of invasive species are likely to increase as they become better established (Finnoff et al. 2007). 

Due to the inherent uncertainty of the species invasion and establishment, prevention – even though in some 

cases very costly – is often the most effective management approach, through for example border security 

scrutiny and quarantine (Leung et al. 2002). A surveillance effort should be carried out when long-term costs 

of damage and/or control exceed short-term costs of successful policy (Liebhold et al. 2015). If the invasive 

species achieves a certain population threshold, eradication is often not feasible, as happened in the case of 

the WCR in the US (Gray et al. 2009) and Europe (Carrasco et al. 2010c), the gypsy moth (Lepidoptera: 

Lymantriidae) (Sharov and Liebhold 1998) and the true armyworm in the US and Canada (Guppy 1961, 

McNeil 1987).  

6.5 Bio-economic spatially explicit modelling overview  

Spatially explicit models are classified according to diverse criteria. They can be classified based on 

the way that individual(s), space and time are considered (e.g. whether space and time are discrete or 

continuous) (Berec 2002, Hui et al. 2011). Spatially explicit population models in invasion ecology are 

individual or population based, involving complex rules with often intractable analytical solutions (Hui et al. 

2011). They can be empirical or process-based, static or dynamic, simple or complex, and utilise low or high 

spatial and temporal resolution (Costanza and Voinov 2004). Individual-based models (IBM), are computer 

systems composed of autonomous entities, such as animals, plants or humans, capable of making decisions 

and interacting with the environment and other individuals (Grimm et al. 2005). Each individual is explicitly 

modelled as a unique and discrete entity, acting according to a set of rules, that may change along its life 

cycle (Grimm et al. 2006). On the other hand, Andow et al. (1990) showed that even when individual 

behaviour is put to one side, population level patterns can be explained by reaction-diffusion (RD) models.  

The model developed here is based on RD as opposed to a stratified dispersal approach (section 6.3). 

The outcomes accrued from RD models provide outcomes relatively close to reality for some species, such as 

the muskrat and small cabbage white butterfly (Andow et al. 1990). Species, such as the cereal leaf beetle, 

whose spread does not fit the reaction-diffusion model, may spread driven by a range of modes of dispersal, 

as seen above (Andow et al. 1990). In the past few years, RD systems have been extensively used to model 

population dynamics and biological invasions (Cantrell and Cosner 2003), especially when the movement of 

individual organisms cannot be followed independently (Shigesada and Kawasaki 1997). The large majority 

of RD systems have considered space as a homogeneous entity (Carrasco et al. 2010a). Due to the absence of 

spatially specific records to populate and validate such models (Cantrell and Cosner 2003), RD models in 
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which space is conceived as heterogeneous have rarely been used in applied population biology (Roques et 

al. 2008).  

 As previously mentioned, dynamic BeSEP models that include farmer behaviour are rare, which is 

especially relevant in the case of biological invasions modelling (Carrasco et al. 2010b). Also rare are those 

that deal with the agro-economic impact of multiple insect pests. Hence, two extra dimensions of complexity 

are necessary to provide sound invasion pattern predictions and to enable efficient control measures to be 

taken. Firstly, economic models of human-behaviour are essential in order to fit control into the real actors’ 

necessities and behaviours, be they farmers or stakeholders (Carrasco et al. 2010b). Secondly, multi-species 

models, although more complex, are important for understanding the impact of invasive species on other 

organisms (Tilman 2004). The model developed here is flexible enough to consider the most relevant 

ecological processes, whilst being underpinned by empirical data in relation to the way processes are 

formalized. In reality, the description of individual processes in all models is in some way a balance between 

the process-based paradigm and empirical relationships (Costanza and Voinov 2004). Such an aspect allows 

the model to remain within a sensible range of complexity, hence of computational requirements. The next 

section presents the modelling framework conceptualized here, giving particular relevance to reaction-

diffusion dispersal modelling. 

6.6 Materials and Methods  

The general purpose of the BeSEP model is to provide pest risk analysts and invasion managers with a 

tool that allows them to link invasion dispersal models with economic impact estimation and spatial 

management strategies. The modelling framework was adapted and further expanded to incorporate spatial 

aspects from Catarino et al. (2016). This combined theories for dispersal, population dynamics, statistics, 

estimation of economic impact and farmers’ decisions. This research centres on a real landscape, Aragon, 

composed by many individually managed properties with a variety of uses. Each manager’s control decisions 

(e.g. the use of insecticides and Bt maize) indirectly impacts his/her neighbours’ decisions, by affecting the 

spread of species across boundaries. It is assumed that farmers make control decisions based only on pest 

damage occurring on their own land (i.e. there is no public or government funded control) with the aim of 

maximizing their individual net present value (NPV) in the long-term (25 years). Although the model 

focusses on the landscape properties of Aragon, the model framework is flexible, so it could be adapted and 

used for any other species, cropping system and/or region, by changing the relevant parameters. The model is 

constructed as a reaction-diffusion system through two coupled partial differential equations, characterising 

the spatial population dynamics of two pests: a primary pest, the Mediterranean corn borer (MCB) [Sesamia 

nonagrioides (Lefebvre) (Lepidoptera: Noctuidae)] and an invasive pest, the true armyworm (TAW), 
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[Mythimna (Pseudaletia) unipuncta (Haworth) (Lepidoptera: Noctuidae)]. The model was written and 

numerically solved with R software (R-Core-Team 2012)
26

.  

6.6.1 Study perspective  

The only GE crop allowed for cultivation in Europe is the Bt maize variation containing the 

transformation event MON810 (Monsanto Company), expressing Cry1Ab Bt toxin (EFSA 2010a). Spain is 

by far the largest GE technology adopter, growing 92% of the total GE maize in the EU (James 2014). In 

2014, Spanish farmers sowed more than 130,000 hectares of GE maize, representing 32% of the total 

country’s surface sowed with maize (James 2014). In the Aragon region, situated in the Ebro basin in north-

eastern Spain with an area of 47.720 km
2
, after barley and wheat, maize is the most important cereal. In 2012, 

the year for which maize data were obtain for this study, 55,484 hectares were cropped in Aragon, of which 

75% was Bt maize. This represented 2/3 of the total Bt maize produced in Spain (López 2013). Maize farmers 

have obtained an average profit of 499€/ha, value in line with previous years (López 2014). Due to the 

edaphoclimatic conditions, maize production faces high pressure from several pests. In particular from the 

MCB and the European corn borer (ECB) [Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae)], causing 

frequent phytosanitary problems and consequent economic damage (Meissle et al. 2010). Hence, it is not 

surprising that farmers in Aragon, as explained in sections 3.3 and 3.4, were quick to adopt Bt maize. Of the 

other maize pests, farmers show particular concern about TAW
27

 (López et al. 2000). On the European 

continent, TAW is an invasive species, first noticed in Europe in the 19th century (Bues et al. 1986). The bio-

economic Spatially Explicit Population (BeSEP) model developed allows the demonstration, across a 25 

years period, of the dynamics and economic impacts of a potential invasion from TAW on the regional maize 

production in Aragon.  

6.6.2 Modelling development 

Step 1) Mapping the Aragon landscape  

The Aragon landscape is represented explicitly with a grid derived from an ASCII raster taken from 

the CORINE 2006 Land Cover dataset (EEA 2006)
28

. Maize field data
29

 were directly obtained from the 

Aragon regional government statistics and explicitly incorporated in the CORINE map (figure 6.1). The 

                                                           

26 Following a list of tasks and respective used R packages: “Raster” (Hijmans and Van Etten 2013) to create 

raster objects and “mgcv” (Wood and Wood 2015) for the GAM model  

27 See chapter three, section 3.3.2 for a description of this pest 

28 http://uls.eionet.europa.eu/CLC2006 

29 Year 2012 
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original landscape was aggregated for the relevant land cover types, ϑ𝒍𝒂𝒏𝒅 , with a spatial resolution of 

500×50 0m, i.e. 25ha (figure 6.2). ϑ𝒍𝒂𝒏𝒅 is composed of 11 different fields as described in table 6.1. When 

aggregating the landscape fields, which was compulsory for computation feasibility, the total maize area did 

not differ significantly from real data, only 4% of spatial maize information was lost (table 6.1). The domain 

ϑ represents the whole simulation area, (x, y) ∈ ϑ, formed by a 483×684 (𝛝𝒙, 𝛝𝒚) matrix, from which 855 and 

1279 cells are categorised conventional and Bt maize, respectively. The effects of the spatial heterogeneity on 

each species influences survival and movement. Informed by expert knowledge, and taking into 

consideration the resource availability, the landscape was categorised into areas of favourable habitat, i.e. 

where the species can reproduce and can disperse normally; and unfavourable habitat, i.e. where reproduction 

is not viable and dispersion is lower (table 6.1).  

 Table 6.1 – Description of the Aragon land use. The table shows the area, the ratio in relation to 

the total area and the respective habitat quality for each different land us. For MCB and TAW, 

the landscape was categorised into areas of favourable habitat, i.e. where the species can 

reproduce and can disperse normally; and unfavourable habitat, i.e. where reproduction is not 

viable and dispersion is lower 

Fields Area (Km
2
) Ratio (%) 

Habitat quality 

MCB TAW 

Bt Maize 320 0,7% Favourable
30

 

Conventional Maize 214 0,4% Favourable 

Farmland 8641 18,1% Unfavourable 

Rice 421 0,9% Favourable 

Vineyards, fruit trees & forest 6397 13,4% Unfavourable 

Pastures 2958 6,2% Unfavourable Favourable 

Natural grassland 11850 24,8% Unfavourable Favourable 

Urban areas 225 0,5% Unfavourable 

Non-agricultural vegetated areas 15568 32,6% Unfavourable 

Sand, rocks, etc ... 859 1,8% Unfavourable 

Water 280 0,6% Unfavourable 

Total 47732 100   

 

                                                           

30 The effect of the Bt toxin on dispersion and survival rate was considered to be external to the landscape effect. 
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Figure 6.1 - CORINE geographical land use map encompassing the main land cover categories. The 

resolution of the data is 100 x 100m (adapted from LCM (2006)).  

 

Figure 6.2 - Map of the aggregated land-use, from LCM (2006), for the Aragon region used in this 

study. The map shows the location of Bt (blue) and conventional (blue) maize. The resolution of the 
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map is 500 x 500m. 

Step 2) Valuing pest control methods – Optimal individual farmer insecticide use and Bt maize  

As in chapter five, maize is assumed to be vulnerable to attack by two different pests: the MCB – 

primary pest (N1) – is a highly competitive pest that is also highly susceptible to Bt toxin; and the TAW – an 

invasive species with the capacity to become a secondary pest (N2) – is negatively affected by the first 

species, but has a higher tolerance to the Bt toxin (chapter five, table 5.2). It is assumed that the farmer has 

only two means to suppress pests
31

, by using Bt maize variety and/or spraying insecticide when pest densities 

exceed an economic threshold (ET
32

). Pest susceptibility to both Bt and insecticide is assumed to be as in 

chapter five. Bt maize fields have, from the beginning of the analysis, the commonly advised 20% refuge of 

non-Bt maize to promote survival of susceptible pests, thus avoiding resistance building to Bt toxin 

(Tabashnik et al. 2003). This adjustment, as compared with chapter five where Bt adoption reached its 

maximum after 10 years, has a consequent impact on the number of insecticide applications. Hence a new 

optimal insecticide path for Bt maize adopters’ NPV maximization after 25 years was calculated using the 

same methodology, but now assuming a constant adoption of 80%
33

. Each individual, conventional and Bt 

adopter maize farmer applies insecticides according to the optimum 25 years’ optimal insecticide path
34

 at 

time t defined by the parameters a, b, c and d (equation 6.4). In another words, farmers make a long-term 

educated guess about the possibility of pests occurring according to their knowledge of biological dynamics, 

optimizing the application of insecticides in order to maximize their NPV. Following Shoemaker (1973) and 

Bor (1995), mortality rate is an exponential function of insecticide dosage. Hence, the insecticide impact 

upon the pest
35

 𝒉(𝒘) and the insecticide impact on natural enemies by u(ρ) are a function of the number of 

insecticide applications (w) and bounded by the maximum effectiveness for the pest (𝒔𝒑) and/or natural 

enemies (𝒔𝒏𝒆).  

𝑤(𝑡) =  𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 (6.4) 

                                                           

31 Other pest control strategies could include for example biological control and crop rotation (see for further 

details Control of pests and weeds by natural enemies: an introduction to biological control) 

32 Economic threshold is defined as the "density at which control measures should be determined to prevent an 

increasing pest population from reaching the economic injury level".  

33 Equivalent to saying that 100% of the field is under a GEIR crop scheme  

34For conventional maize farmers, the optimal insecticide application takes the set of values {a=4.080582e+00; 

b=1.918453e-02; c=-2.830495e-03; d=-4.804419e-05} and for Bt maize farmers {a=2.430850e+00; b=-2.942969 e-01; 

c=2.358879 -02; d=5.998633 -05}  

35 Both pests are equally affected by the insecticide 
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ℎ(𝑤) = (1 − 𝑒−w(𝑡)𝑠𝑝) (6.5) 

𝑢(𝑤) = (1 − 𝑒−w(𝑡)𝑠𝑛𝑒) (6.6) 

  

The ET (equation 6.7) was set as 25% of the economic injury level (EIL
36

) as suggested by Pedigo et 

al. (1986). 

𝐸𝑇 =
𝐸𝐼𝐿

4
 (6.7) 

With:  

 𝐸𝐼𝐿 =
𝑢𝑤

𝑝𝑚𝐿𝑦𝑠
 (6.7a) 

 

𝒖𝒘 being the cost of management per unit (€/ha); 𝒑𝒎, the product market value per ton (€/ton); Ly, 

yield lost per larva (tons/ha); and s, the proportion of larvae killed (%). It is assumed that both species have 

the same negative impact upon yield. 

 

Step 3) Developing the population dynamics (reaction) term 

In a biological sense, the reaction term of the RD model (section 6.3) describes the population 

dynamics (growth and mortality) at time t. The population dynamics are based on a system of two first order 

differential equations that represent the ecological interactions of both pests with the pest management 

practices and natural enemies: 

{
 
 

 
 
𝑑𝑁1
𝑑𝑡

= 𝑟1𝑁1 [1 − 𝑏11
𝑁1
𝐾1
− 𝑏12

𝑁2
𝐾1
− (1 − Ω)𝑚1 − 𝛿𝑞1 − фℎ(𝑤)]

𝑑𝑁2
𝑑𝑡

= 𝑟2𝑁2 [1 − 𝑏22
𝑁2
𝐾2
− 𝑏21

𝑁1
𝐾2
− (1 − Ω)𝑚2 − 𝛿𝑞2 − фℎ(w)]

 

With:  

(6.8) 

                                                           

36 The economic injury level was defined by these authors as the "lowest population that will cause economic 

damage" " (Stern et al. 1959). 
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ф = {
 1,
1,
0,

  

 𝑁1 ≥  𝐸𝑇𝑁1
 𝑁2 ≥  𝐸𝑇𝑁2
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Ω = {
 0.8,
0,

  
 𝐵𝑡 𝑚𝑎𝑖𝑧𝑒      

𝐶𝑜𝑛𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑎𝑖𝑧𝑒
 

 

The pest populations grow according to a classical logistic growth equation where population 

dynamics are influenced by: the theoretical growth rate, 𝒓𝒊, the species’ intrinsic carrying capacity, 𝒌i; intra-

competition, 𝒃𝒊𝒊; inter-competition, 𝒃𝒊𝒋; mortality attributed to natural enemies, 𝒎𝒊 (i=1,2; i≠j); the 

effectiveness of Bt in controlling each pest population,𝒒𝐢; and the application of insecticides, w. The 

parameter ф, a dummy variable, assumes the value of one if 𝑁1 ≥ 𝐸𝑇𝑁1  or 𝑁2 ≥  ET𝑁2, and zero otherwise; 

and the parameter Ω, assumes the value of 0.8 if Bt maize is used, and zero otherwise. For further information 

on both species’ characteristics and relevance to maize production, the reader is directed to chapter three. 

Step 4) Developing the spread (diffusion) term 

The diffusion term, 𝑫𝒊 (
𝝏𝟐𝑵𝒊

𝝏𝒙𝒊
𝟐 +

𝝏𝟐𝑵𝒊

𝝏𝒚𝒊
𝟐 ), describes the spread of populations in space (section 6.3). 

Besides space, the main component of the diffusion term is the dispersal rate. Per time unit t, the individuals 

move randomly, i.e., there is an equal probability of them moving in any direction (left, right, up or down). 

The dispersal rate for each species was derived from the theoretical speed obtained in wind tunnel, as 

follows: the theoretical maximum possible speed for MCB (𝒗𝑴𝑪𝑩) is 23.3 cm.s
-1

 (Bau et al. 1999) and 0.081 

Km.m
-1 

for TAW (𝒗𝑻𝑨𝑾) (Luo et al. 1999, Luo et al. 2002). Both species can disperse within the whole 

domain, however the dispersal rate changes depending if dispersal occurs in favourable or unfavourable 

fields. After calibration it was assumed that the dispersal rate in unfavourable fields for both species has a 

value of 1% of the actual dispersal rate
37

.  

The dimensionless disperse rate, 𝑫𝒊 =
ϑ𝑖
𝟐

𝝅𝑻𝒊
 where i=MCB;TAW, was obtained by adjusting the spatial 

and temporal domain as in Gilligan (2008), taking into consideration the maximum domain size (ϑ𝒚)
38

 in 

meters and the units in which theoretical speed was reported
39

. For MCB: since the theoretical speed (given 

in cm.s
-1

), the maximum domain size was converted into centimetres: ϑ𝑴𝑪𝑩 =
𝒗𝑴𝑪𝑩

ϑ𝒚×𝟏𝟎𝟎𝒄𝒎
 , and the yearly 

                                                           

37 i.e. resource availability is a determinant of pest mobility (Barbosa et al. 2012, Cho and Kim 2013) 

38 ϑy = 684 × 500 = 342000 meters 

39 Otherwise, the dimensionless dispersal rate would have been improperly estimated (see Gilligan (2008) for 

further details)  
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timeframe (𝑻𝒚) in seconds: 𝒕𝑴𝑪𝑩 =
𝑻𝒚 

𝑻𝒔
. For TAW, the speed was given in Km.m

-1
, hence the maximum 

domain size was in kilometres: ϑ𝑻𝑨𝑾 =
𝟏𝟎𝟎𝟎𝒎×𝒗𝑻𝑨𝑾

ϑ𝒚
 , and the yearly timeframe into minutes: 𝒕𝑴𝑪𝑩 =

𝐓𝐲 

𝐓𝐦 
. 

Where vi is the species theoretical speed (in reported units), Ty represents a period of one year, Ts and Tm the 

number of seconds and minutes in one year respectively. The boundaries between spatial units are fixed 

during the course of the simulation. Homogeneous Neumann boundary conditions (null derivative specified 

on the boundaries), were set for the spatial dimensions:  

{
 
𝜕𝑁1
𝜕ϑ

 (𝑡, 𝑥, 𝑦, 𝑁1, 𝑁2)|𝜕ϑ = 0

𝜕𝑁2
𝜕ϑ

 (𝑡, 𝑥, 𝑦, 𝑁1, 𝑁2)|𝜕ϑ  = 0

 (6.9) 

 

Step 5) Evaluating the regional net present value  

Chapter five developed a bio-economic model based on that of Lichtenberg and Zilberman (1986)
40

, 

in which the interactions of two pests are incorporated into a production function. In order to reflect spatial 

movement of both species, this model was expanded by introducing a two-dimensional diffusion term. The 

simulations are performed within the landscape explicitly represented and described above, which is 

populated by profit maximizing maize farmers. The final NPV after 25 years of aggregate landscape profits is 

evaluated taking into consideration the implications of different pest management decisions over a time 

interval [0, T]. The conventional fields are represented by 𝛝𝐂𝐨𝐧𝐯, and Bt maize fields by 𝛝𝑩𝒕 . This is 

accomplished using the optimal amount of insecticides applied throughout the cropping season according to 

the economic threshold subject to pest dynamics. Letting p denote output price, 𝒖𝒄 and 𝒖𝑩𝒕 the prices of 

conventional and of Bt maize inputs unrelated to damage control and 𝒖𝒘 the price of a unit of insecticide (w), 

the BeSEP model becomes:  

∑(ϑConv

ϑ

𝑖=1

+ ϑ𝐵𝑡) ∫ 𝑒−𝛿𝑡
𝑇

0

 {𝒑𝒎𝑔(𝑍)[1 −  𝐷(ℎ(𝑁1, 𝑁2, 𝑞,W))] − 𝑍[(1 − 𝛺)𝑢𝑐 + 𝛺𝑢𝑏𝑡]

− ф𝒖𝒘𝑤} 𝑑𝑡 

 s.t.  

 

(6.10)  

                                                           

40 For a detailed review on the Lichtenberg and Zilberman (1986) damage control approach, see Sexton et al. 

(2007).  
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{
 
 
 
 

 
 
 
 
𝑑𝑁1
𝑑𝑡

= 𝑟1𝑁1 [1 − 𝑏11
𝑁1
𝐾1
− 𝑏12

𝑁2
𝐾1
− (1 − Ω)𝑚1 − 𝛿𝑞1 − фℎ(𝑤)] +

+ 𝐷𝑁1 (
𝜕2𝑁1
𝜕𝑥2

+
𝜕2𝑁1
𝜕𝑦2

)

𝑑𝑁2
𝑑𝑡

= 𝑟2𝑁2 [1 − 𝑏22
𝑁2
𝐾2
− 𝑏21

𝑁1
𝐾2
− (1 − Ω)𝑚2 − 𝛿𝑞2 − фℎ(w)] +

+ 𝐷𝑁2 (
𝜕2𝑁2
𝜕𝑥2

+
𝜕2𝑁2
𝜕𝑦2

)

  

With: 

ф = {
 1,
1,
0,

  

 𝑁1 ≥  𝐸𝑇𝑁1
 𝑁2 ≥  𝐸𝑇𝑁2
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Ω = {
 0.8,
0,

  
 𝐵𝑡 𝑚𝑎𝑖𝑧𝑒      

𝐶𝑜𝑛𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑎𝑖𝑧𝑒
 

 

The damage-abating role of insecticides is taken into account explicitly in the production function 

through an asymmetric treatment of "productive" inputs (Z) and "damage-abating" insecticide (w): Y = F(w, 

D(Z)). The aggregated potential maize output over the landscape, which includes both conventional maize 

(Gc) and GEIR maize (GBt), is denoted by G(Z). Z represents a vector of non-insecticide inputs (i.e., labor, 

seeds, fertilizers etc.). The damage control framework models the actual output, Y, as a function of potential 

output, G(Z), damage, D(N1,N2), and proportion of the total landscape planted with Bt maize (Ω). Both pests 

act simultaneously and the nature of the damage is species independent. The damage function is represented 

as a function of the density of both pest populations – N1 and N2 – and expresses the fraction of yield lost (I) 

due to the sum of the damage caused. The model therefore computes aggregate regional maize output as the 

potential yield minus the fraction of the crop that is lost due to the damage caused by both pest species. The 

model does not take into account the external social and environmental costs of insecticide use for both 

society and the farmer.  

6.6.3 Scenarios explored  

In order to assess the aggregated regional NPV after 25 years accrued from maize production 

considering the expected damage from spatial interactions between the invasive species (TAW), abiotic 

(insecticides) and biotic factors (MCB and natural enemies interactions), and the effect of the landscape, 

three scenarios are investigated
41

: 1) Spread of TAW from an invasion hotspot area with the actual 

                                                           

41 The first and second phases of the invasion process were “effective”, the analysis focuses exclusively on the 

third invasion phase process, i.e. the spread. 
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conventional/Bt maize proportion; 2) Spread of TAW from an invasion hotspot area altering the 

conventional/Bt maize proportion, and 3) TAW spread was not effectively controlled in time. The model was 

solved with operator-splitting. A landscape is considered in which farmers do not interact with one another 

nor have knowledge of the behaviour of others. They act according to their own interests and pest density in 

their fields. For the three scenarios the cases in which: i) insecticides are applied in both conventional and Bt 

maize fields; ii) only in conventional fields, and iii) no insecticides are used are evaluated. Additionally, it is 

assumed that the initial population of MCB is 10% of its carrying capacity, and present in all fields 

favourable to reproduction. Natural enemies are present evenly throughout the landscape, being negatively 

affected by insecticide applications. The reaction terms were solved following the fourth order explicit 

Runge–Kutta (section 5.4.1). The diffusion term was solved with a second order semi-implicit scheme called 

Alternating Direction Implicit (ADI)
42

. The model parameters were obtained in chapter five, tables 5.1 and 

5.2. In the following, a description of the three scenarios is presented.  

 

Figure 6.3 MCB initial population (green). It is assumed that MCB is present in all fields favourable to 

reproduction with a density equivalent to 10% of its carrying capacity. The resolution of the map is 

500 x 500m. 

                                                           

42 Operator splitting is a powerful method to numerically solve complex models, by splitting a complex problem 

into a sequence of simpler tasks, called split sub-problems (accuracy of operator splitting for advection-dispersion-

reaction problems) (ADI schemes for higher-order nonlinear diffusion equations) The reader is directed to Press (2007) 

and Bourhis et al. (2015) for a detailed description of the ADI method.  
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Scenario 1) Spread of TAW from an invasion hotspot area with the actual conventional/Bt maize 

proportion  

In the first scenario the spatial economic impacts, patterns and the radial rate of invasion (equation 

6.1) accrued from a physical spread of TAW from an invasion hotspot are assessed. To infer the influence of 

the starting point location on the invasion process a Monte Carlo simulation technique for 100 simulations
43

 

is used. For each simulation, TAW is introduced in a randomized location of favourable habitat, spreading to 

neighbouring cells
44

. The TAW population at the centre of the invasion is considered to have a density of 

10% of its carrying capacity outside maize fields (figure 6.4b). Figure 4a shows an example of an area that 

received the initial introduction.  

 

Figure 6.4 a) Example of a TAW initial population from one randomized simulation, whole region 

view; b) Cauchy kernel closer up evidencing the proportion of individuals in relation to the initial 

population shown in Figure 4a. 

                                                           

43 100 simulations show an acceptable convergence of the mean of the total producers’ welfare losses and 

cumulative area invaded over 25 years. No significant difference was found in these values when the number of 

simulations was increased. 

44 A Cauchy kernel is assumed, because it is easy to compute and has a long history in the study of biological 

invasion (Kot et al. 1996). 
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To predict the possible hotspots of invasion, i.e. where a pest outbreak or introduction area would 

have higher economic impact for Aragon maize producers, each cell from the domain is spatially interpolated 

using Generalized Additive Models (GAM
45

). This method overcomes the issue of individually evaluating 

the invasion effects on every possible introduction field. The GAM modelling methodology has been 

extensively applied in spatial ecology (e.g. Guisan and Zimmermann 2000, Guisan and Thuiller 2005, Beale 

et al. 2010, Miller et al. 2013). A GAM class of equations called "smoothers" or "scatterplot smoothers" was 

used that generalizes data into smooth curves by local fitting to subsections of the data. Considering a 

nonparametric smoothing function in which 𝜞 represents the interception parameter, 𝒔 the “smoothers" as a 

function of the initial coordinates, 𝛝𝒊,𝒋, at the centre of the invasion introduction, and the log of the NPV after 

25 years as the independent variable, the GAM model becomes: 

log(𝑁𝑃𝑉𝑖) = 𝛤 + ∑ 𝑠

ϑ

𝒊,𝒋=𝟏

(ϑ𝒊,𝒋) + 𝜺𝒊 
(

(11) 

The approach employed with GAMs using "smoothers", is the division of the data into a number of 

segments, using "knots" at the ends of each segment. After this a low order polynomial or spline function is 

fitted to the data in each of the segments. The best fitting model
46

 was determined using a step-wise GAM 

based on the Akaike Information Criterion (AIC) test statistic. The lowest AIC statistic gave the best 

combination of parameters for the final model. This methodology allowed prediction of invasion “hotspots”, 

i.e. the primary areas where control efforts should be considered due to the economic consequences 

associated with their spread across landscape.  

Scenario 2) Spread of TAW from an invasion hotspot area altering the conventional/Bt maize 

proportion  

To assess the influence and importance of spatial distribution and ratio of Bt/conventional maize on 

the spread process, insecticide use and the subsequent economic impact, the original maize cropping area is 

altered to four different conventional/Bt maize proportions: i) only conventional maize is cropped in the 

                                                           

45 In brief, GAMs are a flexible extension of the generalized linear models (GLMs) (McCullagh and Nelder 1989) 

which allow the inclusion of multiple linear and non-linear relationships between coordinates by identifying the 

appropriate non-linear function (Simpson and Walsh 2004). GAMs are parameterized just like GLMs, except that some 

predictors can be modelled non-parametrically in addition to linear and polynomial terms for other predictors (Guisan et 

al. 2002). However a complete overview is beyond the scope of this work, and readers are referred to more specialized 

literature on GAM models (Hastie and Tibshirani 1986, Guisan et al. 2002). 

46
 Several models were tested, for example not logging the independent variable, logging the 

explanatory variable or using the field type as an additional explanatory variable. 
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region, ii) 50% of the Bt maize famers move to conventional maize faming, iii) 50% of the conventional 

farmers adopt Bt maize, and iv) all farmed maize is Bt. In this scenario, it is assumed that insecticides are 

applied in all maize fields, according to the respective (Bt and conventional maize) optimal insecticide path, 

whenever the pests reach the ET. For each assessment, a Monte Carlo simulation technique is applied for 100 

simulations. 

Scenario 3) TAW spread is endemic throughout the region 

The challenge of detecting a recently established invasive pest is central to efficient control. There are 

numerous examples of invasive species that escaped early detection and became so abundant and widespread 

that containment and eradication were no longer possible (Myers et al. 1998). This scenario evaluates the 

economics of not effectively controlling the spread of TAW in time, i.e. if TAW becomes endemic in the 

region. It is assumed that at time zero, TAW is present in all fields where its reproduction is possible with 

density per hectare equivalent to its ET in maize (figure 6.5).  

 

Figure 6.5 - TAW initial population (green). It is assumed that TAW is present in all fields favourable 

to reproduction with a density equivalent to 10% of its carrying capacity. The resolution of the map is 

500 x 500m. 
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6.7 Model validation  

Model validation has been undertaken, showing that economic outcomes are in line with published 

data. In 2012, the Aragon government reported an average maize production of around 12 tons/ha (López 

2013). Including the impact of pests, when farmers apply insecticides in both maize systems, the average 

yield computed by the model is relatively close to the real value, 10.9 tons/ha. However, there is a substantial 

deviation from the average profit per hectare. While in 2012 the Aragon maize producers obtained an average 

profit of 499€/ha (López 2014), this study reports a profit average of 725€/ha. This difference may be due to 

the conjunction of two factors: i) in this research it is assumed that all farmers act optimally, which in reality 

does not happen; and, ii) it is possible that the total costs were not properly estimated due to the complexity 

of maize production, for example no other pests were taken into consideration, hence insecticide expenditures 

may have been higher. 

Numerous studies of Spain (López et al. 2000), Canada (Fields and McNeil 1984), the US (Willson 

and Eisley 1992) and Mexico (Ramírez Dávila and Esquivel Higuera 2013) have reported on the TAW’s 

destructive potential and sporadic population outbreaks with larvae marching en masse across the landscape. 

Attempts to analyse and predict outbreaks have been constrained by the high flying capacity and 

reproduction rate of TAW, and its gregarious, explosive and unpredictable behaviour. Armyworms 

frequently disappear almost as suddenly as they appear, either burrowing into the ground to pupate or 

migrating to further fields in search of food.  

Finally, there is a close link with temperature as this species does not have a diapause and cannot 

survive prolonged temperatures below freezing (Fields and McNeil 1984, Bues et al. 1986). This has a major 

influence on the erratic nature of TAW’s outbreaks and invasions. Thus there may be an extended period 

without farmers noticing the pest. To the best knowledge of the author, the spatial identification of TAW’s 

range of action, evaluation of the TAW spread patterns, possible effects of clustering and its influence in 

neighbouring areas has not been conducted. In this work, the best knowledge reported in literature was used 

to evaluate the possible spread pattern of TAW in Aragon. The author is aware that several parameters could 

be more accurately estimated, however the density map patterns appear to be in line with the only spatial 

model known by the authors for TAW (Ramírez Dávila and Esquivel Higuera 2013).  

6.8 Results and discussion  

This section shows how spatial dynamics patterns of MCB and TAW affects the economic 

performance of maize farmers in Aragon according to three pest control regimes: 1) insecticides are applied 

in both conventional and Bt maize fields; 2) only in conventional fields; and, 3) no insecticides are used. The 

overall success is defined in terms of achieving the highest NPV after a given time span of 25 years (equation 

6.10). Firstly, the results from the first scenario are analysed and discussed, i.e. the case in which TAW is 
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introduced or breaks out from a hotspot area with the actual conventional/Bt maize proportion. The results of 

scenario one are divided into three parts: i) evaluation of the physical spread characteristics of TAW, ii) 

evaluation of the invasion economic impact and consequent implications, and iii) a prediction of the possible 

hotspots of invasion, i.e. where a pest outbreak or introduction area would have higher impact for Aragon 

maize producers. Secondly, the influence and importance of spatial distribution and ratio of Bt/conventional 

maize on the spread process (scenario two) is assessed. This section ends with the results from the third 

scenario; the economic implications of not effectively controlling the spread of TAW in time are discussed.  

6.8.1 Scenario 1) Spread of TAW from an invasion hotspot area with the actual conventional/Bt 

maize proportion 

Evaluation of the physical spread characteristics of TAW  

The TAW’s annual radial rate of invasion (RRI) and total area invaded (TAI) after 25 years were 

calculated according to equations 6.1 and 6.2. To illustrate variation in the spatial range of biological 

invasions, two different ‘invasion levels’ for a field to be considered successfully invaded were evaluated: i) 

at least one individual is present per hectare, ii) when TAW population reaches the ET numbers per hectare 

in maize, i.e. when the farmer “spots” the pest (table 6.4).  

Table 6.2 – Annual radial rate of invasion (RRI) and total area of invasion (TAI) 

results considering the three pest management regimes (PMR), and the two 

invasion levels for a field to be considered successfully invaded. 

 > 1 TAW larvae per ha  

 units PMR 1* PMR 2** PMR 3*** 

  Mean Mean Mean 

Annual RRI  km.year
-1

 4.89±0.02 4.89±0.02 4.89±0.02 

TAI  km2 46999±351 47026±377 47025±341 

 
 

TAW population > ET 
  

  Mean Mean Mean 

Annual RRI  km.year
-1

 3.55±0.25 3.49±0.23 3.58±0.24 

TAI  km2 24744±3216 24754±3177 25333±3394 

* Insecticides in both Bt and Conventional maize 

** Insecticides only Conventional maize 

*** No insecticides applications 
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TAW effectively invaded almost the whole region regardless of whether insecticides were used or not, 

based on the assumption that a field is considered successfully invaded when at least one individual is found 

per hectare, with a mean radial rate of invasion of 4.7 – 4.9 km.year
-1

. The growth and spread continues until 

suitable habitat and resources become scarce. Recalling that each simulation had a different geographical 

starting point, it is possible to infer the existence of a strong correlation between the TAI and the initial 

introduction area. Figure 6.6 shows the total invaded area, over the 25 years simulation period, where TAW 

has surpassed the ET level for the scenario in which insecticides are used in both Bt and conventional maize. 

Each line in the figure represents one model simulation. Additionally, figures 6.7 and 6.8 exhibit the invasion 

patterns from two distinct initial points, clearly showing how the invaded area is highly dependent on the 

starting point, also noted in the high variance in the TAI mean (table 6.2). In this case, regardless of whether 

insecticides are used or not, the final average TAI is 25.000 km
2
 (52% of the total area of Aragon).  

Turning to consideration of the invaded maize itself, the outcomes are in line with previous results. 

The total maize area in which TAW surpasses the economic threshold ranges from a minimum of 103 km
2 

to 

a maximum of 311 km
2
 (table 6.3). The average TAW numbers in conventional fields do not vary within the 

three pest control regimes. In Bt maize fields the prevalence of TAW is always higher when compared with 

conventional fields. This indicates that the TAW population in conventional fields will remain low either due 

to insecticide use or competition pressure from the MCB. The results also reflect the TAW’s ecological 

advantage in the absence of MCB and reduced insecticide intensity (Catarino et al. 2016). This finding 

suggests that controlling the invasive species only in maize fields is not an efficient management strategy. 

Furthermore, the spatial structure, i.e. the connectivity of favourable fields for dispersion and reproduction 

(Jager et al. 2005), assumes a critically important feature which can have a strong influence on the dynamics 

of invasive species. Scenario two evaluates whether the ratio and localization of conventional/Bt maize fields 

influences the spread of TAW. 
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Table 6.3 – Invasion results (scenario 1) in maize fields in which TAW surpasses the economic 

threshold in the final year considering the three pest management regimes (PMR). 

  units Min Max Mean 

P
M

R
 1

*
 

Maize invaded area km
2
 103 311 218±54 

Conv maize invaded area km
2
 39 126 83±27 

Bt maize invaded area km
2
 63 194 136±31 

Total TAW average density Insect/plant 0.16 1.12 0.65±0.19 

Conventional field TAW average Insect/plant 0.06 1.23 0.57±0.23 

Bt fields TAW average density Insect/plant 0.13 1.13 0.67±0.20 

      

P
M

R
 2

*
 

Maize invaded area km
2
 133 303 226±57 

Conv maize invaded area km
2
 50 123 89±26 

Bt maize invaded area km
2
 83 182 137±33 

Total average TAW density per plant Insect/plant 0.11 1.09 0.59±0.22 

Conv average TAW density per plant Insect/plant 0.11 1.18 0.51±0.26 

Bt average TAW density per plant Insect/plant 0.11 1.10 0.63±0.22 

      

P
M

R
 3

*
 

Maize invaded area km
2
 126 310 210±53 

Conv maize invaded area km
2
 42 131 80±27 

Bt maize invaded area km
2
 81 195 130±30 

Total average TAW density per plant Insect/plant 0.12 1.1 0.67±0.25 

Conv average TAW density per plant Insect/plant 0.12 1.20 0.58±0.27 

Bt average TAW density per plant Insect/plant 0.12 1.19 0.72±0.26 

 * Insecticides in both Bt and Conventional maize 

** Insecticides only Conventional maize 

*** No insecticide applications 
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Figure 6.6 – Total invaded area, over the 25 years simulation period, where TAW has surpassed the ET level for the scenario in which insecticides are used in 

both Bt and conventional maize. Each line in the figure represents one model simulation 
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Figure 6.7 – Example 1 of the TAW invasion process over 25 years when insecticides are used in both Bt and conventional maize. The first image shows 

the initial outbreak area, occurring in the west of Aragon. The last image shows the final spread accrued from this simulation. The red cells represent Bt maize 

fields, while blue cells represent conventional maize. The resolution of the map is 500 x 500m. 
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Figure 6.8 – Example 2 of the TAW invasion process over 25 years when insecticides are used in both Bt and conventional maize. The first image shows the 

initial outbreak area, occurring in the south east of Aragon. The last image shows the final spread accrued from this simulation. The red cells represent Bt maize 

fields, while blue cells represent conventional maize. 
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Invasion impact and consequent economic implications  

The aggregated discounted average revenue for maize is computed for the whole region in 

combination with pest damage to calculate the potential damage costs and the NPV after 25 years. The total 

pest damage results from both MCB and TAW. The sum of the total regional losses in maize accrued from 

TAW determines the benefit value of an invasion control program. Subsequently, the economic results from 

the three pest management cases that have been considered are presented and discussed. Table 6.4 shows the 

NPV results per hectare after 25 years according to the initial outbreak field. The initial outbreak field was 

identified (first column, table 6.4) to infer its influence on the final NPV. However, no significant difference 

was found, i.e. the NPV variation is not dependent on the type of field in which the outbreak occurs. Taking 

the invasion process into consideration, the results are as expected; Bt farmers realize higher profits, 

approximately 18% more than conventional maize farmers, while decreasing insecticide use per year by more 

than 90%.  

The results obtained when no insecticides are used in Bt maize were not as predicted. In this situation 

famers are practically as well off as if they used insecticides. As seen above, although TAW invasion is not 

efficiently controlled, not all maize fields are invaded at a level sufficient to inflict significant economic 

impact on farmers’ NPV, at least for the 25 year period. Considering the high efficiency of Bt maize towards 

MCB, for adopting farmers the insecticide expenditure targeted at controlling TAW in this case is 

approximately the same as the damage imposed by this pest. On the other hand, insecticides are used in all 

conventional maize fields at a maximum level, suggesting that MCB would cause severe damage if neither Bt 

nor insecticides were used.  

For conventional maize farmers, insecticide use brings an average 46% increase in the NPV, while for 

Bt farmers only 0.5%. Additionally, the use of insecticides on Bt fields brings an average 1% increase in the 

final NPV of conventional farmers. As Hutchison et al. (2010) found, Bt maize provides economic benefits 

for farmers who plant conventional maize in nearby fields. These results suggest that by shrinking the area of 

MCB infection general control is made more efficient. As noted before, the population growth rate, which is 

intrinsically linked to population numbers, is a major factor in the species’ invasion capacity.  

The summary for the final regional aggregated costs and benefits is shown in table 6.5. When farmers 

apply insecticides in both Bt and conventional fields, the region of Aragon would obtain a total NPV of 

€559M (±3.7) after 25 years, of which 65% is attributable to Bt maize production. During the same period the 

amount lost, even using insecticides, to just these two insects equalled €43M (approximately 7.7% of the 

total NPV), from which 22% is directly linked to the invasive species. The difference in insecticide 

expenditure amongst both maize systems is relatively large, with conventional maize farmers spending €18M 

and Bt famers spending only €1M. When direct losses to pests are taken into account together with the total 

insecticide expenditure, around €61M is lost in 25 years in Aragon alone.  
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Table 6.4 – NPV after 25 years according to the initial outbreak field for 

the first scenario, i.e. spread of TAW from an invasion hotspot area with 

the actual conventional/Bt maize proportion, considering the three pest 

management regimes (PMR).  

 PMR 1* 

Fields N. simulations Conv Bt Total 

Maize 3 9272±77 11376±85 10523±61 

Rice 4 9311±91 11280±74 10397±112 

Pastures 21 9194±127 11247±109 10411±110 

Grassland 72 9213±86 11252±81 10434±84 

Mean NPV  9248±73 11289±70 10471±69 

 PMR 2* 

Fields N. simulations Conv Bt Total 

Maize 2 9201±68 11329±23 10516±99 

Rice 5 9138±91 11319±116 10485±107 

Pastures 16 9116±128 11199±103 10364±158 

Grassland 77 9198±89 11233±124 10413±109 

Mean NPV  9161±104 11232±102 10409±99 

 PMR 3* 

Fields N. simulations Conv Bt Total 

Maize 1 4951±129 11071±91 8613±109 

Rice 6 4953±132 11061±93 8613±102 

Pastures 36 4935±113 11104±134 8632±123 

Grassland 70 4949±68 11088±76 8628±69 

Mean NPV  4945±104 11084±101 8625±100 

* Insecticides in both Bt and Conventional maize 

** Insecticides only Conventional maize 

*** No insecticide applications 
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The total direct loss represents 44% of the agricultural component of Aragon’s GDP
47

 and 8% of the 

total Aragonese GDP
48

, using the same discount rate used in this study (5% per year). Both the results at the 

individual farm and regional level show the high efficiency of Bt maize towards the primary pest. 

Additionally, the use of insecticides could be ceased in Bt fields since the insecticide expenditure and the 

monetary damage caused by the invasive pests is basically the same. 

Table 6.5 – Regional statistics based on the regional optimal profit of €225.7M for 

conventional maize farmers and of €375.6M for Bt maize farmers. 

 
PMR 1* 

 
Units Conv Bt Total 

Actual NPV Aragon  Million € 198±1.6 361.0±2.2 558.7±3.7 

Aragon pest total loss  Million € 28.0 14.6 42.6 

Insecticide applications ha.year
-1

 3.42±0.00 0.24±0.04 1.39±0.02 

Aragon insecticide total cost  Million € 18.3 1.3 19.6 

 
PMR 2* 

 
Units Conv Bt Total 

Actual NPV Aragon  Million € 195.8±2.1 359.1±4.0 555.0±6.5 

Aragon pest total loss  Million € 29.8 16.5 46.3 

Insecticide applications ha.year
-1

 3.42±0.0   

Aragon insecticide total cost  Million € 18.3  18.3 

 
PMR 3* 

 
Units Conv Bt Total 

Actual NPV Aragon  Million € 105.7±2.2 354.4±3.2 460.1±5.4 

Aragon pest total loss  Million € 119.9 21.2 141.1 

Insecticide applications ha.year
-1

    

Aragon insecticide total cost  Million € 119.9 21.2 141.1 

* Insecticides in both Bt and Conventional maize 

** Insecticides only Conventional maize 

*** No insecticide applications 

 

 

  

                                                           

47 https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/base-profile/aragon 

48 http://www.datosmacro.com/pib/espana-comunidades-autonomas 
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Prediction of possible TAW’s invasion ‘hotspots’  

The results above outline the challenge of detecting and confirming the presence of invasive species. 

Predicting and quantifying the potential distribution and rate of invasion of invasive species is a critical step 

in evaluating their ecological and economic impacts, and management control options (Keller et al. 2008, 

Beale et al. 2010). Biological invasions are complex dynamic systems with several sources of uncertainty and 

generally exhibit strong geographical variation. Cacho et al. (2010) showed that the probability of eradication 

can increase and total costs of managing an invasion can be reduced considerably if surveillance efforts are 

effectively allocated across a landscape.  

A step-wise GAM is used to determine the best fitting model based on the Akaike Information 

Criterion (AIC) test statistic. The lowest AIC statistic gave the best final model. The response variable 

logged, while the independent variables are composed by a spline smoothing function, s which assesses the 

shape of the response variable as a function of the predictor (table 6.6). To see the predicted values on the 

probability scale the values were unlogged and fitted into the Aragon map. The GAM model indicated that 

the NPV strongly depended on the initial coordinates, latitude and longitude, in which the outbreak occurs, 

corroborating the inferences made above. For the three pest control regimes, the initial coordinates alone 

explain 79.8 – 88.4% of the variation in TAW impact. The GAM plots of how the outbreak point would 

impact final NPV indicate the invasion ‘hotspots’, i.e. areas where surveillance is essential in the detection 

and control of invasions, and show that the centre of the region is the most sensitive area (figure 6.9). This is 

valid for both Bt and conventional farmers, whereas the borders are the less sensitive areas. The results for 

the GAM model are shown in table 6.6.  

Table 6.6 – GAM results for the hot-spot map for actual Aragonese land use, when insecticides are 

used in both Bt and conventional maize. 

Model: 𝒍𝒐𝒈  (𝑵𝑷𝑽. 𝒉𝒂−𝟏) = 𝒔(𝒙, 𝒚) Family: gaussian ; Link function: identity 

Parametric coefficients:    

 estimate Std. Error T value Pr(>|t|) 

(Intercept) 9.2504616 0.0003385 27324 <2e-16 *** 

Approximate significance of smooth terms: 

 Edf Red.df F p-value 

𝒔(𝒙, 𝒚) 27.24 28.81 24.17 <2e-16 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj): 0.876 ; Deviance explained: 91.1% 

GCV score: 1.5778e-05; Scale est. = 1.1232e-05 ; n = 100 

Invasive species are particularly difficult and expensive to control or eradicate, hence the importance 

of evaluating the most efficient management strategies. As discussed previously, prevention is usually more 
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cost-effective than post-entry eradication or containment. It is also very important to avoid the dispersal and 

settlement of invasive species, which could bring devastating and irreversible consequences. A model that 

can predict the rate and direction of spread and its economic impacts, such as the one developed here, may 

assist government agencies and environmental authorities to design effective monitoring and control 

measures. In situ investments to limit the size and spread of the invasive population could be activated and 

efficiently directed taking the predicted spread into consideration. A surveillance effort, focussing on the area 

highlighted in figure 6.9, should be carried out when long-term costs of damage and/or control exceed short-

term costs of successful policy. Although it is difficult to quantify how much the government should invest, 

recommendations could be based on the difference between the total loss results of scenario 1 and 2. If the 

spread is not efficiently controlled, the whole region would lose about €255M in 25 years, not considering 

the environmental damage accrued from increased spraying frequency. 

 

Figure 6.9 – Hot-spot map for the NPV after 25 years indicating the most sensitive areas, when 

insecticides are used in both Bt and conventional maize. The red and blue colours indicate the location 

of Bt and conventional fields, respectively.  The resolution of the map is 500 x 500m. 
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6.8.2 Scenario 2) Spread of TAW from an invasion hot-spot area altering the conventional/Bt maize 

proportion  

Four different conventional/Bt maize proportions were modelled in order to assess the influence and 

importance of spatial distribution and ratio of Bt/conventional maize to spread process, insecticide use and 

subsequent economic impact. The results are compared with the original maize spatial distribution when 

insecticides are applied in both Bt and conventional maize fields whenever the pests reach the ET
49

. These 

four additional cases complement the spatial economic analysis of TAW invasion. The results are shown in 

table 6.7.  

The ratio conventional/Bt maize has a preponderant effect on the results. The economic and 

environmental (by reducing the necessity of insecticide) benefits of expanding Bt maize in Aragon are 

evident. The higher the area with Bt farming, the higher the profits. Intensifying the Bt cropping area by 50% 

would bring an extra €36M to the region after 25 years. Most importantly, it would on average reduce 

insecticide application by 64.5%. If farmers ceased to grow Bt maize, the whole region would lose 

approximately €109M in 25 years while increasing insecticide expenditure by more than double. Regarding 

the spread process, no major correlation was found between the invaded area (or the RRI) and the ratioes of 

the two maize varieties. 

 Although the economic benefits of using Bt maize are clear, it should be noted that planting the 

agricultural landscape with GEIR maize monocultures should be undertaken with caution. The simplification 

of cropping systems would lead to an increase in genetic uniformity of agroecosystems with subsequent 

negative ecological implications, such as an increase in vulnerability to pathogens or pests (Altieri 1999). 

Recent literature highlights that the widespread use of GEIR crops could generate great environmental 

changes, such as the appearance of new pests or the outbreak of pests previously controlled (Catarino et al. 

2015). Hence, research on GEIR crops must take a steps to avoid the same problems that agriculture faces 

with the use of pesticides.  

   

                                                           

49 The optimal pest control regime, i.e. where famers’ obtain a higher NPV 
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Table 6.7 – Comparison (in %) between the results accrued from TAW invasion with real Aragon land-use and four different conventional/Bt proportions.  

 RRI 

(km.year-2) 

Total area 

invaded (km2) 

NPV 

(M euros) 

Economic loss to pests 

(M euros) 

Expenditure in insecticides 

(M euros) 

Total loss 

(M euros) 

 Conv Bt Total Conv Bt Total Conv Bt Total Conv Bt Total 

Real 3,6 24939 9214 11256 10437 28 14 42,6 18,3 1,3 19,6 46,3 15,9 62,2 

100% conv  -4,7% -8,9%   -19,5%   170,5%   122,0%   154,7% 

- 50% Bt  6.6% 21,8% -0,6% -0,5% -6,4% 86,5% -40,3% 43,0% 65,8% 8,9% 62,3% 78,0% -36,3% 49,3% 

+ 50% Bt  -5,4% -10,6% 0,6% 0,5% 6,4% -75,2% 43,0% -34,7% -76,2% 110,1% -64,5% -75,6% 48,4% -44,4% 

100% Bt  -5,3% -10,2%   8,3%   -45,2%   -91,3%   -60,2% 

 

 



 

 

 

Page | 92 

 

 

 

6.8.3  Scenario 3) TAW spread is endemic throughout the region  

This scenario evaluated the economic implications of an extreme but possible situation, i.e. TAW 

becoming endemic throughout the region. This scenario may arise either from a different dispersal 

mechanism as shown before (section 6.3), or due to failure in controlling the invasive pest spread. It is 

assumed that at time zero, TAW is present in all fields where its reproduction is possible with density per 

hectare equivalent to its ET in maize (figure 6.5). The challenge of detecting a recently established invasive 

pest is central to efficient control. There are numerous examples of invasive species that escaped early 

detection and became so abundant and widespread that containment and eradication were no longer possible 

(Myers et al. 1998). As seen in the first scenario, after 25 years it is possible to find at least one individual per 

hectare throughout the region. Hence it is to be expected that if a longer timeframe were considered, the 

TAW’s regional population density would be higher. Lastly, in the other scenarios only one point of 

introduction was considered, but it is reasonable to expect that several entry points may exist within a given 

period. In any situation, the outcomes would be utterly different, as shown below.  

The results comparing the impact of TAW invasion and TAW being a widespread species in Aragon 

are presented in table 4.10. Clearly, if TAW becomes widespread throughout the region, the environmental 

and economic impacts will be severe. In this situation, Bt farmers increase their insecticide application more 

than fivefold. However even doing so, in line with the aggregated total NPV for Aragon, Bt farmers’ NPV 

after 25 years is reduced by more than a third. Actually, the loss percentage on Bt maize is greater than on 

conventional maize (table 6.8). It is evident that the optimal insecticide path calculated in chapter five should 

be taken with care.  

As seen in figure 6.10 the number of optimal annual insecticide applications, for both Bt and 

conventional maize systems, is not sufficient to control the invasive species. Since TAW is not susceptible to 

the Cry1Ab toxin, the use of this maize variety would become less effective as a pest control management 

practice in this region. This situation is a result of TAW’s high flying capacity. Hendrix and Showers (1992) 

showed that TAW could travel at least 1300 km from Texas to Iowa during northward migration in spring. 

The surrounding fields act as a constant source of this pest, making its control difficult. Bt farmers would 

need to either increase their insecticide applications once again or adopt another GEIR maize variety capable 

of controlling the invasive species. Not considering public and political aspects of Bt adoption
50

, the latter 

solution remains highly debatable.  

  

                                                           

50 Presently, only Bt maize Cry1Ab is allowed in Europe (see Meissle et al. 2011, Masip et al. 2013 for a general 

discussion)  
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Table 6.8 – Comparison (in %) between the impact of TAW invasion 

and TAW being a settled species in Aragon, considering the three pest 

management regimes (PMR). 

 
PMR 1* 

 
Conv Bt Total 

Actual NPV Aragon  -31,2% -34,9% -33,6% 

Aragon pest total loss  320,1% 963,3% 540,5% 

Insecticide application per ha 0,0% 501,5% 150,5% 

Aragon insecticide total cost  0,0% 495,7% 126,3% 

Aragon total losses 233,1% 923,8% 409,8% 

 
PMR 2** 

 Conv Bt Total 

Actual NPV Aragon  -33,2% -36,9% -35,6% 

Aragon pest total loss  318,5% 902,0% 526,4% 

Insecticide application per ha 0,0%  0,0% 

Aragon insecticide total cost  0,0%  0,0% 

Aragon total losses 235,1% 904,4% 405,6% 

 
PMR 3*** 

 Conv Bt Total 

Actual NPV Aragon  -58,4% -37,4% -42,2% 

Aragon pest total loss  151,5% 725,3% 237,8% 

Insecticide application per ha 0,0%  0,0% 

Aragon insecticide total cost  0,0%  0,0% 

Aragon total losses 151,5% 726,4% 237,7% 

* Insecticides in both Bt and Conventional maize 

** Insecticides only Conventional maize 

*** No insecticide applications 

 

As outlined by Catarino et al. (2015), the use of such a specific pest control strategy may bring highly 

complex changes to agro ecosystems. Bt maize could open a route for the spread of new species that are not 

susceptible to a particular Bt toxin. It should be noted that this “new species” may be introduced from the 

exterior, as a typical invasive species; or a native species that, prior to Bt adoption, was effectively controlled 

by either competition from other species or by a large amount of insecticide use. As seen in section 6.3, Allee 

effects play a preponderant role in species spread, hence allowing pest that is not susceptible to increase their 

density to numbers large enough to sustain an efficient spread, which could have devastating results. In fact, 

the employment of Bt maize is only advantageous if the invasion is controlled in time. Otherwise, the 

benefits of using Bt maize, namely the high reduction in insecticide use, could be eroded. 
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Figure 6.10 – 12 examples of the dynamics along 25 years of MCB (in red) and TAW (in green) in the case that TAW became a settled species in Aragon, 

when insecticides are used in both Bt and conventional maize. Each image represents one Bt field. 
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6.9 Conclusion  

According to the results, from an economic and environmental perspective, the use of Bt maize can be 

advantageous at both an individual and regional level. The use of Bt maize, which expresses the toxin 

throughout the whole plant and across the cropping season is directly responsible for the decrease in 

insecticide use by efficiently eliminating MCB
51

. Furthermore, it was showed that the use Bt maize may 

reduce the presence of MCB not only in Bt maize fields but also in conventional maize fields. This extrinsic 

positive effect was not quantified here, but it is important to draw comprehensive picture regarding the cost-

benefits assessment Bt maize production. Several studies have already shown this positive feedback 

mechanism on the control of the target pest (Wu et al. 2008, Hutchison et al. 2010). Reducing insecticide 

applications will consequently reduce the chemical drift onto other crops, environmentally sensitive areas and 

impact on non-target organisms. Yet, these benefits will only be fully realised if TAW, i.e. the non-

susceptible pest, is prevented from reaching endemic status. Early detection and prompt control are vital in 

avoiding this scenario, and hence to gain all the benefits of planting Bt maize.  

However, as Wilson et al. (2005) showed, Bt maize farmers are usually significantly less active in 

scouting their maize fields for the presence of pests. If Bt maize farmers are not prepared to foresee an 

eventual appearance of a (new) pest that is not susceptible to the toxin, simply because the fields were not 

scouted as regularly as pre Bt-adoption (Wilson et al. 2005), it could create a temporal frame large enough to 

let populations number to increase and spread throughout the region. The large majority of invasive insect 

pests, even those that are already established in a particular area, continue to spread actively into new areas 

exhibiting non-equilibrium population dynamics (Paini et al. 2010).  

Analysis of the RRI should be taken with caution, since there may exist a time lag between the arrival 

of the species to the field and the actual detection (Kowarik 1995, Solow and Costello 2004). As emphasized 

by many researchers (Liebhold and Tobin 2008, Jarrad et al. 2011), here it is shown that surveillance and 

early detection play a critical role in the management of biological invasions. If they escape early detection, 

or if early detection mechanisms are not in place, the invasive species may continue to thrive, becoming so 

abundant and widespread that containment and eradication may no longer be possible. This situation would 

bring a loss of about €255M in 25 years, this value is the equivalent of 31% component of Aragon GDP
52

. 

                                                           

51 Chemical control of MCB and other borers is made difficult for two reasons: firstly the larvae feeds deep inside 

plant whorls and stalks where they are protected from insecticides; and secondly, farmers are not concerned with 

overlapping of pest generations, which usually require the need to have specialised spraying equipment to enter into 

fields, particularly when conditions (weather or crop stage) are unsuitable for aerial application. See section 3.3.1 for 

further insights  

52 taking in consideration an annual discount rate of 5% 
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Hence, in a case such as the one presented in this research, it is suggested that a surveillance effort policy, 

focusing on the area highlighted in figure 6.9, should be carried out in order to avoid these long-term costs.  

In this modelling exercise it was assumed that no communication existed between farmers. Farmers 

are not aware of what occurs in their neighbouring area outside their fields. In other words, farmers have no 

perception on how likely or how close their fields are to be invaded until they are effectively invaded. In 

reality, farmers’ decision on whether to control a pest is frequently grounded on the perceived threat of the 

pest in the vicinity of their fields and the guidance of governmental entities or commercial advisors (Milne et 

al. 2015). Farmers in the same region are often influenced by similar circumstances, hence if an active 

communication system is in place, it could create a coordinated response for pest control that is effective at a 

landscape scale (Röling 1994, Larson et al. 2011). That is, if one farmer notices the problem, other farmers 

near by could start preventive measures. 

 Successful invasive species management programs are clearly subject to the capacity of farmers, 

stakeholders and agencies to recognise, detect and report new incursions (Maguire 2004). This can be 

achieved by putting in place or enhancing the existing community surveillance networks (Callaham Jr et al. 

2006, Lodge et al. 2006). The government itself could ask land managers to adopt quarantine measures or to 

carry out detection campaigns and legislated control measures. Although prevention may be cost intensive, 

the benefits are likely to outweigh the costs, particularly for highly mobile and resource generalist species 

such as TAW.  

It is important to note that besides the economic impact and increase in insecticide applications, the 

invasive species might have several other negative effects with possible trophic cascading effects, such as 

their influence on other species (natural enemies) or as a vector of new diseases. As these effects cannot be 

adequately predicted, this is a very sensitive situation surrounded by a high level of uncertainty regarding the 

expected magnitude of impact. It ought to be particularly stressed that further research using the methodology 

developed here should address the following three points:  

i) to perform a spatial NPV optimization taking in consideration insecticide application for each cell 

where maize is cultivated;  

ii) to find the best integration of control methods, such as biological (e.g. natural enemies), cultural 

(e.g. barrier zones) and chemical (insecticides), in order to stop, slow, or reverse spread;  

iii)  to include weather data in the model, which will certainly influence insect growth, hence the 

spread rate; and, 

iv)  since spread is a species-specific phenomenon, optimal management of bio-invasion strategies are 

likely to vary among different species, the model should be calibrated and used for other cases in 

which data is available, including situations with long-distance dispersal events 
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6.10  Summary 

This chapter provided a general review of economic assessment and modelling of biological 

invasions. Building on the information gathered, a BeSEP model based on a reaction-diffusion system was 

developed. The BeSEP model integrates species’ spatial dynamics with the bio-economic model developed in 

chapter five. The analysis focused on the economic impact for maize farmers’ of the spread of an invasive 

species under different control strategies based on optimal insecticide applications, as estimated in chapter 

five. The general results suggest that, from an economic and environmental viewpoint, the use of Bt maize 

can be beneficial. However, these benefits will only be fully attained if the non-susceptible pest does not 

reach endemic status. It was showed that particular attention should be given to the connectivity of 

favourable habitats, i.e. landscape structure, which critically affects population spread magnitude. Successful 

invasive species management programs, such as an efficient community surveillance networks, early 

detection and prompt control are highlighted as crucial in avoiding a situation in which containment and/or 

eradication is no longer possible. The following and final chapter critically discusses the findings of the 

thesis including the implications for famers, stakeholders and policy makers. Recommendations for 

technology companies, research institutes, farmers and policy makers are provided based on the thesis’ 

findings.  

 

  



 

 

 

Page | 98 

 

 

 

 FINAL DISCUSSION AND CONCLUSION CHAPTER 7.

7.1 Chapter introduction 

The goal of this last chapter is to discuss the findings of the thesis critically with respect to the thesis’ 

research questions. This thesis builds on and extends a topic that has, until now, received only limited 

attention: the secondary impacts of genetically engineered insect resistant (GEIR) crops on the 

agroecosystem, economic returns to farmers and insecticide use. The main aim of this research was to 

provide further insights into the debate and to deliver a tool that can help policy makers and researchers to 

evaluate the economics of GEIR crops deployment effectively, while taking the ecological side of the 

problem into consideration. The case study focuses on the evaluation of the adoption impact of Bt maize 

containing the transformation event expressing Cry1Ab Bt toxin in Spain. The motivation behind this choice 

is straightforward: Bt Cry1Ab maize is the only event which is allowed to be cropped within the European 

Union (EU) (EFSA 2010c), and Spain is by far the largest adopter.  

The chapter is structured as follows: in section 7.2, the main findings of the thesis are summarised; 

section 7.3 specifically answers the research questions as outlined in section 1.3; section 7.4 outlines the 

main noteworthy recommendations for the relevant players in pest management; and section 7.5 finishes the 

chapter and thesis with the principal outstanding question to be investigated in future research as well as the 

limitations of the current thesis.  

7.2 Summary of research activities 

The core of the thesis is divided into four main research components. The first component, comprising 

chapters two and three, reviews the general literature and provides a contextualization of the study. In chapter 

two, the underlying theory, principles and literature that support this research are described. Special 

importance is given to the issue of secondary pests in the context of GEIR crops. In chapter three, the 

regional study context as well as the surrogate species are introduced. Here, the reasons behind the low 

transgenic crop adoption in Europe when compared with the rest of the world are also explicated, and the 

reasons that Spanish farmers have quickly adopted Bt maize.  

The second component, chapter four, introduces the issues that form part of the controversy behind 

the adoption of GEIR crops and provides an extensive literature review on the mechanisms that may be 

responsible for a secondary pest outbreak in the context of GEIR. The following three main causes were 

raised and discussed: i) a reduction in broad-spectrum insecticide applications; ii) reduction of natural 

enemies, and iii) niche replacement. The lessons learned in this chapter were used to aid the development of 

the mathematical models in the following chapters. 
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In the third component, chapter five, a bio-economic model was developed to evaluate the interactions 

between primary and secondary insect populations and the impact of different management strategies on 

insecticide use and economic returns over time. The model follows the Lichtenberg and Zilberman (1986) 

approach in which pest interactions are incorporated into a production function and the damage-abating role 

of insecticide is taken into account explicitly in the production function. The farmers’ net present value 

(NPV) after 25 years, in the various assessed scenarios, was determined considering the optimal insecticide 

intensity as a function of fix economic inputs, crop yields and pest dynamics.  

The fourth and final research component, chapter six, expanded the bio-economic model previously 

developed to include the spatial features of the Aragon region, Spain, and of both species. The insect spatial 

dynamics element was modelled using a coupled reaction-diffusion system. This chapter evaluated the 

economic impact on maize farmers due to the spread of an invasive species according to different hypothesis 

and under different control strategies in the region of Aragon. Additionally, a number of insights into the 

pest’s physical spread and advances in methods of predicting the invasive species’ potential distributions and 

the area upon which pest control should focus were put forward. These three main chapters were formulated 

to provide the relevant answers to the research question, which will be answered in the following section. 

7.3 Consideration of the research questions 

1) What are the main causes involved in a secondary pest outbreak in the context of GEIR crops? 

The first research question concerned the understanding of the main causes involved in a secondary 

pest outbreak (SPO) in the context of GEIR crops, the core of chapter four. To contextualize, SPO refers to 

the emergence of a pest other than that originally targeted by an agricultural intervention, in this case the 

toxin expressed by Bt maize, and can be seen as “replacement” for the primary pest (Metcalf 1980, Hardin et 

al. 1995). It was hypothesised here that the secondary pest problem may become more relevant within the 

context of GEIR due to the high specificity and constant spatial and temporal toxicity expressed throughout 

the cropping season. Three main drivers for this event were identified and can be summarised as:  

i. a reduction in broad-spectrum insecticide applications. The alleviation in insecticide applications 

could result in an uprising of pests that are immune to the expressed toxin. In such a situation further 

(insecticide) treatments would be necessary in Bt crop fields. As an example, following the 

introduction of Bt cotton, farmers’ in China reported increased economic returns due to reductions of 

insecticides applications, ranging from 40-60% as compared with non-adopters. However, within the 

space of approximately ten years the insects once considered of minor relevance became a major 

concern for farmer;  

ii. A decline in natural enemy populations. Although it is generally accepted that GEIR crops cause 

less impact on NE compared with insecticides (Cattaneo et al. 2006, Marvier et al. 2007), some 

studies show a contrary effect (Lövei and Arpaia 2005, Lövei et al. 2009, Lang and Otto 2010). The 
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impact of Bt toxins on natural enemies can have direct effects, due to the ingestion of the toxin, and/or 

indirect effects, due to reductions in prey/host population numbers or nutritional quality;  

iii. The niche replacement hypothesis, while ostensibly making sense from an ecological point of 

view, still needs to be evaluated in more detail. Until now only a few studies have focussed on this 

problem (Catangui and Berg 2006, Dorhout and Rice 2010, Zeilinger et al. 2011). This situation could 

occur in cases where, prior to the pest management treatment, the primary pest is a dominant 

competitor species and the secondary pest is a weak competitor (Shivankar et al. 2007) and tolerant to 

the expressed toxin. Elimination of the primary pest would create a space for the outcompeted species 

to flourish. In chapter three it was demonstrated that this hypothesis is indeed likely to happen when 

two species with different susceptibility to the toxin are competing for the same resource. 

 

2) What are the implications on insecticide use and related economic returns to farmers when Bt 

maize is adopted? 

Overall, as shown in chapters five and six, the use of Bt maize is likely to provide higher returns to 

farmers while decreasing the burden of insecticide use. Optimizing the farmers’ NPV after 25 years (chapter 

five), in conventional maize systems yielded to an average of 3.5 applications/year
-1

/ha
-1

 to obtain a total 

NPV of 8500 €/ha. On the other hand, when Bt maize was used at the proposed adoption rate, the average 

optimal insecticide applications dropped by almost half while the final NPV increased by more than 20%. 

Similar results were reported by Carpenter (2010) and Areal et al. (2013). This substantive decline in 

insecticides and increase in profits is associated with the use of Bt and its efficiency in controlling MCB. 

Based on the indications of the non-spatial model results in chapter five, the primary pest would be 

eradicated after 14 years. This corresponds to the information reported by the Spanish government regarding 

the minimal presence of corn borers in Bt maize fields in Spain after a similar cultivation period (López 

2014).   

The average profit obtained by maize farmers is approximately 700€/ha, which is approximately the 

double of what was reported by the Aragon government for 2012 (López 2014). Hence it is possible that the 

economic return calculated has been overestimated. This difference may be due to two factors: i) in this study 

it is assumed that all farmers act optimally, which in reality does not happen; and ii) it is possible that the 

total costs were not properly estimated due to the complexity of maize production, for example no other pests 

were taken into consideration, hence insecticide expenditures may be higher. 

 

3) What is the impact of a number of pest management options on primary and secondary pest 

populations?  
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The results from this thesis corroborate the hypothesis that although that Bt maize is a better option 

than conventional maize, with time the initial advantage of Bt technology may diminish due to the rise of 

secondary pests. Prior to Bt maize adoption the major concern, and the reason behind insecticide application, 

was the primary pest. After Bt adoption, the rise of the secondary pest lead farmers to return to insecticide 

applications. In chapter five it was shown that when insecticides are not applied in conventional maize, the 

farmer has no “knowledge” of the presence of the secondary pest since it is kept at low population levels by 

the effect of MCB competition pressure.  

When no insecticides are re-applied, as is often the case with Bt maize, the secondary pest takes (in 

this study the TAW) advantage of its immunity to the expressed toxin and lack of competition from the 

primary pest (in this study the MCB) to become the main pest. In chapter six, the same situation is noted, 

while the average TAW numbers in conventional fields do not vary within the three pest control regimes, in 

Bt maize fields the prevalence of TAW is always higher when compared with conventional fields. 

Additionally it was shown that the reduction in insecticide use provides a safer environment for NEs to act 

upon pests, with positive impact on the farmers’ final NPV.  

 

4) What are the regional economic implications for maize farmers in Aragon if the secondary pest 

(TAW) is an invasive species, considering the actual and different conventional/Bt maize proportion?  

In chapter six it was shown that, based on the invasion characteristics of TAW, the regional economic 

impact of TAW’s invasion are not substantial, which is reflected in the famers’ final insecticide expenditure 

and NPV after 25 years. This happens because not all maize fields are invaded in the course of the simulation 

period. Thus, allied with the efficient control of Bt maize against the primary pest, Bt farmers realise more 

than 2/3 of the total aggregated regional final NPV, €559M. Interestingly, the use of insecticides on Bt fields 

brings an extra 1% increase in the final conventional farmers’ NPV. As Hutchison et al. (2010) found, Bt 

maize provides economic benefits for farmers who plant conventional maize in nearby fields. Since the 

overall population growth rate is intrinsically linked with population numbers, these results suggest that 

lessening the favourable area for a pest, i.e. decreasing the possible source of new individuals, makes general 

control more efficient.  

The use of insecticides does not have a preponderant or sizeable effect on the adopters’ economic 

returns. The high efficiency of Bt maize, even considering the primary pest dynamics at a spatial scale, is 

further noted in the total insecticide expenditure, while conventional maize farmers spend an average of 

€18M, Bt farmers spend only €1M over 25 years. However, it should be noted that pests still have a sizeable 

effect on farmers’ net return. Farmers apply insecticides whenever pests reach the ET, i.e. to avoid reaching 

the level in which the marginal revenue of applying insecticides is null, the EIL. Even doing so, the average 

economic loss when combining pest damage with insecticide expenditure, is €63M (3/4 supported by farmers 
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cropping conventional maize). This figure represents approximately 11% of the aggregated maize regional 

NPV.  

The economic impact of promoting the adoption of Bt technology is evident. Promoting Bt maize 

adoption would increase the regional NPV after 25 years while reducing the need for insecticide applications. 

As before, these results are linked to the high efficiency of the Bt toxin towards MCB and the lower densities 

of the invasive pest. Intensifying the Bt cropping area by 50% would bring an extra €36M to maize farmers in 

Aragon, while reducing insecticide applications by 64.5%. Conversely, if farmers were to cease growing Bt 

maize, the whole region would lose approximately €109M in 25 years whilst more than doubling insecticide 

expenditure. However, it should be noted an agricultural landscape dominated by GEIR maize monocultures 

may itself be problematic for two reasons. Firstly, the simplification of cropping systems would lead to an 

increase in genetic uniformity of agroecosystems with subsequent negative ecological implications, such as 

an increase in vulnerability to pathogens or pests (Altieri 1999). Furthermore, the widespread of GEIR crops 

could generate great environmental changes, such as the appearance of new pests or the outbreak of pests 

previously under control. 

 

5) To what extent does non-spatial insecticide optimization provide a robust method for considering 

pests spatial dynamics? 

Considering the invasion scenario in Aragon, as outlined in chapter six, the results indicate that the 

insecticide path estimated in the optimization process is sufficient to control both pests. However, if TAW is 

endemic throughout the region the optimal insecticide regime is clearly not sufficient to control TAW, 

especially in Bt fields. The results suggest that adopting farmers would in this case return to insecticide 

applications at least at the level used in conventional maize systems. This happens because the secondary 

pest reaches such a density that the landscape surrounding maize fields acts as a continuous pest source. In 

such situations, secondary pest control is made difficult if not impossible. Since TAW can survive in a wide 

range of host plants and has a high flying capacity, this allows the species to easily prosper outside maize 

fields. This scenario is comparable with some secondary pest problems faced by countries such as China and 

India (Catarino et al. 2015). For example, in Chinese cotton production, insecticide applications dropped 

from about 20 applications per year to seven after Bt cotton was adopted (Huang et al. 2002b). However after 

just ten years, insecticide applications used to control the rise of secondary pests led to a situation where no 

major differences in the total quantity of insecticide applications are found between adopters and non-

adopters (Lu et al. 2010, Zhao et al. 2011). 
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7.4 Model limitations 

To sharpen the analysis and discussion of secondary pests in GEIR crops, the model assumptions were 

kept fairly simple and context specific. The model developed in this thesis has some limitations but is also 

capable of accommodating further extensions, discussed below, which could improve its performance and 

enable further investigations: 

i) Life-stages: Discretizing the insect life cycle would better reflect different behaviours and 

environmental/resource dependence within each age class. For example, the damage and dispersal 

capacity of a larva is utterly distinct from that of a moth, while both are highly significant pests. This 

would also allow a distinction to be made between the different impacts of insecticides, Bt toxin and 

natural enemies throughout the pest life cycle. A further advantage of this approach is that it can easily 

be related to field or laboratory data.  

ii) Temperature: The geographical distribution and lifecycle of insects (including risk of invasion) 

is affected by various factors, amongst which climate plays a significant role. Following the points 

raised in i), the effect of temperature on each age class would add further insights into winter survival, 

fecundity, number of generations annually and, ultimately, changes in crop/pest synchrony (Maiorano 

et al. 2014). Furthermore, this parameter would play an important role in assessing the effect of 

climate change on pests’ temporal and spatial dynamics. The inclusion of temperature in the pest life-

stages would be crucial in allowing exploration into the reasons why TAW or other secondary pest 

outbreaks are so unsystematic and spontaneous. 

iii) Resistance: In this thesis, it is assumed that farmers follow the recommended 20% refuge area of 

conventional maize thus that pest resistance is managed efficiently. However, Tabashnik et al. (2013) 

recently noted an increase in documented cases of pest resistance across the world. Hence the 

inclusion of a genetic resistance model within population dynamics would be of great interest and 

importance (Gassmann et al. 2014). 

iv) Time-scale and key economic parameters: In this study, only a long-run approach was 

considered, i.e. 25 years, in order to demonstrate clearly the dynamics of both species (especially 

relevant in the BeSEP model). From the farmer’s perspective the expectation that a pest control 

strategy spanning 25 years will be implemented is highly unrealistic, while a time frame of three to 

five years is far more achievable. It is important to note that some parameters are likely to change over 

time, such as prices, and these changes could be endogenous. Lastly, in this study, a discount rate of 

5% per year was assumed, which may indeed be a small value compared with reality. It is possible 

that due to the typical risk averseness’ of farmers, the discount rate could be higher.  Hence, a 

systematic sensitivity analysis of these key parameters would bring further important insights into 

farmers’ optimal pest management strategy. 
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Bt maize and other GE crops are cropped in varied geographic locations across the globe. For 

example, South Africa planted 2.7 million hectares of GE maize, soybean, and cotton in 2014. Differences in 

location will present complex systems with different biological characteristics (such as pest species, 

landscape, climate conditions and management). Incorporation of the variables described above will allow 

the circumstances under which secondary pests occur to be explored effectively for a wider range of taxa and 

locations, to ensure that effective pest management protocols are designed and implemented. Therefore, this 

model is put forward as a prototype and a guide for the development of more specific models for the 

management of particular pest populations in specific edaphoclimatic conditions.   

 

7.5 Concluding Remarks  

The results of this research are of major importance for the European Union agricultural sector. Maize 

is, after wheat, the second most important crop in EU agriculture. In 2014, the EU-28 grew more than 15 

million hectares
53

, less than 1% of which is Bt maize (EUROSTAT 2015). The future possibilities for the 

expansion for Bt maize (and/or other GE crops) are considerable. It is likely that wider adoption would, 

according to the results of this thesis, bring financial benefits to farmers and potentially to  society in general 

by alleviating the pressure of insecticides. Given a typical profit maximizing farmer, the use of Bt maize 

together with insecticides (at a lower rate) leads to lower crop losses and higher gross profit, in line with data 

reported in recent studies (e.g. Gomez-Barbero et al. 2008, Meissle et al. 2010, Areal et al. 2013). However, 

adopting farmers need to be aware of the possible eventual invasion of (new) pests that are not susceptible to 

the toxin. If such rises in secondary pests are not identified and dealt with at an early stage, then populations 

of secondary pests could become established and expand beyond the ET and spread throughout the region. 

This research suggests that this would have a severe economic impact even if insecticides are applied. The 

results also suggest that damage to crops from SPs can increase with the expansion of Bt technology if no 

additional measures – such as insecticide applications or stacked traits – are taken.  

The interdisciplinary nature of this research in linking three important research fields, economics, new 

technologies in agriculture and ecology, has been challenging. As far as the author is aware the model 

developed here is unique in scientific literature. A new bio-economic spatially explicit population model 

based on reaction-diffusion theory was successfully developed. It allows for the investigation of the spatial 

population dynamics of two pests at landscape level taking biological factors into account (e.g. natural 

enemies and pest competition) and agricultural landscape structure with an integrated pest. The BeSEP model 

is highly flexible and generic, so it could be adapted and used for other species, cropping systems and/or 

regions, simply by changing the relevant parameters. The outputs from the model can assist not only the 

                                                           

53 60% (9.4 million ha) is harvested as grain and 40% (5.9 million ha) as silage 
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bodies responsible for pest management, including the spread of invasive species, but also the future 

assessment of GE crops viability. Furthermore, by incorporating temperature (as recommended above), it can 

assist climate change studies by projecting the movement of pests into previously climatically hostile areas as 

climate and weather patterns change. 

The methodology developed here offers a basis for continued research into dispersal simulation across 

heterogeneous landscapes. The research illustrates the usefulness of applying BeSEP models in agricultural 

assessments, particularly in the case of insect pest management strategies. The model code was written in an 

open source software (R-Core-Team 2012), so future work can be easily performed with researchers from 

diverse disciplinary fields collaborating. Based on the research undertaken here several recommendations for 

the relevant stakeholders involved in the pest management are made in the next section.  

 

7.6 Recommendations 

This subsection provides some of the most relevant recommendations for technology companies, 

research institutes, farmers and policy makers. Effective assessment of the secondary impacts of GEIR crops 

will require answers to a number of outstanding questions. Empirical research should investigate the 

circumstances under which secondary pests occur for a wide range of taxa, so that effective pest management 

protocols are designed. Furthermore, cooperation between all bodies involved in this issue is essential to the 

effective preservation of beneficial populations, ecosystem services and processes within (agro-)ecosystems. 

Hence, the following recommendations are given:  

For technology companies and research institutions: 

1) Consider the implementation of large-scale, multi-trophic and multi-species field studies in order 

to reveal potential impacts on ecosystems and their extent, i.e. in relation to Post Market 

Environmental Monitoring (PMEM). Additionally, such monitoring should now consider stacked 

events expressing several Bt toxins. Although these crop varieties could temporarily mitigate the issue 

of secondary pests, they may potentially bring faster changes in ecosystems processes, affecting the 

resilience of the systems;  

2) A change in the baseline studies, i.e. the vast majority of the research conducted here assessing the 

impact of GEIR in comparison with broad-spectrum insecticides applications. Moving forward, the 

focus should be on comparing GEIR cropping systems not only with conventional systems but also 

with (for example) organic farming. Additionally research should move towards a wider approach, 

taking into consideration farmers’ heterogeneity, i.e. including important social aspects such as 

education, institutional roles, etc; The importance of this has been recognised by the recent 

establishment of the European Socio-Economic Bureau (ESEB) (Devos et al. 2014);  
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3) Build on the work of AMIGA to provide a robust spatiotemporal database of insect species 

according to their ecological functions and occurrence in specific receiving environments; 

4) To further validate and use the BeSEP model, taking in consideration the following points: 

a. Discretization of insect life-stages;  

b. Inclusion of a population genetics model which embodies the factors affecting pest 

resistance evolution management; 

c. Insertion of temperature within the insect life-stages; 

d. Carrying out spatial optimization insecticide applications at a regional and/or farmer level.  

 

For farmers and land managers: 

1) Constant field surveillance is essential to minimize the costs of both the production damage 

associated with implementing a secondary pest control tactic. Without effective surveillance, pests can 

reach such numbers that their control and/or eradication will become simply unviable; 

2) Implementation of general surveillance networks within the most susceptible areas. For such 

cooperation between the relevant national agricultural authorities, risk assessors, regulators and 

famers is essential. Sustainable and efficient management of secondary pests must a collective 

objective and not an individual one; and, 

3) Diffusion of information and strategic communication with and within the farming community. 

This will allow the identification of the invasive pathways at an early stage of introduction/outbreak of 

secondary pests and implementing, hence farmers’ preventive control can be effectively undertaken. 

Certainly the quality, relevance and accessibility of information would play a key factor in assisting 

the rapid control of a new pest incursion.  

 

For policy makers: 

1) Increase the capacity of farmers and stakeholders to recognise, detect and report new incursions. 

This could be achieved with the enforcement of an effective educational system; 

2) Ensure that a surveillance network is implemented and actively maintained for high risk areas and 

species. The implementation of a clear and comprehensible platform of communication between the 

scientific communities, farmers and the general public is indispensible; 

3) Based on the information gathered, develop and implement appropriate surveillance, eradication or 

containment programs for new incursions;  

4) Review the legal restrictions for long-term field studies for research purposes. The only way for 

pest management strategies to thrive, with a technology that can offer so many benefits, is to provide 

clear-cut evidence of how to achieve these advantages and to mitigate its alleged limitations. Hence, it 
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is essential that field experiments over prolonged periods of time (within a reasonable scope) are 

conducted.  

 

7.7 Outstanding questions 

The model developed in this thesis has some limitations but also is capable of accommodating further 

extensions which could improve its performance qualities and enable further investigations, as briefly 

mentioned in the previous section. At the landscape level, several other questions arise. It would be very 

interesting to validate and test the present model with accurate field data. In other words, here the model was 

used as an ex-ante assessment. The question posed now is whether the model can be further strengthened by 

use in ex-post analysis of an invasive species in the context of GEIR crops? If the model results differ 

substantially, this could be the first step in understanding the reasoning behind TAW’s dynamics. Time and 

space have not permitted the investigation of certain pertinent questions. Here is a list of four future research 

questions arising from this research that may be worthy of further investigation: 

i) How would the insecticide applications vary when optimizing the final NPV at a spatial level?  

ii) Is it more profitable/efficient to optimize insecticide applications at a regional, provincial or farm 

level?  

iii) What is the specific influence of landscape structure on pest dispersal? Should Bt maize be 

clustered in a specific area? How would the landscape look if it was optimized to avoid a spread of a 

pest invasion?  

iv) How important is the coordination of farmers’ efforts regarding pest management in avoiding the 

costs associated with pest control? And, 

v) How would the pest management strategies of other cropping systems influence maize farmers?  

 

A range of other methodologies could be used when conducting spatial optimization, for example 

Bayesian network models (Hof and Bevers 2002, Guisan and Thuiller 2005). It has to be noted that 

investigation of each of these further recommendations will increase the complexity of the model, but will 

surely bring better insights into, and understanding of, the complex issues surrounding secondary pests in 

GEIR crops. Overall the thesis has flagged the growing importance of secondary pests in GE systems and 

provided a number of tools to investigate both the ecological dynamics of pest interactions in the context of 

GE and has given insights into the longer term implications of using Bt as a pest control mechanism.  
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 APPENDIX 1 - MCB GROWTH RATE  CHAPTER 9.

 

 

Figure A1 - Scheme representing the MCB annual life cycle used to calculate the Mediterranean 

corn borer annual growth rate.  

 

Table A1: Biological parameters used to calculate the Mediterranean corn borer 

annual growth rate. 

 

Coefficients Values References 

 

Larvae winter mortality 0.9 (Gillyboeuf et al. 1994) 

1
st
 

g
en

er
at

io
n
 Larvae survival (L1) 0.74 (Fantinou et al. 1996) 

Pupae survival (P1) 0.8135 (Fantinou et al. 2003) 

Oviposition per moth (O1) 550 (Fantinou et al. 2004) 

Eggs hatch (E1) 0.6 (Gillyboeuf et al. 1994) 

2
n

d
 

 g
en

er
at

io
n
 Larvae survival (L2) 0.74 (Fantinou et al. 1996) 

Pupae survival (P2) 0.88 (Fantinou et al. 2003) 

Oviposition per moth (O2) 375 (Fantinou et al. 2004) 

Eggs hatch (E2) 0.4 (Gillyboeuf et al. 1994) 
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9.1 MCB Annual growth rate: 

Initial population (IL0): 9×10
4 
larvae 

Year 1: 

 

MCB 1,1 = IL0 × L1 × P1 × O1 × E1 

MCB1,2 = MCB1,1 × L2 × P2 × O2 × E2 ×W 

 

Year 2: MCB2,1 = MCB1,4 × L1 × P1 × O1 × E1 

MCB2,2 = MCB2,1 × L2 × P2 × O2 × E2 ×W 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 = 𝐿𝑜𝑔 (
𝑀𝐶𝐵2,4 

𝑀𝐶𝐵1,4
)=2.024284 
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 APPENDIX – TAW GROWTH RATE  CHAPTER 10.

 

Figure A2 - Scheme representing the TAW annual life cycle used to calculate the Mediterranean corn 

borer annual growth rate. 
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Table A1: Biological parameters used to calculate the true armyworm 

annual growth rate. 

 Coefficients Values References 

 

Larvae winter mortality (W) 0.9 (Naibo 1984) 

1
st
 

g
en

er
at

io
n
 Larvae survival (L1) 0.66 (McDonald 1990) 

Pupae survival (P1) 0.93 (McDonald 1990) 

Oviposition per moth (O1) 1302 (Smith 1986) 

Eggs hatch (E1) 0.563 (Smith 1986) 

2
n
d
 

g
en

er
at

io
n
 Larvae survival (L2) 0.31 (McDonald 1990) 

Pupae survival (P2) 0.7 (McDonald 1990) 

Oviposition per moth (O2) 1393 (Smith 1986) 

Eggs hatch (E2) 0.953 (Smith 1986) 

3
rd

 

g
en

er
at

io
n
 Larvae survival (L3) 0.93 (McDonald 1990) 

Pupae survival (P3) 0.78 (McDonald 1990) 

Oviposition per moth (O3) 1470 (Smith 1986) 

Eggs hatch (E3) 0.967 (Smith 1986) 

4
th

 

g
en

er
at

io
n
 Larvae survival (L4) 0.53 (McDonald 1990) 

Pupae survival (P4) 0.89 (McDonald 1990) 

Oviposition per moth (O4) 1656 (Smith 1986) 

Eggs hatch (E4) 0.892 (Smith 1986) 

10.1  TAW Annual growth rate: 

Initial population (IL0): 9×10
4 
larvae 

Year 1: 

 

TAW1,1 = IL0 × L1 × P1 × O1 × E1 

TAW1,2 = TAW1,1 × L2 × P2 × O2 × E2 

TAW1,3 = TAW1,2 × L3 × P3 × O3 × E3 

TAW1,4 = TAW1,3 × L4 × P4 × O4 × E4 ×W 

 

Year 2: TAW2,1 = TAW1,4 × L1 × P1 × O1 × E1 

TAW2,2 = TAW2,1 × L2 × P2 × O2 × E2 

TAW2,3 = TAW2,2 × L3 × P3 × O3 × E3 

TAW2,4 = TAW2,3 × L4 × P4 × O4 × E4 ×W 

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 = 𝐿𝑜𝑔 (
𝑇𝐴𝑊2,4 

T𝐴𝑊1,4
)= 3.133519 
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