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Abstract	

Colonisation	 of	 birds	 by	 Brachyspira	 pilosicoli	 can	 result	 in	 avian	 intestinal	
spyrochetosis	(AIS).	AIS	is	associated	with	weight	loss,	decrease	egg	production	and	
animal	 death.	 This	 disease	 is	 an	 increased	 burden	 worldwide	 and	 results	 in	
important	 economic	 losses.	 TiamulinTM,	 an	 antibiotic	 of	 the	pleuromutilin	 family	 is	
the	most	common	and	efficient	way	to	treat	AIS.	However,	 it	 is	badly	used	 in	farm	
due	 to	 absence	 of	 indications	 regarding	 the	 dose	 to	 be	 used	 in	 chickens.	
Furthermore,	B.	pilosicoli	is	becoming	increasingly	resistant	to	treatments.	This	work	
focused	 on	 the	 NMR-based	 metabonomics	 evaluation	 of	 AIS	 by	 studying	 the	
pathogen,	the	host	and	their	reaction	to	TiamulinTM	treatment.	Work	was	divided	up	
as	follow:	

1.	B.	pilosicoli	metabolism	in	optimum	growth	condition	and	after	TiamulinTM	
treatment	 was	 determined	 by	 evaluating	 metabolic	 composition	 of	 the	 medium	
throughout	120h	growth	using	1H-NMR.	Tiamulin	appeared	to	be	able	to	reduce	B.	
pilosicoli	growth	by	1	log	at	0.008	and	0.016	µg/ml.	Highest	concentrations	inhibited	
bacterial	growth.	However,	B.	pilosicoli	was	still	metabolically	active	up	to	the	0.250	
µg/ml	 dose.	 These	 results	 indicate	 that	 bacteria,	 even	 if	 not	 able	 to	 divide	 due	 to	
antibiotic	 treatment,	 remain	alive	explaining	 re-occurrence	of	 the	disease	 in	 farms	
post-antibiotic	treatment.	

2.	 Host	 metabolism	 was	 explored	 using	 1H-NMR	 techniques.	 Metabolic	
composition	 of	 twelve	matrixes	 (liver,	 kidney,	 spleen,	 plasma,	 egg,	 breast	muscle,	
cortex,	 ileum,	 caecum,	 colon	 and	 faeces)	 were	 characterised	 and	 grouped	 as	 a	
metabolic	atlas	to	be	used	as	a	database	for	future	avian	research.	

3.	An	animal	trial	evaluating	the	impact	of	TiamulinTM	treatment	on	infection	
and	symptoms	was	conducted.	This	also	allowed	determination	of	the	best	dose	to	
be	used	 in	 farmyard	 applications.	 Infection	was	 systemic	 and	mainly	 associated	 to	
diarrhoea	and	decreased	growth	rate.	All	antibiotic	doses	were	able	to	significantly	
reduce	percentage	of	infected	birds	and	infection	spread	in	the	organism	while	only	
the	 two	 highest	 doses	 re-established	 growth	 rate	 and	 increased	 egg	 production	
(previously	unaffected	by	 infection).	Results	 indicate	that	125	ppm	of	 tiamulin	was	
sufficient	to	efficiently	treat	chickens	while	avoiding	associated	economical	loss.		

4.	Metabolic	 and	 caecal	 microbiota	 composition	 response	 to	 infection	 and	
antibiotic	 treatment	were	 evaluated	 using	 tissues	 and	 biofluids	 sampled	 from	 the	
animal	trial	described	in	3.	Infection	by	B.	pilosicoli	was	associated	with	dysbiosis	and	
modification	 of	 energy	 metabolism	 characterised	 by	 lipolysis	 to	 maintain	 plasma	
glucose	levels.	Tiamulin	treatment	also	induced	dysbiosis.	Even	if	treatment	was	able	
to	cancel	metabolic	response	to	infection,	TiamulinTM	strongly	disturbed	cholesterol	
metabolism	 in	 a	 dose	 dependent	 manner.	 Treatment	 induced	 a	 decrease	 of	 the	
HDL/VLDL	 ratio	 and	made	birds	 age	 faster	 than	untreated	ones.	 Steroid	 hormonal	
disturbance	 was	 explored	 as	 potential	 cause	 of	 the	 cholesterol	 metabolism	
perturbation.	

In	 conclusion,	 this	 work	 contributed	 significantly	 to	 increase	 B.	 pilosicoli-
induced	 AIS	 general	 understanding.	 It	 also	 enlightened	 metabolic	 mechanism	
responsible	 for	 symptom	 development	 and	 finally	 showed	 that	 antibiotics	 may	
strongly	influence	metabolism.		
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Introduction	

Poultry	 represents	 approximately	 half	 (49%)	 of	meat	 consumption	 in	 the	UK,	 thus	

profoundly	 impacting	 on	 the	 national	 food	 economy,	 and	with	 increased	 national	

and	international	demand	for	food	accessibility	and	sustainability,	there	is	renewed	

focus	 on	 food	 production	 optimisation.	 In	 poultry	 a	major	 contributor	 to	 losses	 is	

intestinal	 infection	 that	 can	 drastically	 reduce	 productivity	 and	 is	 a	 problem	 with	

regards	to	animal	welfare,	often	with	human	health	concerns	also	if	the	infection	has	

zoonotic	potential.		

One	 disease	 that	 anecdotally	 is	 emerging	 in	 poultry	 production	 is	 avian	 intestinal	

spirochaetosis	 (AIS)	 and	 is	 caused	 by	 members	 of	 the	 spirochaete	 family,	 most	

frequently	of	the	genus	and	species	Brachyspira	pilosicoli.	Infection	by	this	bacterium	

may	 arise	 in	 both	 broiler	 and	 layer	 flocks	 and	 generally	 the	 clinical	 signs	 are	

diarrhoea,	loss	of	appetite,	poor	body	condition,	decreased	growth	rate	and	reduced	

egg	 production	 in	 layers.	 Morbidity	 within	 flocks	 may	 reach	 20-25%	 of	 birds	 and	

mortality	 may	 reach	 5-10%.	 One	 of	 the	 main	 treatments	 available	 to	 treat	 B.	

pilosicoli-induced	 AIS	 is	 TiamulinTM,	 a	 bacteriostatic	 antibiotic	 of	 the	 pleuromutilin	

family	precluding	protein	formation	by	binding	to	the	50S	region	of	the	ribosome.	To	

date	 AIS	 has	 been	 little	 studied	 due	 to	 complex	 cultural	 detection,	 although	

molecular	 methods	 are	 under	 development,	 often	 associated	 with	 multi-species	

infection	 and	 the	 current	 lack	 of	 confidence	 in	 the	 identification	 and	 definition	 of	

pathogenic	 and	 non-pathogenic	 species.	 Nevertheless,	 the	 increasing	 incidence	 or	

AIS	worldwide	has	given	impetus	for	new	investigations	aimed	at	 improving	animal	

welfare,	reducing	infection	rates	and	better	customer	safety.	As	part	of	this	activity,	
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this	 project	 is	 aimed	 at	 better	 understanding	 AIS	 as	 there	 are	 several	 knowledge	

gaps	most	notably	a	complete	lack	of	understanding	of	the	host’s	metabolic	reaction	

to	infection,	treatment	and	recovery.	We	therefore	hypothesised	that	infection	by	B.	

pilosicoli	 and	 response	 to	 treatment	 with	 TiamulinTM	 will	 induce	 systemic	 host	

metabolic	responses.	With	this	closure	in	our	current	knowledge	gap	we	will	better	

understand	the	consequences	of	 infection	and	have	 information	that	hopefully	will	

enable	improved	outcomes	to	be	designed.	To	achieve	the	primary	goal,	NMR-based	

metabonomics	techniques	were	employed.	Metabonomics	was	defined	by	Nicholson	

et	al.	as	 ‘the	quantitative	measurement	of	the	dynamic	multi-parametric	metabolic	

response	of	living	systems	to	pathophysiological	stimuli	or	genetic	modification’.	This	

is	 an	untargeted	method	 that	 allows	 to	 capture	 the	wide	metabolic	 response	of	 a	

system	to	environmental	variations	such	as	infection	or	antibiotic	treatment	and	to	

thereafter	formulate	hypothesis.		

To	 evaluate	 this,	 the	 PhD	 was	 divided	 in	 several	 subprojects	 aimed	 at	 gaining	 a	

comprehensive	 understanding	 of	 AIS	 from	 the	 pathogen	 level	 to	 the	 host.	 The	

general	organisation	of	the	PhD	 is	described	 in	Figure	0.1	as	a	workflow	describing	

the	objectives	of	each	chapter.		

Chapter	I	is	a	review	presenting	B.	pilosicoli-induced	AIS,	its	treatment	and	research	

perspective	in	the	area.		

To	 start	 understanding	 AIS	 we	 first	 focus	 on	 the	 pathogen	 itself	 and	 Chapter	 II	

describes	B.	pilosicoli	growth	and	metabolism	under	optimum	growth	condition	and	

under	TiamulinTM	stress.		

The	 host	 metabolism	 of	 healthy	 birds	 was	 described	 in	 Chapter	 III	 where	 we	

determined	 the	 metabolic	 composition	 of	 twelve	 biological	 matrices	 using	 NMR	
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spectrometry	(liver,	kidney,	spleen,	plasma,	brain,	colon,	caeca,	ileum,	faeces,	breath	

muscle,	egg	yolk	and	albumin	

In	Chapter	 IV,	 the	experimental	design	of	the	major	poultry	study	 is	detailed:	here	

the	focus	was	to	evaluate	the	optimum	tiamulin	dose	to	be	used	in	order	to	treat	B.	

pilosicoli	infected	chickens	and	prevent	associated	symptoms	during	an	animal	trial.		

In	Chapter	V,	using	the	same	animal	 trial	 than	chapter	 IV	and	chapter	 III	as	a	data	

base,	we	 evaluated	 the	 impact	 of	B.	 pilosicoli	 infection	 and	 TiamulinTM	on	 chicken	

systemic	metabolism	and	caecal	microbiota	using	1H	NMR-based	metabonomic	and	

16S	rRNA	NGS	in	order	to	better	understand	the	disease	and	treatment	effects.	

	

Figure	0.1:	PhD	workflow	
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Description	of	the	bacterium,	the	disease	and	its	treatments:	

The	first	chapter	was	published	as	a	review	in	Microbial	Ecology	in	Health	&	Disease	

(2015).	 It	aimed	at	describing	 the	bacterium,	AIS	and	present	 some	of	 the	existing	

treatment	in	order	to	introduce	the	research	work	of	this	PhD.	
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1.1.	Abstract	

Avian	intestinal	spirochetosis	(AIS)	is	a	common	disease	occurring	in	poultry	that	can	

be	 caused	 by	 Brachyspira	 pilosicoli,	 a	 Gram-negative	 bacterium	 of	 the	 order	

Spirochaetes.	 During	 AIS,	 this	 opportunistic	 pathogen	 colonises	 the	 lower	

gastrointestinal	 (GI)	 tract	of	poultry	 (principally	 the	 ileum,	caeca	and	colon),	which	

can	 cause	 symptoms	 such	 as	 diarrhoea,	 reduced	 growth	 rate	 and	 reduced	 egg	

production	and	quality.	Due	to	the	large	increase	of	bacterial	resistance	to	antibiotic	

treatment,	the	European	Union	banned	in	2006	the	prophylactic	use	of	antibiotics	as	

growth	 promoters	 in	 livestock.	 Consequently,	 the	 number	 of	 outbreaks	 of	 AIS	 has	

dramatically	increased	in	the	UK	resulting	in	significant	economic	losses.	This	review	
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summarises	 the	 current	 knowledge	 about	 AIS	 infection	 caused	 by	B.	 pilosicoli	 and	

discusses	various	treatments	and	prevention	strategies	to	control	AIS.	

	

1.2.	Introduction	

Controlled	animal	husbandry	is	essential	in	order	to	ensure	safe	and	sustainable	food	

production.	 Animal	 husbandry	 is	 commonly	 practiced	 in	 developed	 and	 some	

developing	 countries(1)	 as	 reported	 by	 the	USDA	 and	 Eurostat(2,	 3).	 The	 constant	

optimisation	 of	 breeding	 techniques	 and	 increased	 production	 efficiencies	 has	

reduced	significantly	the	price	of	meat	and	dairy	products	over	the	years,	providing	

wider	 access	 to	 products	 derived	 from	 animals	 in	 countries	 where	 they	were	 not	

traditionally	 consumed(1).	 Therefore,	 there	 is	 a	 growing	 interest	 in	 improving	

breeding	methods	 to	 improve	animal	welfare,	 reduce	production	costs	and	ensure	

higher	 safety	 and	 better	 quality	 for	 consumers.	 In	 this	 context,	 it	 is	 particularly	

relevant	 to	 reduce	 diseases	 of	 animal	 production,	 especially	 those	 that	 have	

zoonotic	potential.	Gastrointestinal	(GI)	diseases	are	common	in	production	animals	

and	 their	 incidence	 has	 increased	 in	 large	 scale	 farming	 industry	 due	 to	 intensive	

farming	 practices	 that	 facilitate	 rapid	 spread	 of	 infection	 between	 animals(4).	 GI	

disorders	 in	 such	 facilities	 often	 result	 from	 the	 colonisation	 of	 the	 GI	 tract	 by	

pathogenic	microorganisms	particularly	at	certain	times	in	the	production	cycle	such	

as	weaning	(5).	Brachyspira	pilosicoli	that	induces	intestinal	spirochaetosis	(IS)	is	an	

emerging	 pathogen	 causing	 infections	 in	 a	 number	 of	 species,	 including	 poultry,	

which	 is	 the	 subject	 of	 this	 review.	Whilst	Brachyspira	 spp.	 are	 found	 in	 intensive	

husbandry,	 Brachyspira	 spp.	 infection	 are	 particularly	 common	 in	 free-range	 and	
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organic	 farms	 (6,	 7)	 due	 to	 the	 higher	 exposure	 of	 flocks	 to	 wild	 birds	 and	 the	

environment	that	act	as	infection	vectors/reservoirs	(7).	

IS	is	a	generic	name	given	to	largely	diarrhoeal	disease	caused	by	the	colonisation	of	

the	lower	GI	tract	by	Spirochaetes	of	the	genus	Brachyspira,	and	more	specifically	for	

poultry	 by	 B.	 pilosicoli(4,7),	 B.	 alvinipulli(8),	 and	 B.	 intermedia	 that	 are	 Gram	

negative,	spiral	organisms	with	flexible	outer	membrane	and	inter-membrane	polar	

flagella	(7-9	depending	on	species)	possessing	single	circular	genome	comprising	4-

5000	 genes	 and	 a	 GC	 ratio	 of	 27%.	 Pathogenic	 Brachyspira	 spp	 are	 presented	 in	

Table	1	with	their	host	range	and	pathogenicity(9).	Other	Brachyspira	spp.	(not	listed	

for	 brevity)	 are	 non-pathogenic	 but	 may	 be	 found	 in	 mixed	 infections.	 Also	 B.	

hampsonii	is	a	newly	described	pathogen	in	several	species	including	poultry,	yet	to	

be	defined	and	accepted	as	a	new	species.	B.	pilosicoli	is	an	opportunistic	pathogen	

generally	 associated	with	 swine	 and	 poultry,	 but	 has	 also	 been	 reported	 to	 infect	

other	animals	including	dogs,	horses,	monkeys,	turkeys,	geese,	and	humans(10-13).		
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Table	1.1:	List	of	Brachyspira	species,	their	host,	and	pathogenicity	

Species	 Host	 Pathogenicity	 Reference	
B.	aalborgi	 Human,	primates	 mild	 to	

moderate	
(11)	

B.	alvinipulli	 Chicken,	 goose,	 Red	 breasted,	
merganser,	dog	

mild	to	severe	 (12)	

B.	
hyodysenteriae	

Chicken,	 goose,	mallard,	 common	 rhea,	
pig,	rat,	mouse	

severe	 (13,14)	

B.	innocens	 Chicken,	pig,	dog,	horse	 none	 (15,16)	
B.	intermedia	 Chicken,	pig	 mild	 to	

moderate	
(10)	

B.	murdochii	 Chicken,	pig,	rat	 none	 (10)	
B.	pilosicoli	 Chicken,	 pheasant,	 grey	 partridge,	 feral	

water	 birds,	 common	 rhea,	 pig,	 dog,	
horse,	primates,	human	

mild	 to	
moderate	

(17)	

	

Avian	intestinal	spirochaetosis	(AIS),	caused	by	the	colonisation	of	the	lower		GI	tract	

by	bacteria	of	 the	genus	 	Brachyspira	 in	birds,	generally	occurs	 in	breeder	and	egg	

laying	 chickens	 but	 also	 increasingly	 in	 broilers.	 The	 infection	 triggers	 severe	

diarrhoea	accompanied	by	loss	of	weight,	which	has	been	associated	with	increased	

morbidity	amongst	flocks	with	5-10%	mortality	 if	untreated	with	concurrent	 loss	of	

egg	production	in	layers	(14-16).	It	often	occurs	by	transmission	of	the	spirochaetes	

via	 the	 fecal-oral	 route	 and	 can	 be	 transferred	 between	 livestock	 buildings	 by	

farmers(4,	 17).	 An	 increasing	 number	 of	 recent	 publications	 have	 reported	 the	

presence	 of	 Brachyspira	 species	 in	 farms	 all	 over	 the	 world(20).	 This	 observation	

could	result	from	several	parameters	such	as,	the	2006	EU	ban	of	antibiotics	use	as	

prophylactic(4,	21),	the	modification	of	animal	housing	and	finally	the	development	

of	 improved	detection	methods	 for	 this	 specific	genus(22,	23).	Thus,	 the	 impact	of	

this	 disease	 on	 animal	 welfare	 and	 production	 is	 of	 high	 concern	 to	 the	 poultry	

industry	enhancing	needs	 for	novel	 intervention	strategies	to	reduce	the	spread	of	

AIS.	
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Here,	we	review	the	current	knowledge	on	AIS	caused	by	B.	pilosicoli	and	discuss	the	

therapeutic	 and	prophylactic	 strategies	 currently	 investigated	 (including	 antibiotics	

and	 probiotics).	 Vaccine	 development	 to	 protect	 against	 Swine	 Dysentery	 (SD),	 a	

disease	caused	by	Brachyspira	hyodysenteriae	 infection	in	pigs(24)	 is	also	on-going.	

Similarly,	 the	 development	 of	 autogenous	 vaccines	 for	 AIS(25),	 are	 just	 emerging.	

However,	as	progress	regarding	these	interventions	are	still	extremely	limited,	these	

will	be	discussed	no	further	in	this	review.	

	

1.3.	An	overview	of	the	disease	

Sign	and	symptoms		

B.	pilosicoli-induced	AIS	 is	generally	observed	 in	 laying	egg	chickens	over	10	weeks	

old	 in	 large	 rearing	 farms(4,	 26).	 Numerous	 cases	 have	 been	 reported	worldwide,	

especially	 in	 Europe,	 the	US	 and	Australia,	where	 intensive	 farming	offers	 suitable	

conditions	 for	 development	 and	 spread	 of	 various	 GI	 infections	 including	 those	

caused	by	Brachyspira.	

Symptoms	of	infections	with	B.	pilosicoli	range	from	asymptomatic	to	severe,	leading	

to	 mortality	 in	 chickens(4,	 27).	 Nevertheless,	 the	 most	 common	 mild/moderate	

infections	are	generally	 characterised	by	diarrhoea,	 faeces	with	altered	 colour	and	

consistency,	 which	 are	 frequently	 foamy	 due	 to	 increased	 gas	 production(28),	 so-

called	“cappuccino”	faeces.	This	may	progress	to	faeces	containing	mucus	and	blood	

(27).	Diagnosis	is	generally	confirmed	via	bacterial	culture	or	PCR(29).	

AIS	infection	results	in	a	slower	growth	rate	(28-30)	and	can	also	be	associated	with	

a	delay	of	up	to	7	weeks	in	the	start	of	lay	accompanied	by	a	decrease	in	egg	quality	
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(28-31).	Eggs	produced	by	infected	hens	are	usually	small,	lighter	in	weight	(i.e.	2	to	

6	g	less	per	egg)(28)	and	are	less	numerous.	Poor	quality	shells	are	prone	to	cracks,	

and	 often	 contaminated	 by	 faeces	 (32).	 Yolks	 are	 generally	 less	 coloured	 with	 a	

decrease	of	1.5	to	3	points	on	the	Roche	yolk	colour	fan	(28),	(33).	Moreover,	it	has	

been	 suggested	 that	 infection	 may	 have	 long	 term	 consequences	 on	 the	 second	

generation	of	 chickens	hatched	 from	eggs	 laid	by	 infected	hens(28).	 Indeed,	 it	has	

been	 shown	 that	 chicks	 hatched	 from	 eggs	 laid	 from	 infected	 female	 parents	

presented	 similar	 symptoms	 (i.e.	decreased	weight	 gain,	delayed	 lay	onset,	wetter	

and	paler	faeces)	despite	the	absence	of	contamination(28).	These	results	raise	new	

hypotheses	 regarding	 potential	 epigenetic	 variations	 in	 response	 to	 B.	 pilosicoli	

infection.	

At	 a	 microscopic	 level,	 intestinal	 biopsies	 of	 infected	 chickens	 displaying	 the	

symptoms	described	above	usually	 reveal	 the	presence	of	B.	pilosicoli	 fixed	 to	 the	

cells	of	the	intestinal	wall(27),	which	is	suspected	to	be	correlated	with	the	degree	of	

enterocyte	 perturbation(27).	 Tissues	 look	 inflamed,	 often	 with	 some	 signs	 of	

bleeding.	 The	 intestinal	wall	 shows	evidence	of	 a	 loss	of	microvilli(21).	 The	 loss	of	

microvilli	 results	 in	 perturbation	 of	 the	 epithelial	 barrier	 permeability,	 which	may	

contribute	to	the	decrease	in	weight	gain	and	increased	amount	of	water	in	faeces.	

The	 cytoplasm	 of	 enterocytes	 appears	 damaged	 as	 indicated	 by	 abnormal	

vacuolation,	 condensation	 and	 fragmentation	 of	 the	 chromatin	 and	 cell	

sloughing(21).	 This	 is	 likely	 to	 result	 in	 lower	 nutrient	 absorption	 as	 indicated	 by	

increased	 food	 consumption	 in	 infected	 chickens(31)	 accompanied	 by	 increased	

faecal	 lipid	 content	 concomitant	 with	 decreased	 lipid	 levels	 in	 the	 general	

circulation(34).	 The	 same	 phenomenon	 has	 been	 observed	 for	 carotenoid	
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concentration,	 which	 has	 been	 found	 in	 higher	 quantity	 in	 faeces	 of	 infected	

animals,	while	 lower	 in	blood,	and	 is	believed	to	be	the	cause	of	weakened	colour	

intensity	of	the	yolk(28,	34).	

	

1.4.	Characteristics	and	mechanism	of	infection		

Morphology:	

B.	pilosicoli	is	a	bacterium	of	the	order	Spirochaetales,	morphologically	characterised	

by	a	corkscrew	 like	shape(35)	 (Figure	1.1).	 It	was	 first	 identified	as	a	cause	of	 IS	 in	

Denmark	 in	1982(27).	B.	pilosicoli	 can	be	 found	 in	 the	 literature	under	 the	 former	

name	 of	 Serpulina	 pilosicoli(27,	 36).	 It	 is	 a	 Gram-negative,	 fastidious,	 aerotolerant	

anaerobe	 that	 can	 be	 exposed	 to	 oxygen	 for	 a	 few	 hours(37,	 4).	 The	 optimum	

growth	temperature	is	38.5°C(27),	but	it	can	remain	viable	for	sixty-six	days	at	4°C	in	

water	and	survive	up	to	210	days	in	pig	faeces	mixed	with	soil	at	10°C(37).	

	

Figure	 1.1:	 Transmission	 electron	 microscopy	 illustrating	 the	 flagella	 of	

Spirochaetaceae.	 (A)	 [Adapted	with	 permission	 from	 Yano	 et	 al.	 (40)].	 (B)	 Graphic	

representation	of	picture	A	enhancing	the	visualisation	of	the	flagella.	
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B.	pilosicoli	is	constituted	of	a	central	protoplasmic	cylinder	covered	by	a	membrane	

sheet	 (27).	 The	 membrane	 sheet,	 also	 known	 as	 the	 outer	 membrane,	 is	 an	

important	 element	 for	 the	 integrity	 of	 the	 bacterium.	 Several	 studies	 have	 shown	

that	perturbation	of	the	membrane	generally	causes	destruction	of	the	flagella	and	

of	 the	 periplasmic	membrane(38).	 The	 composition	of	 the	outer	membrane	 is	 not	

entirely	 known	despite	 its	 high	 relevance	 to	host-pathogen	 interactions.	 Yet	 it	 has	

been	shown	to	be	extremely	labile	due	to	its	high	content	in	sterols	(cholesterol	and	

cholestanol),	which	are	responsible	for	a	low	resistance	to	osmotic	stress	and	to	low	

ionic	buffers	 that	 trigger	 its	destabilisation(39).	Between	 the	outer	membrane	and	

the	 protoplasmic	 cylinder	 is	 the	 periplasm,	 where	 the	 flagella	 of	 the	 bacteria	 are	

located.	B.	pilosicoli	possesses	between	8	to	10	flagella	disposed	equally	at	the	poles	

at	each	end	of	the	bacterium	following	 	the	corkscrew	shape	of	the	bacterium	and	

overlapping	 in	 the	 centre	 (27,	 4)	 (Figure	 1).	 This	 configuration	 is	 specific	 to	 the	

Spirochaetes	 and	 confers	 high	 motility,	 which	 constitutes	 an	 important	 virulence	

factor.	 The	 flagella	 works	 by	 producing	 helical	 or	 flat	 sinusoidal	 waves(34),	 which	

induce	 a	 clockwise	or	 anti-clockwise	movement	of	 the	bacteria	 and	 enable	 a	 non-

transversal	 swim(41,	 42).	 A	 transversal	 swim	 is	 also	 possible	 by	 the	 simultaneous	

combination	 of	 the	 two	 movements(41).	 Both	 modes	 of	 movement	 provide	 B.	

pilosicoli	with	the	ability	to	swim	through	viscous	media(40).	

	

	Infection	process:	

B.	pilosicoli	infects	the	lower	GI	tract	of	chickens,	swine,	horses,	dogs,	humans,	and	

other	animals(37).	Upon	entry	via	the	oral	cavity,	the	bacterium	that	survive	passage	

through	 the	 stomach	 acidity	 reach	 the	 intestinal	 lumen.	 Using	 chemotaxis,	 the	
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organism	 migrates	 towards	 the	 mucus	 and	 the	 intestinal	 wall(43,	 44).	 Indeed,	 B.	

pilosicoli	 has	a	high	number	of	genes	coding	 for	 chemotaxis	 towards	 the	mucus	 in	

comparison	 to	 other	 known	 bacterial	 species,	 providing	 a	 significant	 advantage	 to	

colonise	the	host	(45).	The	mucus	is	a	viscous	matrix	composed	of	two	stratums,	the	

inner	and	outer	layers,	which	form	a	physical	barrier	and	protect	the	intestinal	cells	

from	 bacterial	 infections	 by	 limiting	 their	 motility(43).	 The	 unique	 shape	 of	 B.	

pilosicoli	combined	to	the	production	of	specific	enzymes	that	hydrolyse	the	mucus	

inner	layer	(sialidase	family-like	proteins),	confers	them	the	ability	to	swim	through	

this	medium	and	allow	them	to	reach	the	cell	wall(43,	42).	These	are	high	virulence	

factors	 associated	 with	 tissue	 damage(45).	 Another	 virulence	 factor	 may	 be	 the	

noted	 sensitivity	 of	B.	 pilosicoli	 to	 the	 chemo-attractant	 serine,	 which	 is	 found	 in	

high	concentration	in	the	mucus	secreted	by	goblet	cells(38,	37,	46).		

Once	 the	 bacterium	 is	 in	 contact	 with	 an	 intestinal	 cell,	 fixation	 occurs	 through	

protein-protein	interactions(47),	although	the	exact	mechanism	have	not	been	fully	

ascertained.	B.	pilosicoli	attaches	vertically	to	the	cell	wall	by	one	of	its	cylinder	ends	

(47,	36)	and	can	be	found	very	closely	packed	on	the	cell	at	a	density	ranging	from	

20	to	80	bacteria	per	cell,	forming	a	“false	brush	border”(37,	45).	Attachment	of	the	

bacterium	is	not	necessarily	associated	with	symptoms	of	IS	(37,	4)	but	an	increase	in	

bacterial	concentration	appears	directly	linked	to	the	intensity	of	the	symptoms(37)	

as	previously	mentioned.	Adherence	of	B.	pilosicoli	to	the	cell	membrane	triggers	a	

signal	that	results	in	invagination	of	the	apical	membrane	and	internalisation	of	the	

bacteria	 potentially	 resulting	 in	 cell	 apoptosis.	 B.	 pilosicoli	 can	 also	 cross	 the	

intestinal	 barrier	 by	 disrupting	 gap	 junctions	 (between	 cells),	which	 in	 some	 cases	

may	allow	it	to	enter	the	blood	stream(4,	48).	Indeed	systemic	spread	of	B.	pilosicoli	
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has	been	reported	in	one	study	showing	evidence	of	colonisation	of	the	spleen	and	

liver	(49).	However,	this	was	not	commonly	observed	and	the	mechanism	by	which	

the	bacterium	escapes	the	immune	system	is	not	known	yet.	The	infection	process	is	

summarised	in	Figure	1.2.	

	

	

Figure	 1.2:	 Transmission	 and	 infection	 process	 of	 Brachyspira	 pilosicoli.	 White	
numbers	 on	 grey	 circles	 describe	 the	 contamination	 process:	 1,	 transmission	 of	
contaminated	material	 in	 a	 farm	 via	 a	 vector	 _	 wild	 animals,	 farmers,	 water,	 and	
other	 farm	 animals	 _	 to	 a	 housed	 bird	 via	 oral	 route;	 2,	 transmission	 of	 the	
bacterium	 to	 the	 rest	 of	 the	 flock;	 3,	 persistence	 of	 infection	 between	 birds	 of	 a	
same	 flock.	 Grey	 numbers	 in	 white	 circles	 describe	 the	 infection	 process	 once	 B.	
pilosicoli	 has	 reached	 the	 lower	 digestive	 tract:	 1,	 chemotaxis	 attraction	 of	 the	
bacteria	towards	the	mucus	and	cell	wall;	2,	attachment	of	B.	pilosicoli	on	the	cells	
and	formation	of	a	‘false	brush	border’;	3,	invasion	of	intestinal	cells;	4,	translocation	
to	the	blood	stream;	5,	systemic	infection.	
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Genetic	features:		

In	 addition	 to	 the	 aforementioned	 genetic	 functions,	 a	 recent	 publication	 of	 B.	

pilosicoli	 B2904	 complete	 genome	 by	Mappley	 et	 al.(45)	 (Figure	 3)	 identified	 key	

genes	 responsible	 for	 some	 of	 B.	 pilosicoli	 infection-	 and	 colonisation-related	

processes	 such	 as:	 chemotaxis,	mobility,	 adhesion	 and	 host	 tissue	 degradation.	B.	

pilosicoli	genome	analysis	also	provided	new	insights	into	its	metabolism.	It	revealed	

numerous	 genes	 involved	 in	 carbohydrate	 transport	 and	 metabolism,	 such	 as	

phosphoglucomutase	that	plays	a	key	role	 in	glycolysis.	These	genetic	observations	

correlated	 to	phenotypic	 tests	using	Biolog®	 technology	 (which	evaluates	 the	 cell’s	

ability	 to	 respire	 on	 a	 wide	 range	 of	 substrates)	 demonstrated	 the	 ability	 of	 B.	

pilosicoli	 to	 use	 several	 types	 of	 saccharides	 (e.g.	 glucose-6-phosphate)	 and	

oligosaccharides	 (e.g.	 dextrin)	 as	 primary	 carbon	 sources.	 Finally,	 another	 large	

section	of	 the	genome	was	allocated	 to	amino	acid	synthesis	and	 transport.	Those	

results	represent	a	major	advancement	towards	understanding	the	interrelationship	

between	metabolism	and	infection.	

Figure	 1.3,	 presents	 the	 general	 representation	 of	 B.	 pilosicoli	 B2904	 complete	

genome	feature.	The	six	first	circles	are	colour	coded,	with	each	colour	representing	

a	 specific	 function	 of	 the	 genes.	 Genes’	 functions	were	 assigned	 using	 Clusters	 of	

Otogenous	Groups	(COGs).	The	two	first	circles	describe	genome	function	using	this	

method	with	 forward	and	 reverse	 transcription.	The	 same	process	was	applied	 for	

tRNA	(circle	3	and	4)	and	rRNA	(circle	5	and	6).	Finally,	the	7th	circle	describes	the	GC	

skew	that	is	linked	to	DNA	replication	and	calculated	using	the	following	formula:	GC	

skew	=	(G-C)/(G+C).		
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Figure	1.3:	Circos	circular	representation	of	the	complete	B.	pilosicoli	B2904	genome	
with	annotated	genes.	The	genome	is	orientated	from	the	oriC	and	also	displays	the	
location	of	dnaA.	Circles	range	from	1	(outer	circle)	to	7	(inner	circle).	Circle	1,	COG-
coded	 forward	 strand	 genes;	 circle	 2,	 COG-coded	 reverse	 strand	 genes;	 circle	 3,	
forward	 strand	 tRNA;	 circle	 4,	 reverse	 strand	 tRNA;	 circle	 5,	 forward	 strand	 rRNA;	
circle	6,	 reverse	 strand	 rRNA;	circle	7,	GC	skew	 ((G-C)/(G_C);	 red	 indicates	positive	
values;	 green	 indicates	 negative	 values).	 All	 genes	 are	 colour	 coded	 according	 to	
Cluster	of	Orthologous	Group	(COG)	functions	shown	in	the	key	table.	[Adapted	with	
permission	from	Mappley	et	al.	2012	(46)].	

	

1.5.	Impact	on	the	food	chain:	a	zoonotic	potential?	

Intestinal	 spirochetosis	 is	 relatively	 rare	 in	 humans	 as	 it	 occurs	 mostly	 in	

immunocompromised	patients.	In	most	cases,	carriage	by	the	host	of	the	bacteria	is	

often	asymptomatic,	but	following	the	apparition	of	any	symptom	such	as	diarrohea	

and	abdominal	pain	IS	is	confirmed	by	biopsy(50,	51).	Only	in	some	rare	cases	did	an	

infection	by	B.	pilosicoli	cause	death	of	a	patient	as	a	result	of	septicaemia(52).	Such	

cases	 have	only	 been	observed	 in	 elderly	 and	 immunocompromised	patients	 or	 in	

populations	living	in	dense	areas	with	poor	hygiene	conditions(53-55).	

Despite	 the	 rare	 occurrence	 of	 the	 disease	 in	 humans,	 a	 major	 concern	 is	 the	

zoonotic	 potential	 of	 the	 bacterium(48).	 Indeed,	 it	 has	 been	 suggested	 that	 B.	
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pilosicoli	is	able	to	survive	and	be	transmitted	to	the	consumer	via	contaminated	raw	

meat	 from	 infected	 chicken(56).	 Several	 studies	 have	 shown	 considerable	 genetic	

similarities	 between	 strains	 of	 B.	 pilosicoli	 infecting	 humans,	 swine	 and	 poultry,	

suggesting	 an	 ability	 to	 adapt	 to	 various	 hosts(48).	 In	 2012,	 Mappley	 et	 al.,	 (45)	

carried	 out	 a	 genetic	 comparison	 of	 three	 strains	 of	 B.	 pilosicoli	 isolated	 from	

humans,	 chickens	 and	 pigs,	 respectively.	 This	 study	 showed	 that	 the	 genotype	 of	

these	three	strains	were	very	similar.	However,	some	differences	were	noted	in	the	

genome	 size	 and	 arrangement	 and	 in	 some	 putative	 coding	 regions	 for	

carbohydrate,	amino	acid	and	nucleotide	metabolism	and	transport(45).	These	data	

highlighted	 some	 fundamental	 genetic	 differences	 that	 are	 reflected	 in	 their	

phenotype	 and	 may	 have	 implications	 in	 host	 specificity	 and	 interspecies	

transmission(45)	 although	 this	 has	 remained	 untested	 to	 date.	 More	 structural	

rearrangements	were	 observed	 in	 the	 strains	 isolated	 from	 chicken	 and	 human	 in	

comparison	to	the	strain	 isolated	from	pig.	Despite	these	variations,	 the	 functional	

genome	 comparison	 showed	 a	 high	 level	 of	 similarity	 in	 the	 features	 of	 the	 three	

strains	 except	 for	 the	 aforementioned	 transporters	 and	 enzymes(45).	 Additionally,	

genes	involved	in	membrane	fixation	and	in	β-haemolysis	were	common	to	the	three	

strains,	 which	 suggests	 a	 similar	 invasion	 and	 infection	 process	 between	 the	

bacteria(45).	These	genetic	and	phenotypic	data	indicate	a	high	degree	of	similarity	

in	infection	processes	across	species	and	may	support	the	potential	of	transmission	

of	bacteria	causing	IS	from	farm	animals	to	humans(48)	and,	therefore,	is	a	realistic	

issue	that	requires	attention.	Prevention	of	IS	spread	in	animal	livestock	is	currently	

achieved	using	antibiotics.	
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1.6.	Antibiotics:	a	controversial	solution	

Various	 antibiotics	 such	 as	 the	 pleuromutilins,	 macrolides	 and	 lincosamides	 are	

currently	used	to	control	Brachyspira	infections	in	animals	and	have	been	shown	to	

reduce	 associated	 symptoms(57,	 58).	 The	most	 common	 antibiotic	 used	 in	 animal	

husbandry	is	Tiamulin™,	a	member	of	the	pleuromutilin	family.	By	binding	with	the	

50S	 region	 of	 the	 ribosome,	 it	 inhibits	 amino	 acid	 binding	 during	 protein	

synthesis(59).	 Tiamulin™	 is	 used	 widely	 and	 has	 been	 shown	 to	 be	 efficient	 at	

controlling	Swine	Dysentery	 (SD),	which	 is	a	 severe	GI	disease	 in	pigs	caused	by	B.	

hyodysenteriae,	a	close	relative	of	B.	pilosicoli,	at	a	dose	of	7.71	μg	per	kg	of	body	

weight	for	a	5	days	treatment.	Nevertheless,	the	lack	of	standardised	methods	and	

techniques	used	to	calculate	the	minimum	inhibitory	concentration	(MIC)	induces	a	

large	 disparity	 in	 published	 results.	 Only	 two	 studies	 describing	 the	 impact	 of	

Tiamulin™	 on	 B.	 pilosicoli-induced	 AIS	 in	 chicken	 have	 been	 reported:	 in	 2002	 in	

experimentally	 infected	 laying	 hens(60)	 	 and	 in	 a	 2006	UK	 field	 study(61).	 Results	

suggest	 a	 positive	 impact	 of	 Tiamulin™	 treatment	 in	 both	 studies	 with	 a	 general	

increase	 in	 growth	 rate,	 egg	 production	 and	 decrease	 of	 symptoms.	 Another	

customer	 concern	 is	 the	 possible	 presence	 of	 antibiotics	 and	 their	 metabolites	 in	

eggs	although	this	has	not	been	reported	in	the	literature.	One	report	issued	by	the	

European	Medicine	Agency	mentioned	very	 low	antibiotic	 residual	 levels	but	 these	

were	 not	 sufficient	 to	 establish	 a	 withdrawal	 period	 for	 eggs	 [Article	 34(1)	 of	

Directive	 2001/82/EC(62)].	 Nonetheless,	 a	 withdrawal	 period	 of	 24h	 should	 be	

applied	for	meat	consumption	[Article	34(1)	of	Directive	2001/82/EC(62)].	

Furthermore,	emerging	bacterial	 resistance	 to	antibiotics	 is	another	major	concern	

(57,	 63).	 For	 example,	 tylosin	 was	 a	 commonly	 used	 antibiotic	 to	 treat	 AIS	 but	
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resistance	 has	 recently	 emerged,	 compromising	 its	 efficiency	 and	 therefore	 its	

usage(64).	 Resistance	 factors	 appear	 as	 a	 consequence	 of	 an	 extensive	 use	 of	

antibiotics	concomitant	with	the	development	of	mutations	 in	the	bacteria	such	as	

on	the	ribosomal	protein(65),	which	render	them	less	susceptible.	This	stresses	the	

importance	of	bacteriological	diagnosis	 that	should	be	used	to	determine	precisely	

the	Brachyspira	species	responsible	of	infection	followed	by	antibiotic	resistance	test	

on	pure	culture	 in	order	 to	apply	appropriate	 treatment.	 In	 response	 to	 the	global	

rise	 of	 bacterial	 resistance	 and	 to	 protect	 the	 consumer’s	 safety,	 the	 European	

commission	 banned	 the	 prophylactic	 use	 of	 antibiotics	 in	 livestock	 in	 2006(66).	

Indeed,	 chickens	 grown	 in	 industrial	 farms	 used	 to	 receive	 prophylactic	 antibiotic	

treatments,	 which	 was	 also	 associated	 with	 increased	 animal	 fattening	 rate(66).	

Since	 this	 interdiction,	 infection	 outbreaks	 by	 B.	 pilosicoli	 have	 boomed(21,	 66).	

Common	consequences	 include	reduced	egg	production,	growth	delay,	higher	food	

consumption	 and	 in	 some	 cases,	 increased	 mortality	 within	 infected	 flocks.	 Since	

2006,	 the	 economic	 loss	 associated	 with	 AIS	 has	 been	 estimated	 to	 be	 of	

approximately	 £18	 million	 per	 year	 in	 the	 UK	 (Burch,	 D.	 J.	 S.,	 2009	 personal	

communication)	 pointing	 to	 the	 need	 for	 better	 prevention	 methods	 and	 refined	

treatments.	Prevention	of	AIS	outbreaks	can	be	achieved	using	appropriate	hygiene	

and	biosecurity	rules	as	demonstrated	by	several	studies	(67).	B.	pilosicoli	 is	readily	

eliminated	 by	 standard	 farm	 disinfection	 processes(68)	 and	 the	 potential	 of	

vaccination	 against	 B.	 pilosicoli	 has	 been	 explored	 primarily	 in	 pigs	 and	 may	 be	

applicable	poultry(69).	However,	 treatment	 is	 commonly	achieved	using	antibiotics	

such	as	linco-spectin	and	Tiamulin™	at	25mg/kg	of	body	weight	per	day	although	this	

dosage	 regimen	 is	 derived	 from	 studies	 in	 pigs.	 Recently,	 we	 investigated	 the	
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optimum	dose	to	treat	laying	hens	and	demonstrated	that	250	ppm	given	in	drinking	

water	 over	 three	 days	 reduce	 infection	 significantly,	 but	 the	 bacterium	 was	 still	

detectable	 at	 the	 end	 of	 the	 study	 (3	 weeks	 after	 treatment	 end)	 (70).	

Notwithstanding	 the	 use	 of	 antibiotic	 for	 intervention,	 it	 remains	 crucial	 to	 find	

alternative	solutions	to	prevent	AIS	to	protect	animal	welfare	and	consumers.	

	

1.7.	Probiotics:	a	potential	solution?	

The	gut	microbiota	(GM)	is	estimated	to	be	composed	of	more	than	1,000	species	of	

bacteria(67)	which	 are	predominantly	Gram-negative(71).	 They	exert	 an	 important	

role	 for	 the	host,	 as	 they	are	 involved	 in	 its	protection	 from	pathogens	and	 in	 the	

release	 of	 nutrients	 from	 the	 diet,	 which	 would	 otherwise	 be	 unavailable	 to	 the	

host(71).	Beyond	the	positive	impact	of	commensal	bacteria	on	the	digestive	system	

and	associated	nutritional	benefits,	increasing	evidence	reveals	a	systemic	impact	of	

the	GM	on	the	host(72).	Probiotics,	which	are	defined	as	“live	microorganisms	which	

when	 administered	 in	 adequate	 amount	 confer	 a	 health	 benefit	 on	 the	 host”(73),	

have	been	developed	to	take	advantage	of	this	symbiosis.	Protection	is	achieved	by	

increasing	the	competition	between	the	probiotic	and	pathogens	for	cell	membrane	

receptors	 and	 nutrients,	 modulation	 of	 the	 immune	 system,	 improvement	 of	 the	

mucosal	barrier	permeability,	secretion	of	toxins	and	lowering	the	pH	of	the	GI(74,	

75).	Their	mechanisms	of	action	vary,	depending	on	the	probiotic	but	most	of	them	

remain	largely	misunderstood.		

Only	a	few	studies	have	investigated	the	impact	of	Lactobacillus-based	probiotics	on	

B.	pilosicoli	and	most	of	them	have	been	carried	out	in	vitro.	It	has	been	shown	that	
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lactic	acid	secreted	by	lactobacilli	has	similar	effects	as	other	acidic	compounds	and	

disinfectants	 on	 B.	 pilosicoli,	 whereby	 the	 bactericidal	 effect	 is	 mediated	 by	

destabilisation	of	the	cellular	wall,	hence	reducing	the	bacterial	viability(76).	Another	

interesting	effect	of	lactic	acid	is	that	it	induces	the	formation	of	“spherical	bodies”	

formed	by	the	retraction	and	swelling	of	both	ends	of	the	bacterium,	which	tends	to	

create	 a	 sphere	 shape.	 At	 this	 stage	 the	 bacterium	 is	 still	 viable	 but	 in	 a	 dormant	

state(77).		

Two	promising	Lactobacillus	species	to	tackle	AIS	are	L.	salivarius	and	L.	reuteri.	They	

are	both	recognised	as	generally	regarded	as	safe	(GRAS)	and	suitable	for	 livestock	

feeding(78).	 A	 recent	 study	 has	 shown	 that	 both	 lactobacilli	 antagonise	 motility,	

growth	 and	 cellular	 adherence	 of	 B.	 pilosicoli(21).	 In	 vitro,	 it	 appears	 that	 the	

presence	of	L.	reuteri	and	L.	salivarius	reduces	markedly	the	potential	of	B.	pilosicoli	

to	induce	apoptosis	of	intestinal	cells(21)	by	antagonising	adhesion	to	the	intestinal	

epithelium,	 in	 a	 process	 of	 competitive	 exclusion.	 An	 in	 vivo	 study	 indicated	 that	

Lactobacillus	 probiotic	 can	 prevent	 potential	 infection	 and	 associated	 symptoms	

caused	 by	 the	 pathogen	 if	 administered	 before	 or	 during	 challenge	 with	 B.	

pilosicoli(79),	supporting	its	efficiency	as	a	protective	agent	against	AIS.	

Another	 advantage	 to	 use	 probiotics	 in	 farms	 is	 their	 potential	 as	 animal	 growth	

promoters	 when	 used	 as	 prophylactic(80–82).	 In	 a	 study	 by	 Yoruk	 et	 al.	 it	 was	

demonstrated	 that	 probiotic	 consumption	 by	 laying	 hens	 resulted	 in	 decreased	

mortality	and	increased	egg	production	without	altering	quality	(81).	Moreover,	the	

consumption	of	Lactobacillus-based	probiotic	during	the	first	three	weeks	of	life	was	

shown	to	increase	animal	growth	demonstrating	their	potential	as	growth	promoters	

in	 the	 early	 stages	 of	 life	 (82).	 Probiotics	may	 also	 be	 useful	 to	 prevent	 infection	
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relapse	 that	 is	 often	 observed	 with	 AIS.	 Indeed	 by	 maintaining	 a	 healthy	 and	

balanced	gut	environment,	probiotic	could	potentially	be	used	in	order	to	inhibit	B.	

pilosicoli	reappearance	post	antibiotic	treatment	(20).	

	

1.8.	Conclusion	

B.	 pilosicoli-induced	 AIS	 is	 a	 growing	 and	 underestimated	 problem	 in	 the	 poultry	

industry.	However,	its	occurrence	and	economic	burden	is	not	negligible.	Antibiotics	

such	 as	 Tiamulin™	 are	 still	 considered	 as	 a	 gold	 standard	 to	 tackle	 the	 infection,	

although	resistance	is	emerging,	which	stimulates	the	need	for	the	development	of	

new	 interventions.	Despite	 these	promising	novel	 therapies,	 there	 remains	 a	 large	

gap	in	the	understanding	of	the	pathogen	itself,	particularly	its	metabolism	although	

some	new	insights	were	given	recently	by	the	genetic	mapping	of	a	few	strains	of	B.	

pilosicoli.	 Characterising	 these	 pathways	 would	 provide	 a	 major	 advantage	 in	 AIS	

understanding	 in	 order	 to	 design	 more	 targeted	 treatments.	 Finally	 combination	

therapies	that	use	an	antibiotic	followed	by	an	appropriate	probiotic	may	be	worthy	

of	consideration	to	prevent	relapse	by	strengthening	the	gut	microbial	community.	
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Understand	B.	pilosicoli	metabolism	and	its	response	to	Tiamulin™:	

The	first	aim	of	this	work	was	to	evaluate	B.	pilosicoli	metabolism	in	order	to	better	

understand	 the	 bacterium	 and	 how	 treatment	 could	 influence	 both	 growth	 and	

metabolism.	 This	 was	 done	 with	 the	 objective	 of	 better	 understanding	 the	

observations	made	later	on	in	vivo.	This	work	was	submitted	to	the	Anaerobe	journal	

and	is	in	the	process	of	being	reviewed.	
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Abstract	

Pathogenic	Brachyspira	 spp.	are	 responsible	 for	 an	 increasing	number	of	 Intestinal	

Spirochaetosis	 (IS)	 cases	 in	 livestock	 against	 which	 few	 approved	 treatments	 are	

available.	Tiamulin™	is	used	in	cases	of	swine	dysentery	caused	by	B.	hyodysenteriae	

and	more	recently	to	treat	avian	intestinal	spirochaetosis.	In	this	study	we	evaluated	

the	impact	of	Tiamulin™	at	varying	concentrations	on	the	metabolism	of	B.	pilosicoli	

by	 applying	 a	 1H-NMR-based	 metabonomics	 approach	 allowing	 to	 capture	 the	

overall	bacterial	metabolic	response	to	antibiotic	treatment.	In	simple	growth	curve	

studies,	 Tiamulin™	 appeared	 to	 impact	 bacterial	 growth	 even	 at	 very	 low	

concentration	(0.008	µg/ml)	although	metabolism	was	little	affected	after	72h	post-

exposure	to	antibiotic	treatment.	Indeed,	variations	in	the	metabolic	composition	of	

the	medium	 started	 to	 appear	 only	 after	 72	 h	when	bacterial	 growth	had	 ceased.	

Exclusively	 the	 highest	 dose	 of	 Tiamulin™	 tested	 (0.250	 µg/ml)	 induced	 bacterial	

death	with	a	consequent	major	metabolic	shift.	This	is	in	accordance	with	the	known	

minimum	inhibitory	concentration	(MIC)	for	the	strain	used	in	this	study.	Below	this	

concentration,	 bacteria	 were	 able	 to	 recover	 metabolically	 despite	 a	 significant	

inhibition	of	their	growth	by	the	antibiotic.	This	demonstrated	that	B.	pilosicoli	was	

able	 to	 survive	 and	 maintain	 its	 metabolic	 homeostasis	 at	 concentrations	 below	

0.25ug/ml	 (MIC).	 These	 findings	 support	 the	 need	 to	 ensure	 that	 Tiamulin™	

treatment	in	B.	pilosicoli	 infected	animals	achieves	this	minimum	dose	in	tissues	to	

guarantee	efficacy.	

Keywords:	Brachyspira	pilosicoli,	metabolomics,	Tiamulin™,	antibiotic	resistance	
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2.1.	Introduction	

Brachyspira	 pilosicoli	 is	 a	 gram-negative	 bacterium	 of	 the	 family	 Spirochaetes.	 It	

colonises	the	lower	part	of	the	intestinal	track	of	a	large	range	of	hosts	including	pig,	

bird,	 human,	 monkey,	 dog	 and	 horses(Stanton	 &	 Hampson	 1997;	 Duhamel	 et	 al.	

2003;	 Hidalgo	 et	 al.	 2010;	 Trott	 et	 al.	 1996).	 	 Once	 in	 the	 intestinal	 lumen,	 the	

bacterium	is	attracted	via	chemotaxis	to	the	mucin	barrier(Naresh	&	Hampson	2010;	

Hopwood	et	al.	 2007)	 through	which	 it	 swims	mediated	by	 its	unique	“corkscrew”	

shape	and	rotation	of	its	periplasmic	flagella	(Prapasarakul	et	al.	2011)	aided	by	the	

secretion	of	mucin	degrading	enzymes(Naresh	&	Hampson	2010;	Li	et	al.	2000).	B.	

pilosicoli	attaches	to	the	enterocytes	in	an	end	on	fashion	and	may	penetrate	these	

cells	also(Falkow	et	al.	2006;	Mappley	et	al.	2012;	Dassanayake	2004;	Nakamura	et	

al.	 2006).	 In	 poultry,	 colonisation	 by	 B.	 pilosicoli	 can	 lead	 to	 the	 development	 of	

avian	intestinal	spirochaetosis	(AIS)	the	signs	of	which	are	diarrhoea,	poor	condition,	

dehydration,	decreased	growth	rate	and	a	drop	 in	egg	yield	with	 faecal	 staining	of	

eggs.	Mortality	 is	 often	 significant	 when	 the	 disease	 is	 left	 untreated(Fellström	&	

Gunnarsson	1995;	Duhamel	et	al.	n.d.;	Taylor	et	al.	1980),	a	consequence	that	makes	

AIS	 a	 serious	 economic	 and	welfare	 problem	 in	 farming.	 TiamulinTM	 is	 effective	 in	

treating	porcine	diarrhoea	caused	by	Brachyspira	hyodystenteriae,	B.	hampsonii	and	

B.	 pilosicoli(Johnston	 et	 al.	 2001;	 Wilberts	 et	 al.	 2014;	 Burch	 2008)	 and	 as	 a	

consequence,	this	antibiotic	has	recently	been	used	in	the	poultry	industry	to	control	

AIS(Burch	&	Klein	2013).	

Tiamulin™	 is	derived	 from	a	natural	pleuromutilin	 that	binds	 the	50S	region	of	 the	

ribosome	 to	 inhibit	 protein	 synthesis(Schlünzen	 et	 al.	 2004).	 The	 antibiotic	 blocks	

peptide	bond	formation	by	interfering	with	substrate	binding(Schlünzen	et	al.	2004;	



	 49	

Poulsen	 2001;	 Long	 et	 al.	 2006;	 Forschungsinstitut	 1974).	 Tiamulin™	 treatment	 on	

farm	 is	 generally	 associated	with	 clearance	 of	 infection	 and	 associated	 symptoms.	

However,	 reoccurrence	 of	 the	 disease	 can	 be	 observed	 post	 treatment	 indicating	

incomplete	 clearance	 and	 possibly	 decrease	 susceptibility(Sperling	 et	 al.	 2011;	

Karlsson	 2004)	 in	 response	 to	 treatment.	 Currently	 there	 is	 a	 lack	 of	 an	

internationally	 recognised	 standardised	method	 to	 determine	 Tiamulin™	minimum	

inhibitory	concentration	(MIC)	for	this	bacterium,	which	has	impacts	upon	selection	

of	an	appropriate	treatment	dose.	Furthermore,	recent	studies	have	 indicated	that	

Brachyspira	 may	 acquire	 resistance	 against	 Tiamulin™	 and,	 other	 than	 blocking	

protein	synthesis,	nothing	is	yet	known	of	the	metabolic	response	of	B.	pilosicoli	to	

Tiamulin™.	We	 argue	 that	 evaluating	 this	 using	 a	 metabonomics	 approach	 would	

allow	a	better	understanding	of	the	bacterial	response	to	Tiamulin™	and	give	insight	

into	improving	selection	of	effective	dosing	regimes.		

Metabonomics	 allows	 non-targeted	 evaluation	 of	 the	 metabolic	 modifications	

occurring	 in	 a	 biological	 system	 in	 response	 to	 a	 stress(Nicholson	&	 Lindon	 2008),	

which	in	this	study	is	exposure	to	Tiamulin™.	By	providing	a	general	overview	of	the	

metabolic	 response,	 this	 technique	 allows	 the	 generation	 of	 new	 hypotheses	 and	

provides	 new	 insights	 into	 biological	 systems	 metabolism	 in	 response	 to	

environmental	stress	or	genetic	modification.	In	this	study,	we	used	an	NMR-based	

metabonomics	 approach	 coupled	 with	 multivariate	 statistics	 to	 evaluate	 the	

metabolic	 dose-response	 of	 B.	 pilosicoli	 to	 Tiamulin™.	 Bacteria	 were	 exposed	 to	

gradual	 antibiotic	 doses	 and	 media	 was	 sampled	 along	 120h	 growth	 in	 order	 to	

evaluate	the	evolution	of	its	metabolic	composition	while	growth	was	recorded.	This	
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allowed	 to	 snapshot	 the	 metabolic	 response	 of	 B.	 pilosicoli	 to	 Tiamulin™	 and	

therefore	enlightened	resistance	process	to	antibiotic	treatment.	

	

2.2.	Materials	and	methods	

2.2.1.	Bacterial	growth	and	antibiotic	assay	

B.	pilosicoli	B2904	 isolated	from	a	chicken	presenting	clinical	signs	of	AIS	 in	the	UK	

(Mappley	 et	 al.	 2011)	was	 grown	 from	 frozen	 stock	 on	 agar	 solidified	 Brachyspira	

enrichment	broth	(BEB)	plate	for	four	days	under	anaerobic	conditions	(94%	N2	and	

6%	CO2)	at	37°C.	Colonies	were	transferred	into	Brachyspira	enrichment	broth	media	

(BEB	supplemented	with	heart	infusion)	for	three	days	under	similar	conditions.	BEB	

contains	12.5	g/L	of	calf	brain,	5.0	g/L	of	beef	heart,	10	g/L	of	peptone,	5.0	g/L	of	

sodium	 chloride,	 2.0	 g/L	 of	 D(+)-Glucose	 and	 2.5	 g/L	 of	 disodium	 hydrogen	

phosphate.	 Brain,	 hart	 infusion	 and	 peptone	 are	 sources	 of	 carbon,	 nitrogen,	

vitamins,	amino	acids,	and	essential	growth	factors.	The	bacterial	concentration	was	

then	adjusted	in	BEB	to	1	x	106	CFU/ml	and	transferred	into	24	well	plates	(2	ml	per	

well)	 and	 incubated	 as	 above	 for	 120h.	 Every	 24	 h	 (with	 a	 first	 time	 point	 at	 0	 h	

growth),	 the	entire	well	 content	was	 taken	and	centrifuged	 for	2	min	at	2400	g	 to	

separate	 growth	medium	 from	 bacteria.	 	 The	 supernatant	 was	 kept	 at	 -	 80°C	 for	

further	analysis.	This	process	was	repeated	at	each	time	point	in	sextuplet	to	deliver	

the	appropriate	power	for	statistical	analysis.	

The	same	method	was	used	for	the	Tiamulin™	assay.	Bacterial	cells	were	grown	as	

above	and	bacterial	pellet	were	 resuspended	 in	BEB	with	antibiotic	at	 six	different	

concentrations	 (0.008,	 0.016,	 0.031,	 0.062,	 0.125	 and	 0.250	 µg/ml	 plus	 control).	
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Bacteria	 were	 then	 inoculated	 into	 24	 well	 plates	 as	 previously	 described	 and	

incubated	for	120h.	For	metabolic	analysis	each	condition	(Tiamulin™	concentration)	

and	 time	point	 (every	24h	 for	120h)	were	also	 repeated	 in	 sextuplet.	The	medium	

was	not	changed	for	the	duration	of	the	experiment	so	that	antibiotic	exposure	was	

continuous.		

B.	 pilosicoli	 growth	was	 evaluated	using	 the	 same	experimental	 design	 as	 the	 one	

previously	described.	Bacteria	were	grown	 in	a	96	well	plate	 (0.2	ml	per	well)	 and	

bacterial	growth	was	evaluated	every	2	hours	for	120	hours	at	an	absorbance	of	600	

nm	using	a	FLUOstar	Omega	(BMG	LABTECH	Ltd).	Water	was	used	as	blank	and	broth	

media	 without	 bacteria	 as	 a	 negative	 control.	 Each	 condition	 (Tiamulin™	

concentration)	was	repeated	in	triplicate	and	results	are	presented	as	an	average	of	

the	 log	of	 the	bacterial	 concentration	 calculated	 from	 the	absorbance	observed	at	

each	Tiamulin™	concentration	per	 time	point	after	correction	with	standard	curve.	

OD	 measurements	 were	 converted	 to	 log	 of	 bacterial	 concentration	 after	

determination	 of	 the	 B.	 pilosicoli	 concentration	 in	 broth	 for	 a	 specific	 OD	 using	

counting	on	agar	plate	to	calculate	the	concentration	of	viable	bacteria.	Knowing	the	

bacterial	 concentration	 for	 a	 specific	 OD	 a	 cross	 multiplication	 was	 applied	 to	

determine	the	rest	of	the	concentrations.		

	

2.2.2.	NMR	spectroscopy	

For	NMR	spectroscopy,	0.4	ml	of	medium	was	added	to	0.2	ml	of	NMR	phosphate	

buffer	 (made	 in	 D2O	 containing	 10	 %	 water	 and	 0.05	%	 sodium	 3-(tri-

methylsilyl)propionate-2,2,3,3-d4	 (TSP)	 as	 a	 1H	 NMR	 reference)	 and	 0.5	 ml	 of	 the	

solution	was	transferred	into	5	mm	of	outer	diameter	NMR	tubes.	1H-NMR	spectra	
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were	acquired	on	a	Bruker	Avance	DRX	700	MHz	NMR	Spectrometer	(Bruker	Biopsin,	

Rheinstetten,	 Germany)	 operating	 at	 700.19	MHz	 using	 a	 standard	 1-dimensional	

(1D)	 pulse	 sequence	 [recycle	 delay	 (RD)-90°-t1-90°-tm-90°-acquire	 free	 induction	

decay	 (FID)]	with	water	 suppression	 applied	 during	 RD	 of	 2	s	 and	 the	mixing	 time	

(tm)	 of	 100	 ms	 and	 a	 90	 pulse	 set	 at	 10	 μs.	 For	 each	 spectrum	 128	 scans	 were	

recorded	on	a	total	of	32K	data	points.	A	broadening	line	function	of	0.3	Hz	was	used	

to	multiply	all	FIDs.	After	acquisition,	all	spectra	were	manually	phased	and	baseline	

corrected	using	the	software	MestReNova®	(version	2.1.8-11880,	MestreLab,	Spain).	

Finally	 spectra	 were	 calibrated	 to	 the	 chemical	 shift	 of	 TSP	 (δ	 0.00).	 In	 order	 to	

facilitate	 metabolite	 identification	 based	 on	 literature,	 a	 series	 of	 2D	 spectra	 on	

selected	 samples	 were	 acquired	 using	 correlation	 spectroscopy	 (COSY)	 NMR	

spectroscopy.	

	

2.2.3.	Statistical	analysis	

All	 spectra	 were	 scaled	 on	 unit	 variance	 and	mean	 centered	 prior	 to	 analysis.	 To	

evaluate	metabolic	variation	between	samples,	principal	 component	analysis	 (PCA)	

was	used.	Orthogonal	projection	to	latent	structure	discriminant	analysis	(O-PLS-DA)	

was	also	performed,	where	1H-NMR	spectra	were	used	as	a	matrix	of	 independent	

variables	(X)	and	time	or	antibiotic	concentration	were	used	as	prediction	vectors	(Y)	

To	 capture	metabolic	 variations	 linear	 to	 time	 and	 antibiotic	 concentration.	O-PLS	

DA	models	were	generated	between	each	Tiamulin™	concentrations	at	every	 time	

point	independently.	A	heat	map	was	generated	using	each	of	this	model	strength	in	

order	to	visualise	when	Tiamulin™	impacted	bacterial	metabolism	in	comparison	to	

control	and	if	clusters	related	to	dose	could	be	observed.		
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2.3.	Results	and	discussion	

2.3.1.	Modifications	of	B.	pilosicoli	metabolism	during	growth	

PC1,	 which	 captured	 49%	 of	 the	 metabolic	 variation,	 indicated	 that	 a	 significant	

metabolic	shift	was	recorded	after	96h	of	 incubation.	Distinctions	between	0h,	24h	

and	 48h	were	 observed	 on	 the	 3rd	 component,	 representing	 only	 9%	of	 the	 total	

variation,	which	suggests	a	modest	effect	on	the	composition	of	the	culture	medium	

in	the	first	48h.	This	metabolic	trajectory	indicates	that	bacterial	metabolism	might	

change	 depending	 on	 the	 growth	 phase	 (Figure	 2.1A).	 Scores	 from	 the	 same	 time	

point	 were	 clustered	 together	 indicating	 good	 reproducibility	 of	 the	 experiment	

except	 for	 two	 samples	 at	 96	 h.	 This	 two	 samples	 occupied	 the	 same	 metabolic	

space	 than	what	was	 observed	 a	 0h,	 indicating	 that	media	 composition	 remained	

unchanged	after	96	h	of	bacterial	growth.	Given	the	reproducibility	of	the	results	it	is	

possible	 to	 hypothesis	 that	 B.	 pilosicoli	 was	 enable	 to	 grow	 is	 these	 two	 specific	

wells,	explaining	the	stability	of	the	metabolic	composition	of	the	media.		

In	the	culture	medium,	the	growth	of	B.	Pilosicoli	was	characterised	by	a	decrease	in	

glucose	 and	 an	 increase	 in	 amino	 acids	 (phenylalanine,	 alanine,	 tyrosine,	 lysine,	

valine	 and	 methionine),	 fermentation	 products	 (lactate,	 acetate,	 butyrate	 and	

isovalerate),	as	well	as	other	compounds	 involved	 in	 the	 regulation	of	cell	osmosis	

such	 as	 myo-inositol	 and	 trimethylamine	 (TMA)	 as	 observed	 in	 the	 PCA	 results	

presented	in	Figure	2.1A	and	B.		

Glucose	 was	 the	 only	 readily	 identifiable	 substrate	 that	 showed	 a	 reduction	 over	

time	 (Figure	 2.1B).	 Decreased	 concentration	 of	 other	 substrates	 could	 not	 be	
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detected	and	it	is	possible	that	some	may	be	below	the	detection	limit	of	the	NMR.	

However,	it	is	not	unreasonable	to	assume	that	glucose	was	the	only	carbon	source	

used	for	bacterial	anabolism	and	growth.	B.	pilosicoli	and	more	especially	the	strain	

used	for	this	experiment	 (B2904)	 is	able	to	use	a	wide	range	of	carbohydrates	and	

hexoses	as	primary	carbon	sources	but	it	would	seem	in	this	study	that	glucose	was	

used	preferentially.		

	

Figure	 2.1:	 B.	 pilosicoli	 consumed	 glucose	 and	 released	 amino	 acids	 and	
fermentation	 products	 in	 its	 environment.	 PCA	 scores	 plot	 (A)	 and	 associated	
loadings	 of	 the	 first	 component	 (B).	 The	 metabolic	 trajectories	 described	 by	 the	
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arrows	were	 determined	 by	 the	 position	 of	 the	 centroids	 calculated	 at	 each	 time	
point	using	the	coordinate	of	the	associated	scores	on	the	principal	components.	

	

The	 results	 obtained	 from	 B.	 pilosicoli	 growth	 in	 a	 control	 medium	 without	

Tiamulin™	 provide	 new	 insights	 regarding	 its	 general	 metabolism.	 Indeed,	 the	

bacteria	 were	 able	 to	 produce	 lactate	 and	 acetate	 from	 glucose	 fermentation	

without	secreting	methanol,	suggesting	the	use	of	the	bifidum	pathway	according	to	

the	 following	 equation:	 glucose	à	 3	 acetate	 +	 2	 lactate(Gerhard	 1985).	 However	

lactate	 was	 generally	 found	 in	 very	 small	 quantity	 in	 comparison	 to	 acetate,	

indicating	 its	potential	use	 in	other	metabolic	 reactions.	Bacteria	were	also	able	 to	

secrete	butyric	acid	but	not	propionic	acid.	Both	of	these	short	chain	fatty	acids	were	

found	to	be	potential	carbon	sources	for	B.	pilosicoli(Mappley	et	al.	2012).	Bacteria	

also	released	a	large	number	of	amino	acids	that	could	be	caused	either	by	synthesis	

and	active	secretion	of	these	amino	acids,	or	more	likely	due	to	exogenous	protein	

degradation.	 The	medium	 contains	 complex	 proteins	 and	B.	 pilosicoli	 is	 known	 to	

secrete	 complex	 enzymes,	 such	 as	 lipases	 that	 induce	 haemolysis,	 and	 it	 is	

reasonable	to	assume	proteases	may	also	be	secreted	since	they	can	be	produced	by	

the	bacteria(Mappley	et	al.	2012).	This	specific	strain	of	B.	pilosicoli	was	also	shown	

to	be	able	to	use	amino	acids	as	primary	carbon	source10.	However,	as	the	bacterium	

favours	glucose	if	available	as	primary	carbon	source,	amino	acids	may	only	be	used	

for	protein	synthesis	and	may	become	in	excess	in	the	culture	medium	where	they	

accumulate.		

Finally,	the	bacteria	secreted	TMA.	Gut	bacteria	generally	produce	TMA	from	dietary	

L-carnitine,	 betaine	 or	 choline.	 Yet,	 it	 was	 not	 possible	 to	 detect	 a	 decrease	 in	

concentration	of	these	compounds	indicating	that	B.	pilosicoli	might	use	the	three	of	
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them	 independently	 without	 preferences	 or	 that	 the	 technique	 used	 was	 not	

sensitive	enough	to	detect	such	variations.	

	

2.3.2.	Tiamulin™	impacts	B.	pilosicoli	growth	even	at	very	low	doses	

Tiamulin™	 impacted	B.	 pilosicoli	 growth	 even	 at	 the	 lowest	 concentrations	 tested	

(0.008	and	0.016	µg/ml)	as	displayed	in	Figure	2.2.	For	these	two	doses,	the	bacterial	

count	 observed	 at	 the	 stationary	 phase	 was	 one	 log	 lower	 than	 for	 the	 control	

demonstrating	 the	ability	of	Tiamulin™	to	 reduce	 the	growth	of	B.	pilosicoli	 at	 low	

concentrations.	 Up	 to	 54	 hours,	 growth	 curves	 of	 the	 two	 lowest	 concentrations	

(0.008	and	0.016µg/ml)	were	 identical	 to	the	control	 (T1	and	T2	on	the	graph)	but	

they	 stopped	 growing	 shortly	 after	 and	 entered	 into	 the	 stationery	 phase.	 No	

bacterial	 growth	 was	 detected	 for	 higher	 Tiamulin™	 concentrations	 (over	 0.032	

µg/ml)	 confirming	 its	 efficiency	 to	 stop	 bacterial	 proliferation.	 Interestingly,	 no	

gradual	Tiamulin™	dose	response	of	bacterial	growth	was	observed.	Indeed	growth	

rates	were	similar	for	the	two	lowest	concentrations	(0.008	and	0.016	µg/ml)	while	

higher	doses	induced	a	complete	inhibition	of	B.	pilosicoli	growth.	Decreased	growth	

rate	at	such	low	antibiotic	dose	was	unexpected,	as	previous	evaluation	of	minimum	

inhibitory	 concentration	 (MIC)	 values	 for	 this	 specific	 strain	 were	 of	 0.25	

µg/ml(Pringle	 et	 al.	 2012),	 furthermore,	 10-15%	 of	 B.	 pilosicoli	 isolates	 presented	

MICs	>	4	µg/ml(Pringle	et	al.	2012).	Differences	in	the	MIC	values	can	be	explained	

by	the	experimental	differences.	Growth	curves	were	acquired	when	B.	pilosicoli	was	

grown	in	BEB	media	rather	than	on	agar	plates	for	MIC	tests.	The	B.	pilosicoli	strain	

B2904	used	in	this	study	is	known	to	have	an	MIC	of	0.25	µg/ml(Pringle	et	al.	2012;	

Woodward	et	 al.	 2015)	but	 showed	 clear	 inhibition	of	 growth	with	 concentrations	
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below	this	value.	Thus,	our	findings	confirm	the	previously	reported	observation	that	

lower	 Tiamulin™	MIC	 values	 are	 generally	 found	 in	 broth	 compared	 to	 agar	 for	B.	

hyodysenteriae(Rohde	et	al.	2004).	

	

Figure	2.2:	Impact	of	Tiamulin™	on	B.	pilosicoli	growth.	

	

2.3.3.	For	most	concentrations,	Tiamulin™	induces	major	metabolic	shift	between	72	and	

96	h	of	growth	

To	gain	 in	 clarity	 regarding	B.	 pilosicoli	Tiamulin™-induced	metabolic	 perturbation,	

the	 centroids	 of	 four	 chosen	 antibiotic	 concentrations	 (0,	 0.016,	 0.062	 and	 0.250	

µg/ml)	 of	 the	 PCA	 scores	 (generated	 using	 all	 the	 samples)	 on	 PC1	 and	 PC3	were	

plotted	 together	 (Figure	 2.3A).	 This	 allowed	 for	 the	 evaluation	 of	 the	 average	

metabolic	trajectory	of	the	media	at	different	antibiotic	concentrations.	A	heat-map	

representing	 the	 strength	 of	 the	 O-PLS	 DA	 models	 between	 each	 Tiamulin™	

concentration	at	all	time	points	independently	was	also	generated	(Figure	2.3.B).	

Results	 from	 Figure	 2.3A	 shows	 that	 between	 0	 (T0)	 and	 48	 h	 (T2)	 the	 same	

metabolic	 trajectory	 were	 followed	 by	 the	 media,	 regardless	 of	 Tiamulin™	
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concentration,	 confirming	 that	 Tiamulin™	 treatment	 does	 not	 impact	 bacterial	

metabolism	 in	 this	 first	 growth	 stage.	 This	 result	 was	 also	 assessed	 by	 the	 poor	

strength	of	O-PLS	DA	models	calculated	between	0	and	48	h	indicating	an	absence	of	

detectable	 metabolic	 variation	 between	 these	 conditions.	 Large	 variations	 in	 the	

metabolic	 trajectory	 of	 the	 media	 associated	 with	 antibiotic	 treatment	 occurred	

after	72h	of	 growth.	 This	 result	was	also	 confirmed	by	 the	heat-map	 (Figure	2.3B)	

where	the	O-PLS	DA	model	gain	in	“strength”.	These	modifications	of	the	metabolic	

trajectory	remained	until	the	end	of	the	experiment	(T5-120h).		

This	 demonstrates	 the	 slow	 response	 of	 the	 bacteria	 to	 antibiotic	 treatment	 as	

modification	 of	 the	metabolic	 footprint	 is	 only	 observed	 after	more	 than	 48	 h	 of	

growth	in	presence	of	Tiamulin™.	From	these	results,	it	seems	that	metabolism	was	

stressed	 during	 the	 exponential	 phase,	 when	 bacterial	 division	 is	 compromised.	

Metabolism	 modification	 was	 mainly	 associated	 with	 increased	 amino	 acid	

consumption.	However,	as	the	provenance	of	these	amino	acids	remains	unclear	this	

phenomenon	 could	 be	 explained	 in	 two	 different	manners.	 Firstly,	 in	 response	 to	

antibiotic	 stress	 bacteria	 could	 use	 amino	 acids	 as	 alternative	 energy	 substrates.	

Secondly,	B.	pilosicoli	might	not	be	able	to	hydrolyse	proteins	present	in	the	media	

because	 new	 protein	 synthesis,	 such	 as	 secreted	 proteases,	 is	 blocked	 at	 the	

ribosome.	 The	 specificity	 of	 the	 amino	 acids	 used	 indicates	 the	 first	 option	 is	 the	

most	probable	and	that	catabolite	repression	could	be	overridden	to	secure	energy	

from	multiple	sources.	This	 is	an	 interesting	hypothesis	that	needs	confirmation	by	

alternative	techniques	such	as	transcriptomics.	
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Figure	2.3:	A.	Tiamulin™	impacts	on	B.	pilosicoli	metabolism.	Metabolic	trajectories	
derived	from	the	PCA	analysis	performed	using	all	the	sample	population	(N=288)	of	
the	 study	 (i.e.	 control	 plus	 7	 Tiamulin™	 dilution)	 on	 PC	 1	 and	 PC3	 displaying	 the	
centroids	for	each	time	points	of	the	control	and	three	concentrations	of	Tiamulin™.	
B.	 Heat	 map	 representing	 the	 O-PLS	 DA	 model	 strength	 existing	 between	 each	
Tiamulin™	 concentration	 at	 each	 time	point.	 The	 values	were	 calculated	using	R2Y	
(the	goodness	of	fit	of	the	model)	and	Q2Y	(the	goodness	of	prediction	of	the	model).	
When	Q2Y	was	negative	its	value	was	brought	to	zero.	

	

The	 metabolism	 of	 B.	 pilosicoli	 appears	 to	 slightly	 recover	 from	 all	 Tiamulin™	

concentrations	except	from	0.250	µg/ml	after	120h	of	growth.	This	might	be	due	to	

the	apparition	of	resistance,	which	is	known	as	being	a	slow	bacterial	development	

process(Bock	 et	 al.	 1982;	 Karlsson	 et	 al.	 2001).	 The	 fact	 that	 B.	 pilosicoli	 remain	

viable	 and	 metabolically	 active	 without	 dividing	 despite	 the	 antibiotic	 treatment	

could	partly	explain	 the	 IS	 relapse	observed	 in	 farms	after	Tiamulin™	 intervention.	

Indeed	 it	seems	to	arise	 from	these	results	that	bacteria	remain	viable	but	are	not	
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able	 to	 divide	 entering	 therefore	 a	 dormancy	 stage.	 It	 is	 highly	 possible	 that	 such	

phenomenon	occurs	in	the	intestinal	 lumen,	where	bacteria	could	be	inactivated	in	

term	of	 division	 but	 be	 still	 viable.	 This	 bacterial	 state	might	 be	 associated	with	 a	

decrease	 in	 their	 pathogenicity	 explaining	 the	 disappearance	 of	 associated	

symptoms.	Nevertheless	bacteria	might	remain	viable	but	at	a	“dormancy”	state	 in	

the	intestinal	lumen	or	animal	faeces	until	the	environment	become	less	hostile	(end	

of	 antibiotic	 treatment)	 when	 they	 can	 recover	 their	 pathogenic	 property.	 More	

details	concerning	the	metabolic	variations	observed	in	response	to	each	dose	used	

are	given	in	the	followings	paragraphs.	

	

2.3.4.	Tiamulin™	decrease	B.	pilosicoli	growth	without	affecting	its	metabolism	

As	 previously	 described,	 Tiamulin™	 did	 not	 impact	 B.	 pilosicoli	 at	 the	 two	 lowest	

antibiotics	 doses	 (Figure	 2.4A	 and	 B)	 although	 growth	was	 seriously	 compromised	

(Figure	2.2).	Such	results	indicate	that	modification	of	the	metabolic	trajectory	is	not	

necessarily	 associated	 with	 the	 growth	 phase	 in	 which	 the	 bacteria	 is.	Moreover,	

bacterial	 concentration	 does	 not	 influence	metabolic	 composition	 of	 the	medium.	

Indeed,	 with	 1	 log	 more	 of	 bacteria	 growing	 in	 the	 medium,	 it	 could	 have	 been	

expected	 to	 observe	 a	 drastic	 modification	 of	 the	 metabolic	 trajectory	 due	 to	

increased	metabolic	rate.	In	spite	of	these	findings,	NMR-based	metabonomics	may	

not	be	sensitive	enough	to	identify	very	subtle	metabolic	variations,	and	the	use	of	

mass	spectrometry	could	be	an	interesting	alternative(Romano	et	al.	2014).	
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Figure	2.4:	Metabolic	trajectories	of	B.	pilosicoli	footprints	in	broth	media	for	120h	at	
a	 Tiamulin™	 concentration	 of:	 0.008	 μg/mL	 (B)	 and	 0.016	 μg/mL	 (C).	 The	 arrows	
indicate	the	metabolic	trajectory.	The	metabolic	trajectories	described	by	the	arrows	
were	determined	by	the	position	of	the	centroids	calculated	at	each	time	point	using	
the	coordinate	of	the	associated	scores	on	the	PCs.	

	

	

2.3.5.	B.	pilosicoli	metabolism	is	shifted	when	growth	is	totally	inhibited	by	Tiamulin™	

Modifications	of	the	metabolism	of	B.	pilosicoli	were	observed	when	bacteria	were	

exposed	to	0.032	µg/ml	of	Tiamulin™	and	above	(Figure	2.5A	and	B).	B.	pilosicoli	was	

still	 metabolically	 active	 at	 0.032	 µg/ml	 of	 Tiamulin™,	 however	 the	 metabolic	

trajectory	 was	 shifted	 in	 comparison	 to	 the	 control.	 Disruptions	 of	 the	 metabolic	

trajectory	 were	 associated	 with	 modifications	 of	 amino	 acid	 metabolism.	 A	

noticeable	 increase	 of	 tyrosine,	methionine,	 valine,	 phenylalanine	 and	 lysine	 in	 to	

the	 medium	 from	 0	 to	 96	 h	 was	 observed.	 After	 that	 time,	 their	 concentration	

reduced,	 indicating	 consumption	 of	 these	 amino	 acids	 until	 the	 end	 of	 the	

experiment.	 This	 is	 the	 first	 detectable	metabolic	 response	 of	 the	 bacteria	 in	 this	

medium	to	Tiamulin™	treatment.	
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Figure	2.5:	Metabolic	trajectories	of	B.	pilosicoli	footprint	in	broth	media	for	120h	at	
a	Tiamulin™	concentration	of	0.032	μg.ml	on	principal	 component	1	and	3	 (A)	 (B).	
The	metabolic	trajectories	described	by	the	arrows	were	determined	by	the	position	
of	the	centroids	calculated	at	each	time	point	using	the	coordinate	of	the	associated	
scores	on	the	PCs.	

	

Higher	 doses	 of	 Tiamulin™	 (0.062	 and	 0.125	 µg/ml)	 induced	 similar	 responses	 to	

those	 observed	 at	 0.032	 µg/ml	 (Figure	 2.6A	 and	 B)	 with	 amino	 acid	 metabolism	

disturbed	to	a	greater	extent.		

	

Figure	2.6:	Metabolic	trajectories	of	B.	pilosicoli	footprint	in	broth	media	for	120h	at	
a	 Tiamulin™	 concentration	 of:	 0.062	 μg/ml	 (A)	 and	 0.125	 μg/ml	 (B).	 The	 arrows	
indicate	 metabolic	 trajectory.	 The	 metabolic	 trajectories	 described	 by	 the	 arrows	
were	determined	by	the	position	of	the	centroids	calculated	at	each	time	point	using	
the	coordinate	of	the	associated	scores	on	the	PCs.	
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2.3.6.	Metabolic	signature	of	death	of	B.	pilosicoli	occurs	after	120h	when	incubated	with	

0.25	µg/ml	of	Tiamulin™	

At	 the	maximum	dose	 tested	 (0.250	 µg/ml)	 the	metabolic	 trajectory	 observed	 for	

the	 media	 was	 drastically	 modified	 in	 comparison	 to	 those	 described	 previously	

(Figure	2.6).	This	time,	the	metabolic	trajectory	followed	a	circular	shape	where	the	

scores	of	the	samples	collected	after	120h	of	bacterial	growth	were	clustered	to	the	

one	observed	at	T0,	indicating	metabolic	similarity	with	the	initial	time.	Once	again,	

amino	acids	were	released	into	the	medium	as	well	as	butyrate	and	myo-inositol.		

	

	

Figure	2.7:	Metabolic	trajectories	of	B.	pilosicoli	footprint	in	broth	media	for	120h	at	
a	 Tiamulin™	 concentration	 of	 0.250	 μg/ml.	 The	 arrows	 indicate	 the	 metabolic	
trajectory.	The	metabolic	 trajectories	described	by	the	arrows	were	determined	by	
the	position	of	the	centroids	calculated	at	each	time	point	using	the	coordinate	on	
the	associated	scores	on	the	PCs.	

	

2.4.	Conclusion	

This	work	gave	a	clearer	understanding	of	B.	pilosicoli	metabolism	under	optimum,	

growth	 conditions,	 including	 indication	 regarding	 favoured	 fermentation	 pathways	

and	 amino	 acids	 metabolism.	 It	 supports	 the	 fact	 that	 Tiamulin™	 can	 inhibit	
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efficiently	 bacterial	 growth	 at	 low	 concentrations.	 However,	 it	 was	 surprising	 to	

observe	 that	 Tiamulin™	 could	 impact	 B.	 pilosicoli	 growth	 without	 influencing	 its	

metabolism.	It	also	reveals	that	the	bacteria	try	to	maintain	metabolic	homeostasis	

despite	 an	 obvious	 stress	 visible	 on	 the	 growth	 curve,	 demonstrating	 that	 in	

response	 to	 xenobiotic	 stress,	 bacterial	 division	 is	 the	 first	 mechanism	 to	 be	

suspended.	 It	 appears	 from	 the	 results	 that	metabolism	 is	 shifted	mainly	 in	 what	

should	 be	 the	 exponential	 phase	 (a	 moment	 of	 intense	 cellular	 activity	 where	

bacteria	divide	rapidly).	The	metabolic	shift	observed	for	high	doses	of	Tiamulin™	at	

this	precise	time	point	witness	the	stress	encounter	by	the	bacteria	that	are	not	able	

to	 divide	 properly	 due	 to	 antibiotic	 treatment.	 This	 demonstrates	 that	 Tiamulin™	

present	a	good	solution	against	AIS	outbreaks,	as	it	is	able	to	significantly	reduce	or	

eradicate	 bacterial	 growth.	 However,	 the	 metabolic	 activity	 of	 B.	 pilosicoli	 post	

antibiotic	 treatment	 showed	 that	 bacteria	 were	 still	 alive	 even	 if	 growth	 was	

compromised	unless	high	antibiotic	doses	were	applied	(0.250	µg/ml).	Such	findings	

suggest	that	measurement	of	bacterial	activity	might	be	needed	to	asses	antibiotic	

efficiency.	
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Define	host	metabolism:	

After	investigating	the	pathogen	metabolism	and	its	reaction	to	antibiotic	treatment,	

the	 next	 step	was	 to	 define	 the	 host	metabolome	 (chicken).	 A	metabolic	 atlas	 of	

chicken’s	tissues	and	biofluids	proceed	using	high	resolution	NMR	spectroscopy	was	

published	in	the	journal	Metabolomics.		
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Chapter	 3:	NMR-based	metabolic	 characterisation	of	 chicken	

tissues	and	biofluids:	a	model	for	avian	research	
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Abstract	

Introduction:	Poultry	is	one	of	the	most	consumed	meat	in	the	world;	nevertheless,	

industry	 is	 still	 looking	 for	 ways	 to	 improve	 animal	 welfare	 and	 productivity.	 It	 is	

therefore	 essential	 to	 understand	 the	metabolic	 response	 of	 chicken	 to	 new	 feed	

formulas,	various	supplements,	infection	and	treatments.		

Objectives:	 As	 a	 basis	 for	 future	 research	 investigating	 the	 impact	 of	 diet	 and	

infections	 on	 chicken’s	 metabolism	 (that	 should	 lead	 to	 improved	 treatment	

development),	we	established	a	high-resolution	proton	nuclear	magnetic	resonance	

(NMR)-based	metabolic	atlas	of	the	healthy	chicken	(Gallus	gallus).	

Methods:	Metabolic	extractions	were	performed	previous	to	1H-NMR	and	2D	NMR	

spectra	acquisition	on	 twelve	biological	matrices:	 liver,	kidney,	 spleen,	plasma,	egg	

yolk	 and	white,	 colon,	 ceca,	 fecal	 water,	 ileum,	 pectoral	muscle	 and	 brain	 of	 n=6	

chickens.	Metabolic	profiles	were	then	exhaustively	characterized.	

Results:	 Nearly	 80	 metabolites	 were	 identified	 in	 twelve	 biological	 matrices	 that	

were	 liver,	 kidney,	 spleen,	 plasma,	 egg	 yolk	 and	 white,	 colon,	 ceca,	 fecal	 water,	

ileum,	pectoral	muscle	and	brain.	Biological	matrices	cross-comparison	allowed	the	

identification	 of	 eight-core	 metabolites	 and	 to	 determine	 metabolic	 variations	

between	and	within	each	section.		

Conclusion:	 This	 work	 constitutes	 a	 database	 for	 future	 NMR-based	metabolomic	

investigation	in	relation	to	avian	production	and	health.	
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3.1.	Introduction	

The	 Food	 and	 Agriculture	 Organization	 of	 the	 United	 Nation	 (FAOSTAT:	

http://www.fao.org/home/en/),	 calculated	 that	 approximately	 22	 billion	 chickens	

were	 produced	 commercially	 worldwide	 in	 2012,	 China	 being	 the	 main	 producer	

with	over	5	billion	birds.	A	major	production	issue	in	commercial	systems	is	animal	

density	that	is	favourable	for	rapid	spread	of	disease.	Most	chicks	receive	a	cocktail	

of	 vaccines	 at	 hatch	 or	 even	 in	 ovo,	 but	 remain	 susceptible	 to	 typical	 production	

related	 endemic	 disease	 and	 other	 food	 borne	 zoonosis	 such	 as	 Salmonella	 or	

Campylobacter(Boer	and	Hahné	1990;	Dufrenne	et	al.	2001).	All	infections	represent	

a	large	potential	economic	loss	for	the	chicken	industry	and	is	one	of	the	main	cause	

of	 meat	 contamination	 by	 food	 born	 pathogens(Tessari	 et	 al.	 2009;	 White	 et	 al.	

1997).	Vaccines	and	antibiotics	are	commonly	used	to	tackle	such	infections	in	order	

to	 stop	 spread	 and	 symptoms	 and	 minimize	 the	 associated	 cost.	 With	 regard	 to	

antibiotic	 use,	 increasing	 antimicrobial	 resistance	 has	 been	 observed	 in	 animal	

farming	 and	 has	 become	 a	 major	 concern	 in	 recent	 decades,	 stimulating	 the	

development	of	alternative	treatments(McEwen	and	Fedorka-Cray	2002;	Casewell	et	

al.	2003).	Therefore,	in	the	interest	of	improving	animal	welfare	and	product	quality,	

new	more	specific	treatments	are	needed.	Finally	in	the	same	purpose,	attention	is	

brought	towards	improving	animal	feeding.	Chicken	feed	generally	consists	of	a	mix	

of	 grounded	 grains	 (corn,	 rice,	 wheat)	 and	 proteins	 most	 often	 from	 soya	 beans.	

However,	 the	 grain/protein	 ratio	 is	 different	 for	 egg	 laying	 and	meat	 production.	

There	are	numerous	added	supplements	including	certain	amino	acids,	minerals	and	
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oils.	 In	 addition	 feed	 is	 supplemented	 with	 vitamins,	 A,	 D3	 and	 riboflavine	 and	

mineral	salts.		

Nutrimetabonomics	has	been	developed	in	order	to	evaluate	the	impact	of	nutrition	

and	food	on	host	systemic	metabolism(Claus	and	Swann	2013),	this	 is	also	a	useful	

approach	 to	understand	dietary	 impacts	on	productivity	 as	well	 as	 host-pathogen-

drug	 interactions.	 Multi-‘omics’	 approaches	 help	 to	 gain	 better	 understanding	 of	

host-pathogen-drug	interactions(Nicholson	et	al.	2004;	McDermott	et	al.	2011).	This	

consists	 in	 using	 together	 genomic	 (study	 of	 the	 genome)(Klug	 et	 al.	 2012),	

transcriptomic	 (study	 of	 gene	 expression)(Bernot	 2004),	 proteomic	 (studying	 the	

proteome)(Blackstock	 and	 Weir	 1999)	 and	 metabonomic	 (studying	 the	

metabolome).	Chicken	genomic(Burta	et	al.	1995),	transcriptomic(Murphy	2009)	and	

proteomic(Doherty	 et	 al.	 2004;	 Mann	 2007;	 Mann	 and	 Mann	 2008)	 data	 have	

already	been	published	but,	to	date,	none	of	them	have	reported	a	detailed	analysis	

of	 the	 chicken	metabolome.	Metabonomic	 has	 been	mainly	 developed	 for	 clinical	

and	 nutritional	 (Nutrimetabonomics)	 research(Nicholson	 et	 al.	 2002;	Holmes	 et	 al.	

2011;	 Solanky	 et	 al.	 2003)	 and	 allows	 to	 look	 at	 quantitative	 and	 qualitative	

metabolic	variations	caused	by	genetic	mutation	or	environmental	stress	in	a	sample	

set(Nicholson	and	Wilson	2003).		

This	 paper	 presents	 the	 annotated	 NMR	 metabolic	 profiles	 of	 twelve	 chicken	

biological	matrices	to	serve	as	reference	for	future	studies.	We	selected	four	major	

biological	 matrices	 for	 the	 host	 systemic	 metabolism:	 liver,	 kidney,	 spleen	 and	

plasma.	 In	 addition,	 samples	 from	 the	 digestive	 system,	 including:	 colon,	 caeca,	

ileum	and	 faecal	water	were	analysed.	Three	 relevant	 to	 industrial	production	and	
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could	 be	 used	 to	 evaluate	 or	 assess	 product	 quality:	 egg	 (yolk	 and	 white)	 and	

pectoral	muscle.	Finally	brain	cortex	was	also	analysed.		

	

3.2.	Material	and	methods	

3.2.1.	Animal	husbandry	and	sample	collection	

Six	15-16	weeks	of	age	NovoGen	Brown	commercial	laying	hens	(Gallus	gallus)	were	

purchased	 from	 the	 Animal	 and	 Plant	 Health	 Agency	 (APHA)	 in	 Surrey.	 Animal	

husbandry	 conformed	 to	 animal	 Home	 Office	 licence	 (PPL	 70/7249)	 and	 all	

procedures	 were	 performed	 in	 compliance	 with	 the	 Animals	 Scientific	 Procedures	

Act,	1986.	animals	were	provided	with	food	(give	details	of	manufacturer)	and	water	

ad	libitum.	After	one	week	of	acclimatization	(see	food	composition	in	supplement),	

animals	of	15	weeks	of	age	and	weighing	on	average	1000	g	(n=6)	were	sacrificed	by	

cervical	dislocation.	Tissues	were	sampled	aseptically	 immediately	after	euthanasia	

and	snap	frozen	in	liquid	nitrogen	(-176°C)	and	then	transferred	at	-80°C	for	storage	

until	 analysis.	 The	 following	 tissues	were	 sampled:	 liver,	 the	end	of	 the	 right	 lobe,	

the	 right	 kidney,	 half	 longitudinal	 cut	 of	 the	 spleen,	 the	 frontal	 right	 lobe	 of	 the	

cortex,	the	middle	of	the	external	surface	of	the	left	pectoral	muscle.	Digestive	track	

samples	were	washed	with	PBS	before	freezing	and	faeces	were	collected	directly	by	

emptying	the	totality	of	the	colon.	One	cm	of	proximal	colon	was	sampled	and	2	cm	

of	 the	 end	 on	 the	 left	 caecum	 were	 taken,	 2	 cm	 of	 Ileum	 were	 sampled		

approximately	 3	 cm	 before	 the	 caecum.	 Plasma	 was	 sampled	 by	 post-mortem	

cardiac	 puncture.	 Egg	 yolk	 and	 white	 (n=6)	 were	 sampled	 from	 randomly	 chosen	
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eggs	laid	by	older	animals	that	had	just	come	into	lay	(18	week	old)	from	the	same	

cohort	of	birds	on	the	same	diet	and	within	the	same	environment.		

	

3.2.2.	Sample	preparation	

Sample	biopsies	were	homogenised	using	a	bead	beater	(Qiagen,	TissueLyser	LT)	at	a	

frequency	of	1/25	for	10	min	for	the	digestive	track	tissue	and	the	muscle	and	3	min	

for	the	liver,	the	spleen,	the	kidney	and	the	cortex	using	glass	Beads.	For	this	step,	

0.1	g	of	tissue	was	homogenised	in	1	mL	Of	a	3:1	(v/v)	MeOH/H2O	solution	for	polar	

metabolite	 extraction.	 After	 centrifugation	 for	 10	 min	 at	 12	 000	 x	 g,	 0.9	 mL	 of	

supernatant	was	dried	in	speed	vacuum	for	4.5h	at	45°C	and	resuspended	in	600	μL	

of	 phosphate	 buffer	 0.2M	 containing	 90%	 of	 D2O	 and	 10%	 of	 H2O	 plus	 0.01%	 of	

sodium	 3-(tri-methylsilyl)-propionate-2,2,3,3-d4	 (TSP)	 for	 NMR	 reference.	 Samples	

were	then	transferred	 into	5	mm	NMR	tubes	for	analysis.	Egg	yolk	and	white	were	

prepared	 following	 the	 same	 protocol.	 Plasma	 samples	 were	mixed	 at	 a	 2:1	 (v/v)	

ratio	 with	 phosphate	 saline	 buffer	 with	 90%	 D2O,	 of	 which,	 500	 µL	 were	 then	

transferred	into	5	mm	NMR	tubes.	Faecal	samples	were	extracted	by	mixing	0.1	g	of	

faeces	 in	 1	mL	of	 phosphate	 buffer	 (plus	 TSP)	with	 a	 Bead	beater	 for	 3	min	 using	

glass	beads	at	the	frequency	of	1/25.	Samples	were	centrifuged	at	12	000	x	g	for	10	

min	 in	 a	 refrigerated	 centrifuge	 and	 supernatant	was	 kept	 at	 4°C	 overnight	 to	 let	

urea	precipitate.	After	 centrifugation	 for	 5	min	 at	 12000	 x	 g,	 the	 supernatant	was	

transferred	into	5	mm	NMR	tubes.	
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3.2.3.	NMR	spectra	acquisition	

For	all	polar	tissue	extracts,	egg	yolk	and	faeces,	1H-NMR	spectra	were	acquired	on	a	

Bruker	 Avance	 DRX	 spectrometer	 operating	 at	 700.19	 MHz	 and	 equipped	 with	 a	

CryoProbeTM	 from	 the	 same	 manufacturer.	 A	 standard	 1-dimentional	 noesypr1D	

pulse	sequence	(noesypr1d	–	90	degree	pulse	length	of	7.7	µs	and	total	acquisition	

time	 3.34	 s-)	with	water	 presaturation	 applied	 during	 relaxation	 delay	 (2	 s)	 and	 a	

mixing	time	of	100	ms	at	298K	was	used.	Plasma	and	egg	white	1H	NMR	spectra	were	

acquired	 using	 a	 Carr-Purcell-Meiboom-Gill	 (CPMG)(Meiboom	 and	Gill	 1958)	 pulse	

sequence	to	limit	signal	contribution	from	albumin	and	ovalbumin	respectively.	For	

each	sample	256	scans	(16	dummy	scans)	were	recorded	into	64K	data	points	over	a	

spectra	width	of	 12019	Hz	 as	 for	 noesypr1D.	 1H-1H	COSY	 and	1H-13C	HSQC	were	

obtained	 for	 each	 biological	 matrix	 on	 one	 representative	 sample	 for	 metabolite	

identification	purposes.		

	

3.2.4.	Data	processing	and	analysis	

Prior	to	Fourier	transformation,	an	exponential	window	with	line	broadening	of	0.3	

Hz	was	 applied	 to	 each	 1D	NMR	 spectrum.	All	 spectra	were	phased	manually	 and	

baseline	 corrected	 on	 MestReNova	 software	 (2013	 Mestrelab	 Research	 S.L.).	

Spectral	 calibration	 was	 performed	 using	 TSP	 (δ	 0.00)	 for	 all	 tissues	 and	 yolk	

samples,	lactate	(δ	1.33)	for	plasma	and	the	H1	proton	of	α-glucose	(δ	5.23)	for	egg	

white	 spectra.	 One	 representative	 spectrum	 was	 selected	 from	 each	 biological	

matrix	 for	 illustration	 purpose	 and	 peak	 assignments.	 For	 these	 spectra	 signal	

suppression	was	done	at	δ4.84	during	FID	processing	to	attenuate	water	resonance.		
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Signal	assignment	and	metabolite	identification	was	done	using	an	in	house	standard	

database,	published	literature(Merrifield	et	al.	2011;	Claus	et	al.	2008;	Nicholson	et	

al.	 1995)	 and	online	public	databases:	 the	Human	Metabolome	Data	Base	 (HMDB,	

http://www.hmdb.ca)	 and	 the	 Magnetic	 Resonance	 Data	 Bank	 (BMRB,	

http://www.bmrb.wisc.edu).	 2D	 NMR	 plots	 were	 used	 to	 confirm	 metabolite	

assignment.	 Indeed,	 COSY	 1H-1H	 spectra	 allow	 to	 see	 cross	 peaks	 occurring	when	

hydrogen	 are	 attached	 to	 two	 neighbour	 carbons.	 Therefore,	 when	 two	 1H	 are	

attached	 to	 conterminous	 carbons,	 a	 cross	 peak	 appears	 on	 the	 2D	 COSY	 spectra	

allowing	 confirmation	 of	 metabolites	 presence.	 This	 method	 cannot	 be	 used	 for	

molecules	 such	 as	 acetate	 that	 only	 present	 a	 detectable	 CH3	using	 NMR.	 In	 such	

assessed	presence	of	the	metabolite	was	an	assessed	using	a	standard.	

	

3.2.5.	Statistical	analysis	

For	 statistical	 analysis,	 spectra	 were	 imported	 into	 MatLab	 (version	 R2013b,	 The	

MathsWorks	inc.)	and	residual	signal	water	region	was	removed	(δ4.70-5.10)	before	

normalisation	 (to	 account	 for	 variations	 in	 sample	 size	 and	 distribution)	 using	 a	

median-base	 probabilistic	 quotient	 method(Dieterle	 et	 al.	 2006).	 Principal	

component	analysis	(PCA)	was	performed	using	algorithms	provided	by	the	Korrigan	

toolbox	 (Korrigan	 Sciences	 Ltd)	 in	order	 to	 evaluate	dominant	 sources	of	 variation	

between	biological	matrices.	Venn	diagrams	were	also	 created	using	online	Venny	

software	(Venny	2.1	http://bioinfogp.cnb.csic.es/tools/venny/).	
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3.3.	Results	and	Discussion	

Systemic	Metabolic	characterisation	of	several	mammals,	including	rodents(Claus	et	

al.	2008;	Griffin	et	al.	2000;	Martin	et	al.	2007;	Martin	et	al.	2009),	pig(Merrifield	et	

al.	2011),	humans(Ndagijimana	et	al.	2009;	Holmes	et	al.	1997;	Nicholson	et	al.	1995)	

and	 horse(Escalona	 et	 al.	 2014)	 is	 available	 but,	 to	 date,	 no	 overview	 of	 any	 bird	

metabolic	 phenotype	 has	 been	 published	 despite	 their	 industrial	 significance	 and	

source	of	worldwide	protein	 for	man.	This	work	gives	a	summary	of	 the	metabolic	

composition	of	twelve	biological	matrices	detectable	by	NMR	spectrometry	in	order	

to	be	used	for	future	NMR-based	metabonomics	research.	

Representative	1H-NMR	spectra	of	the	twelve	biological	matrices	investigated	in	this	

study	 are	 presented	 in	 Figures	 3.1,	 3.2,	 3.3	 and	 3.4	 to	 offer	 an	 overview	 of	 the	

chicken	metabolome.	Organs	and	biofluids	related	to:	the	general	metabolism	(liver,	

kidney,	plasma	and	spleen	–Figure	3.1-),	product	destined	to	consumption	(egg	yolk	

and	white	 and	muscle	 –Figure	 3.2-),	 the	 frontal	 cortex	 (Figure	 3.3)	 and	 the	 lower	

digestive	 track	 (colon,	 caeca	 ileum	and	 faeces	–Figure	3.4-).	 The	numerical	 key	 for	

annotation	is	presented	in	Table	1	and	complementary	information	provided	by	2D	

spectroscopy	for	peak	assignment	is	given	in	Figures	3.5	and	3.6.		
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3.3.1.	Matrix	characterisation	

	

Figure	 3.1:	 Partially	 assigned	 700	 MHz	 1D	 NMR	 spectra	 of	 chicken	 liver,	 kidney,	
spleen	and	plasma.	Numerical	key	described	in	Table	3.1.	
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Hepatic	 metabolic	 profile	 (figure	 3.1)	 was	 caracterised	 by	 high	 levels	 of	 betaine,	

lactate	 and	 glucose.	 This	 was	 the	 only	 biological	 matrix	 where	 it	 was	 possible	 to	

detect	glutathione	(in	its	oxidised	form	since	the	total	pool	of	glutathione	becomes	

oxidised	 during	 tissue	 extraction),	 in	 very	 small	 quantities,	 in	 contrast	 to	 what	 is	

commonly	 found	 in	 mammalian	 hepatic	 metabolic	 profiles(Martin	 et	 al.	 2007;	

Waters	et	al.	2002;	Duarte	et	al.	2005;	Claus	et	al.	2008).	

	

Similarly,	kidney	metabolic		profiles	were	rich	in	lactate,	which	is	consistent	with	the	

important	role	of	the	kidney	in	energy	metabolism.	In	addition,	betaine	and	creatine	

were	 found	 in	 very	 high	 concentrations.	 Betaine	 is	 an	 important	 osmolyte	 in	 the	

kidney	and	its	concentration	generally	 increases	 in	case	of	water	privation.	 In	birds	

the	 most	 important	 kidney	 osmolytes	 are	 myo-inositol,	 betaine,	

glycerophosphorylcholine,	and	taurine(Lien	et	al.	1993)	that	were	all	detected	using	

1H-NMR.		

	

The	metabolic	profile	of	the	spleen	was	characterized	by	high	levels	of	betaine,	myo-

inositol	and	phosphocholine.	This	was	one	of	the	few	matrices	that	did	not	possess	

any	 unique	 metabolic	 feature,	 as	 all	 the	 metabolites	 detectable	 by	 NMR	

spectrometry	 were	 shared	 with	 liver,	 kidney	 and	 plasma.	 This	 similarity	 may	 be	

explained	 by	 the	 high	 vascularization	 of	 this	 tissue.	 In	 particular,	 it	 shared	 with	

plasma	high	lactate	and	betaine.	Unique	to	plasma	metabolic	fingerprints	were	large	

resonances	from	lipoproteins,	mainly	HDL	and	VLDL.	It	was	also	possible	to	see	high	

lactate,	glucose	and	betaine	levels.	The	metabolic	profile	was	similar	to	liver,	kidney	
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and	 spleen,	 but	 it	 was	 the	 only	 matrix	 where	 it	 was	 possible	 to	 identify	 malate,	

involved	in	the	citric	acid	cycle.	

	

	

Figure	3.2:	Partially	assigned	700	MHz	1D	NMR	spectra	of	chicken	muscle,	egg	white	
and	yolk.	Numerical	 key	described	 in	Table	3.1.	 In	 the	 figure,	white	egg	white	and	
egg	yolk	

	

The	pectoral	muscle	presented	the	most	distinctive	metabolic	features	in	respect	to	

the	other	tissue	type	samples,	with	only	twenty-three	identifiable	metabolites.	Three	
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metabolites	 were	 in	 noticeably	 high	 concentration	 with:	 anserine,	 creatine	 and	

lactate.	We	only	detected	AMP	in	muscle.	Due	to	its	pKa	close	to	7	anserine	is	a	very	

good	buffer	that	maintain	muscle	pH	neutrality(Boldyrev	et	al.	2013).	The	ability	of	

anserine	 to	maintain	 a	 certain	 pH	 in	 the	muscle	 is	 known	 to	 increase	 the	 rate	 of	

glycolysis(Davey	1960).	It	is	also	a	well-known	antioxidant(Kohen	et	al.	1988),	playing	

an	important	role	during	muscle	contraction.	

	

The	 metabolic	 profile	 of	 egg	 white	 had	 high	 glucose	 content	 and	 presented	 only	

twenty-three	detectable	metabolites.	This	was	not	surprising	knowing	that	egg	white	

is	relatively	poor	in	micronutrient	and	is	mainly	constituted	of	water	(88%),	protein	

(10%)	 and	 less	 that	 1%	 of	 carbohydrates(Reserves	 2007).	 Egg	 nutritive	 values	 for	

embryo	development	are	mainly	attributed	to	these	proteins(Reserves	2007).	It	was	

also	 the	 only	 matrix	 where	 we	 could	 detect	 glucose	 derived	 molecules,	 such	 as	

uridine	diphosphate	glucose	(UDPG)	involved	in	embryo	retina	development(Dreyfus	

et	al.	1975)	and	UDP-N	acetyl	glucosamine	(UDP-GlcNAC)	as	previously	described	by	

Donovan	 et	 al(Donovan	 et	 al.	 1967)	 that	 can	 be	 associated	 to	 muscle	

expansion(Ullrich	et	al.	1981).	UDPG	is	involved	in	polysaccharide	synthesis	and	UDP-

GlcNAC	 is	 related	 to	glycosaminoglycan,	proteoglycan	and	glycolipid	anabolism	but	

nothing	has	been	published	yet	on	this	matter.	

	

In	contrast,	Yolk	polar	phase	metabolic	profile	was	featured	by	by	amino	acids	and	

carbohydrate	 such	 as	 glucose	 and	 galactose.	 All	 amino	 acids	 essential	 for	 protein	

synthesis	 but	 cysteine	 (that	 can	 be	 generated	 from	 methionine	 or	 serine)	 were	

detectable	 in	 the	 yolk	 as	 well	 as	 residual	 lipids	 that	 constitute	 66%	 of	 yolk	 dry	
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matter(Reserves	2007).	No	particularly	distinctive	metabolites	were	observed	in	the	

yolk.	

	

	

Figure	3.3:	 representative	700	MHz	proton	NMR	spectrum	of	chicken	brain	cortex.	
The	Numerical	key	is	described	in	Table	3.1.	

	

The	metabolic	profile	of	 the	brain	cortex	presented	a	high	content	 in	myo-inositol,	

creatine,	 glutamate,	 taurine	 and	 4-aminobutyrate	 (GABA).	 Carnosine	 was	 also	

detected,	 which	 is	 a	 known	 brain	 antioxidant(Kohen	 et	 al.	 1988).	 Surprisingly	 in	

contrast	 with	 muscle,	 it	 was	 not	 possible	 to	 detect	 anserine,	 which	 has	 been	

reported	to	be	present	in	birds	central	nervous	system(Biffo	et	al.	1990).	
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Figure	 3.4:	 Partially	 assigned	 700	MHz	 1D	NMR	 spectra	 of	 chicken	 colon,	 caecum,	
ileum	and	faeces.	The	Numerical	key	is	described	in	Table	3.1.		
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The	 metabolic	 profiles	 of	 gastrointestinal	 segments	 were	 characterised	 by	 the	

presence	 of	 amino	 acids	 and	 SCFAs.	 Distinctive	 features	 of	 the	 ileum	 was	 the	

presence	of	glucose.	Furthermore,	the	aromatic	region	was	rich	in	phenylalanine	and	

tyrosine	 in	 comparison	 to	 colon	and	 caeca.	 This	 tissue	did	not	present	any	unique	

metabolic	 feature.	 The	metabolic	 profile	 of	 the	 caeca	 contained	 short	 chain	 fatty	

acids	 and	 amino	 acids	 composition.	 It	 was	 also	 possible	 to	 detect	 isobutyrate	 a	

product	 of	 amino	 acid	 degradation	 by	 gut	 bacteria.	 A	 very	 high	 level	 of	 o-

phosphocholine	 related	 to	 immunologic	 responses(Wiens	 et	 al.	 2003)	 to	

pneumococcal	 infection	 was	 observed	 in	 this	 tissue.	 The	 metabolic	 profile	 of	 the	

colon	 was	 high	 in	 short	 chain	 fatty	 acids	 (acetate,	 propionate	 and	 butyrate)	 and	

amino	acids	(alanine,	aspartate,	glutamate,	glutamine,	glycine,	histidine,	 isoleucine,	

leucine,	methionine,	phenylalanine,	proline,	tryptophan,	tyrosine	and	valine).	It	was	

the	 only	 tissue	 where	 we	 detected	 3-hydroxyphenylacetate.	 Unlike	 previously	

published	results	for	rodents(Claus	et	al.	2008),	glucose	resonances	were	not	visible	

in	the	colon,	despite	 its	presence	in	faeces.	Colon	was	the	digestive	system	related	

matrix	 presenting	 the	 poorest	 metabolic	 diversity	 with	 thirty-six	 detectable	

metabolites.	 Finally,	 in	 birds,	 faeces	 also	 contain	 urine	 since	 digestive	 and	 urinary	

systems	 share	 the	 same	 portal	 (the	 cloaca).	 Therefore,	 it	 was	 not	 surprising	 to	

observe	forty-three	metabolites,	of	which	only	ten	of	them	pertained	exclusively	to	

faeces:	 2-hydroxybutyrate,	 3-hydroxyisobutyrate,	 arabinose,	 benzoate,	

dimethylamine,	 methylamine,	 N-acteylglucosamine,	 N-acetyltyrosine	 and	

trigoneline.	
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Table	 3.1:	1H	 assignment	 for	 identified	metabolites	 and	 tissue/biofluid.	 Legend:	 L,	
liver;	K,	kidney;	S,	pleen;	B,	cortex;	M,	pectoral	muscle;	Ce,	ceca;	Co,	colon;	I,	ileum;	
F,	feces;	P,	plasma;	W,	egg	white;	Y,	egg	yolk.	

		 Metabolite	 Assignement	 Matrix	
1	 2-Hydroxybutyrate	 CH3	0.90	t,	CH2	1.70	m,	CH	4.0	dd	 F	
2	 3-Hydroxybutyrate	 CH3	1,19	d,	1/2CH2	2.30	dd,	1/2CH2	2.39	dd,	CH	4.14	m	 L	
3	 3-Hydroxyisobutyrate	 CH3	1.05	d,	CH	2.48	m,	1/2CH2	3.53	dd,	1/2CH2	3.70	dd	 F	
4	 3-

Hydroxyphenylacetate	
CH2COOH	3.47	s,	C4H	6.78	m,	C6H	6.80	m,	C2H	6.85	m,	C3H	7.24	t		 Co	

5	 4-Aminobutyrate	 βCH2	1.88	m,	αCH2	2.29	t,	γCH2	3.01	t	 B	
6	 Acetate	 CH3	1.92	s	 L,	K,	S,	B,	M,	Ce,	Co,	I	,F,	P,	W	
7	 Alanine	 βCH3	1.46	d,	αCH	3.78	q	 L,	K,	S,	B,	M,	Ce,	Co,	I	,F,	P,	Y,		

W	
8	 β-Alanine	 CH2COOH	2.56	t,	N-CH2	3.19	t	 L,	K,	S,	M,	Ce,	I,	P	
9	 AMP	 P-CH2	4.01	m,	C1H	4.36	m,	C2H	4.50	q,	C3H	4.79	t,	C4H	6.12	d,	C8H	8.25	s,	

C5H	8.58	s	
M	

10	 Anserine	 βCH2	2.68	m,	1/2δCH2	3.03	dd,	1/2δCH2	3.21	dd,	αCH2	3.22	m,	CH3	3.76	s,	
γCH2	4.48	m,	CH	7.07	s,	N-CH	8.20	s	

M	

11	 Arginine	 γCH2	1.66	m,	βCH2	1.91	m,	δCH2	3.27	t,	αCH	3.77	t	 L,	S,	P,	Y,	W	
12	 Ascorbate	 CH2	3.73	ddd,	CH	4.01	d,	C5	4.51	d	 S,	B,	P	
13	 Asparagine	 1/2βCH2	2.86	dd,	1/2βCH2	2.96	dd,	αCH	4.00	dd	 L,	S,	B,	Ce,	I,	Y	
14	 Aspartate	 1/2βCH2	2.68	dd,	1/2βCH2	2.82	dd,	αCH	3.91	dd	 L,	S,	Ce,	Co,	I,	F,	P,	Y	
15	 Betaine	 N-(CH3)3	3.37	s,	CH2	3.93	s	 L,	K,	S,	B,	M,	Ce,	Co,	I,	F,	P,	Y	
16	 Butyrate	 CH3	0.88	t,	βCH2	1.55	m,	αCH2	2.15	t	 Ce,	Co,	I,	F	
17	 Carnitine	 αCH2	2.43	m,	N-(CH3)3	3.21	s,	γCH2	3.42	m,	βCH	4.56	m	 B	
18	 Carnosine	 βCH2	2.67	m,	1/2δCH2	3.03	dd,	1/2δCH2	3.16	dd,	αCH2	3.22	m,	γCH2	4.46	m,	

CH	7.08	s,	N-CH	s	
B,	M	

19	 Choline	 N-(CH3)3	3.22	s,	βCH2	3.53	dd,	αCH2	4.06	t	 L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	Y,	W	
20	 Citrate	 1/2γCH2	2.55	d,	1/2γCH2	2.70	d	 K,	B,	I,	F,	Y	
21	 Creatine	 N-CH3	3.03	s,	N-CH2	3.94	s	 L,	K,	S,	B,	M,	Ce,	Co,	I	,F,	P,	W	
22	 Creatinine	 N-CH3	3.05	s,	N-CH2	4.06	s	 K,	Ce,	Co,	I,	F,	P	
23	 Cysteine	 βCH2	3.03	dd,	αCH2	3.97	t	 S,	Ce,	Co,	I,	P	
24	 Dimethylamine	 CH3	2.72	s	 F	
25	 Ethanolamine	 CH2NH2	3.13	t,	CH2COH	3.83	t	 B,	I	
26	 Formate	 HCOOH	8.46	s	 L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	W	
27	 Fumarate	 HCOOH	6.51	s	 K,	S,	B,	M,	Ce,	Co,	I,	P,	Y	
28	 α-Galactose	 C6H	3.74	m,	C2H	3.80	m,	C3H	3.84	m,	C4H	3.98	m,	C5H	4.07m,	C1H	5.26	d	 F,	Y	
29	 β-Galactose	 C2H	3.48	m,		C3H	3.63	m,	C5H	3.69	m,	C6H2	3.74	m,	C4H	3.92	m,	C1H	4.57	d	 F,	Y	
30	 α-Glucose	 C4H	3.42	m,	C2H	3.54	m,	CH3	3.72	m,	1/2C6H2	3.73	m,	1/2C6H2	3.77	m,	C5H	

3.87m,	C1H	5.23	d	
L,	K,	S,	M,	F,	P,	Y,	W	

31	 β-Glucose	 C2H	3.25	m,			C4H	3.49	m,	C5H	3.49	m,	C3H	3.50	m,	1/2C6H2	3.88	m,	
1/2C6H2	3.91	m,	C1H	4.66	d	

L,	K,	S,	M,	F,	P,	Y,	W	

32	 Glutamate	 βCH2	2.02	m,	γCH2	2.34	m,	αCH	3.76	dd	 L,	K,	S,	B,	M,	Ce,	Co,	I	,F,	P,	Y,	
W	

33	 Glutamine	 βCH2	2.15	m,	γCH2	2.44	m,	αCH	3.77	t	 L,	K,	S,	B,	M,	Ce,	Co,	I	,F,	P,	Y	
34	 Glutarate	 CH2	1.78	m,	2HCOOH	2.17	t	 B	
35	 Glutathione	 CH2	2.17	m,	CH2	2.53	m,	S-CH2	2.95	dd,	N-CH	3.83	m,	CH	4.56	q	 L	
36	 Glycerol	 1/2CH2	3.58	m,	1/2CH2	3.62	m,	CH	3.77	t	 L,	K,	S,	B,	M,	Ce,	P,	W	
37	 Glycerophosphocholine	 N-(CH3)3	3.22	s,	NCH2	3.68	m,	OCH2	4.32	m	 L,	K	
38	 Glycine	 αCH2	3.55	s	 L,	K,	S,	B,	M,	Ce,	Co,	I	,F,	P,	Y	
39	 Glycogen	 C2H	3.63	dd,	C4H	3.66	dd,	C5H	3.83	q,	C6H	3.87	d,	C3H	3.98	d,	C1H	5.41	m	 L	
40	 Histidine	 1/2CH2	3.16	dd,	1/2CH2	3.23	dd,	CH	3.98	dd,	CH	7.09	s,	CH	7.90	s	 L,	K,	S,	B,	Ce,	Co,	I,	P,	Y	
41	 Hypoxanthine	 CH	8.18	s,	CH	8.21	s	 L,	K,	S,	B,	Ce,	Co,	I,	P	
42	 Inosine	 1/2CH2	3.83	dd,	1/2CH2	3.91	dd,	C1H	4.27	dd,	C2H	4.43	dd,	C3H	4.76	t,	C4H	

6.09	d,	NH-CH	8.23	s,	N-CH	8.34	s	
M,	Ce,	Co,	I	

43	 Isobutyrate	 (CH3)2	1.05	d,	CH	2.38	m	 Ce	
44	 Isoleucine	 γCH3	0.94	t,	δCH3	1.02	d,	1/2γCH2	1.26	m,	1/2γCH2	1.47	ddd,	βCH	2.01	m,	

αCH	3.65	d	
L,	K,	S,	B,	M,	Ce,	Co,	I	,F,	P,	Y,	
W	

45	 Lactate	 βCH3	1.33	d,	αCH	4.12	q	 L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	W	
46	 Leucine	 δCH3	0.93	d,	βCH2	0.94	d,	γCH	1.71	m,	αCH	3.73	m	 L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	Y,	W	
47	 Lipoproteins	(HDL)	 CH3(CH2)n	0.84	t,	(CH2)n	1.25	m,	CH2-C=C	2.04	m,	CH2-C-O	2.24	m,	=CH-CH2-

CH=	2.75	m,	CH=CHCH2	5.32	m	
L	,B,	F,	P,	Y	
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48	 Lipoproteins	(VLDL)	 CH3CH2CH2C=	0.87	t,	CH2CH2CH2CO	1.29	m,	CH2CH2O	1.57	m,	CH2-C=C	2.04	m,	
CH2-C-O	2.24	m,	=CH-CH2-CH=	2.75	m,	CH=CHCH2	5.32	m	

L,	B,	F,	P,	Y	

49	 Lysine	 γCH2	1.46	m,	δCH2	1.71	m,	βCH2	1.84	m,	εCH2	3.01	t	 L,	K,	S,	B,	I,	F,	Y	
50	 Malate	 1/2HCOOH	2.38	dd,	1/2HCOOH	2.66	dd,	H-CH	4.30	dd	 P	
51	 α-Mannose	 C5H	3.37	m,	C4H	3.56	m,	C3H	3.65	m,	C6H	3.73	m,	C2H	3.92	m,	C1H	5.17	d	 W	
52	 β-Mannose	 C4H	3.65	m,	C5H	3.80	m,	C3H	3.84,	C6H	3.88,	C2H	3.92	m,	C1H	4.89	d	 W	
53	 Methionine	 δCH3	2.13	s,	βCH	2.14	m,	γCH2	2.60	t,	αCH	3.78	t	 L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	Y	
54	 Methylamine	 CH3	3.29	s	 F	
55	 myo-Inositol	 C5H	3.29	t,	C1H	C3H	3.53	dd,	C4H	C5H	3.63	t,	C2H	4.06	t	 L,	K,	S,	B,	Ce,	Co,	I,	P,	Y,	W	
56	 N-Acetylglucosamine	 CH3	1.98	s,	C3H	3.44&3.76	t,	C5H	3.45&3.84	m,	C4H	3.48&3.53	t,	C2H	

3.66&3.86	m,	C6H	3.77	m	&	3.87	dd,	C1H	β	4.71	α	5.19	d,	NH	8.10	d	
F	

57	 N-acetyltyrosine	 CH3	1.92	s,	1/2βCH2	2.83	dd,	1/2βCH2	3.08	dd,	αCH	4.37	m,	C3H	C5H	6.84	m,	
C2H	C4H	7.14	m,	NH	7.75	d	

F	

58	 Nicotinurate	 CH2	3.99	s,	H5	7.60	dd,	H4	8.25	d,	H6	8.71	d,	H2	8.94	s	 L,	K,	S,	B,	M,	Ce,	Co,	I	
59	 O-Phosphocholine	 N-(CH3)3	3.21	s,	CH2	3.58	m,	O-CH2	4.16	m	 L,	K,	S,	B,	Ce,	Co,	I,	Y	
60	 Ornithine	 1/2γCH2	1.72	m,	1/2γCH2	1.82	m,	βCH2	1.93	m,	δCH2	3.04	t,	αCH	3.77	t	 K,	Y	
61	 Phenylalanine	 1/2βCH2	3.12	dd,	1/2βCH2	3.26	dd,	C3H	C5H	7.33	m,	C4H	7.35	m,	C3H	C6H	

7.40	m	
L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	Y,	W	

62	 Proline	 γCH2	2.03	m,	1/2βCH2	2.03	m,	1/2βCH2	3.35	m,	1/2δCH2	3.38	m,	1/2δCH2	
3.41	m,	αCH	4.41	dd	

L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	Y,	W	

63	 Propionate	 CH3	1.04	t,	CH2	2.17	q	 Ce,	Co,	F	
64	 Serine	 αCH	3.85	dd,	1/2βCH2	3.95	dd,	1/2βCH2	3.95	dd	 K,	S,	B,	Ce,	I,	Y	
65	 scyllo-inositol	 CH	3.35	s	 K	
66	 Succinate	 CH2	2.04	s	 L,	K,	S,	M,	Ce,	Co,	I,	F,	P	
67	 Taurine	 N-CH2	3.26	t,	S-CH2	3.43	t	 L,	K,	S,	B,	Ce,	Co,	I,	P	
68	 Threonine	 γCH3	1.32	d,	αCH	3.60	d,	βCH	4.25	m	 L,	K,	S,	B,	Ce,	I	F,	P,	Y	
69	 Trigonelline	 CH3	4.43	s,	C4H	8.07	m,	C3H	C5H	8.91	m,	C1H	9.11	s	 F	
70	 Trimethylamine	N-

oxide	
N-(CH3)3	3.27	s	 L,	K,	B,	Ce,	Co,	I,	F,	P	

71	 Tryptophan	 1/2βCH2	3.31	dd,	1/2βCH2	3.49	dd,	αCH	4.06	dd,	C5H	7.21	t,	C6H	7.29	t,	C1H	
7.33	s,	C3H	7.55	d,	C4H	7.74	d	

L,	K,	S,	Ce,	Co,	I,	F,	Y	

72	 Tyrosine	 1/2CH2	3.04	dd,	1/2CH2	3.18	dd,	N-CH	3.94	dd,	C3H	C5H	6.89	m,	C2H	C6H	
7.18	m	

L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	Y,	W	

73	 UDP-glucose	 C4H	3.47	t,	C2H	3.54	m,	C3H	3.77	t,	1/2C6H	3.77	dd	1/2C6H	3.85	dd,	C5H	
3.88	m,	1/2CH2	4.19	m,	1/2CH2	4.24	m,	O-CH	4.28	m,	C'3H	4.36	dd,	C'2H	4.37	
dd,	C1H	5.97	d,	O-CH-N	5.97	d,	N-CH	7.94	d	

W	

74	 UDP-N-acetyl	glucose	 CH3	2.07	s,	C4H	3.55	t,	C3H	3.80	t,	1/2C6H	3.81	dd,	1/2C6H	3.86	dd,	C5H	3.91	
m,	C2H	3.98	m,	1/2CH2	4.18	m,	1/2CH2	4.23	m,	O-CH	4.28	m,	C'3H	4.35	dd,	
C'2H	4.36	dd,	C1H	5.51	dd,	CH	5.95	d,	O-CH-N	5.97	d,	N-CH	7.94	d,	NH	8.35	d	

W	

75	 Uracil	 C5H	5.80	d,	C6H	7.54	d	 L,	K,	S,	B,	Ce,	Co,	P	
76	 Uridine	 1/2CH2	3.81	dd,	1/2CH2	3.92	dd,	C4H	4.12	dt,	C3H	4.24	dd,	C2H	4.36	dd,	C1H	

5.88	d,	C5H	5.92	m,	C6H	7.88	d	
W,	S	

77	 Valerate	 CH3	0.88	t,	γCH2	1.29	m,	βCH2	1.51	m,	αCH2	2.17	t	 Ce,	F	
78	 Valine	 γCH3	0.98	d,	γ'CH3	1.04	d,	βCH	2.27	m,	αCH	3.62	d	 L,	K,	S,	B,	Ce,	Co,	I,	F,	P,	Y,	W	
79	 Xanthine	 CH	7.92	s	 K,	S,	B,	Ce,	Co,	I	
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Figure	3.5:	700	MHz	1H-1H	COSY	NMR	spectra	of	spleen,	key	indicated	by	Table	3.1		

	

	

Figure	3.6:	700	MHz	1H-13C	HSQC	NMR	spectra	of	Liver,	key	indicated	by	Table	3.1	
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3.3.2.	Matrix	cross	comparison	

Cross	 tissues	 comparison	 of	 detectable	 metabolites	 was	 performed	 using	 a	 Venn	

diagram	 (Figure	 3.7	 and	 Table	 3.2)	 and	 revealed	 the	 high	 metabolic	 variability	

existing	between	the	twelve	biological	matrices	investigated	in	this	study.	Only	eight-

core	 metabolites	 were	 found	 out	 of	 a	 total	 of	 seventy-nine	 detected	 molecules.	

Detected	 core	 metabolites	 were	 all	 amino	 acids:	 alanine,	 glutamate,	 isoleucine,	

leucine,	 phenylalanine,	 proline,	 tyrosine	 and	 valine	 and	 can	 be	 considered	

ubiquitous	 stable	 metabolites.	 Matrices	 related	 to	 general	 metabolic	 processes	

(liver,	kidney,	spleen	and	plasma)	shared	twenty-eight	metabolites	related	to	energy	

and	protein	metabolism.	Biological	matrices	 related	 to	 the	Digestive	 system(colon,	

caeca,	 ileum	 and	 faeces)	 shared	 23	 core	 metabolites	 associated	 with	 microbial	

activity,	energy	metabolism	and	protein	degradation.	

	

Figure	3.7:	Venn	diagram	representing	metabolic	similarities	between	the	12	studied	
chicken	matrixes.	A:	 chicken	 general	metabolism:	 plasma,	 Liver,	 Kidney,	 Spleen.	 B:	
Muscle,	 egg	 yolk,	 egg	white	 and	 brain	 cortex.	 C	Digestive	 system:	 Colon,	 Caecum,	
Ileum,	 Faeces.	 Each	 umber	 represents	 a	 zone	 of	 intersection,	 the	 numbers	 in	
brackets	indicate	the	number	of	metabolites	shared	in	the	specified	zone,	details	of	
the	 metabolites	 are	 displayed	 in	 Table	 3.2.	 The	 Venn	 diagram	 comes	 first	 in	 the	
discussion;	you	must	be	consistent.	
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Table	 3.2:	 Summary	 of	 the	 metabolites	 found	 in	 each	 zone	 of	 the	 Venn	 diagram	
presented	in	Figure	3.7.	

	 Zone	 N	 Metabolites	

A	 1	 1	 Malate	
	 2	 4	 3-Hydroxybutyrate,	Glutathione,	Glycerophosphocholine,	Glycogen	
	 3	 3	 Citrate,	Ornithine,	scyllo-inositol	
	 5	 2	 Lipoprotein	HDl	and	VLDL	
	 7	 2	 Serine,	Xanthine	
	 8	 1	 Trimethylamine	N-oxide	
	 9	 4	 Lysine,	Nicotinurate,	O-Phosphocholine,	Tryptophan	
	 10	 1	 Creatinine	
	 11	 28	 Acetate,	Alanine,	β-Alanine,	Betaine,	Choline,	Creatine,	Formate,	α	and	β-Glucose,	Glutamate,	Glutamine,	Glycerol,	

Glycine,	Histidine,	Hypoxanthine,	Isoleucine,	Lactate,	Leucine,	Methionine,	myo-inositol,	Phenylalanine,	Proline,	
Succinate,	Taurine,	Threonine,	Tyrosine,	Uracil,	Valine	

	 12	 1	 Asparagine	
	 13	 1	 Fumarate	
	 14	 2	 Arginine,Aspartate	
	 15	 2	 Ascorbate,	Cysteine	

B	 1	 10	 4-Aminobutyrate,	Ascorbate,	Carnitine,	Ethanolamine,	Glutarate,	Hypoxanthine,	Taurine,	Trimethylamine	N-oxide,	
Uracil,	Xanthine	

	 2	 5	 β-Alanine,	AMP,	Anserine,	Inosine,	Succinate	
	 3	 5	 Aspartate,	α-Galactose,	β-Galactose,	Ornithine,	Tryptophan	
	 4	 5	 α-Manose,	β-Manose,	UDP-glucose,	UDP-N-acetyl	glucose,	Uridine	
	 5	 2	 Carnosine,	Nicotinurate	
	 7	 1	 Arginine	
	 8	 4	 Betaine,	Fumarate,	Glutamine,	Glycine	
	 9	 2	 α-Glucose,	β-Glucose	
	 10	 10	 Asparagine,	Citrate,	Histidine,	Lipoproteins	(HDL),	Lipoproteins	(VLDL),	Lysine,	Methionine,	O-Phosphocholine,	

Serine,	Threonine	
	 11	 8	 Alanine,	Glutamate,	Isoleucine,	Leucine,	Phenylalanine,	Proline,	Tyrosine,	Valine	
	 13	 2	 Choline,	myo-Inositol	
	 14	 4	 Acetate,	Creatine,	Glycerol,	Lactate	
	 15	 1	 Formate	

C	 1	 1	 3-Hydroxyphenylacetate	
	 2	 2	 Glycerol,	Isobutyrate	
	 3	 1	 Ethanolamine	
	 4	 13	 2-Hydroxybutyrate,	3-Hydroxyisobutyrate,	Dimethylamine,	α-Galactose,	β-Galactose,	α-Glucose,	β-Glucose,	

Lipoproteins	(HDL),	Lipoproteins	(VLDL),	Methylamine,	N-Acetylglucosamine,	N-acetyltyrosine,	Trigonelline	
	 6	 3	 β-Alanine,	Asparagine,	Serine	
	 7	 2	 Citrate,	Lysine	
	 8	 11	 Cysteine,	Fumarate,	Histidine,	Hypoxanthine,	Inosine,	mho-inositol,	Nicotinurate,	O-Phosphocholine,	Taurine,	

Uracil,	Xanthine	
	 9	 1	 Threonine	
	 11	 23	 Acetate,	Alanine,	Aspartate,	Betaine,	Butyrate,	Choline,	Creatine,	Creatinine,	Formate,	Glutamate,	Glutamine,	

Glycine,	Isoleucine,	Lactate,	Leucine,	Methionine,	Phenylalanine	Proline,	Succinate,	Trimethylamine	N-oxide,	
Tryptophan,	Tyrosine,	Valine	

	 12	 1	 Valerate	
		 14	 1	 Propionate	

	

The	largest	source	of	metabolic	variation	between	the	twelve	biological	matrices	was	

visualised	using	PCA	(Figure	3.8).	The	scores	of	liver,	kidney	and	spleen	samples	were	

clustered	together	on	the	three	first	principal	components	representing	77	%	of	the	

total	variance	(PC1,	PC2	and	PC3,	Figure	3.8).	Surprisingly,	this	was	also	observed	for	

muscle	 and	 brain	 cortex	 tissues.	 Metabolic	 profiles	 of	 samples	 derived	 from	 the	
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Digestive	 system	were	 also	 grouped	 together	but	presented	 the	highest	 variability	

between	samples	of	the	same	matrix.	These	were	the	samples	driving	separation	on	

the	first	component	,	which	was	associated	with	increased	levels	in	short	chain	fatty	

acidsproduced	 by	 gut	 microbial	 activity).	 Finally,	 plasma,	 egg	 yolk	 and	 egg	 white	

were	clustered	together	on	PC2	due	to	their	high	glucose	content.	Yolk	and	plasma	

metabolic	 profiles	 also	 clustered	 together	 because	 they	 shared	 high	 lipid	 levels..	

Interestingly,	 Egg-derived	 samples	were	 the	most	metabolically	 homogenous,	with	

the	 least	 inter-individual	 variability	 indicating	 that	 their	 metabolism	 is	 tightly	

regulated.	

	

	

Figure	3.8:	Metabolic	variability	between	the	twelve	described	chicken	matrices.	A.	3	
dimensional	PCA	scores	plot	calculated	using	all	1H-NMR	spectra	used	for	the	study	
(n=72).	 B.	 Loading	 corresponding	 to	 the	 metabolic	 variations	 observed	 on	 PC1,	
mainly	 related	 to	 microbial	 metabolism.	 C.	 Loadings	 representing	 the	 metabolic	
variations	 observed	 on	 PC2	 associated	 to	 energy	 metabolism.	 D.	 Loadings	 of	 PC3	
related	to	amino	acids	metabolism.	
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The	metabolic	profiles	of	colon,	caecum,	ileum	and	faecal	water	shared	many	similar	

metabolic	 patterns.	 23-shared	 metabolites	 related	 to	 microbial	 catabolism	 of	

polysaccharides	 (acetate,	 butyrate)	 and	 protein	 degradation	 (amino	 acids).	

Propionate,	 another	 important	 product	 of	 polysaccharide,	 fermentation	 was	 not	

found	 in	 the	 ileum	 but	 all	 other	 digestive	 matrices	 indicating	 that	 propionate	

fermentation	does	not	occur	in	this	part	of	the	digestive	system.	It	was	not	possible	

to	 separate	 caeca	 and	 colon	 using	 pairwise	 comparison	 indicating	 their	metabolic	

similarity.	 On	 the	 contrary	 it	 was	 possible	 to	 distinguish	 the	 ileum	 due	 to	 lower	

SCFAs	concentration	showing	that	gut	microbiota	at	this	level	of	the	GI	track	is	less	

active.	The	same	observation	was	done	in	mice	where	more	SCFAs	were	found	in	the	

lower	part	of	the	GI	track	due	to	high	microbial	colonization(Martin	et	al.	2009).	This	

metabolic	 characteristic	 clearly	 separated	 them	 on	 the	 PCA	 plot	 from	 the	 other	

matrices.	 Faecal	 water	 was	 the	 biofluid	 presenting	 the	 highest	 quantity	 of	

identifiable	metabolites,	of	which	ten	were	uniquely	found	in	this	matrix	probably	as	

a	result	of	the	complexity	of	the	food	provided	(see	material	supplement)	and	high	

microbial	activity.	These	ten	metabolites	were	mostly	SCFAs,	possibly	related	to	gut	

microbiota	 activity	 as	 well	 as	 methyl	 donors	 including	 methylamines.	 The	 high	

similarity	level	existing	between	the	GI	track	metabolic	profiles	and	the	faecal	water	

shows	 the	 great	 level	 of	 exchange	 existing	 between	 the	 GI	 lumen	 and	 the	

enterocytes.	 Birds	 were	 fed	with	 un-medicated	 layer	 pellets	 (Dodson	 and	 Horrell)	

that	mainly	contain	wheat	rich	in	complex	carbohydrate,	vegetable	oil	and	soya	as	a	

protein	source	(for	more	information	see	supplement	material).		
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Highly	metabolically	active	tissues,	liver,	kidney	and	spleen,	appear	to	be	very	similar	

although	 they	 serve	 different	 purposes	 (i.e.	 spleen	 is	 more	 involved	 in	 immune	

control)	as	presented	on	the	PCA	plot.	However,	due	to	the	high	number	of	studied	

matrices	and	their	high	variability,	this	model	lacks	sensitivity	to	separate	the	three	

tissues	which	present	a	high	number	of	similarity	qualitatively	and	quantitatively	but	

also	 some	 notable	 differences	 regarding	 glucose	 and	 creatine	 levels	 that	 were	

detectable	using	pairwise	comparisons.	

Egg	 metabolic	 profiles	 were	 dominated	 by	 energy	 metabolites	 (saccharides)	 and	

amino	 acids	 for	 both	 yolk	 and	 white	 matrices.	 Yolk	 was	 also	 extremely	 rich	 in	

cholesterol	and	lipids,	which	are	essential	to	cell	membrane	formation(Yeagle	1989;	

Spector	and	Yorek	1985)	but	are	also	sources	of	energy.	These	 results	confirm	the	

high	 nutritive	 value	 of	 chicken	 eggs	 due	 to	 their	 initial	 purpose	 for	 fetal	

development.		

The	 metabolic	 profile	 of	 muscle	 has	 only	 been	 described	 in	 mice	 for	 cardiac	

muscle(Griffin	et	al.	2001),	which	in	its	structure	and	function	is	different	to	striated	

skeletal	muscle.	Despite	their	differences,	both	muscle	metabolic	profiles	appear	to	

be	 characterized	 by	 lactate,	 which	 is	 the	 main	 product	 of	 glucose	 anaerobic	

fermentation	by	muscle	during	exercise(Brooks	1986),	creatine,	that	is	known	to	be	

principally	present	in	muscular	fiber	due	to	its	important	energy	input	by	ATP	release	

during	 muscular	 contraction(Bessman	 and	 Geiger	 1981;	 Casey	 et	 al.	 1990),	 and	

taurine,	also	involved	in	contractility(Pierno	et	al.	1998).	

In	 comparison	 to	 previous	metabolic	 profiles	 of	 mammals	 such	 as	mice,	 pigs	 and	

humans,	 these	 profiles	 show	 high	 qualitative	 but	 not	 necessarily	 quantitative	

similarity	in	liver,	kidney,	ileum,	colon	and	plasma	metabolic	profiles.	This	shows	that	
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despite	the	level	of	genetic	and	evolutionary	differences	existing	between	birds	and	

mammals,	 there	core	metabolic	 functions	remain	very	similar.	The	main	difference	

previously	 mentioned	 between	 chicken	 and	 mammals	 metabolic	 profiles	 were	

observed	 in	 the	 liver	 regarding	 the	 glutathione	 level	 that	was	 noticeably	 lower	 in	

birds.	 Glutathione	 is	 involved	 in	 cell	 protection	 due	 to	 its	 antioxidant	

properties(Meister	1983).	This	difference	had	been	already	reported	in	quail(Gregus	

et	al.	1983),	 suggesting	a	major	 shift	 in	 system	detoxification	by	 the	 liver	between	

mammals	and	birds.	 Indeed,	 several	publications	 relate	 the	higher	 susceptibility	of	

birds	 to	 toxic	 substances	 and	 the	 higher	 bioaccumulation	 in	 comparison	 to	

mammals(Walker	 1983)	 indicating	 a	 modification	 of	 detoxification	 metabolism	

during	evolution.	

	

3.4.	Conclusion	

This	study	presents	a	large	overview	of	chicken	metabolic	profiles	in	various	tissues	

and	biofluids	that	could	be	used	as	a	database	for	future	NMR-based	metabonomic	

analysis	 in	 avian	 industry.	 Such	 analysis	 could	 focus	 on	 metabolic	 impacts	 of	 GI	

infection	and	treatment	on	host	metabolism	but	also	on	diet	and	growth	condition	

impact	on	consumption	product	quality,	and	production	yields	 (i.e.	meat	and	egg).	

These	 data	 integrated	 with	 the	 other	 omics	 approaches	 will	 contribute	 to	 the	

understanding	of	host	response	to	environmental	changes,	infection	and	treatment	

that	should	lead	to	improved	animal	welfare.	
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Tiamulin™	use	to	treat	B.	pilosicoli-induced	AIS:	

After	evaluating	both	pathogen	and	host	metabolism,	the	next	step	was	to	evaluate	

the	 impact	of	 infection	and	antibiotic	 treatment	 in	 vivo.	An	animal	 trial	 funded	by	

Novartis	was	conducted	 in	order	 to	determine	 the	optimum	Tiamulin™	dose	 to	be	

used	to	treat	B.	pilosicoli	 infection.	This	work	was	published	 in	2015	 in	Research	 in	

Veterinary	Science.	
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Abstract	

Avian	 intestinal	 spirochaetosis	 (AIS)	 caused	 by	 Brachyspira	 spp.,	 and	 notably	

Brachyspira	 pilosicoli,	 is	 common	 in	 layer	 flocks	 and	 reportedly	 of	 increasing	

incidence	in	broilers	and	broiler	breeders.	Disease	manifests	as	diarrhoea,	increased	

feed	 consumption,	 reduced	 growth	 rates	 and	 occasional	 mortality	 in	 broilers	 and	

these	signs	are	shown	in	layers	also	associated	with	a	delayed	onset	of	lay,	reduced	

egg	weights,	faecal	staining	of	eggshells	and	non-productive	ovaries.	Treatment	with	
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Denagard®	 Tiamulin	 has	 been	 used	 to	 protect	 against	 B.	 pilosicoli	 colonisation,	

persistence	and	clinical	presentation	of	AIS	 in	commercial	 layers,	but	to	date	there	

has	been	no	definitive	study	validating	efficacy.	Here,	we	used	a	poultry	model	of	B.	

pilosicoli	 infection	 of	 layers	 to	 compare	 the	 impact	 of	 three	 doses	 of	 Denagard®	

Tiamulin.	 Four	 groups	 of	 thirty	 17	 week	 old	 commercial	 pre-lay	 birds	 were	 all	

challenged	with	B.	 pilosicoli	 strain	 B2904with	 three	 oral	 doses	 two	 days	 apart.	 All	

birds	were	colonised	within	2	days	after	 the	 final	oral	 challenge	and	mild	onset	of	

clinical	 signs	 were	 observed	 thereafter.	 A	 fifth	 group	 that	 was	 unchallenged	 and	

untreated	was	also	included	for	comparison	as	healthy	birds.	Five	days	after	the	final	

oral	Brachyspira	challenge	three	groups	were	given	Denagard®	Tiamulin	 in	drinking	

water	made	up	following	the	manufacturer's	recommendations	with	doses	verified	

as	58.7	ppm,	113	ppm	and	225	ppm.	Weight	gain	body	 condition	and	 the	 level	of	

diarrhoea	 of	 birds	 infected	 with	 B.	 pilosicoli	 were	 improved	 and	 shedding	 of	 the	

organism	 reduced	 significantly	 (p	 =	 0.001)	 following	 treatment	 with	 Denagard®	

Tiamulin	irrespective	of	dose	given.	The	level	and	duration	of	colonisation	of	organs	

of	birds	infected	with	B.	pilosicoli	was	also	reduced.	Confirming	previous	findings	we	

showed	that	the	ileum,	caeca,	colon,	and	both	liver	and	spleen	were	colonized	and	

here	 we	 demonstrated	 that	 treatment	 with	 Denagard®	 Tiamulin	 resulted	 in	

significant	reduction	in	the	numbers	of	Brachyspira	found	in	each	of	these	sites	and	

dramatic	reduction	in	faecal	shedding	(p	<	0.001)	to	approaching	zero	as	assessed	by	

culture	of	 cloacal	 swabs.	Although	 the	number	of	 eggs	produced	per	bird	 and	 the	

level	 of	 eggshell	 staining	 appeared	 unaffected,	 egg	 weights	 of	 treated	 birds	 were	

greater	 than	 those	 of	 untreated	 birds	 for	 a	 period	 of	 approximately	 two	 weeks	



	 101	

following	 treatment.	 These	 data	 conclusively	 demonstrate	 the	 effectiveness	 of	

Denagard®	Tiamulin	in	reducing	B.	pilosicoli	infection	in	laying	hens.	

	

4.1.	Introduction	

Avian	intestinal	spirochaetosis	(AIS)	has	been	recognised	as	a	disease	in	poultry	since	

1985	(Davelaar	et	al.,	1985)	and	the	condition	arises	from	the	colonisation	of	the	GI	

tract	of	 the	birds	by	the	anaerobic	spirochaete,	Brachyspira	 (Swayne	and	McLaren,	

1997;	 Stephens	 and	 Hampson,	 2001).	 Currently,	 three	 species	 of	 this	 genus	 are	

considered	 pathogenic	 in	 poultry	 and	 have	 been	 shown	 to	 induce	 AIS	 in	

experimentally	 challenged	 chickens;	 Brachyspira	 alvinipulli	 (Swayne	 et	 al.,	 1995;	

Stanton	 et	 al.,	 1998),	 Brachyspira	 intermedia	 (Hampson	 and	 McLaren,	 1999)	 and	

Brachyspira	 pilosicoli	 (Stephens	 and	 Hampson,	 2002).	B.	 pilosicoli	 has	 a	wide	 host	

range,	 also	 causing	 intestinal	 spirochaetosis	 in	 pigs	 (PIS)	 (Trott	 et	 al.,	 1996)	 and	

humans	 (HIS)	 (Tsinganou	 and	 Gebbers,	 2010),	 with	 a	 potential	 for	 zoonosis	

(Hampson	et	al.,	2006a,	2006b).	Of	these,	B.	pilosicoli	infection	seems	to	be	the	most	

prevalent	 and	 increasing	 in	 incidence	worldwide	although	 infection	with	 the	other	

Brachyspira	 species	 notably	 B.	 intermedia	 and	 B.	 alvinipulli,	 and	 infection	 with	

multiple	Brachyspira	species	is	noted	(Medhanie	et	al.,	2013).	AIS	is	common	in	layer	

flocks	 (Stephens	 and	 Hampson,	 1999)	 although	 an	 emerging	 issue	 in	 broilers	 and	

broiler	breeders	(Medhanie	et	al.,	2013).	Disease	manifests	as	diarrhoea,	 increased	

feed	 consumption,	 reduced	 growth	 rates	 and	 10%	 or	 greater	mortality	 in	 broilers	

and	 these	 signs	 are	 shown	 in	 layers	 also	 associated	 with	 a	 delayed	 onset	 of	 lay,	

reduced	 egg	 weights,	 faecal	 staining	 of	 eggshells	 and	 non-productive	 ovaries	
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(Davelaar	et	al.,	1986;	Griffiths	et	al.,	1987;	Swayne	et	al.,	1992).	AIS	is	a	production	

problem	 and	 an	 economic	 burden	 in	 commercial	 flocks	 (Burch,	 pers.	 commun.:	

Anon,	 2013:	 6th	 Int	 Spirochaete	 Conference,	 Surrey)	 and	 currently	 treatment	

consists	 of	 the	 application	 of	 antibiotics	 such	 as	 ampicillin,	 lincomycin–

spectinomycin	 in	 combination	 and	 the	 pleuromutilins	 such	 as	 Tiamulin,	 although	

relapse	after	treatment	is	common	and	resistance	has	been	observed	also	(Hampson	

et	al.,	2006b;	Pringle	et	al.,	2012).	A	characteristic	of	B.	pilosicoli	 colonisation	 is	 its	

ability	 to	 form	 end	 on	 attachments	 to	 the	 intestinal	 epithelial	 surface	 and	 invade	

(Jensen	et	al.,	2000,	2001).	 In	poultry,	B.	pilosicoli	organisms	were	found	to	form	a	

dense	 fringe,	 penetrating	 between	 enterocytes	 and	 associated	 with	 reactive	 and	

mild	 inflammatory	 responses	 such	 as	 crypt	 hyperplasia	 and	 increased	 numbers	 of	

goblet	cells	(Feberwee	et	al.,	2008).	It	has	been	suggested	that	the	apparent	increase	

in	 AIS	 is	 possibly	 due	 to	 the	 2006	 EU	 ban	 on	 the	 use	 of	 antibiotics	 as	 growth	

promoters	in	livestock.	However,	there	is	a	lack	of	data	to	confirm	this	suggestion	as	

there	 are	 insufficient	 comprehensive	 longitudinal	 epidemiological	 studies	 pre	 and	

post-ban	and	other	factors	that	have	yet	to	be	elucidated	may	contribute	also.	Thus,	

there	 is	 a	 need	 for	 validated	 controls	 for	 this	 emerging	 disease	 to	 ensure	 the	

productivity	 of	 the	 industry.	 Tiamulin™,	 is	 a	 bacteriostatic	 agent	 belonging	 to	 the	

group	of	pleuromutilin	antibiotics.	Pleuromutilins	are	di-terpene	compounds	derived	

originally	 from	 the	 basidiophyte	 fungi.	 The	 earliest	 versions	 were	 shown	 to	 have	

antibacterial	 activity	 and	 were	 used	 initially	 against	 Mycoplasma	 infections,	 with	

success.	 Subsequent	 chemical	 modifications	 gave	 rise	 to	 Tiamulin™	 that	 was	

demonstrated	 to	 have	 20–50	 fold	 higher	 antibacterial	 activity	 than	 the	 progenitor	

compounds	 (Shang	et	 al.,	 2013).	 Tiamulin™	has	a	wide	 spectrum	of	 activity,	 but	 is	
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particularly	 effective	 against	 Brachyspira,	 Lawsonia	 and	 the	 Mycoplasmas.	 This	

category	of	antibiotics	is	not	used	in	human	medicine.	The	pleuromutilin	antibiotics	

target	the	50S	subunit	of	the	ribosome,	to	interact	with	the	peptidyl-transferase	to	

inhibit	 protein	 synthesis.	 Concern	 has	 been	 expressed	 at	 recent,	 but	 still	 rare	

occurrence	of	resistance,	the	mechanism	of	which	has	been	identified	as	mutation	in	

the	 rRNA	 (A445G)	 that	 is	 the	 support	 structure	 of	 the	 ribosome	 and	 a	 change	 in	

protein	L3	(Asn149Asp)	where	Tiamulin™	binds	(Poulsen	et	al.,	2001).	Until	recently,	

the	 literature	 suggests	 that	 poultry	 models	 for	 Brachyspira	 infection	 studies	 are	

variable	 in	outcome.	However,	 the	work	of	Mappley	et	al.	 (2013)	has	 resulted	 in	a	

more	 reproducible	 model	 by	 the	 simple	 expedient	 of	 pre-dosing	 with	 sodium	

bicarbonate	 to	 neutralise	 the	 crop	prior	 to	 oral	 dosing	with	 challenge	B.	 pilosicoli.	

With	 this	 model,	 it	 is	 possible	 to	 assess	 reproducibly	 the	 impact	 of	 the	 use	 of	

Tiamulin™	 in	 current	 and	 variant	 treatment	 regimens	 against	 AIS.	 Tiamulin™	 has	

been	used	in	veterinary	medicine	for	a	considerable	period	and	deployed	notably	for	

use	 in	 the	 pig	 sector	 (Taylor,	 1980;	 Wilberts	 et	 al.,	 2014).	 Denagard®	 Tiamulin	

(Novartis)	 is	 already	 marketed	 for	 use	 in	 pigs	 and	 more	 recently	 chicken	 at	 a	

concentration	 of	 250	 ppm	 (parts	 per	 million)	 for	 the	 reduction	 of	 the	 severity	 of	

disease	 caused	 by	Mycoplasma	 spp.,	 Lawsonia	 and	B.	 hyodysteriae	 in	 pigs	 and	 to	

control	 gastro-intestinal	 infections,	 notably	 AIS	 in	 chickens.	 This	 study	 specifically	

seeks	 to	 evaluate	 the	 ability	 of	 different	 concentrations	 of	 Denagard®	 Tiamulin	 to	

protect	against	B.	pilosicoli	colonisation,	persistence	and	clinical	presentation	of	AIS	

in	 commercial	 layers.	 The	 current	 level	 of	 usage	 is	 recommended	 at	 250	 ppm	 for	

control	of	Mycoplasma	respiratory	infections	and	this	study	aims	to	assess	impact	at	
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this	and	reduced	levels	of	125	and	67.5	ppm	against	B.	pilosicoli	infections	of	laying	

chickens.		

	

4.2.	Materials	and	methods	

4.2.1.	Bacterial	strain	and	culture	

B	pilosicoli	strain	B2904	was	used	as	the	challenge	strain	and	is	fully	characterised	to	

genome	sequence	level	(Mappley	et	al.,	2011).	B.	pilosicoli	stored	in	70%	Brachyspira	

Enrichment	Broth	(BEB:	Oxoid)	+	30%	foetal	calf	serum	at	−80°C	and	was	inoculated	

into	fresh	pre-warmed	BEB.	Anaerobic	growth	was	for	five	days	at	37°C	with	gentle	

shaking.	 Inocula	were	 prepared	by	 recovery	 by	 centrifugation	 and	 resuspension	 in	

diluent	(0.1	M	Phosphate	Buffered	Saline,	pH	7.2)	of	strain	B2904	grown	in	BEB.	The	

number	 of	 organisms	 was	 enumerated	 in	 a	 Helber	 cell	 counting	 chamber	 and	

adjusted	 to	 give	 a	 dose	 comprising	 5x109	 cells	 in	 1	 ml	 that	 was	 delivered	 to	 the	

chickens	immediately	on	preparation.	Detection	of	strain	B2904	from	cloacal	swabs	

was	by	plating	onto	Brachyspira	selection	agar	(FABA	fastidious	anaerobe	blood	agar	

supplemented	with	whole	horse	blood)	(Rasbeck	et	al.,	2005)	and	incubation	for	up	

to	eight	days	at	37°C,	anaerobically.	For	enumeration	of	the	bacterium	from	tissue,	1	

mg	 of	 tissues	 was	 homogenised	 (VDI	 12	 homogeniser,	 VWR	 International	 Ltd.,	

Lutterworth,	UK)	into	9	ml	of	PBS	0.1	M.	Samples	(20	μl)	were	plated	following	serial	

dilution	 (10−1	 to	 10−7)	 onto	 the	 same	 Brachyspira	 selection	 agar	 (Mappley	 et	 al.,	

2013)	and	incubated	as	above.	To	ensure	sterility	between	samples	rotor	blades	of	

the	homogeniser	were	vortexed	in	sterile	water	to	remove	debris	and	then	stood	in	

alcohol	 for	1	min.	Prior	 to	 the	 start	of	 the	 study,	 the	 sensitivity	of	 strain	B2904	 to	
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Denagard®	 Tiamulin	 was	 confirmed	 in	 vitro	 by	 minimum	 inhibitory	 concentration	

(MIC)	by	multipoint	inoculation	onto	a	BEB	agar	supplemented	with	a	dilution	series	

of	Tiamulin™	following	standard	BSAC	recommended	procedures.	

	

4.2.2.	PCR	

To	prepare	 samples	 for	PCR	 testing,	 a	5	μl	 sterile	 loop	was	used	 to	pick	 individual	

colonies	from	selective	agar	plates	or	take	approximately	5	μl	of	material	from	faecal	

and	environmental	samples	and	thoroughly	mixed	in	100	μl	sterile	de-ionised	water	

placed	 in	a	sterile	microcentrifuge	tube	to	obtain	a	homogeneous	suspension.	This	

was	then	placed	into	a	thermocycler	and	heated	at	95°°C	for	ten	minutes.	The	micro-

centrifuge	tube	was	then	placed	on	ice	for	one	minute.	It	was	centrifuged	at	2400	g	

for	 one	 minute	 at	 1°C,	 and	 stored	 at	 −20°C	 ±	 5°C	 until	 used.	 The	 PCR	 reactions	

comprised	 in	 a	 final	 volume	 of	 20	 μl	 in	 a	 PCR	 tube	 10	 μl	 HotStartTaq®	 DNA	

polymerase	MasterMix	(Qiagen),	6	μl	sterile	water,	2	μl	prepared	sample	and	1	μl	of	

each	Forward	and	Reverse	primers	(20	pmol/μl).	The	primers	used	were:	Brachyspira	

genus-specific	PCR	(Phillips	et	al.,	2005):	

Forward:	5ʹ-TGAGTAACACGTAGGTAATC-3ʹ	

Reverse:	5ʹ-GCTAACGACTTCAGGTAAAAC-3ʹ	

B.	pilosicoli-species	specific	PCR	(Mikosza	et	al.,	2001):	

Forward:	5ʹ-AGAGGAAAGTTTTTTCGCTTC-3ʹ	

Reverse:	5ʹ-CCCCTACAATATCCAAGACT-3ʹ.	

The	 PCR	 tube	 containing	 the	 reaction	 mixture	 was	 placed	 in	 a	 GeneAmp®	 PCR	

system	9700	thermal	cycler	and	the	PCR	conditions	were	95°C	for	15	min,	followed	

by	30	cycles	1	min	at	55°C,	1	min	72°C	and	1	min	at	95°C	 followed	by	a	 final	DNA	
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extension	stage	of	7	min	at	72°C.	On	completion,	the	tubes	were	cooled	to	4°C	and	

then	5	μl	of	 the	PCR	 reaction	was	electrophoresed	on	a	1%	 (w/v)	 agarose	gel	 and	

visualised	for	the	presence	of	amplicons	under	UV	light.	The	remaining	PCR	reaction	

was	stored	at	−20°C	±	5°C.	

	

4.2.3.	Animals	

The	study	reported	here	used	the	experimental	model	developed	by	Mappley	et	al.	

(2013)	using	the	same	facilities	at	where	the	Mappley	studies	had	been	performed.	

Study	animals	were	NovoGen	Brown	commercial	 layers	sourced	from	a	commercial	

supplier	 (Tom	 Barron	 Ltd.,	 UK).	 Prior	 to	 delivery,	 the	 birds	 had	 received	 a	 pullet	

vaccination	programme	that	did	not	include	vaccination	against	Brachyspira	spp.	nor	

any	antibiotic	treatment.	A	total	of	160	sixteen	week-old	birds	were	delivered	to	the	

(day	 10)	 and	 randomly	 split	 into	 5	 groups	 of	 32	 birds	 each	 that	 were	 housed	 in	

separate	rooms.	The	five	groups	were	to	be	used	in	the	following	treatments:	

•	Group	A:	Untreated,	uninfected	controls	

•	Group	B:	Untreated,	infected	controls	

•	Group	C:	Infected	+	Tiamulin	at	~62.5	ppm	

•	Group	D:	Infected	+	Tiamulin	at	~125	ppm	

•	Group	E:	Infected	+	Tiamulin	at	~250	ppm.	

Birds	 were	 housed	 according	 to	 Home	 Office	 guidelines	 and	 all	 procedures	 were	

performed	in	compliance	with	the	Animals	Scientific	Procedures	Act,	1986.	Feed	and	

water	 were	 given	 ad	 libitum.	 Feed	 was	 unmedicated	 layer	 pellets	 (Dodson	 and	

Horrell)	 and	 water	 was	 from	 the	 mains	 supply.	 The	 weight	 of	 feed	 and	 water	

consumed	was	 recorded	daily.	One	day	 after	 arrival	 (day	9)	 each	bird	was	winged	
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tagged	with	a	uniquely	identifiable	number.	The	birds	were	permitted	to	acclimatize	

to	their	new	environment	and	feed	regime	without	further	procedure	until	two	days	

prior	to	the	study	commencing	(day	2)	when	each	bird	was	individually	weighed	and	

the	group	size	reduced	to	30	birds	small	birds	weighing	below1	kg.	In	addition,	from	

each	bird	and	each	pen	cloacal,	freshly	voided	faeces	and	environmental	swabs	were	

taken	 and	 plated	 as	 described	 in	 bacterial	 strain	 and	 culture	 section	 to	 ensure	

absence	 of	 Brachyspira	 prior	 to	 experimentation.	 2.4.	 Challenge	 and	 Denagard®	

Tiamulin	 treatment	 Prior	 to	 receiving	 the	B.	 pilosicoli	 challenge	or	 sham	dose,	 the	

birds	 were	 first	 dosed	 by	 oral	 gavage	 with	 2ml	 of	 10%	 (w/v)	 sodium	 bicarbonate	

solution	between	12	min	 and	no	more	 than	46	min	prior	 to	 administration	of	 the	

challenge	dose	to	neutralise	the	crop	acid	as	used	previously	(Mappley	et	al.,	2013;	

Carroll	et	al.,	2004;	Randall	et	al.,	2006).	All	birds	in	groups	B	to	E	were	challenged	by	

oral	 gavage	with	1	ml	of	B.	 pilosicoli	 B2904	 suspension	 (5	 x	 109	CFU/ml).	Group	A	

received	a	 sham	dose	of	1	ml	of	 sterile	0.1	M	Phosphate	Buffered	Saline	 (pH	7.2).	

Dosing	was	 performed	 on	 days	 0,	 2	 and	 4	when	 the	 birds	were	 17	weeks	 of	 age.	

Denagard®	 Tiamulin	 (lot	 number	 P768329UK)	 was	 administered	 following	 the	

procedures	 recommended	 by	 the	manufacturer	 at	 the	 appropriate	 concentration:	

group	C,	62.5	ppm:	group	D,	at	125	ppm:	group	E,	at	250	ppm.	The	 Investigational	

Veterinary	Product	(IVP)	was	supplied	as	a	12.5%	solution	(125	mg/ml).	On	each	of	

days	13	to	17,	this	was	added	to	the	drinking	water	for	groups	C,	D	and	E	at	a	rate	of	

0.5	 ml	 per	 litre,	 1	 ml	 per	 litre	 and	 2	 ml	 per	 litre	 respectively	 to	 produce	 final	

concentrations	in	the	drinking	water	of	~62.5,	~125	and	~250	ppm.	Each	day	freshly	

treated	water	was	prepared	in	10	l	aspirators	that	were	used	instead	of	mains	water	

until	empty.	An	approximate	50	ml	sample	of	each	batch	of	freshly	prepared	IVP	was	
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taken	 and	 shipped	 to	 Stewardship	 Analytics	 Laboratory	 for	 analysis	 of	 the	 final	

concentration	 administered.	 On	 day	 17,	 each	 room	 was	 thoroughly	 washed	 and	

disinfected	(1%	Virkon)	to	prevent	reinfection	from	the	environment.	

	

Figure	4.1:	Experimental	plan.	

	

	

4.2.5.	Observation	and	sampling	

All	 birds	 were	 cloacally	 swabbed,	 weighed	 and	 condition	 scored	 of	 day	 2	 and	

thereafter	every	three	days	for	the	duration	of	the	study.	In	addition,	at	each	visit	to	

the	 study	 rooms,	 (i)	 environmental	 swabs	 were	 taken,	 (ii)	 eggs	 were	 collected,	

weighed	and	scored	for	faecal	eggshell	staining	and	(iii)	freshly	voided	faecal	samples	

were	collected	at	random	from	each	pen,	scored	for	moisture	and	consistency	and	

subjected	 to	 culture	 and	 B.	 pilosicoli	 specific	 PCR.	 Eight	 birds	 that	 were	 selected	

randomly	 using	Graphpad	Quickcalc	 software	 from	each	 group	 for	 the	 three	post-
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mortem	examination	dates.	Birds	were	 selected	based	on	 random	selection	of	 tag	

numbers	at	 the	beginning	of	 the	study.	On	days	9,	18	and	38	were	euthanased	by	

sedation	using	Rompun/Ketamine	mixture	as	an	intramuscular	injection	followed	by	

an	 intravenous	 injection	 of	 Pentobarbitone.	 Death	 was	 confirmed	 by	 cervical	

dislocation.	 Immediately	prior	 to	post-mortem	examination,	each	bird	was	sprayed	

with	 70%	 ethanol	 and	 the	 abdominal	 and	 thoracic	 cavities	 opened	 aseptically.	

Duplicate	 samples	 (approximately	 1	 g	 each)	 of	 the	 caecal	 contents,	 caeca,	 liver,	

spleen,	 ileum	and	colon	were	 taken	using	a	 separate	 set	of	 sterile	 instruments	 for	

each	bird.	Spleen	and	liver	were	sampled	prior	to	 intestinal	tissues	with	care	taken	

to	 ensure	 no	 superficial	 contamination	 following	 the	 methods	 of	 Mappley	 et	 al.	

(2013).	One	of	each	pair	of	samples	was	placed	untreated	in	a	Universal	containing	9	

ml	of	0.1	M	PBS	for	bacteriology.	The	other	sample	was	placed	in	a	Duran	containing	

10%	neutral	buffered	formalin	for	subsequent	histopathological	examination	in	case	

gross	pathological	lesions	were	observed	but	as	no	gross	pathology	was	seen	in	this	

study	 no	 sample	 processing	 or	 visualisation	 of	 tissues	 undertaken.	 Caecal	 content	

samples	were	placed	in	a	Universal	and	snap	frozen	and	stored	at	−20°C.	By	the	end	

of	 the	 study	on	day	38	 there	were	 six	 birds	 remaining	 in	 each	 study	 group.	 These	

were	not	examined.		

	

4.2.6.	Clinical	scoring	

Before	pooling,	 faecal	 samples	were	 scored	 as	 normal,	 firm	 (dark	 solid	with	white	

urate	splash)	[0],	soft	[1],	watery/frothy	[2]	or	watery	with	blood	[3].	Once	pooled,	

shavings	and	gross	debris	were	removed	and	three	replicate	samples	of	between	1	

and	3	g	from	each	pool	were	weighed.	The	three	replicates	were	dried	overnight	in	a	
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hot	air	oven	set	at	65°C	±	3°C	in	order	to	enable	faecal	moisture	content	calculation.	

Condition	 scores	 were	 normal	 full	 breast/no	 clinical	 symptoms	 [0],	 slightly	 thin	

breast/pasty	 vent	 (mild)/loss	 of	 colour	 from	 comb	 (mild)	 [1],	 moderately	 thin	

breast/pasty	 vent	 (moderate)/loss	of	 colour	 from	comb	 (moderate)	 [2]	or	 severely	

thin	breast/pasty	 vent	 (severe)/loss	of	 colour	 from	comb	 (severe)	 [3].	 Egg	 staining	

was	 scored	 as	 clean	 [0],	 light	 staining	 (10%)	 [1],	 moderate	 staining	 (10–29%)	 [2],	

heavy	staining	(30–69%)	[3]	or	severe	staining	(70%)	[4].		

	

4.2.7.	Data	analysis	and	statistics	

The	presence	of	Brachyspira	spp.	in	the	faeces	detected	by	culture	was	summarised	

in	contingency	tables	and	groups	were	compared	with	respect	to	cure	rates	by	using	

Fisher's	 exact	 tests,	 separately	 for	 the	 various	 assessment	 days.	Mann–Whitney	U	

tests	 and	 Kruskal–Wallis	 tests	 were	 applied	 for	 the	 comparison	 of	 groups	 with	

respect	to	egg	production	parameters	(number	of	eggs	per	bird	and	egg	weight)	and	

with	 respect	 to	 faecal	 scores,	 faecal	 eggshell	 staining	 and	 condition	 scores,	

separately	 for	 the	 various	 assessment	 days	 or	 assessment	 periods.	 Repeated	

measurement	analyses	of	variance	were	applied	on	the	growth	performance	of	birds	

with	or	without	 change	 from	baseline	and	 study	groups	were	 compared	 thereof	 if	

normal	 distribution	 assumptions	 are	 satisfied	 (Shapiro–Wilk	 test).	 Descriptive	

statistics	 (arithmetic	 and	 geometric	mean,	median,	minimum,	maximum,	 standard	

deviation	 and	 coefficient	 of	 variation	 CV%)	 were	 calculated	 for	 any	 continuous	

parameter,	 separately	 for	 the	 various	 assessment	 days.	 Categorical	 data	 like	 the	

presence	of	pathogenic	Brachyspira	spp.	or	any	scoring	data	will	be	summarised	 in	

frequency	tables.	The	statistical	unit	was	the	experimental	group	if	central	values	of	
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groups	are	compared.	 In	other	cases,	 the	statistical	unit	was	 the	 individual	animal.	

The	 level	 of	 significance	 is	 α	 =	 0.05,	 all	 tests	 were	 performed	 two-sided.	 The	

statistical	 analyses	described	above	were	done	using	 the	STATA	 statistical	package	

(STATA12.0/IC	 for	 Windows	 (2011),	 StataCorp	 LP,	 4905	 Lakeway	 Drive,	 College	

Station,	TX,	77845,	USA.)	employing	the	following	commands:	summarise	=	summary	

statistics,	 swilk	 =	 Shapiro–Wilk	 test,	 and	 ranksum	 =	Mann–Whitney	 test.	 Kwallis	 =	

Kruskal–Wallis	test	ANOVA	=	analyses	of	variance	and	tabulate	=	contingency	tables.	

	

4.3.	Results	

	

4.3.1.	Denagard®	Tiamulin	dose	achieved	

The	desired	dose	was	62.5,	125	and	250	ppm	 in	 the	drinking	water	of	each	of	 the	

test	groups	C,	D	and	E,	respectively.	To	test	the	actual	dose	given,	triplicate	samples	

from	the	drinkers	from	each	of	the	study	groups	were	taken	and	sent	for	third	party	

analysis	 on	 each	 of	 the	 five	 days	 of	 administration,	 days	 13–17.	 The	 mean	

concentrations	achieved	were	58.7,	113	and	227	ppm	in	the	drinking	water	for	each	

of	groups	C,	D	and	E,	respectively.	The	recommended	dose	of	Denagard®Tiamulin	in	

chickens	is	25	mg	per	kg	bodyweight	and	in	this	study	8.13,	15.90	and	36.19	mg	per	

kg	bodyweight	was	achieved	for	groups	C,	D	and	E,	respectively.	Water	consumption	

was	 measured	 for	 each	 room	 every	 day.	 Knowing	 the	 number	 of	 birds	 and	 their	

average	weight,	it	was	possible	to	determine	the	average	volume	of	water	drank	per	

day	 per	 kg	 of	 chicken	 and	 thereafter	 to	 determine	 drug	 consumption.	 Conversion	
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from	 ppm	 to	 concentration	 in	 mg/L	 of	 water	 was	 done	 knowing	 that	 1	 ppm	 is	

equivalent	to	1	mg/L.		

4.3.2.	B.	pilosicoli	infection	reduced	growth	performance	of	birds	

All	the	birds	in	each	of	the	study	groups	were	weighed	on	each	sampling	day	and	the	

mean	 weight	 gain	 per	 group	 was	 calculated	 and	 plotted	 (Figure	 4.1).	 Group	 A	

(uninfected–untreated)	 showed	 the	 normal	 anticipated	 growth	 performance	

whereas	 group	B	 (infected–untreated)	 showed	depressed	 performance	 due	 to	 the	

burden	of	infection.	Indeed,	between	1	and	12	days	and	13–17	days	(post-infection)	

the	average	weight	was	50	g	and	190	g	less	than	group	A	(p	=	0.001).	Groups	D	and	E	

that	were	 infected	 and	 treated	with	 the	 higher	 doses	 of	Denagard®	 Tiamulin,	 125	

and	 250	 μg/mL	 respectively,	 gave	 statistically	 significantly	 improved	 weight	 gain	

compared	 to	 the	 infected–untreated	group	B	 (p	<	0.001:	 Figure	4.1a)	 and	group	C	

that	 was	 infected	 and	 received	 the	 lowest	 dose	 of	 Denagard®	 Tiamulin	 (62.5	 μg	

ml−1)	(p	<	0.001:	Figure	4.1a)	using	pairwise	t-test	comparison.	Both	groups	D	and	E	

that	 had	 the	 higher	 concentrations	 of	 Denagard®	 Tiamulin	 showed	 higher	 overall	

weight	 gain	 than	 group	C	 that	was	 statistically	 significant	 (p	 <	 0.001:	 Figure	 4.1b).	

Both	group	D	and	E	reached	similar	weight	gain	than	the	control	group	by	the	end	of	

the	 study	 indicating	 that	 only	 the	 two	 highest	 antibiotic	 doses	 were	 able	 to	 re-

establish	growth	delayed	associated	with	infection.	
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Figure	 4.2:	 Mean	 bodyweight	 gain	 for	 each	 treatment	 group.	 A=unchallenged,	
untreated	 control,	 B=challenged,	 untreated	 control,	 C=challenged,	 treated	 [~65	
ppm],	D=challenged,	treated	[~125	ppm]	and	E	challenged,	treated	[~250	ppm].	

	

4.3.3.	Feed	and	water	consumption	

There	was	reduced	consumption	of	feed	over	the	study	period	in	groups	C,	D	and	E	

than	 either	 the	 negative	 (uninfected–	 untreated)	 or	 positive	 (infected–untreated)	

control	whereas	water	intake	showed	a	steady	rise	over	the	period	of	the	study	for	

all	 groups.	 There	 were	 no	 statistically	 significant	 differences	 between	 any	 of	 the	

groups	 between	 feed	 intake	 and	 water	 consumption	 (data	 not	 shown).	 Over	 the	

entire	study	the	feed	conversation	ratios	were	4.22,	6.47.	8.56.	7.4	and	6.01	for	each	

of	 groups	 A–E	 respectively	 which	 is	 substantially	 below	 industry	 standard	 and	
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infection	 impacted	 negatively	 upon	 FCR	 that	 was	 not	 reversed	 by	 Denagard®	

Tiamulin	treatment.		

	

4.3.4.	Condition	of	birds	during	treatment	

All	 the	 groups	 that	 were	 dosed	 with	 B.	 pilosicoli	 irrespective	 of	 whether	 they	

received	Denagard®	 Tiamulin	 treatment	 (groups	 B,	 C,	D	 and	 E)	 showed	noticeable	

reduction	in	condition	with	the	poorest	condition	score	achieved	on	or	around	day	

10.	 Group	 A,	 unchallenged	 and	 untreated,	 remained	 in	 excellent	 condition	

throughout	the	study	with	all	birds	achieving	a	score	of	0.	Group	B,	challenged	and	

untreated,	 gave	 the	 highest	mean	 condition	 score	 of	 0.86	 from	day	 10	 to	 day	 38,	

significantly	poorer	than	the	other	4	groups	(p	=	0.001).	Mean	condition	scores	for	

groups	C,	D	and	E	 (challenged	and	treated)	 from	day	10	to	day	38	were	0.23,	0.41	

and	0.39	respectively,	but	these	differences	were	not	significant.	

	

4.3.5.	Isolation	of	B.	pilosicoli	from	birds	and	the	environment	

As	 anticipated	 all	 groups	 were	 negative	 for	 B.	 pilosicoli	 by	 cloacal	 swab	 before	

challenge	 and	 treatment	 and	 group	 A	 remained	 negative	 throughout	 the	 entire	

study.	 After	 challenge	 and	 prior	 to	 antibiotic	 treatment	 there	 was	 no	 significant	

difference	(p=0.4183)	in	the	number	of	birds	per	group	yielding	positive	isolations	by	

cloacal	 swab	 for	 the	 infected	 groups	 B,	 C,	 D	 and	 E.	 Once	 Denagard®	 Tiamulin	

treatment	 started	 on	 day	 13,	 there	 was	 a	 significant	 reduction	 in	 the	 number	 of	

isolations	 from	the	 infected–treated	birds	of	groups	C,	D	and	E	when	compared	to	

group	 B	 (infected–untreated).	 However,	 there	 were	 no	 significant	 differences	

between	 Denagard®	 Tiamulin	 treatment	 groups	 during	 treatment.	 The	 data	 are	
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presented	 in	 Figure	 4.2.	 In	 the	 post-treatment	 period	 from	 day	 18	 onward,	 the	

difference	 between	 untreated	 and	 treated	 birds	 was	 still	 observed	 (p	 <	 0.001).	

However,	group	E	that	had	the	highest	dose	of	227	ppm	Denagard®	Tiamulin	showed	

a	significantly	 (p	<	0.05)	 lower	number	of	 isolations	than	either	groups	C	or	D	that	

received	113	ppm	and	58.7	ppm,	respectively.	There	was	no	significant	difference	(p	

=	0.502)	between	groups	C	and	D.	Confirmation	of	presumptive	isolates	was	by	PCR	

as	 described	 in	materials	 and	methods.	 To	 assess	 the	 environmental	 burden	 of	B.	

pilosicoli	 infection,	 pooled	 freshly	 voided	 faecal	 samples	were	 taken	 from	 birds	 in	

groups	B,	C,	D	and	E.	The	results	mirrored	the	results	of	the	cloacal	swabs	with	only	

group	B	giving	samples	that	were	consistently	positive	by	culture	for	the	duration	of	

the	experiment	up	to	day	38.	Samples	from	groups	C,	D	and	E	were	positive	from	day	

5,	after	the	second	oral	inoculation	until	day	19	and	were	negative	at	all	time-points	

thereafter	(data	not	shown).	None	of	the	environmental	swabs	taken	throughout	the	

study	were	Brachyspira	culture	positive	suggesting	extreme	sensitivity	of	these	strict	

anaerobes	 to	oxygen.	 PCR	was	 also	performed	on	 the	 environmental	 samples	 and	

gave	 sporadic	 positives	 from	 all	 infected	 groups	 during	 dosing	 and	 immediately	

thereafter.	Only	group	B	gave	sporadic	PCR	positives	 for	 the	duration	of	 the	 study	

(data	not	shown).	
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Figure	 4.3:	 Number	 of	 positive	 cloacal	 swabs	 per	 group	 on	 each	 sampling	 day.	
Denagard®	 Tiamulin	was	 administered	 in	 the	 drinking	water	 from	days	 13–17	 and	
samples	marked	*were	those	taken	during	Denagard®	Tiamulin	administration.	The	
number	 of	 birds	 per	 group	 shows	 the	 time	 points	 at	which	 8	 birds	were	 taken	 at	
random	for	post-mortem	examination.	

	

4.3.6.	Faecal	moisture	content	and	consistency	scoring	

The	moisture	content	of	faeces	samples	was	determined	and	a	score	for	consistency	

at	 the	 time	 of	 collection	 made	 also	 (Figure	 4.3).	 From	 the	 entire	 study	 only	 one	

consistency	 score	 above	 2	 was	 observed	 and	 this	 was	 from	 group	 B	 (infected–

untreated)	taken	on	day	15.	The	faeces	score	for	group	A	remained	consistently	low	

throughout	the	study.	Prior	to	Denagard®	Tiamulin	treatment,	the	scores	for	all	the	

infected	groups	(B	to	E)	were	similar.	However,	the	scores	of	the	treated	groups	(C	to	

E)	reduced	noticeably	once	treatment	started,	although	they	did	not	reduce	to	the	

level	of	the	uninfected	birds	but	this	differences	were	not	statistically	significant.	
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Figure	4.4:	Mean	faecal	moisture	content	and	consistency	scores	per	group.		

	

4.3.7.	B.	pilosicoli	tissue	colonisation	

The	isolation	rates	and	mean	colony	counts	from	all	the	homogenized	tissue	samples	

at	the	three	post-mortem	examination	dates	are	summarised	below	(Figure	4.4).	The	

identity	 of	 the	 bacteria	 showing	 ‘putative’	 Brachyspira	 colonial	 morphology	 was	

confirmed	by	PCR	at	the	genus	and	species	level	for	189	randomly	selected	colonies	

from	 these	 studies	 that	all	 confirmed	 the	presence	of	B.	pilosicoli.	All	 organs	 from	

Group	A	birds	were	negative	at	all	three	post-mortem	examination	dates.	The	recent	

findings	of	Mappley	et	al.	 (2013)	showed	that	Brachyspira	 infections	 in	birds	has	a	

systemic	phase	 to	colonise	deep	 tissues	and	 in	 this	 study	 liver	and	spleen	samples	

were	 analysed	 for	 the	 presence	 of	 B.	 pilosicoli	 by	 culture	 and	 confirmatory	 PCR	

taking	 due	 precaution	 to	 ensure	 no	 superficial	 contamination	 as	 described	 in	

methods	and	Mappley	et	al.	(2013).	Over	the	three	post	mortem	samplings	taken	on	

days	 9,	 18	 and	 38,	 a	 total	 of	 24	 animals	 from	 each	 of	 the	 infected	 groups	 was	

analysed,	 eight	 birds	 per	 group	 per	 time.	 The	 positive	 control	 group	 B	 (infected–

untreated)	 had	 14	 liver	 and	 13	 spleen	 samples	 positive	 for	 B.	 pilosicoli,	 whereas	

groups	C,	D	and	E,	(infected–treated)	had	9,	4	and	6,	 liver	and	13,	10	and	9	spleen	

samples	 positive	 respectively	 after	 antibiotic	 treatment.	Only	 group	 B	 gave	 3	 liver	
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and	spleen	 samples	positive	at	day	38.	Three	 tissues	 from	 the	gastrointestinal	 (GI)	

tract	were	analysed	and	these	were	the	ileum,	caecum	and	colon	as	per	the	schedule	

described	 in	 methods.	 The	 positive	 control	 group	 B	 (infected–untreated)	 had	 13	

positive	ileal	samples,	whereas	for	groups	C,	D	and	E,	(infected–treated)	the	number	

of	samples	positive	for	B.	pilosicoli	was	9,	5	and	6	respectively.	The	group	B	positive	

control	 (infected–untreated)	 gave	positive	 samples	 at	 day	38	with	numbers	of	 the	

pathogen	 in	 the	 order	 of	 103	 CFU/g.	 Interestingly,	 one	 bird	 from	 the	 group	 E	 test	

group	(infected–treated)	also	gave	positive	samples	at	the	third	sampling	at	day	38	

within	 the	 order	 of	 102	 CFU/g	 of	 the	 pathogen.	 The	 caecum	 and	 the	 colon	 are	

regarded	as	sites	of	primary	colonisation	by	B.	pilosicoli	and	these	too	were	sampled	

as	 per	 the	 schedule	 described	 above.	 The	 positive	 control	 group	 B	 (infected–

untreated)	had	22	positive	caecal	samples,	whereas	for	groups	C,	D	and	E,	(infected–

treated)	 the	 number	 of	 samples	 positive	 for	 B.	 pilosicoli	 was	 16,	 15	 and	 14,	

respectively.	 The	 group	 B	 positive	 control	 (infected–untreated)	 gave	 positive	

samples	at	 the	third	sampling	at	day	38	with	high	numbers	of	 the	pathogen	 in	the	

order	of	106	CFU/g.	Interestingly,	the	groups	C	and	E	test	groups	(infected–treated)	

also	gave	2	positive	samples	each	at	the	third	sampling	at	day	38	within	the	order	of	

103–104	CFU/g	of	the	pathogen	whereas	the	birds	from	group	D	were	negative.	The	

positive	 control	 group	 B	 (infected–untreated)	 had	 20	 positive	 caecal	 samples,	

whereas	for	groups	C,	D	and	E,	(infected–treated)	the	number	of	samples	positive	for	

B.	pilosicoli	was	14,	12	and	11,	respectively.	The	group	B	positive	control	(infected–

untreated)	gave	positive	samples	at	the	third	sampling	at	day	38	with	high	numbers	

of	 the	 pathogen	 in	 the	 order	 of	 106	 CFU/g.	 Interestingly,	 the	 groups	 C	 and	 E	 test	

groups	(infected–treated)	also	gave	one	positive	sample	each	at	the	third	sampling	
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at	day	38	within	the	order	of	103–104	CFU/g	high	numbers	of	the	pathogen	whereas	

the	birds	from	group	D	were	negative.		

	

Comparison	 of	 the	 number	 of	 tissues	 positive	 and	 the	 mean	 counts	 were	 not	

significantly	different	between	any	of	the	four	groups,	B–E,	at	day	9.	This	 indicated	

that	 the	 infection	 model	 was	 effective,	 as	 each	 group	 was	 colonised	 to	 a	 similar	

extent	in	each	of	the	tissues	examined	prior	to	antibiotic	treatment.	Thereafter,	for	

all	 tissues	 and	 time	 points	 group	 B	 (infected–untreated)	 showed	 higher	 rates	 of	

colonisation	than	any	of	the	three	antibiotic	treatment	groups,	C–E.	Pairwise	t-tests	

for	each	group	and	time	point	for	B.	pilosicoli	concentration	were	made	in	order	to	

asses	if	Tiamulin	treatment	was	able	to	significantly	reduce	colonisation	in	all	tissues.	

Pairwise	t-tests	were	also	used	between	all	 infected	and	treated	groups	in	order	to	

identify	dose	dependent	responses.	Results	showed	that	at	day	18	and	38,	 level	of	

colonisation	by	B.	pilosicoli	in	all	tissues	was	significantly	higher	in	group	B	compared	

to	 the	 other	 groups	 C–E	 indicating	 that	 tiamulin	 was	 able	 to	 significantly	 reduce	

colonisation	regardless	of	the	dose	used.	Comparison	between	each	of	the	antibiotic	

treated	 groups	 showed	 no	 significant	 differences	 between	 any	 tissues	 on	 days	 18	

showing	 that	 all	 tiamulin	 doses	 used	 resulted	 in	 similar	 reduction	 of	 colonisation.	

However,	on	day	38	a	non-significant	(p=	0.087)	decrease	in	infection	was	shown	for	

caecal	samples	when	comparing	either	group	C	and	E	with	group	D.	
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Figure	 4.5:	 Number	 of	 birds	 positive	 and	 counts	 of	 B.	 pilosicoli	 in	 tissues	 from	
infected	birds.	The	number	of	birds	subjected	to	post-mortem	examination	at	each	
time	point	was	8.	The	mean	count	of	B.	pilosicoli	 isolates	 is	given	 from	the	 tissues	
collected	 from	 positive	 birds	 only.	 Student	 t-test	 between	 pairs	 of	 data	 sets	were	
performed	 and	 are	marked	 on	 the	 figure	where	 the	 p	 values	 are	 a=or	 b	 0.01	 and	
b=or	 b	 0.05.	 PM1	 =	 period	 of	 dosing	with	B.	 pilosicoli,	 PM2	 =	 period	 of	 antibiotic	
treatment	and	PM3	=	period	after	antibiotic	treatment.	

	

4.3.8.	Egg	productivity	

The	data	regarding	egg	productivity	is	given	in	Table	4.1.	There	did	not	appear	to	be	

any	significant	delay	in	the	onset	of	egg	production	due	to	infection	with	B.	pilosicoli.	

In	 fact,	 the	 uninfected–untreated	 control	 group	 A	 was	 the	 last	 to	 come	 into	 lay	

although,	given	the	sporadic	nature	of	 laying	 in	all	groups	 initially,	 this	observation	

should	not	be	given	any	weight.	As	the	number	of	birds	in	each	test	group	changed	

through	the	study,	the	data	shown	in	Table	4.1	are	based	on	mean	values	per	group.	

In	terms	of	numbers	of	eggs	laid,	there	was	no	significant	difference	(p	=	0.85)	in	egg	

production	between	any	groups	at	any	time	during	the	study.	There	was	no	evidence	

that	the	egg	staining	score	of	the	infected–	untreated	group	was	significantly	worse	

than	 the	 treated	 groups.	 However,	 there	 were	 significant	 differences	 (p=0.015)	

between	 the	 scores	 for	 the	 three	 treated	 groups,	 with	 group	 C	 giving	 the	 lowest	

score	 and	 group	D	 the	highest.	 The	 statistical	 analysis	 of	 the	egg	weight	data	was	

affected	 by	 the	 non-normality	 of	 the	 data,	making	 ANOVA	 unsuitable.	 A	 Kruskall–

Wallis	 equality	 of	 population’s	 analysis	 of	 the	means	 of	 the	 groups	 for	 the	 entire	

period	 from	day	 18	 onwards	 showed	no	 significant	 difference	 (p=	 0.172)	 between	

groups.	 However,	 the	 mean	 egg	 weights	 of	 group	 B	 (infected–	 untreated	 group)	

were	 less	 than	 the	negative	 control	 group	A	 (uninfected–untreated)	 for	 the	 entire	

study	 period	 as	 were	 each	 of	 the	 treated	 groups	 for	 approximately	 14	 days	 after	
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treatment.	However,	by	the	end	of	the	study,	the	egg	weights	of	all	five	groups	were	

very	 similar.	 Interestingly,	 the	 egg	 weights	 of	 group	 C	 that	 was	 treated	 with	 the	

lowest	 concentration	 of	 Denagard®	 Tiamulin	 showed	 the	 highest	 weights	 of	 the	

treated	groups	but	this	trend	was	not	significantly	different.	

	

Table	4.1:	Egg	productivity	data.	

Interval	(Study	day)	 Measure	 A	 B	 C	 D	 E	
13-17	 Mean	number	of	eggs	per	bird	 0	 0	 0	 0.04	 0.06	
		 Mean	egg	staining	scores	per	bird	 0	 0	 0	 1.1	 1	
		 Mean	egg	weight	per	bird	 0	 0	 0	 41.48	 41.9	
18-24	 Mean	number	of	eggs	per	bird	 0.15	 0.17	 0.27	 0.11	 0.31	
		 Mean	egg	staining	scores	per	bird	 0.21	 0.73	 0.82	 1.55	 1.33	
		 Mean	egg	weight	per	bird	 46.07	 42.74	 47.9	 42.86	 45.51	
24-38	 Mean	number	of	eggs	per	bird	 0.51	 0.61	 0.66	 0.57	 0.69	
		 Mean	egg	staining	scores	per	bird	 0.74	 1.04	 0.9	 1.38	 1.03	
		 Mean	egg	weight	per	bird	 50.79	 47.33	 50.37	 47.97	 48.24	
	

4.4.	Discussion	

B.	 pilosicoli	 has	 been	 identified	 as	 one	 of	 three	 anaerobic	 spirochaetes	 that	 are	

considered	to	be	pathogenic	in	poultry	and	responsible	for	the	disease	AIS,	the	other	

two	being	B.	intermedia	and	B.	alvinipulli	(Swayne	et	al.,	1995;	Stanton	et	al.,	1998;	

Hampson	 and	 McLaren,	 1999;	 Stephens	 and	 Hampson,	 2002).	 AIS	 has	 been	

associated	with	delayed	onset	of	lay,	reduced	egg	weights,	diarrhoea,	faecal	staining	

of	eggshells,	reduced	growth	rates,	increased	feed	consumption	and	non	productive	

ovaries	(Davelaar	et	al.,	1985).	However,	symptoms	can	be	mild	and	relatively	non-

specific	and,	in	this	study,	infection	with	B.	pilosicoli	alone	induced	some,	but	not	all	

of	 these	 symptoms.	 Symptoms	 when	 induced	 were	 generally	 mild	 but	 the	 most	

striking	and	statistically	significant	 impact	was	the	reduction	of	growth	rates	of	the	
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infected	birds.	Onset	of	lay	was	not	affected,	but	egg	weights	were	reduced	although	

with	 the	numbers	 collected	 the	differences	were	not	 statistically	 significant.	 Some	

diarrhoea	 was	 observed	 but	 this	 was	 not	 particularly	 severe	 and	 there	 was	 no	

significant	staining	of	eggshells.	This	may	suggest	the	model	developed	by	Mappley	

et	 al.	 (2013)	may	 not	 produce	 full	 symptoms	 or	 the	 strain	 used	was	 not	 severely	

virulent.	 Of	 importance,	 this	 model	 did	 induce	 reduced	 growth	 rates	 and	

colonisation	 of	 deep	 tissues	 as	 well	 as	 the	 gastro-intestinal	 tract.	 All	 three	

concentrations	 of	 Denagard®	 Tiamulin	 had	 the	 same	 effect	 of	 highly	 statistically	

significant	reductions	in	colonisation	and	faecal	shedding	that	resulted	in	recovery	of	

growth.		

	

B.	pilosicoli	strain	B2904	was	fully	susceptible	to	Denagard®	Tiamulin	with	an	MIC	of	

0.125	μg/ml	that	was	determined	by	the	methods	of	Pringle	et	al.	(2012)	prior	to	use	

in	the	model.	Given	this	strain	was	a	recent	field	isolate	and	was	retained	with	few	

passages,	 it	 was	 reasonable	 to	 assume	 that	 this	 was	 a	 suitable	 candidate	 for	 the	

studies	 reflecting	 the	 likely	 outcome	 of	 other	 sensitive	 field	 isolates	 and,	

furthermore,	 the	 genome	 sequence	 of	 this	 strain	 (Mappley	 et	 al.,	 2012)	 indicated	

there	was	no	evidence	of	mutation	 leading	 to	 resistance.	 It	 is	 regrettable	 that	 the	

study	did	not	encompass	an	analysis	of	emergence	of	resistance,	if	any,	especially	as	

the	sensitivities	of	B.	pilosicoli	of	poultry	origin	remain	little	studied	compared	with	

that	 in	 pig	 production	 where	 it	 has	 been	 noted	 that	 resistance	 has	 emerged	

(Hampson	et	al.,	2006b).	At	the	recent	International	Spirochaete	Conference	held	in	

the	UK	in	2013	(Anon,	2013),	reports	indicated	MIC50,	MIC90	and	MIC	range	values	

for	B.	pilosicoli	of	poultry	origin	to	be	0.62,	0.25	and	0.0075–4.0	μg/ml	respectively	
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(Burch	 and	 Klein,	 2013a).	 Furthermore,	 when	 Denagard®	 Tiamulin	 was	 given	 to	

chickens	 at	 250	 ppm	 in	 drinking	 water	 for	 5	 days,	 the	 concentration	 achieved	 in	

caecal	 contents	 was	 0.69	 μg/ml	 (Burch	 and	 Klein,	 2013a).	 It	 was	 shown	 that	 this	

caecal	concentration	was	successful	in	eliminating	B.	pilosicoli	with	an	MIC	of	0.125	

μg/ml	(Burch	and	Klein,	2013b).	The	study	here	focused	on	microbiological	factors	in	

the	 main	 and	 the	 opportunity	 to	 add	 pharmacokinetic	 studies	 would	 have	 been	

useful.	

	

The	impact	of	Denagard®	Tiamulin	on	the	recovery	of	the	infectious	agent	is	perhaps	

the	 most	 important	 data	 regarding	 control	 of	 the	 infectious	 agent.	 The	 data	 are	

compelling	 in	 that	 the	 statistical	 comparisons	 of	 the	 number	 of	 cloacal	 positive	

swabs	 after	 dosing	 with	 B.	 pilosicoli	 and	 prior	 to	 Denagard®	 Tiamulin	 treatment	

showed	 that	 all	 four	 groups	 were	 colonised	 with	 similar	 frequency	 as	 each	 other	

with	 B.	 pilosicoli	 B2904.	 Thus,	 treatments	 with	 Denagard®	 Tiamulin	 are	 directly	

comparable	 between	 each	 of	 the	 groups.	 All	 three	 concentrations	 of	 Denagard®	

Tiamulin	had	a	profound	impact	in	reducing	the	number	of	cloacal	swabs	that	were	

positive	for	viable	B.	pilosicoli.	Given	that	colonisation	is	measured	by	the	extent	of	

excretion	of	viable	B.	pilosicoli,	it	is	not	unreasonable	to	assume	that	the	number	of	

positive	 swabs	 is	 potentially	 a	 close	 approximate	 measurement	 of	 the	 state	 of	

colonisation	 of	 the	 gastro-intestinal	 tract	 in	 each	 study	 group	 of	 birds.	 From	 the	

swabbing	 data,	 therefore,	 we	 can	 conclude	 that	 Denagard®Tiamulin	 reduced	

colonisation	 from	 60%	 positive	 swabs	 to	 approaching	 zero	 during	 the	 course	 of	

Denagard®	 Tiamulin	 treatment.	 The	 data	 indicate	 that	 there	 is	 a	 concentration	

dependent	effect	in	that	the	highest	concentration	of	Denagard®	Tiamulin	(227	ppm)	
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resulted	 in	 the	 greatest	 reduction	 followed	 by	 113	 ppm	 and	 then	 58.7	 ppm.	 The	

number	 of	 positive	 swabs	 from	 the	 group	 B	 infected–untreated	 control	 remained	

high	and	did	not	drop	below	30%	positivity	for	the	duration	of	the	study.	These	data	

are	highly	significant	statistically	and	do	correlate	well	with	the	bacteriological	data	

obtained	from	tissues	examined	following	post-mortem	examination.	

It	 is	 interesting	 that	 irrespective	 of	 the	 concentration	 of	 Denagard®	 Tiamulin,	 the	

three	 treatment	 regimens	 caused	 a	 dramatic	 decline	 in	 positive	 swabs	 during	

treatment.	 Beyond	 treatment	 there	 continued	 sporadic	 shedding	 of	 B.	 pilosicoli.	

There	was	a	direct	correlation	between	the	number	of	cloacal	swabs	positive	and	the	

concentration	of	Denagard®	Tiamulin	and	this	lends	support	to	using	~225	ppm	as	an	

appropriate	 dosing	 regimen	 for	 control	 of	 AIS	 caused	 by	B.	 pilosicoli,	 certainly	 for	

strains	 with	 similar	 physiology	 to	 B.	 pilosicoli	 strain	 B2904.	 It	 is	 not	 possible	 to	

comment	 on	 treatment	 across	 a	 wide	 variety	 of	 isolates	 nor	 other	 Brachyspira	

species	but	 if	 it	 is	assumed	B2904	 is	typical	of	all	Brachyspira	 that	 infect	poultry,	 it	

may	 be	 possible	 to	 infer	 that	 ~225	 ppm	 is	 an	 appropriate	 dose.	 This	 dose	 is	

supported	by	data	of	Burch	and	Klein	(2013a,b).	

	

Pooled	 freshly	 voided	 faeces	were	 tested	 for	 the	 presence	 of	B.	 pilosicoli	 and	 the	

organism	 was	 detected	 as	 anticipated	 in	 the	 vast	 majority	 of	 samples	 from	 the	

positive	control	(infected–untreated)	group	B,	very	infrequently	from	the	groups	C,	D	

and	 E	 (infected–treated)	 and	 not	 at	 all	 from	 the	 negative	 control	 group	 A	

(uninfected–untreated).	This	indicates	the	environmental	burden	of	this	pathogen	is	

reduced	 by	 Denagard®	 Tiamulin	 treatment.	 Also,	 residual	 antibiotic	 in	 faeces	may	

continue	 to	 have	 a	 suppressive	 effect	 on	 survival	 of	 B.	 pilosicoli	 which	 being	 a	
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fastidious	anaerobe	is	less	likely	to	survive	for	extended	periods	in	the	environment.	

Also	 it	 is	 not	 clear	whether	 residual	 Denagard®	 Tiamulin	 in	 the	 faeces	 suppressed	

recovery	of	viable	organisms	when	plating	samples	for	detection	by	culture.	Caution	

need	be	expressed	however	as	this	study	did	not	show	complete	elimination	of	the	

pathogen	 from	 the	 birds	 at	 day	 38	 suggesting	 either	 re-infection	 from	 the	

environment	or	some	 latency	within	with	bird.	Perhaps	additional	 treatments	such	

as	disinfection	could	be	considered	along	with	antibiotic	treatment.	This	is	worthy	of	

further	analysis	as	 this	may	aid	 in	 reduction	of	 in-house	bird	 to	bird	 spread	of	 the	

infectious	agent.	Nevertheless,	 these	data	strongly	 indicate	that	the	environmental	

burden	 from	 freshly	 voided	 faeces	 is	 low	 and	 this	 will	 contribute	 positively	 to	

reduced	transmission.	

	

The	 results	 of	 this	 study	 indicated	 that	 cloacal	 swabbing	 is	 a	 good	 indicator	 of	 GI	

colonisation	 that	 could	 be	 use	 as	 a	 quick	 diagnostic	 for	 Brachyspira	 infection.	

However,	post-mortem	 examination	of	 intestinal	 tissues	 is	 still	 the	best	method	 to	

assess	the	absence	of	colonisation	by	B.	pilosicoli	due	to	the	bacteria	ability	to	attach	

to	the	intestinal	cell	wall.	 Indeed,	when	reviewing	the	tissue	culture	data	there	is	a	

clear	difference	in	potential	interpretation.	In	earlier	work	in	the	author's	laboratory	

on	Salmonella	 infections	 in	chickens	 it	was	established	that	cloacal	swabbing	could	

only	be	used	as	a	rapid	means	of	determining	likely	shedding	into	the	environment	

of	the	organism	(Cooper	et	al.,	1994a,	1994b,	1995;	Allen-Vercoe	et	al.,	1998;	Allen-

Vercoe	and	Woodward,	1999)	rather	than	an	accurate	estimate	of	presence	in	the	GI	

tract	or	actual	 colonisation.	The	data	generated	 in	 this	 study	 reinforces	 this.	Here,	

the	data	 indicate	differences	between	the	data	derived	by	swabbing	and	that	from	
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tissue	 analysis	where	 there	 is	 a	 higher	 burden	 of	B.	 pilosicoli	 in	 tissues	 than	 from	

swabs.	 It	 is	 therefore	 important	 to	 recognise	 the	 differences	 in	 the	 outcome	

generated	 by	 the	 methods	 used.	 B.	 pilosicoli	 probably	 does	 not	 colonise	 cloacal	

tissues,	 and	 here	 we	 mean	 colonisation	 in	 the	 true	 sense	 of	 being	 intimately	

attached	to	the	epithelium.	However,	analysis	of	tissues	further	up	the	GI	tract	did	

enumerate	 bacteria	 and	 this	 was	 uniformly	 higher	 than	 that	 obtained	 by	 cloacal	

swabbing.	We	suggest	that	swabbing	enumerates	transient	bacteria	being	shed	from	

sites	 of	 probable	 intimate	 colonisation	 further	 up	 the	 GI	 tract.	 This	 reduction	 is	

significant	 as	 it	 shows	 the	 antibiotic	 is	 having	 an	 effect.	 Denagard®	 Tiamulin	

treatment	did	not	eliminate	B.	pilosicoli	possibly	because	of	some	protective	effect	

of	 the	 intimate	 attachment	 but	 the	 data	 do	 provide	 very	 clear	 evidence	 that	

Denagard®	Tiamulin	reduced	the	burden	of	B.	pilosicoli	 in	a	dose	dependent	way	in	

the	GI	 tract.	Whilst	we	have	 inferred	 intimate	 epithelial	 association	of	B.	 pilosicoli	

based	on	previous	findings	(Mappley	et	al.,	2013)	we	did	not	undertake	confirmatory	

histopathology	in	this	study.		

	

Denagard®Tiamulin	 treatment	 lead	 to	 a	 dose	 dependent	 and	 notable	 reduction	 of	

infection	 by	 day	 18.	 However,	 the	 treatment	 did	 not	 completely	 eliminate	 the	

infection	as	B.	pilosicoli	were	present	in	GI	tract	tissues	(ileum,	caeca	and/or	colon)	

in	between	12.5	and	25%	of	birds	analysed	at	post-mortem	examination	on	day	38,	

some	 twenty	days	after	dosing.	 It	 is	 not	possible	 to	determine	whether	 this	 is	 the	

‘tail’	 of	 the	 elimination	 process	 [caused	 by	 immunity,	 on-going	 effects	 of	 the	

antibiotic	 or	 gut	 microbiota	 exclusion]	 or	 re-infection	 from	 the	 environment.	 As	

discussed	 above,	 given	 the	 failure	 to	 detect	 viable	 B.	 pilosicoli	 from	 the	 pooled	
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faeces	 from	 the	 treated	groups,	 it	 is	 reasonable	 to	assume	 the	organism	does	not	

survive	well	 in	 the	 environment	 and	 is	 less	 of	 a	 threat	 for	 re-infection.	 Thus,	 it	 is	

possible	 B.	 pilosicoli	 was	 not	 completely	 eliminated	 by	 Denagard®	 Tiamulin	

treatment.	Perhaps	a	 longitudinal	 series	of	post-mortem	examinations	beyond	day	

38	should	be	undertaken.		

	

Another	 significant	 finding	 regarding	 infection	 and	 its	 reduction	 by	

Denagard®Tiamulin	 treatment	 was	 the	 fact	 that	 no	 liver	 or	 spleen	 samples	 taken	

from	 each	 of	 the	 three	 treatment	 groups	 were	 infected	 at	 the	 close	 of	 the	

experiment,	day	38.	The	positive	control	group	B	(infected–untreated)	was	positive	

for	 3/8	 and	 1/8	 liver	 and	 spleen	 samples,	 respectively.	 Also	 the	 bacteriological	

burden	for	these	organs	was	in	the	region	of	103	CFU/g.	The	discussion	above	raises	

concern	regarding	 recurrence	of	 infection	and	the	possibility	 that	 the	environment	

or	 the	GI	 tract	 that	 is	 not	 cleared	may	 be	 a	 source	 of	 re-infection.	Of	 importance	

here	is	that	the	deep	tissues	that	could	be	a	site	for	long-term	quiescent	colonisation	

are	 completely	 cleared	 by	 Denagard®	 Tiamulin.	 However,	 other	 potential	 sites	 of	

long-term	 colonisation	 were	 not	 analysed.	 Other	 spirochaetes	 such	 as	 the	

Leptospires	are	known	to	colonise	kidney,	 joints	and	even	ocular	 fluid	and	perhaps	

these	 may	 be	 included	 in	 future	 studies.	 However,	 of	 importance	 was	 that	

Denagard®	 Tiamulin	 treatments	 at	 all	 concentrations	 were	 highly	 effective	 at	

eliminating	B.	 pilosicoli	 colonisation	 of	 liver	 and	 spleen	 that	 is	 likely	 to	 impact	 on	

reducing	 recurrence	 of	 disease	 after	 treatment.	 Also,	 it	 would	 have	 been	 of	

considerable	value	to	assess	the	innate	and	induced	immune	responses	as	induction	
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by	 infection	 should	 mediate	 a	 protective	 effect	 and	 reduce	 the	 likelihood	 of	

reoccurrence	of	infection.	

	

The	mean	weight	gain	was	clearly	suppressed	in	group	B	but	it	is	interesting	to	note	

that	 the	 mean	 weight	 gain	 of	 each	 of	 the	 three	 infected	 and	 Denagard®Tiamulin	

treated	 groups	 (C,	 D	 and	 E)	 were	 as	 good	 if	 not	 better	 than	 of	 the	 uninfected–

untreated	 control.	 Indeed	 the	mean	weight	 gain	of	 group	E	 that	was	 infected	and	

treated	with	the	highest	concentration	of	Denagard®	Tiamulin	was	the	highest	of	all	

study	 groups.	 This	 outcome	 is	 under	 further	 investigation.	 Feed	 and	water	 intake	

showed	no	significant	differences	between	any	groups.	This	suggests	that	the	impact	

of	 infection	 and	 treatment	 did	 not	 unduly	 reduce	 appetence.	 However,	 of	

importance	 was	 the	 impact	 on	 feed	 conversion	 for	 the	 group	 B	 positive	 control	

(infected–untreated)	 that	 clearly	 showed	 suppression	 in	 overall	 weight	 gain.	 The	

infected–treated	 groups	 C,	 D	 and	 E,	 irrespective	 of	 the	 Denagard®	 Tiamulin	 dose,	

clearly	 recovered	 performance	 to	 the	 same	 or	 above	 that	 of	 the	 negative 

(uninfected–untreated)	group	A.	Whilst,	perhaps,	not	of	such	significance	to	layers,	

this	 finding	may	 be	 of	 considerable	 interest	 to	 broiler	 productivity	 and	 this	 needs	

investigation.		

	

The	 production	 of	 eggs	 and	 their	 quality	 was	 assessed,	 but	 the	 findings	 were	

equivocal.	There	were	no	differences	in	numbers	of	eggs	produced	between	any	of	

the	 five	study	groups.	Staining	was	not	excessive	 in	any	study	group	and	given	the	

scoring	 is	subjective	 it	 is	unclear	why	group	C	(infected–treated	58.7	ppm)	had	the	

lowest	egg	staining	score	and	group	D	(infected–treated	113	ppm)	had	the	highest	
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egg	staining	score.	These	findings	are	surprising	given	that	positive	control	group	B	

(infected–untreated)	 produced	 soft/watery	 faeces	 more	 and	 for	 longer	 than	 any	

other	group.	The	findings	therefore	are	counterintuitive.		

	

In	 summary,	 this	 study	has	 demonstrated	 that	Denagard®	 Tiamulin	 at	 three	doses	

was	effective	at	reducing	B.	pilosicoli	infection	of	chickens	in	the	animal	model	used.	

Whilst	the	symptoms	induced	 in	the	positive	control	were	mild	the	treatment	with	

Denagard®	Tiamulin	clearly	reduced	the	burden	of	infection	in	deep	tissues,	reduced	

shedding,	improved	weight	gain	and	improved	egg	weight.	These	parameters	are	of	

economic	 importance	 to	 producers	 and	 suggest	 Denagard®	 Tiamulin	 is	 a	 viable	

treatment	of	AIS.	
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Impact	of	infection	and	tiamulin	treatment	on	host	metabolism:	

The	 final	 step	 of	 this	 work	 was	 to	 evaluate	 the	 impact	 of	 both:	 infection	 and	

antibiotic	 treatment	 on	 host	 systemic	 metabolism	 and	 and	 caecal	 microbiota	

populaition.	Biopsy	samples	from	post	mortum	evalution	of	the	previous	study	were	

analysed	using	high	resolution	1H	NMR	and	caecal	microbiota	was	characterised	with	

16SRNa	 next	 generation	 sequencing.	 Manuscript	 will	 be	 submitted	 shortly	 to	 the	

ISME	journal.	
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Abstract	

Infection	 of	 the	 digestive	 track	 by	 gastro-intestinal	 pathogens	 results	 in	 the	

development	of	symptoms	ranging	from	mild	diarrhea	to	more	severe	clinical	signs	

such	as	blood	 loss,	 severe	dehydration	and	potentially	death.	Antibiotics	are	often	

used	to	tackle	this	type	of	disease	by	reducing	the	numbers	of	the	specific	pathogen	

but	 as	 a	 consequence	 also	 disturbing	 the	 ‘normal’	 gut	 microbiota.	 The	 metabolic	

impact	of	both	symptom	development	and	 recovery	of	 the	host	gut	microbiota	by	

antibiotic	 treatment	 are	 yet	 not	 fully	 understood.	 In	 this	 exemplar	 study,	 we	

evaluated	 the	 impact	 of	 infection	 of	 a	 chicken	 model	 by	 the	 gastro-intestinal	

pathogen	 Brachyspira	 pilosicoli	 and	 its	 resolution	 by	 antibiotic	 treatment	 with	

tiamulin.	 Using	 high-resolution	 1H	 nuclear	 magnetic	 resonance	 (NMR)	 systemic	

metabolism	was	studied	whilst	16S	next	generation	sequencing	 (NGS)	was	used	 to	

assess	the	composition	of	the	caecal	microbiota.	Infection	induced	a	modification	of	

systemic	 host	 energy	 metabolism	 characterized	 by	 the	 utilization	 of	 glycerol	 as	 a	

glucose	 precursor	 explaining	 in	 part	 diarrhea	 associated	 dehydration	 and	 animal	

weight	loss.	An	unexpected	finding	related	to	antibiotic	treatment	was	the	triggering	

of	 an	 increased	 VLD/HDL	 ratio	 in	 the	 host.	 The	 caecal	 microbiota	 showed	 a	

significant	shift	upon	infection	and	there	was	strong	reduction	of	CM	diversity	after	

antibiotic	 treatment.	 In	 this	 study,	 we	 demonstrated	 how	 infection	 and	 antibiotic	

treatment	could	both	impact	host	systemic	metabolism	in	line	with	CM	composition	

causing	 phenotypic	 and	 health	 modification.	 Thus,	 these	 results	 provide	 a	 better	

understanding	of	symptom	development	post	bacterial	infection.	
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5.1.	Introduction	

Gut	microbiota	 (GM)	 composition	 is	 known	 to	 strongly	 influence	 host	 health	 by	 a	

wide	range	of	mechanisms	ranging	from	control	of	immune	functions(Hooper	et	al.	

2012),	metabolic	homeostasis(Ley	et	al.	2006;	Cani	&	Delzenne	2009)	and	including	

drug	metabolism(Claus	et	al.	2011).	Even	if	generally	stable	within	a	species,	the	GM	

composition	can	be	strongly	impacted	by	exposure	to	environmental	stress	(Spor	et	

al.	 2011)	 (nutrition,	 xenobiotic	 and	 infection).	 Modification	 of	 this	 ecosystem	 can	

affect	host	health	due	to	the	symbiotic	relationship	existing	between	the	host	and	its	

gut	flora(Spor	et	al.	2011).	For	 instance,	 infection	of	the	digestive	track	by	bacteria	

can	be	asymptomatic	but	also	 induce	severe	health	damage	depending	on	severity	

of	 infection	 and	 pathogenicity	 of	 the	 specific	 bacterial	 pathogen.	 Furthermore,	

infection	 is	 generally	 associated	 with	 bacterial	 dysbiosis	 of	 the	 digestive	

track(Antharam	et	al.	2013)	but	the	impact	of	such	modification	on	host	metabolism	

and	symptom	development	such	as	weight	loss	is	still	poorly	understood.	Reduction	

of	symptoms	is	generally	observed	post	antibiotic	treatment	due	to	reduction	in	the	

pathogenic	 bacteria	 and	 the	 decline	 of	 the	 sequel	 of	 their	 infection.	 However,	

antibiotic	use	is	also	related	to	loss	of	the	GM	diversity	that	has	been	in	several	cases	

linked	to	further	host	metabolic	weakening(Cox	et	al.	2014).	

Avian	 intestinal	 spirochaetosis	 (AIS)	 is	 caused	 by	 the	 colonization	 of	 bird’s	 lower	

digestive	track	by	the	pathogen	Brachyspira	pilosicoli(Le	Roy	et	al.	2015;	Mappley	et	

al.	 2014).	 The	 bacterium	 attaches	 to	 the	 cell	 wall	 and	 generally	 triggers	 diarrhea	

associated	 with	 decreased	 growth	 rate	 and	 egg	 production.	 The	 most	 used	

treatment	 to	 tackle	 this	 disease	 is	 Tiamulin™,	 an	 antibiotic	 of	 the	 pleuromutilin	
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family	 that	 inhibits	 protein	 synthesis	 by	 binding	 to	 the	 50S	 region	 of	 the	

ribosome(Poulsen	 2001;	 Pringle	 et	 al.	 2012).	 Only	 a	 few	 studies	 have	 shown	 its	

efficiency	 in	 chickens	 despite	 it	 intensive	 use	 to	 treat	 avian	 flocks	 in	

industry(Stephens	&	Hampson	2002;	Burch	et	al.	2006).	To	date	this	disease	and	its	

treatment	 have	 been	 little	 studied	 and	 remain	 poorly	 understood.	 Indeed,	 the	

causality	 of	 symptoms	 such	 as	weight	 loss	 and	 decreased	 egg	 production	 are	 still	

partly	unexplained.	Furthermore	the	mechanism	by	which	Tiamulin™	treatment	can	

reduce	symptoms	but	also	increase	growth	rate	and	egg	production	are	not	known.	

Understanding	 such	 factors	 would	 be	 of	 great	 interest	 in	 order	 to	 understand	

metabolic	mechanisms	triggering	symptom	development	during	infection.	

In	one	of	our	recent	studies	(Woodward	et	al.	2015),	we	evaluated	the	efficiency	of	

three	Tiamulin™	doses	to	treat	laying	hens	orally	challenged	with	B.	pilosicoli	B2904.	

This	 study	 revealed	 that	 infection	was	 associated	with	 decreased	 growth	 rate	 and	

that	birds	treated	with	Tiamulin™	were	recovering	from	infection	regardless	of	 the	

dose	 used	 while	 weight	 gain	 was	 only	 observed	 for	 the	 two	 highest	 doses.	 We	

evaluated	that	this	study	could	be	used	as	a	model	to	understand	systemic	metabolic	

response	 to	 digestive	 track	 infection	 and	 antibiotic	 treatment	 using	 NMR-based	

metabonomics.	Metabonomics	was	defined	in	1999	by	Nicholson	et	al(Nicholson	et	

al.	 1999)	 as	 the	 “quantitative	 measurement	 of	 the	 dynamic	 multi-parametric	

metabolic	 response	 of	 living	 systems	 to	 pathophysiological	 stimuli	 or	 genetic	

modification”.	This	 is	a	recent	biological	field	that	allows	a	non-targeted	evaluation	

of	 metabolic	 fluctuation	 occurring	 in	 biological	 system	 by	 coupling	 analytical	

methods	 such	 as	 NMR	 spectroscopy	 and	 multivariate	 statistics.	 To	 date	 this	

technique	 has	 been	 used	 to	 evaluate	 the	 impact	 of	 infection(Wang	 et	 al.	 2004),	
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antibiotic	 treatment(Yap	 et	 al.	 2008;	 Romick-Rosendale	 et	 al.	 2009),	 diet	

changes(Claus	&	Swann	2013)	or	 gut	microbiota	 composition(Claus	et	 al.	 2011)	on	

host	systemic	metabolism	allowing	a	wider	comprehension	of	how	these	factors	can	

potentially	 influence	 host	 homeostasis.	 In	 addition	 the	 evolution	 of	 caecal	

microbiota	composition	 in	response	to	 infection	and	treatment	was	 followed	using	

16S	 next	 generation	 sequencing,	 an	 essential	 step,	 as	 the	 gut	 microbiota	 are	

inextricably	linked	to	host’s	metabolic	responses.	Both	analyses	provided	new	insight	

into	 the	 impact	 of	 infection	 and	 antibiotic	 treatment	 on	 host	 health,	 explaining	

physiological	response	to	both	bacterial	and	chemical	exposure.	

	

5.2.	Materials	and	methods	

5.2.1.	Animal	study	and	experimental	design	

The	 experimental	 plan	 followed	 for	 the	 study	 was	 described	 previously	 by	

Woodward	et	al(Woodward	et	al.	2015).	All	 samples	preparation	and	data	analysis	

regarding	general	 impact	of	 infection	and	Tiamulin™	 treatment	on	birds’	 infection,	

growth,	condition,	eggs	production,	water	and	food	consumption	are	also	explained	

in	 the	 same	paper.	However,	 for	 reading	 clarity,	 the	 experimental	 plan	presenting	

the	various	groups	and	samples	collection	point	are	summarized	 in	Figure	5.1.	Five	

groups	 of	 30	 16-17	weeks	 old	NovoGen	 Brown	 commercial	 layers	 sourced	 from	 a	

commercial	supplier	(Tom	Barron	Ltd,	UK)	were	housed	in	separate	rooms	at	APHA	

(Addelstone,	 Surrey,	 UK).	 The	 five	 groups	 were	 used	 in	 the	 following	 treatments:	

Group	 A:	 Untreated,	 uninfected	 controls;	 Group	 B:	 Untreated,	 infected	 controls;	
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Group	 C:	 Infected	 +	 Tiamulin™	 at	 62.5ppm;	 Group	 D:	 Infected	 +	 Tiamulin™	 at	

125ppm;	Group	E:	Infected	+	Tiamulin™	at	250ppm.	

After	crop	neutralization,	birds	were	challenged	by	oral	gavage	with	B.	pilosicoli	for	

five	days	every	two	days.	One	week	after	the	end	of	the	challenge,	group	C,	D	and	E	

received	 Tiamulin™	 in	 drinking	 water	 for	 five	 days.	 Birds	 were	 then	 kept	 for	

observation	for	three	more	weeks.	Feed	was	un-medicated	layer	pellets	(Dodson	and	

Horrell)	 and	water	was	 given	 from	 the	mains	 supply,	 both	were	 given	ad	 libitum.	

Birds	were	 housed	 according	 to	 Home	Office	 guidelines	 (Home	 office	 license	 -PPL	

70/7249-)	 and	 all	 procedures	 were	 performed	 in	 compliance	 with	 the	 Animals	

Scientific	Procedures	Act,	1986.		

	

Figure	5.1:	Experimental	plan	(A)	and	birds	weight	(B).	

	

	

5.2.2.	Sample	collection	from	animal	study	

Biopsy,	plasma	and	faecal	samples	were	collected	during	post-mortem	examination	

at	three	time	points:	 the	day	after	the	end	of	the	 infection	process	(PM1),	the	day	

after	 the	end	of	 the	antibiotic	 treatment	 (PM2)	and	at	 the	end	of	 the	study	 (PM3)	
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(Figure1A).	For	each	group	and	time	point	eight	birds	were	selected	randomly	and	

killed	humanely.	Blood	was	sampled	first	by	direct	puncture	by	needle	with	syringe	

of	 the	heart	and	 serum	was	 frost	 -80°C.	Tissue	biopsy	 samples	and	 faecal	 samples	

(approx.	1g)	were	snap	frozen	in	liquid	nitrogen	and	then	stored	at	-80°C.		

	

5.2.3.	Sample	preparation	for	NMR	

Kidney,	 pancreas,	 spleen	 and	 liver	 polar	 metabolite	 extraction	 was	 done	 by	

homogenizing	 0.1	 g	 of	 biopsy	 samples	 in	 1ml	 of	 3:1	 (v/v)	 methanol/H2O	 solution	

using	a	tissue	 lyser.	After	centrifugation	(10	min	at	12	000	x	g),	supernatants	were	

dried	in	a	speed	vacuum	(eppendorf)	and	resuspended	in	600	μl	of	phosphate	buffer	

(0.2M)	 containing	 90%	 of	 D2O	 and	 10%	 of	 H2O	 plus	 0.01%	 of	 sodium	 3-(tri-

methylsilyl)-propionate-2,3-d4	 (TSP	 used	 as	 internal	 standard).	 Samples	 (0.5	 ml)	

were	 then	 transferred	 to	 5	mm	NMR	 tubes	 for	 acquisition.	 Plasma	 samples	 were	

mixed	to	phosphate	saline	buffer	with	90%	D2O	at	a	2:1	(v/v)	ratio,	0.5	ml	were	then	

transferred	to	5	mm	NMR	tubes.	0.0150g	of	liver	biopsy	were	added	with	phosphate	

buffer	in	spinner	for	solid	state	NMR	spectroscopy.		

	

4.2.4.	NMR	spectroscopy	

For	 tissues	 1H-NMR	 spectra	 were	 acquired	 on	 a	 700	 MHz	 Bruker	 Advance	

Spectrometer	using	a	standard	noesypr1D	pulse	program	with	water	presaturation	

(relaxation	delay	of	2	 s	and	100	ms	of	mixing	 time).	Plasma	1D	NMR	spectra	were	

acquired	 using	 a	 Carr-Purcell-Meiboom-Gill	 (CPMG)	 pulse.	 Liver	 biopsies	 were	

acquired	on	500	MHz	Bruker	Advance	Spectrometer	using	a	HR	MAS	prob.	Spectra	
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were	acquired	using	a	standard	noesypr1D	pulse	as	well	as	CPMG.	For	all	matrixes,	

2D	NMR	experiments	were	run	on	chosen	samples	to	help	metabolites	identification.	

Spectra	were	acquired	with	using	256	scans	with	16	dummy	scans	(DS).	All	spectra	

were	recorded	as	64k	data	points	(15	ppm).	

	

5.2.5.	Next	generation	sequencing	16S	rRNA	

DNA	from	faecal	samples	were	extracted	using	PowerSoil®	DNA	Isolation	Kit	(MO	BIO	

Laboratories,	Inc).	To	ensure	DNA	samples	quality,	PCR	of	the	universal	V4	region	of	

the	16S	rRNA	was	performed	post	extraction	(cycling	conditions:	94	°C	for	3	min;	30	

cycles	of	94	°C	for	30	s,	55	°C	for	45	s,	72	°C	for	1	min;	followed	by	72	°C	for	8	min)	

and	concentration	was	assessed	using	a	Nano	drop.	PCR	primers	were	the	following:		

U515F:	5’-GTGYCAGCMGCCGCGGTA	

U927R:	5’-CCCGYCAATTCMTTTRAGT	

The	V4	 and	V5	 region	of	 the	16S	 rRNA	 region	was	 then	 sequenced	on	 the	GS	 FLX	

Titanium	platform	according	to	the	manufacturer’s	 instructions	(Roche	Diagnostics)	

and	 in	 accordance	 by	 the	 method	 described	 previously	 by	 Ellis	 et	 al.	 (Ellis	 et	 al,	

2013).		

The	 data	 were	 processed	 using	 the	 Quantitative	 Insights	 Into	 Microbial	 Ecology	

software	package	(QIIME	v1.3.0)	implemented	in	Biolinux	6.	Taxonomy	was	assigned	

according	to	the	RDP	classifier	and	the	relative	abundance	of	taxa	at	multiple	levels	

of	 resolution	 (phylum,	 order,	 family,	 etc)	 was	 determined	 for	 each	 sample.	

Jackknifed	beta-diversity	was	calculated	using	 the	unweighted	UniFrac	metric	a	 re-

sampling	 size	 of	 250.	 Other	 statistical	 analysis	 such	 as	 PCA	 was	 performed	 using	

MatLab.	
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5.2.6.	Statistical	analysis	

For	metabonomics	analysis,	after	exponential	window	with	line	broadening	of	0.3	Hz	

and	 Fourier	 transformation,	 spectra	 were	 individually	 phased	 and	 base	 line	

corrected	 on	 the	 software	MestReNova.	 Spectra	were	 then	 transferred	 to	Matlab	

(the	Mathwork	®	2013a)	where	 they	were	 calibrated	on	TSP	 (δ	 0.00)	 for	 all	 tissue	

extract,	lactate	(δ	1.33)	for	plasma	and	the	H1	proton	of	α-glucose	(δ	 5.23)	for	liver	

biopsy.	Spectra	were	normalized	for	each	matrixes	 individually	using	a	probabilistic	

quotient	 method.	 Metabolic	 variation	 between	 samples	 was	 evaluated	 in	 a	 first	

place	using	principal	component	analysis	 (PCA).	This	step	was	also	used	to	remove	

potential	 outliers.	 When	 group	 clusters	 of	 interest	 were	 spotted,	 orthogonal	

projection	to	latent	structure	discriminant	analysis	(O-PLS	DA)	was	used	to	evaluate	

metabolic	variation	between	groups	using	NMR	spectrum	as	a	matric	of	independent	

variables	 and	 infection	 or	 treatment	 as	 a	 prediction	 vector.	 Metabolites	

identification	was	done	based	on	previously	published	chicken	metabolic	atlas.	

Alpha	 diversity	 represents	 the	 species	 biodiversity	 in	 a	 specific	 in	 habitat.	 The	

determination	 of	 the	 alpha	 diversity	 in	 this	 study	 was	 calculated	 as	 the	 mean	 of	

species	observed	from	10	reads	of	16	rRNA	NGS.		

	

5.3.	Results	

5.3.1.	Infection	induces	systemic	metabolic	response	of	the	host	

Systemic	metabolic	response	to	infection	by	B.	pilosicoli	was	observed	directly	after	

the	end	of	the	challenge	period	(day	6).	Infection	was	associated	with	a	modification	

of	kidney,	 liver,	spleen	and	plasma	metabolome	(Figure	5.2A,	B,	C	and	D).	Livers	of	
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infected	birds	were	richer	in	glycerol,	lactate,	choline,	succinate	and	acetate	(Figure	

5.2A).	 In	 the	 spleen,	 infection	 resulted	 in	 decreased	 O-phosphocholine,	 glutamine	

and	AMP	and	 increased	glycerol,	 uracil,	 citidine	and	 leucine	 (Figure	2B).	 In	 kidney,	

infection	 induced	 an	 increase	 glycerol,	 uracil	 and	 xanthine	 content,	 concomitant	

with	 a	 decrease	 in	 inosine	 (Figure	 5.2C).	 Finally,	 increased	 betaine	 and	 glycerol	

concentration	were	also	associated	to	infection	in	plasma	(Figure	5.2D).	Two	weeks	

after	 the	 end	 of	 infection	 period	 (PM2),	 kidney,	 liver	 and	 spleen	 of	 infected	 birds	

recovered	their	metabolic	homeostasis	as,	no	metabolic	variations	were	observed	in	

response	to	infection.	However,	the	glucose	level	dramatically	dropped	in	plasma	of	

infected	birds	(Figure	2E).	Finally,	just	after	infection	(PM1),	the	content	of	the	colon	

of	infected	birds	was	richer	in	polysaccharides	and	amino	acids	(Figure	5.3).	
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Figure	 5.2:	 B.	 pilosicoli	 infection	 is	 associated	 with	 major	 systemic	 metabolism	
modification.	 (A)	 Plot	 of	 the	 scores	 against	 the	 cross-validated	 scores	 of	 infected	
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birds	 (red	 square)	 and	 uninfected	 birds	 (blue	 circle)	 and	 coefficient	 plot	 of	 the	
discrimination	between	infected	birds	(top)	and	healthy	birds	(bottom)	of	the	O-PLS-
DA	 model	 calculated	 using	 1D-NMR	 spectra	 of	 birds’	 liver	 at	 T0	 as	 a	 matrix	 of	
independent	variables	and	infection	as	a	predictor.	(B)	Same	for	the	spleen.	(C)	same	
for	the	kidney.	(D)	same	for	the	plasma.	(E)	same	for	the	plasma	at	T1.	

	

No	other	metabolic	variation	in	response	to	infection	was	observed	in	other	tissues.	

Surprisingly,	 metabolism	 of	 gut	 tissues	 (colon	 and	 caeca)	 was	 not	 affected	 by	 B.	

pilosicoli	despite	infection	locality.		

By	 the	 end	of	 the	 study	 it	was	 not	 possible	 to	metabolically	 differentiate	 infected	

from	uninfected	birds	using	metabonomics	techniques	in	any	of	the	previously	sited	

tissue	or	biofluid.		

	

	

Figure	 5.3:	 Infection	modifies	 GM	metabolic	 activity	 and	 polysaccharide	 intestinal	
lumen	 content.	 (A)	 OPLS-DA	 scores	 against	 cross-validated	 scores	 calculated	 using	
faecal	 water	 spectra	 of	 group	 A	 and	 B	 at	 PM2	 and	 infection	 as	 a	 predictor.	 (B)	
Loading	plot	associated	to	the	OPLS-DA	model	described	in	A.	

	

5.3.2.	Tiamulin™	treatment	attenuate	metabolic	response	to	infection	

We	next	investigated	if	antibiotic	treatment	with	Tiamulin™	was	associated	with	any	

metabolic	response	of	the	host	to	infection.	At	PM2,	a	higher	plasma	level	of	betaine	

was	 observed	 in	 response	 to	 infection	 (p-value<0.01	 –Figure	 5.4-).	 However,	 birds	
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infected	but	treated	with	Tiamulin™	presented	similar	plasma	level	of	betaine	than	

the	control	but	interestingly	the	response	observed	was	not	dose	dependent.		

	

	

Figure	 5.4:	 Plasma	 level	 of	 betaine	 at	 PM2	 for	 all	 groups.	 .*,	 p-value<0.05;	 **,	 p-
value<0.01.	

	

In	the	previous	section,	it	was	described	that	infection	induced	a	glucose	level	drop	

in	chicken	plasma	at	PM2.	Evaluation	of	average	glucose	concentration	per	group	at	

PM2	(Figure	5.5)	revealed	that	Tiamulin™	treatment	 induced	an	increase	 in	plasma	

glucose	 level.	However,	 the	glucose	 level	 in	plasma	of	 treated	birds	was	still	 lower	

than	 in	 the	 control	 group.	 Interestingly,	 the	 plasma	 glucose	 level	 was	 inversely	

proportional	to	treatment	dose.	
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Figure	 5.0.5:	 Glucose	 plasma	 level	 at	 PM2	 for	 all	 groups.	 *,	 p-value<0.05;	 **,	 p-
value<0.01.	

	

5.3.3.	Tiamulin™	treatment	is	responsible	for	a	major	shift	in	lipid	metabolism	

The	PCA	score	plot	displaying	the	general	impact	of	treatment	on	plasma	metabolic	

profile	 using	 NMR-based	 metabonomics	 at	 PM2	 (Figure	 5.6A)	 revealed	 a	 clear	

separation	 between	 the	 scores	 for	 the	 birds	 treated	 with	 antibiotic	 and	 for	 un-

treated	 on	 principal	 component	 1	 (PC1).	 Plasma	 metabolic	 profiles	 of	 chickens	

treated	with	antibiotic	were	characterized	by	increased	very	low-density	lipoprotein	

(VLDL)	 and	 decreased	 high-density	 lipoprotein	 (HDL)	 level	 (Figure	 5.6A,	 B	 and	 C).	

Analysis	 of	 the	 same	 dataset	with	 supervised	 analysis	 (O-PLS	 DA),	 using	 antibiotic	

dose	as	a	predictor	(Figure	5.7)	revealed	that	the	lipoprotein	response	to	treatment	

was	dose	dependent.	
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Figure	5.0.6:	Tiamulin™	 induces	plasma	metabolic	variations.	 (A)	PCA	score	plot	on	
the	 first	 (T1	 48%)	 and	 the	 fourth	 (T4	 5%)	 principal	 component	 derived	 from	 the	
model	calculated	using	the	1d-NMR	spectra	of	birds’	plasma	at	T2.	 (B)	Color-coded	
plot	of	the	plasma	1D-NMR	spectra	of	control	birds	(blue),	infected	and	non-treated	
birds	 (pink)	 and	 treated	 birds	 (green).	 (C)	 Plot	 of	 the	 principal	 component	 1	 (PC1)	
loadings,	 molecules	 pointing	 up	 positively	 correlated	 with	 PC1,	 molecule	 pointing	
down	 negatively	 correlated	with	 PC1.	 (D)	 Plot	 of	 the	 principal	 component	 4	 (PC4)	
loadings,	 molecules	 pointing	 up	 positively	 correlated	 with	 PC4,	 molecule	 pointing	
down	 negatively	 correlated	with	 PC4.	 (E)	 PCA	 scores	 plot	 derived	 from	 the	model	
calculated	using	the	HR-MAS	NMR	spectra	acquired	from	liver	biopsy.	(F)	Plot	of	the	
loadings	of	principal	component	1	(PC1)	of	the	PCA	model	presented	in	E.	

	

Since	 liver	 is	 the	 central	 regulating	 organ	 for	 cholesterol	 and	 lipid	 metabolism,	

metabolic	profiles	of	liver	biopsy	were	generated	using	HR-MAS	NMR	spectroscopy.	
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This	analysis	 revealed	 that	 the	 liver	of	birds	 treated	with	Tiamulin™	were	 richer	 in	

lipoproteins	 than	 non-treated	 birds	 (Figure5.6C	 and	 F)	 confirming	 the	 impact	 of	

Tiamulin™	on	central	cholesterol	metabolism.	

	

	

Figure	 5.7:	 Linear	 plasma	 response	 to	 Tiamulin™	 treatment	 dose.	 (A)	 Plot	 of	 the	
scores	against	the	cross-validated	scores	of	the	O-PLS-DA	model	calculated	using	1H-
NMR	 spectra	 of	 birds	 at	 PM2	as	 a	matrix	 of	 independent	 variables	 and	 Tiamulin™	
dose	as	a	predictor.	B.	Associated	loadings	plot.	

	

5.3.4.	Tiamulin™	accelerate	metabolic	aging	

When	looking	at	the	impact	of	Tiamulin™	on	chicken	plasma	metabolic	profile	on	the	

overall	study	(all	groups	PM1,	2	and	3),	it	appeared	that	age	was	also	a	strong	source	

of	metabolic	variation	(Figure	5.8).	Age	was	associated	with	decreased	HDL,	glucose,	
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succinate	and	 lactate	 level,	while	VLDL	 level	 increased	 (Figure	5.8).	Analysis	of	 the	

scores	(Figure	5.8B)	revealed	that	Tiamulin™	treated	birds	were	metabolically	similar	

to	 older	 birds	 (PM3)	 at	 PM2	and	 that	 to	 the	 contrary,	 untreated	birds	 had	 similar	

metabolic	profile	to	birds	from	the	younger	age	group	(PM1).		

	

	

Figure	5.8:	Age	is	related	to	increased	VLDL	and	decrease	HDL	and	glucose	level.	(A)	
Plot	of	the	Colour-coded	plot	of	the	plasma	1D-NMR	spectra	of	16	weeks	old	birds	
(blue),	17	weeks	old	birds	(red)	and	19	weeks	old	birds	(black).	(B)	Plot	of	the	scores	
of	the	O-PLS-DA	model	calculated	using	1H-NMR	spectra	of	birds	at	all	time	point	as	a	
matrix	 of	 independent	 variables	 and	 the	 birds’	 age	 as	 a	 predictor.	 (C)	 O-PLS-DA	
coefficient	plot	related	to	the	birds	age.	
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5.3.5.	Infection	and	Tiamulin™	shifted	CM	composition	

The	 composition	 of	 the	 CM	 population	 in	 response	 to	 infection	 and	 antibiotic	

treatment	was	evaluated	using	next	generation	16S	sequencing.	The	CM	population	

was	extremely	stable	through	time	in	the	control	group	as	shown	by	PCA	score	plots	

(Figure	5.9A	to	C)	and	pie	charts	(Figure	5.9E).	

	

	

Figure	 5.9:	 Tiamulin™	 treatment	 enhances	 a	 profound	 alteration	 of	 gut	 microbial	
diversity	and	population.	 (A)	PCA	score	plots	calculated	using	 the	bacterial	 relative	
percentage	of	abundance	of	OTU	at	a	family	level	for	all	birds	but	displaying	only	the	
scores	 (n=8)	of	 control	 (blue	 circle)	 and	 infected	birds	 (pink	 square)	 post	 infection	
(T0).	(B)	Same	PCA	score	plot	than	A	but	displaying	only	the	scores	(n=8)	of	control	
(blue	 circle),	 infected	 birds	 (pink	 square)	 and	 treated	 birds	 (green	 triangles)	 post	
treatment	(T1).	(C)	Same	PCA	score	plot	than	A	and	B	but	displaying	only	the	scores	
of	 control	 (blue	 circle),	 infected	 birds	 (pink	 square)	 and	 treated	 birds	 (green	
triangles)	three	weeks	post	treatment	(T2).	(D)	Alpha	diversity	calculated	for	control,	
infected	and	treated	birds	at	each	post	mortem.	(E)	Pie	chart	presenting	the	bacterial	
relative	abundance	at	a	phylum	level	for	each	group	(control,	infected	and	treated)	
for	the	three	time	points	chosen	in	this	study.	
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Infection	was	associated	with	a	modification	of	the	commensal	caecal	microbiota	in	

comparison	to	control	(Figure	5.9A	and	B),	but	community	balance	was	reestablished	

at	 the	 end	 of	 the	 study	 (Figure	 5.9C).	 This	 modification	 of	 the	 CM	 was	 mainly	

associated	 with	 an	 increase	 in	 Lactobacillales,	 Burkholderiales	 and	

Campylobacterales	two	orders	of	the	Proteobacteria	phylum	(Figure	5.10).	

	

	

Figure	5.10:	Loadings	of	the	corresponding	to	the	16S	PCA	scores	plot	 in	Figure	5.9	
calculating	using	the	OTUs.	A,	loadings	of	PC1.	B,	Loadings	of	PC2.	
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After	Tiamulin™	treatment	the	Spirochaetes	class	(to	which	belong	B.	pilosicoli)	was	

no	 longer	 detectable	 (Figure	 5.11).	 Yet,	 this	 bacterial	 class	 had	 reemerged	 three	

weeks	 after	 the	 end	 of	 the	 antibiotic	 treatment	 (Woodward	 et	 al,	 2015).	

Furthermore,	 their	 relative	percentage	of	 abundance	was	higher	 that	 in	both	non-

treated	groups.		

	

	

Figure	 5.11:	 Relative	 abundance	 in	 percentage	 of	 the	 Spirochaetes	 OTU	 for	 each	
treatment	group	along	the	study.	

	

Antibiotic	 treatment	was	also	associated	with	a	dramatic	decrease	of	 the	bacterial	

biodiversity	in	comparison	to	the	two	other	groups	(Figure	5.9D).	This	 loss	of	alpha	

diversity	was	observed	straight	after	the	end	of	antibiotic	treatment.	However,	three	

weeks	 after	 the	 end	 of	 antibiotic	 treatment	 caecum	microbiota	 had	 recovered	 its	

level	 of	 diversity.	 Tiamulin™	 resulted	 in	 a	major	 shift	 in	 CM	 community	 visible	 on	

PCA	 score	 plot	 (Figure	 5.9B)	 and	 pie	 charts	 (Figure	 5.9E).	 This	 was	 driven	 by	 a	
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decrease	percentage	in	the	relative	abundance	of	Firmicutes	(from	30%	to	22%)	and	

a	 drastic	 increase	 of	 the	 Bacteroidetes	 Phylum	 (from	 60	 to	 71	 %).	 The	

Firmicutes/Bacteroidetes	 ratio	 was	 changed	 from	 approximately	 ½	 to	 1/3.	 In	 the	

three	 weeks	 post	 antibiotic	 treatment,	 CM	 evolved	 in	 term	 of	 diversity	 and	

composition.	 However,	 individuals	 were	 not	 able	 to	 regain	 their	 normal	 CM	

composition	(Figure	5.9B	and	C).		

	

5.4.	Discussion	

Still	relatively	 little	 is	known	of	the	relationship	between	the	gut	microbiota	during	

intestinal	disease	and	recovery	after	antibiotic	treatment	and	the	host	metabolism,	a	

knowledge	gap	that	stimulated	this	study.	Gastro-intestinal	infections	can	trigger	gut	

microbiota	dysbiosis	and	are	generally	associated	with	symptoms	ranging	from	mild	

to	 severe.	 Compromised	 growth	 rate	 in	 production	 animals	 is	 often	 noted.	 Gut	

microbiota	 composition	 is	 recognized	 for	 having	 an	 important	 role	 to	 play	 in	 host	

growth	 and	 severe	 dysbiosis	 can	 therefore	 be	 responsible	 for	 abnormal	

development	(Subramanian	et	al.	2014;	Claus	2013).	In	this	study,	we	hypothesized	

that	 significant	 decrease	 growth	 rate	 associated	 with	 infection	 were	 triggered	 by	

caecal	 microbiota	 dysbiosis	 resulting	 in	 host	 metabolic	 response	 and	 that	 it	 was	

possible	to	correct	using	antibiotic	treatment.	The	model	selected	for	this	study	was	

B.	 pilosicoli	 infection	 of	 egg	 laying	 chickens	 that	 showed	 significantly	 decreased	

growth	rate	amongst	other	sequel	(Woodward	et	al.	2015).	Infection	also	induced	a	

strong	CM	 response	 characterized	by	 an	 increase	 in	 some	Proteobacteria	many	of	

which	are	considered	as	potential	pathogens	and	generally	associated	with	increase	
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diarrhea	risk(Saulnier	et	al.	2011;	Kerckhoffs	et	al.	2011).	These	bacteria	are	able	to	

degrade	 proteins	 present	 in	 the	 intestinal	 lumen	 partially	 explaining	 why	 its	 fecal	

content	was	richer	in	amino	acids	post	infection.	Intestinal	dysbiosis	characterized	by	

Proteobactetia	 richness	 has	 been	 mainly	 associated	 with	 metabolic	

syndrome(Tremaroli	&	Bäckhed	2012).		

In	 our	 study,	 infection	 and	 bacterial	 dysbiosis	 was	 followed	 by	 profound	 host	

systemic	changes.	The	range	of	the	tissues	affected	by	infection	(liver,	spleen,	kidney	

and	plasma)	indicates	a	systemic	metabolic	response	of	the	organism	to	B.	pilosicoli	

colonization	and	dysbiosis.	Interestingly	increased	glycerol	levels	were	noticeable	in	

all	 compartment	 cited	 above.	 Systemic	 glycerol	 increase	 is	 a	marker	 of	 lipolysis	 in	

adipose	 tissues	 where	 triglycerides	 are	 lysed	 into	 lipids	 and	 glycerol	 by	 lipase	

enzyme(Moussard	2012).	Glycerol	 is	 then	 released	 in	 the	 general	 circulation	 to	be	

used	 a	 glucose	 precursor	 in	 the	 liver	 or/and	 the	 kidney.	 Such	 a	 mechanism	 is	

generally	activated	by	prolonged	 low	plasma	glucose	 level.	GI	 infection	can	 trigger	

low	 glucose	 absorption	 due	 to	 gut	 barrier	 disruption.	 B.	 pilosicoli	 is	 known	 to	

strongly	 affect	 the	 intestinal	 wall(Mappley	 et	 al.	 2011)	 and	 can	 therefore	 initiate	

such	 impairment	 of	 glucose	 absorption.	 Indeed	 in	 this	 study	 as	well	 as	 a	 previous	

one	(Le	Roy	et	al.	2013)	we	observed	increased	glucose	and	carbohydrate	content	in	

faeces	of	 infected	birds	 indicating	 their	 lower	absorption	 level.	 The	polysaccharide	

increase	 could	 also	 be	 associated	 with	 the	 ability	 of	 B.	 pilosicoli	 to	 degrade	

mucin(Naresh	&	Hampson	2010;	Mappley	et	al.	2012).	Indeed	it	has	been	described	

that	 this	 pathogen	 can	 degrade	 the	 mucin	 layer	 thus	 polysaccharide	 might	 be	

released	 within	 the	 lumen(Bäumler	 &	 Sperandio	 2016).	 Furthermore	 the	

concomitant	increase	in	butyrate	and	acetate	observed	with	infection	attest	a	higher	
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fermentation	 of	 these	 polysaccharides	 and	 therefore	 a	 modification	 of	 the	 GM	

metabolic	activity.	Plasma	glucose	concentration	 is	highly	 controlled	and	 regulated	

since	 its	 level	 needs	 to	 be	 maintained	 to	 sustain	 brain	 and	 muscular	 activity.	 To	

sustain	the	glucose	level	alternative	pathways	reducing	fat	storage	such	as	the	one	

described	above	are	activated.	 Thus,	 the	use	of	 glycerol	 as	 an	energy	precursor	 in	

response	to	infection	could	be	directly	linked	to	the	decreased	growth	rate	observed	

in	 chickens	 colonized	by	B.	 pilosicoli	as	described	previously	 (Mappley	et	 al.	 2013)	

and	in	our	study(Woodward	et	al.	2015).	However,	the	drop	in	plasma	glucose	level	

observed	 at	 PM2	 and	 the	 reestablishment	 of	 the	 glycerol	 level,	 suggests	 that	 this	

alternative	metabolic	 pathway	 cannot	 sustain	 energy	 demand	 for	 a	 large	 lapse	 of	

time.	The	 total	 reestablishment	of	host	metabolic	homeostasis	was	 reached	at	 the	

end	 of	 the	 study	 (PM3),	 coinciding	with	 a	 net	 decrease	 in	 percentage	 of	 infected	

birds	 in	 all	 groups(Woodward	 et	 al.	 2015)	 but	 also	 a	 stabilization	 of	 the	 CM	

indicating	 that	 both	 factors	 are	most	 probably	 associated	with	 the	 host	metabolic	

response	observed.	

Antibiotics	 are	 known	 to	 attenuate	 symptoms	 developed	 during	 infection.	 In	 the	

paper	 published	 previously	 by	 Woodward	 et	 al.	 it	 was	 indeed	 observed	 that	

Tiamulin™	was	able	to	decrease	infection	and	associated	symptoms(Woodward	et	al.	

2015).	 Indeed,	decreased	growth	rate	in	response	to	 infection	was	canceled	by	the	

two	 highest	 antibiotic	 doses.	 In	 this	 study,	 Tiamulin™	 was	 also	 able	 to	 attenuate	

infection-induced	metabolic	response	such	as	the	betaine	increase	and	glucose	drop	

in	plasma.	It	is	not	possible	to	know	if	the	observations	made	were	due	to	reduced	

viability	with	 associated	 loss	 of	 pathogenic	 function	 of	B.	 pilosicoli	 induced	 by	 the	

antimicrobial	 properties	 of	 the	 Tiamulin™	 (i.e.	 gut	 barrier	 disruption),	 by	 the	
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antibiotic	itself	and	unrelated	to	status	of	B.	pilosicoli	or,	if	other	mechanisms	were	

involved.	However,	we	observed	 in	our	previous	study(Woodward	et	al.	2015)	that	

at	 PM2,	 infection	 was	 reduced	 equally	 by	 antibiotic	 treatment	 irrespective	 of	 the	

dose	administrated	which,	could	explain	why	no	dose	dependence	was	observed	in	

the	 betaine	 response.	We	hypothesize	 that	 increased	 betaine	 level	 in	 response	 to	

infection	was	related	to	the	central	osmoprotectant	role	of	this	molecule(Felitsky	et	

al.	2004).	Betaine	has	been	used	previously	as	food	suplement	for	chicken	due	to	its	

ability	 to	 protect	 the	 gut	 barrier	 against	 pathogens	 such	 as	Coccidia	 (Craig	 2004).	

Indeed,	 B.	 pilosicoli	 by	 invading	 the	 cells	 induces	 swelling	 and	 disturbance	 of	 the	

osmotic	 balance(Mappley	 et	 al.	 2011;	Mappley	 et	 al.	 2014).	 Increased	 amount	 of	

betaine	could	therefore	be	transported	from	other	tissue	towards	the	gut	barrier	via	

general	circulation	explaining	its	increased	level	in	plasma.	

Antibiotics	are	chemical	molecules	 that	also	 interplay	directly	with	 the	host.	 It	has	

been	 reported	 that	 Tiamulin™	 interacts	 with	 cytochrome	 P450	 3A	 (CYP3A)	 family	

(present	 in	 the	 liver	 for	 drug	 clearance)	 forming	 a	 complex	 that	 results	 in	 the	

inactivation	of	the	cytochrome	in	vitro	and	in	vivo	(Witkamp	et	al.	1996;	De	Groene	

et	al.	1995;	Zweers-Zeilmaker	et	al.	1999;	Rátz	et	al.	1997).	CYP3A	is	also	involved	in	

steroid	hormone	clearance	(progesterone,	estrogen	and	testosterone).	It	was	shown	

is	 several	 studies	 that	 a	 decrease	 in	 CYP3A	 activity	 generally	 resulted	 in	 increased	

plasma	 steroid	 hormone	 concentrations(Natsuhori	 et	 al.	 1997;	 Bertilsson	 et	 al.	

1998),(Lemley	et	al.	2008).	Finally	 it	was	also	established	that	an	 increased	 level	of	

progesterone	in	the	plasma	results	in	a	concomitant	increase	in	VLDL	and	decrease	

in	HDL	and	glucose	level	in	the	general	circulation	(Kushwaha	et	al.	1991;	Judge	et	al.	

1983;	 Sacks	 &	Walsh	 1990)	 as	 observed	 in	 this	 study.	 From	 our	 results	 and	 data	
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found	in	the	literature,	it	is	possible	to	suggest	that	Tiamulin™TM	induces	a	hormonal	

disturbance	 resulting	 in	 a	 cholesterol	 metabolism	 switch.	 Furthermore,	 antibiotic	

treatment	was	 conducted	 in	 a	 very	 specific	 hormonal	 period:	 puberty,	 in	 order	 to	

observe	 the	 impact	 of	 treatment	 on	 delayed	 laying	 time	 induced	 by	 B.	 pilosicoli	

infection	 (Woodward	 et	 al.	 2015).	 Surprisingly,	 infection	 was	 not	 associated	 to	

delayed	of	onset	of	lay	as	previously	observed	(Taylor	et	al.	1993;	Taylor	et	al.	2010).	

However,	the	two	treated	groups	that	received	the	highest	antibiotic	doses	(D	and	E)	

started	laying	earlier	than	the	two	untreated	groups	and	the	group	treated	with	the	

lowest	 TiamulinTM	 dose(Woodward	 et	 al.	 2015).	 As	 onset	 of	 lay	 is	 regulated	 by	

hormonal	 changes	 triggered	 by	 progesterone	 and	 estrogen,	 this	 suggests	 that	

TiamulinTM	 might	 affect	 steroid	 metabolism.	 Lastly,	 we	 observed	 that	 TiamulinTM	

induced	an	 increase	 in	bird’s	metabolic	age	that	 is	normally	 induced	by	changes	 in	

hormonal	 status	 linked	 to	 puberty.	 This	 last	 result	 strongly	 support	 the	 potential	

steroid	metabolic	regulation	by	TiamulinTM.	

However,	such	cholesterol	metabolic	response	can	be	tightly	 linked	to	composition	

of	the	gut	microbiota.	The	host-GM	metabolic	interplay	has	been	widely	investigated	

with	many	studies	observing	that	obesity	or	energetic	metabolism	homeostasis	was	

strongly	associated	with	gut	microbiota	composition(Musso	et	al.	2011;	Tremaroli	&	

Bäckhed	2012;	Everard	&	Cani	2013;	 Larsen	et	al.	 2010).	 Furthermore,	 it	has	been	

demonstrated	that	use	of	antibiotic	before	puberty	in	humans	and	mice	can	induce	

increased	risk	for	‘metabolic	disease’	due	to	modification	of	the	gut	microbiota	(Cho	

et	 al.	 2012;	 Cox	 et	 al.	 2014;	 Trasande	 et	 al.	 2013).	 Interestingly	 diminution	 of	 the	

ratio	 Firmicutes/Bacteroidetes	 has	 been	 reported	 for	 being	 related	 to	 a	 lean	

phenotype	 with	 decreased	 ‘metabolic	 disease’	 risk	 triggered	 by	 modification	 of	
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cholesterol	metabolism(Ley	et	al.	2006;	Ley	et	al.	2005;	Turnbaugh	et	al.	2006).	This	

is,	 however,	 contrary	 to	 what	 was	 observed	 with	 treated	 birds	 in	 our	 study	 that	

suggested	cholesterol	metabolic	modification	detected	was	in	response	to	antibiotic	

treatment	rather	than	associated	with	caecal	microbiota	transformation.	Never	the	

less	individual	bacteria	phyla	can	also	be	responsible	for	modification	of	cholesterol	

metabolism.	 Indeed	 Lactic	 acid	 bacteria	 are	 known	 to	 be	 able	 to	 catalyze	

cholesterol(Pereira	 &	 Gibson	 2002)	 and	 their	 use	 as	 feed	 supplement	 in	 broiler	

resulted	 in	decreased	plasmatic	cholesterol	concentration(Jin	et	al.	1998).	 In	short,	

further	 experimentation	 is	 needed	 to	 tease	 this	 aspect	 apart.	 The	 Home	 Office	

license	under	which	 this	 study	was	performed	did	not	permit	 the	use	of	antibiotic	

alone	 in	healthy	birds	so	 the	role	of	TiamulinTM	as	 the	may	only	be	 inferred	at	 this	

stage.	TiamulinTM	is	associated	with	transient	dysbiosis	but,	 it	 is	possible	to	suggest	

that	 the	 method	 use	 to	 study	 the	 CM	 in	 not	 sufficiently	 powerful	 to	 allow	 the	

identification	of	a	specific	bacterial	genus	associated	with	the	cholesterol	metabolic	

response	of	the	host.	

In	conclusion,	this	work	demonstrates	the	strong	implication	that	a	perturbation	of	

the	normal	caecal	microbiota	can	have	on	host	systemic	metabolism	and	later	on	its	

phenotype.	In	this	study,	we	demonstrated	that	infection	was	associated	with	caecal	

microbiota	dysbiosis	associated	with	decreased	nutrient	absorption	and	host	energy	

metabolic	disorder	that	resulted	in	significant	decreased	growth	rate.	This	work	gave	

a	 clearer	 understanding	 of	 the	 metabolic	 adaptation	 of	 the	 host	 to	 intestinal	

infection	by	 a	pathogen	 to	maintain	 sufficient	 energy	 supplies	 for	 survival	 but	 still	

resulting	 in	 impaired	 weight	 gain.	 On	 the	 other	 hand,	 antibiotic	 treatment	 by	

Tiamulin™	 appears	 to	 reduce	 infection	 and	 associated	 symptoms	 while	 modifying	
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cholesterol	 metabolism.	 It	 is	 strongly	 supposed	 given	 our	 results	 and	 previously	

published	work	that	host	metabolic	response	to	antibiotic	treatment	resulted	from	a	

modification	 of	 steroid	 metabolism.	 However,	 no	 conclusion	 could	 be	 made	

regarding	the	implication	of	the	strong	modification	of	the	caecal	on	this	 increased	

bird’s	metabolic	aging.	
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Chapter	6:	General	discussion	

	

This	work	aimed	at	better	understanding	B.	pilosicoli-induced	AIS	and	its	treatment	

by	 the	 most	 consumed	 antibiotic	 in	 industry	 (TiamulinTM)	 using	 a	 NMR-base	

metabonomics	 approach.	 Several	 questions	 regarding	 the	 pathogen,	 the	 host,	 the	

disease	and	its	treatment	were	raised	in	this	project:		

1.	How	does	B.	pilosicoli	respond	metabolically	to	TiamulinTM	exposure	(Chapter	II)?		

2.	What	are	the	metabolic	characteristics	of	 the	host	and	the	pathogen	(Chapter	 II	

and	III)?		

3.	 Can	TiamulinTM	reduce	B.	 pilosicoli-induced	 symptoms	and	what	 is	 the	optimum	

dose	to	be	used	in	chicken	(Chapter	IV)?		

4.	Does	B.	pilosicoli	infection	induce	a	host	metabolic	systemic	response	and	does	it	

affect	the	caecal	microbiota	(Chapter	V)?		

5.	How	does	TiamulinTM	impact	host	metabolism	and	caecal	microbiota	composition	

after	infection	by	B.	pilosicoli	(Chapter	V)?	

Metabonomics	 is	 an	 untargeted	 approach	 based	 on	 the	 analysis	 of	 complex	

metabolic	 profiles	 to	 evaluate	multiparametric	 responses	 of	 a	 living	 system	 to	 an	

external	 stress.	 It	 allowed	us	 to	 follow	a	 top-down	approach	 to	AIS	understanding	

and	 revealed	 some	 interesting	 mechanisms	 about	 the	 response	 of	 the	 host	 to	

infection	 and	 antibiotic	 treatment	 as	 well	 as	 regarding	 microbial	 response	 to	

TiamulinTM.	 This	powerful	 approach	highlighted	modifications	of	metabolic	profiles	

and	 allowed	 to	 generate	new	hypotheses	 about	 affected	metabolic	 pathways	 that	

need	to	be	further	validated.	An	immediate	next	step	would	be	to	evaluate	the	gene	
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regulation	and	expression	of	these	pathways	of	 interest	using	molecular	tools	such	

as	targeted	RT-PCR	or	high	throughput	transcriptomics.			

	

6.1.	Infection,	dysbiosis	and	metabolism	

GI	infection	and	associated	dysbiosis	have	been	related	to	reduced	growth	rate	and	

weight	loss	in	humans	and	many	other	animal	species.	Reduced	growth	rate	is	often	

explained	 by	 the	 alteration	 of	 the	 gut	 barrier	 function	 resulting	 in	 poor	 nutrient	

absorption.	 Intestinal	 barrier	 disruption	 by	 B.	 pilosicoli	 has	 previously	 been	

documented,	 however,	 our	 work	 is	 the	 first	 one	 revealing	 that	 intestinal	 lumen	

content	was	richer	in	hexose	in	response	to	infection	validating	the	hypothesis	that	

nutrient	 absorption	 was	 compromised	 by	 pathogen	 colonisation.	 This	 work	 also	

revealed	for	the	first	time	that	infection	by	B.	pilosicoli	was	followed	by	dysbiosis	and	

more	 specifically	 an	 increase	 in	 the	 Proteobacteria	 phylum	 often	 observed	 post	

bacterial	infection.	This	same	study	described	the	systemic	host	metabolic	response	

associated	with	 reduced	growth	rate	 triggered	by	 infection.	This	was	characterized	

by	a	systemic	increase	of	glycerol	post	infection.	Glycerol	is	a	marker	of	lipolysis	used	

to	maintain	 glucose	plasma	 levels	when	energy	 supply	 becomes	 insufficient.	 Thus,	

we	 hypothesised	 that	 the	 decreased	 growth	 rate	 observed	 in	 infected	 birds	 was	

directly	 linked	 to	 reduced	 nutrient	 absorption	 triggering	 increased	 lipolysis	 to	

maintain	 glycaemia	 level.	 Nevertheless,	 to	 confirm	 this	 hypothesis,	 it	 would	 be	

necessary	to	measure	the	expression	of	the	lipase	enzymes	in	adipose	tissue	and	the	

expression	of	genes	 involved	 in	gluconeogenesis	 from	glycerol	within	 the	 liver	and	

the	 kidney.	 This	 analysis	 could	 not	 be	 done	 in	 this	 study	 since	 no	 adipose	 tissues	
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were	sampled	and	that	liver	and	kidney	were	not	correctly	stored	for	preservation	of	

mRNA.	

To	 evaluate	 if	 chicken	 energy	 disturbance	 is	 due	 to	 infection	 by	 B.	 pilosicoli	 or	

dysbiosis,	 it	would	be	 interesting	 to	use	 axenic	birds	 to	 colonise	 them	with	CM	of	

previously	 infected	chicken	to	assess	 if	the	composition	of	the	CM	alone	can	cause	

the	responses	described	in	the	previous	paragraph.		

	

6.2.	Antibiotic	resistance	

The	antibiotics	market	 is	now	almost	 reaching	$	45	billion	per	year.	This	market	 is	

expected	 to	 keep	 rising	 mainly	 in	 response	 to	 increasing	 cattle	 production	 that	

requires	high	quantities	of	antibiotic	for	prophylactic	use	or	to	treat	infections.	Even	

if	antibiotics	are	still	the	best	way	to	fight	against	bacterial	infections,	concerns	have	

arisen	due	to	increased	resistance	that	may	strongly	impact	on	antibiotic	efficiency.	

In	 our	 study	we	 investigated	 several	 aspect	 of	 this	 issue	 by	 trying	 to	 evaluate	 the	

metabolic	 response	 of	 B.	 pilosicoli	 to	 antibiotic	 treatment	 and	 also	 assessing	 the	

minimum	 dose	 to	 be	 used	 in	 chicken	 to	 treat	 AIS	 and	 associated	 symptoms.	 In	

Chapter	 II,	we	showed	that	TiamulinTM	was	able	 to	 inhibit	bacterial	growth	at	very	

low	 concentrations	 (0.032-0.125	 µg/ml)	 although	 bacteria	 were	 still	 metabolically	

active.	Bacterial	metabolism	was	altered	with	higher	antibiotic	doses	and	the	highest	

TiamulinTM	 concentration	 (0.250	 µg/mL)	 inactivated	 bacterial	 metabolism.	 This	

strongly	 supports	 that	 we	 must	 be	 very	 careful	 when	 using	 MIC	 values	 for	

bacteriostatic	molecules	 such	 as	 TiamulinTM	 since	 our	 results	 showed	 that	 even	 if	

bacterial	growth	was	prevented,	they	were	still	metabolically	active	and	therefore	a	
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potential	 threat.	 Furthermore,	 after	 incubation	 with	 the	 antibiotic,	 it	 would	 be	

interesting	 to	 re-suspend	 the	 bacteria	 in	 fresh	 media	 without	 the	 antibiotic	 to	

evaluate	 their	 growth	 recovery.	 Finally	 the	 same	 experiment	 could	 be	 reproduced	

with	 different	 antibiotics	 and	 other	 Brachyspira	 species	 to	 determine	 if	 similar	

results	would	be	obtained.	

The	 animal	 trial	 revealed	 that	 the	 two	 highest	 TiamulinTM	 doses	 used	 during	 the	

study	were	able	to	significantly	reduce	infection	and	associated	symptoms	(Chapter	

IV)	indicating	that	125	ppm	might	be	sufficient	to	be	used	in	farms.	However,	by	the	

end	 of	 the	 study	 even	 if	 no	 more	 symptoms	 were	 observed	 and	 that	 metabolic	

homeostasis	was	reached,	chickens	were	still	colonized	with	the	bacterium	(Chapter	

IV	and	V).	 This	 indicates	 that	TiamulinTM	was	efficient	 to	prevent	 colonization	only	

for	a	short	period	of	time	but	that	B.	pilosicoli	was	therefore	able	to	recolonize.	This	

confirmed	the	concerns	that	arose	from	Chapter	 II	where	bacteria	seem	to	enter	a	

dormancy	 state	 in	 presence	 of	 TiamulinTM	 but	 are	 still	 alive.	 This	 reinforces	 the	

necessity	to	evaluate	the	recovery	ability	of	B.	pilosicoli	post-antibiotic	clearance	 in	

vitro.		

TiamulinTM	 induced	 a	 systemic	 metabolic	 response	 of	 the	 host.	 We	 first	

demonstrated	that	some	of	the	metabolic	response	to	infection,	such	as	the	betaine	

drop,	was	rescued	by	the	use	of	antibiotic,	suggesting	that	the	treatment	was	able	to	

reduce	 the	 impact	 of	 infection	 at	 both	macroscopic	 and	metabolic	 levels.	We	also	

observed	 that	 TiamulinTM	 treatment	 was	 responsible	 for	 a	 switch	 in	 lipoprotein	

metabolism.	The	Antibiotic	 treatment	was	also	associated	 to	a	modification	of	 the	

CM	 with	 a	 strong	 loss	 of	 biodiversity.	 Interestingly,	 three	 weeks	 after	 antibiotic	

treatment,	 the	birds	were	 still	 not	 able	 to	 recover	 to	 their	 normal	 CM	ecosystem.	
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Poor	GM	diversity	or	abnormal	composition	can	increase	the	risk	of	infection.	Thus,	

interventions	such	as	probiotic	intake	or	shared	housing	with	untreated	birds	should	

be	 explored	 in	 order	 to	 restore	 the	 integrity	 of	 the	 CM	 ecosystem	 post-antibiotic	

treatment.	Moreover,	we	suggested	that	 the	metabolic	 response	observed	 in	birds	

plasma	 post	 antibiotic	 treatment	 was	 not	 due	 to	 caecal	 dysbiosis	 but	 to	 other	

mechanisms	discussed	further	below.	Nevertheless,	in	order	to	validate	that	CM	had	

no	 impact	 on	 this	 metabolic	 response,	 a	 faecal	 transplant	 experiment	 should	 be	

conducted	in	germ-free	animals	to	measure	the	metabolism	of	chickens	colonized	by	

faecal	CM	from	treated	and	non-treated	birds.		

Finally,	 considering	 the	 current	 literature,	 it	 can	 be	 hypothesized	 that	 the	

metabolic	 shift	 observed	 after	 TiamulinTM	 treatment	 can	 be	 partially	 due	 to	 a	

decreased	 activity	 of	 CYP3A	 that	 triggers	 a	 disruption	 of	 steroids	 hormone	

clearance.	 However,	 this	 theory	 needs	 to	 be	 tested.	 To	 do	 so,	 an	 animal	 trial	

should	 be	 conducted	 using	 a	 control	 and	 an	 antibiotic	 treated	 group,	 where	

CYP3A	 expression	 and	 activity	 as	 well	 as	 steroid	 hormones	 levels	 would	 be	

measured.	 I	 suggest	 that	 the	 time	of	 experiment	 should	be	 consistent	with	 the	

animal	trial	that	was	conducted	in	this	study	(i.e.	starting	just	before	puberty).		

	

6.3.	General	conclusion	and	future	work	

This	original	work	significantly	contributed	to	the	general	understanding	of	AIS	and	

one	 of	 its	main	 pathogen	B.	 pilosicoli.	 It	 also	 generated	 new	 knowledge	 regarding	

host-GM	 metabolic	 interactions	 and	 finally	 enlightened	 the	 need	 for	 a	 better	

understanding	 of	 the	 action	 of	 antibiotics	 in	 a	 context	 of	 emerging	 antimicrobial	

resistances.		
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This	work	 provided	 new	 insights	 into	 the	 biological	mechanisms	 underpinning	 the	

disturbance	 of	 host	 energy	metabolic	 homeostasis	 during	 infection	 by	 a	 pathogen	

followed	 by	 a	 decreased	 growth	 that	 further	 generates	 economical	 loss.	 By	

understanding	 these	 mechanisms	 it	 is	 therefore	 possible	 to	 imagine	 ways	 of	

preventing	 post-infection	 co-morbidities	 occurring	 in	 humans	 and	 animals	

during/post	infection.	It	is	important	to	keep	in	mind	that	the	work	presented	here	

was	 based	 on	 a	 metabonomics	 approach,	 which	 is	 a	 hypothesis	 generating	

technique.	 Therefore,	 the	 results	 observed	 here	 should	 serve	 as	 a	 base	 for	 future	

investigations.	 Indeed,	 the	 metabolome	 is	 the	 end	 result	 of	 a	 complex	 process	

involving	 gene	 and	 protein	 expression	 and	 their	 regulation	 that	 all	 interact	 in	

interconnected	metabolic	 pathways	 that	 need	 to	 be	 identified	 for	 these	 proposed	

hypotheses	to	be	validated.		

Finally,	 this	 study	 raises	 questions	 about	 the	 actual	 mechanisms	 stimulated	 by	

growth	 promoting	 antibiotics.	 To	 date	 the	 accepted	 mode	 of	 action	 is	 that	 the	

prophylactic	use	of	low	dose	antibiotics	results	in	the	reduction	of	the	number	of	gut	

microbes	that	improves	feed	efficiency.	However,	few	studies	have	investigated	this	

in	 detail	 and	 our	 results	 suggest	 that	 other	 mechanisms	 might	 be	 involved.	

Therefore,	 I	 suggest	 that	 more	 studies	 using	 similar	 analytical	 approaches	 as	 the	

ones	 conducted	 in	 this	project	 should	be	done	 to	explore	 the	metabolic	 impact	of	

growth	promoting	antibiotics	and	lasting	consequences.		

	


