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 37 

Abstract 38 

 Ecosystem models show divergent responses of the terrestrial carbon cycle to global 39 

change over the next century. Individual model evaluation and multi-model comparisons with 40 

data have largely focused on individual processes at sub-annual to decadal scales. Thus far, data-41 

based evaluations of emergent ecosystem responses to climate and CO2 at multi-decadal and 42 

centennial time scales have been rare. We compared the sensitivity of net primary productivity 43 

(NPP) to temperature, precipitation, and CO2 in ten ecosystem models with the sensitivities 44 

found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites.  45 

These model-data comparisons were evaluated at three temporal extents to determine whether 46 

the rapid, directional changes in temperature and CO2 in the recent past skew our observed 47 

responses to multiple drivers of change.  All models tested here were more sensitive to low 48 

growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although 49 

some model precipitation responses were more consistent with tree rings when evaluated over a 50 

full century. Similarly, all models had negative or no response to warm growing season 51 

temperatures while tree-ring data showed consistently positive effects of temperature.  Although 52 

precipitation responses were least consistent among models, differences among models to CO2 53 

drive divergence and ensemble uncertainty in relative change in NPP over the past century.  54 

Changes in forest composition within models had no effect on climate or CO2 sensitivity.  Fire in 55 

model simulations reduced model sensitivity to climate and CO2, but only over the course of 56 

multiple centuries. Formal evaluation of emergent model behavior at multi-decadal and multi-57 

centennial time scales is essential to reconciling model projections with observed ecosystem 58 

responses to past climate change. Future evaluation should focus on improved representation of 59 
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disturbance and biomass change as well as the feedbacks with moisture balance and CO2 in 60 

individual models. 61 

  62 
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Introduction  63 

Changes in temperature and precipitation regimes over the past millennium have been 64 

associated with shifts in ecosystem composition and structure in the paleoecological record 65 

(Prentice et al., 1991; Davis & Shaw, 2001; Shuman et al., 2002; Clifford & Booth, 2015). 66 

Modern empirical data from experiment- and observation-based studies provide evidence that 67 

rapidly increasing temperatures, altered precipitation regimes, and rising atmospheric CO2 68 

concentrations are causing changes in ecosystem dynamics today (Boisvenue & Running, 2006; 69 

Morin et al., 2009; Fisichelli et al., 2013; Peñuelas et al., 2013). However, the effects of climate 70 

change in long-lived ecosystems such as the temperate forests of the eastern and midwestern 71 

United States remain contested because changes in forest composition and structure take decades 72 

to centuries to occur (Renwick & Rocca, 2014). These observation-based studies capture 73 

emergent, long-term ecosystem responses to climate and CO2 variability that are the product of 74 

feedbacks and interactions among physiological and biogeochemical processes. 75 

Terrestrial ecosystem models are used to make mechanistic, process-based projections of 76 

ecosystem response to changing climate and CO2 in the past, present, and future.  However, the 77 

mechanistic, bottom-up approach used to build and evaluate ecosystem models is mismatched in 78 

spatial and temporal scale from observations of ecosystem response to climate change.  79 

Differences in model parameterization or structural representation of physiological process can 80 

cause major divergences in the resulting ecosystem dynamics through time (De Kauwe et al., 81 

2013; Walker et al., 2015).  Model intercomparisons of ecosystem response to climate change 82 

over the next century typically show increased divergence of ecosystem dynamics at the end of 83 

the century (e.g. Friedlingstein et al., 2014).  Although most policy and management decisions 84 

occur at sub-centennial temporal scales, life spans of common temperate tree species in the 85 
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northeastern United States can range from 120 years for Betula papyrifera to over 800 years for 86 

Tsuga canadensis (Burns & Honkala, 1990). This means that in the absence of widespread 87 

disturbance or management, even the model simulations of ecosystem response to climate 88 

change are far shorter than the multi-generational scales at which changes in forest composition 89 

or structure in response to shifts in climate occur.  These slow, gradual shifts in forest 90 

composition or structure may mediate ecosystem sensitivity to climate and CO2 in both models 91 

and reality. For example, mortality and recruitment are inherent processes underlying the types 92 

of ecosystem-scale responses to climate change observed in the past, and occur at temporal and 93 

spatial scales beyond that which we can observe with current available ecological data.  This can 94 

then cause the observed responses of ecosystems to past climate change over multiple centuries 95 

to be different from that observed in shorter studies focused on a few decades.   96 

Tree rings provide annually resolved records of individual and forest response to 97 

environmental variation over the temporal scales of decades and centuries across temperate 98 

forests.  Tree rings have been used to understand forest responses to climate variability at 99 

individual sites and entire continents (Williams et al., 2013; Charney et al., 2016; D’Orangeville 100 

et al., 2016), but these approaches have been largely disconnected from assessments of how 101 

climate change impacts ecosystems in models.  Tree rings are increasingly used to quantify and 102 

constrain components of the terrestrial carbon cycle in forests as well as individual- and forest-103 

level responses to climate (Graumlich et al., 1989; Davis et al., 2009; Babst et al., 2013; Dye et 104 

al., 2016).  These efforts are critical for understanding long-term forest responses to climate 105 

variability as multiple field experiments have indicated that long-term individual and ecosystem 106 

responses to warming and elevated CO2 diverge from initial responses found in the first few 107 

years of manipulation (Melillo et al., 2002; Hollister et al., 2005; Matesanz et al., 2009; Norby et 108 



Model and data NPP sensitivity to climate 7 

al., 2010).  This long-term evaluation of climate impacts on forest ecosystems is particularly 109 

important for disentangling the simultaneous directional shifts in temperature, precipitation, CO2, 110 

and disturbance that complicate much of modern ecological research (Foster et al., 1998; Turner 111 

et al., 2003; Gómez-Aparicio et al., 2011).  112 

This paper compares emergent sensitivity of net primary productivity (NPP) to climate 113 

and CO2 in ecosystem models to those found in tree-ring data at multiple temporal scales.  The 114 

goals of this paper are: 1) determine whether annual ecosystem NPP sensitivity to climate and 115 

CO2 in ecosystem models matches those found in individual tree- and forest-level tree-ring data; 116 

2) compare the climate and CO2 sensitivities in models and data from short temporal extents 117 

where patterns are dominated by inter-annual climate variability with those from centennial-scale 118 

records that contain low-frequency climatic shifts; and 3) quantify the contribution of differences 119 

in model responses to climate and CO2 to model ensemble uncertainty in NPP dynamics through 120 

time.  To achieve these goals, we analyze the temporal trends of NPP in ten ecosystem models 121 

that have been run from 850 to 2010 A.D. at six temperate forest sites in the Upper Midwestern 122 

and Northeastern United States.  The influences of growing season temperature, precipitation, 123 

and CO2 on change in model NPP are then compared to those found in plot-level NPP 124 

reconstructions from tree rings at two sites as well as raw ring widths from plot-based sampling 125 

and the International Tree Ring Databank (ITRDB) at four sites.  Climate and CO2 responses are 126 

analyzed for three temporal extents: 1) the scale of past paleoecological responses to climate 127 

change (850-2010 A.D.); 2) the period of historical temperature and precipitation records (1901-128 

2010 A.D.); and 3) the scale of robust modern ecological data (1980-2010 A.D.).  We use these 129 

results to explain model-data discrepancies in regional drivers of NPP through time as well as 130 

quantify the drivers of uncertainty within the model ensemble over the past millennium. 131 
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 132 

Materials and Methods 133 

Model experimental overview 134 

 We modeled ecosystem carbon flux and composition change in response to climate 135 

variation from 850-2010 A.D. at six sites in the Northeastern and Upper Midwestern United 136 

States. These sites are located on an east-west gradient that represent present-day differences in 137 

temperature, precipitation, and forest types (Table 1, S1). Models were presented with common, 138 

continuous 6-hourly meteorological climate and monthly CO2 forcing data.  CO2 was taken from 139 

the Law Dome time series (850-2000) and the NOAA Mauna Loa record (2001-2010) (Keeling 140 

et al., 2005; Wei et al., 2014). Climate drivers included air temperature, water-equivalent 141 

precipitation rate, total incoming shortwave radiation, incoming longwave radiation, surface air 142 

pressure, specific humidity, and wind speed.  The continuous, 6-hourly 850-2010 meteorological 143 

driver set was developed by using an artificial neural network to spatially and temporally 144 

downscale output from CCSM4 output from the Paleoclimate Modeling Intercomparison Project, 145 

Phase III (PMIP3) past millennium simulations (850-1849, Crucifix et al., 2012) and Coupled 146 

Model Intercomparison Project, Phase 5 (CMIP5) simulations (1850-1900, Taylor et al., 2012) 147 

using 6-hourly, 0.5-degree CRUNCEP data (1901-2010, Wei et al., 2014) according to Kumar et 148 

al., (2012).  Due to mismatches at transitional periods between CCSM4 and CRUNCEP 149 

products, all variables except wind were bias-corrected to avoid sharp jumps in climatology in 150 

the time series.  Temperature was corrected as an additive bias whereas short- and long-wave 151 

radiation, and precipitation were corrected using a ratio bias to conserve the hydrological 152 

sensitivity among meteorological variables (Hempel et al., 2013).   153 
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Ten models representing variants of five independent ecosystem models completed 154 

simulations of ecosystem dynamics at all six sites from 850-2010 A.D. and provided monthly- or 155 

annual-resolution output on composition and the carbon cycle (Table 2).  Full model protocol 156 

can be found in Supporting Information 2. Dynamic vegetation models allow plant communities 157 

to self-assemble and change through time while static vegetation models prescribe plant 158 

functional types (PFTs) by fractional area based on potential vegetation distribution from 159 

Ramankutty and Foley (1999).  All models were spun-up to steady-state at 850 A.D. by cycling 160 

the first 20 years of forcing data (850-869 A.D.) with a constant CO2 concentration of 277 161 

ppm.   Not all models used all meteorological variables as drivers.  LINKAGES was the only 162 

model to not include CO2 as a driver and only includes temperature and precipitation drivers 163 

whereas all other models included at a minimum, temperature, precipitation, shortwave radiation, 164 

and CO2.  Even though LINKAGES does not include CO2 as a driver of ecosystem dynamics, it 165 

was included in our analyses to help isolate potential confounding effects of increasing CO2 with 166 

other drivers of ecosystem change.   167 

Our analyses focus on two model characteristics (dynamic vegetation and fire) and the 168 

dynamics of two ecosystem properties (composition, aboveground biomass) that are linked to 169 

slow processes associated with ecosystem responses to climate and CO2 change (Table 2). 170 

However, because PFTs in all models except for SiBCASA, a biome-based model, respond to 171 

climate independently, they may still experience shifts in the relative community composition if 172 

defined by fluctuations in PFT biomass.  Composition variability through time was quantified as 173 

the standard deviation of percent evergreen biomass through time within each site for each 174 

model.  Although fire was possible in ED, CLM, and LPJ model variants, the conditions for fire 175 

were not triggered in ED2 and ED2-LU, so the effects of fire were only present in four models 176 
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(CLM-BGC, CLM-CN, LPJ-WSL, LPJ-GUESS).  Fire in ecosystem models primarily affects 177 

ecosystems by reducing biomass, but mortality or changes in growth can also cause similar 178 

biomass fluctuations in all models. To calculate biomass variability, biomass was first 179 

normalized to the site mean so that biomass through time was expressed as a percent of mean.  180 

Biomass variability was then calculated as the standard deviation of this normalized biomass 181 

through time at each site for each model.  All models except JULES-STATIC used aboveground 182 

biomass (AGB) as the measure of biomass variability.  Leaf area index was used as a proxy for 183 

biomass in JULES-STATIC because there is no biomass or vegetation dynamics beyond leaf 184 

area simulated in JULES without coupling to the TRIFFID model.  In other models LAI had a 185 

mean correlation with AGB of 0.73 ± 0.18 and ranged from 0.55 in CLM-BGC to 0.99 in 186 

LINKAGES.  In JULES-TRIFFID, the correlation between LAI and AGB was 0.93. 187 

 188 

 189 

Empirical Data 190 

 We used two types of tree-ring data to provide an empirical estimate of climate 191 

sensitivity for trees and forests from our study region.  First, stand-level aboveground NPP was 192 

reconstructed from sampling mapped fixed-area plots according to Dye et al., (2016), which 193 

enable aboveground NPP to be calculated on a per area basis that is comparable to ecosystem 194 

model output (Table 1).  NPP was reconstructed from five plots in two separate stands at 195 

Harvard and three plots in a single stand at Howland. A nested sampling scheme was used at 196 

both locations where two to three increment cores were taken from all trees greater than 10 cm 197 

diameter at breast height (DBH) in a 13-m radius plot and trees greater than 20 cm DBH were 198 

cored in a 20-m radius plot.  Growth measurements from all cores for each were averaged and 199 
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used to reconstruct DBH through time that was then converted to aboveground biomass and 200 

annual aboveground biomass increment (proportional to NPP) for each tree and plot using 201 

species-specific equations that can be found in the appendix of Dye et al., (2016).  Due to the 202 

potential decline in sample replication, and the potential for unmeasured mortality, analyses of 203 

tree-ring NPP sensitivity to climate were restricted to 1980-2010 (Clark et al., 2001; Foster et al., 204 

2014). 205 

 In addition to tree-ring estimates of NPP, we also analyzed the sensitivity of raw ring 206 

width (RW) to climate from the trees used to generate the NPP estimates as well as from nine 207 

datasets from the International Tree Ring Databank (ITRDB) (Grissino-Mayer & Fritts, 1997). 208 

Records from the ITRDB were found in close proximity to the Demming Lake, Howland, and 209 

UNDERC sites, allowing more robust comparisons of climate sensitivity across the modeled 210 

study sites (S3).  In cases where multiple cores existed for a tree, the mean of ring width for each 211 

year was used. Although we include supplemental sensitivity analyses using a priori detrended 212 

ring width index (RWI, S4), we chose raw ring widths as our response variable rather than RWI 213 

or basal area increment (BAI) for two reasons.  First, we chose not to detrend rings widths a 214 

priori for our primary analyses in order to preserve potential low-frequency effects of changing 215 

climate or CO2 in the modern era that might be confounded with increasing stem size. Second, 216 

BAI was not used because measurements of actual diameters were not available for ITRDB 217 

trees. The CRUNCEP climate records used to drive the models were matched to the tree-ring 218 

data for each site. 219 

 220 

Sensitivity Analysis 221 
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 Model and tree-ring sensitivities to climate were analyzed using generalized additive 222 

models (GAMs) where NPP or RW is the sum of non-linear temperature, precipitation and CO2 223 

effects. In these analyses, we used site-level annual NPP as the response variable for ecosystem 224 

models, plot-level annual aboveground woody increment for tree-ring NPP, and mean raw ring 225 

width for each individual in the RW analysis.  Temperature, precipitation, and CO2 effects were 226 

estimated with three-knot thin plate regression splines while an additional size effect was fit with 227 

three-knot cubic smoothing spline using the gam function of the mgcv package in R 3.2.3 (Wood, 228 

2012).  Even though LINKAGES lacks CO2 as a model driver, this effect was included in our 229 

statistical analyses as a test of the statistical model’s ability to attribute variation in NPP to 230 

climate and CO2. The size term was included to account for effects of biomass (models, tree-ring 231 

NPP) or individual size (raw ring width) that could alter the maximum potential NPP or ring 232 

width independent of climate.  Total site or plot aboveground biomass was used for the size 233 

effect in models and tree-ring NPP GAMs, while reconstructed DBH was used for size in the 234 

RW GAMs.  DBH was reconstructed by subtracting ring widths from the DBH at the time of 235 

sampling at Harvard and Howland, but was reconstructed by summing ring widths from the 236 

ITRDB records, where no DBH information was available. Because ring width sums may not 237 

accurately reflect the true DBH of ITRDB trees, in RW models the size effect was fit separately 238 

for each ITRDB core. This effectively individually detrends ITRDB cores by removing effects of 239 

increasing size through time while simultaneously assessing the climate and CO2 sensitivity of 240 

both ITRDB and plot-based samples.  We also performed supplemental analyses with a priori 241 

detrended RWI using a two-thirds spline that removes long-term trends in tree-ring series (S5). 242 

Because a priori detrending removes age- and size-based trends in the data, the size factor was 243 
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removed from our climate and CO2 GAM in RWI analyses.  We also include an analysis with all 244 

datasets restricted to Harvard and Howland sites where tree-ring NPP records are available (S6). 245 

We normalized the sensitivities of model NPP and tree-ring width to climate and CO2 for 246 

all analyses to facilitate comparison of model agreement of change in NPP through time and 247 

relative influences of temperature, precipitation, and CO2 as drivers of that change. In all cases, 248 

the response variable of NPP or RW was converted to a percent deviation from the model or 249 

tree-ring dataset mean.  We assessed model agreement of both change in NPP and drivers of 250 

change as the standard deviation around the ensemble mean before and after 1901, where CO2 251 

begins to sharply increase. To prescribe the effects of individual drivers on change in NPP or 252 

RW through time, we quantified the relative effects of temperature, precipitation, and CO2 on 253 

NPP or RW in each year. The CO2 effect was offset from the GAM-estimated effect so that the 254 

beginning of simulation CO2 concentration in 850-855 A.D. received a weight of zero.  255 

Models were analyzed at three temporal scales to determine whether observations from 256 

short periods in the modern era were able to capture the relationships between climate and CO2 257 

change and ecosystem responses over periods with low-frequency, directional shifts in climate.  258 

These three temporal extents are: 1) scale of robust, modern empirical records (1980-2010), 2) 259 

the scale of observational climate data (1901-2010), and 3) the full model simulation extent 260 

(850-2010).   This model-centric analysis was complemented with comparisons to the shifts in 261 

sensitivity seen in the RW models at the two shorter scales.  Because GAMs center the spline-262 

based effects on the means of the given data (i.e. the mean of observed temperature, 263 

precipitation, and CO2), all three temporal scales were re-centered on their respective 1980-2010 264 

means to facilitate cross-scale comparisons. Differences in climate and CO2 sensitivities within 265 

and across temporal scales both within individual models and at the ensemble level were 266 
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assessed by comparing the mean slopes and 95% confidence intervals around each effect.  We 267 

used an ANOVA to compare variability in the model ensemble across temporal scales.  In this 268 

ANOVA we compared the absolute deviation of mean climate and CO2 sensitivity for each 269 

model to that of the ensemble mean at each scale. 270 

We also quantified the effects of slow ecosystem processes among models on NPP 271 

sensitivity to climate and CO2 using linear regression.  Here, we considered two categorical 272 

characteristics of models as well as two related continuous variables to identify trends in model 273 

dynamics and sensitivity to climate and CO2. Categorical model characteristics included 274 

vegetation scheme (static or dynamic) and the presence of fire (yes or no) while composition 275 

(fraction evergreen) and biomass variability described similar model dynamics as continuous 276 

effects. Each characteristic of slow ecosystem processes was correlated with the mean slopes of 277 

model sensitivities to temperature, precipitation and CO2.  We performed this correlation 278 

analysis at all three temporal scales to determine if the effects of these slow processes were 279 

significant at particular, characteristic scales. 280 

 281 

Results 282 

Spatial and temporal patterns of NPP in ecosystem models 283 

Terrestrial ecosystem models disagreed about both the spatial patterns of NPP in the 284 

Northeastern and Upper Midwestern United States as well as the change in NPP through time 285 

(Fig. 1).  Midwestern sites tended towards lower NPP than those further east with ensemble-286 

mean NPP ranging from 3.60 ± 2.14 MgC m-2 yr-1 (mean ± SD) at Billy’s Lake to 6.0 ± 2.5 MgC 287 

m-2 yr-1 at Harvard Forest.  ED-LU had the highest mean NPP of the ensemble (7.12 ± 2.80 MgC 288 

m-2 yr-1) and JULES-STATIC had the lowest (1.51 ± 1.17 MgC m-2 yr-1), but this pattern varied 289 
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across individual sites and times. Tree-ring estimates of NPP (NPPTR) at both Harvard and 290 

Howland were much lower than predicted by models (Fig. 1).  From 1980-2010, NPPTR was 1.73 291 

± 0.27 MgC ha-1 yr-1 at Harvard and 1.17 ± 0.13 MgC ha-1 yr-1 at Howland.  The mean NPP of 292 

the model ensemble from 1980-2010 was 7.47 ± 3.73 MgC ha-1 yr-1 at Harvard and 7.07 ± 3.93 293 

MgC ha-1 yr-1 at Howland.  NPPTR was lower than the lowest model NPP at both sites (2.90 ± 294 

0.38 MgC ha-1 yr-1 at Harvard, 3.48 ± 0.30 at Howland MgC ha-1 yr-1).     295 

To facilitate comparisons of the impacts of climate and CO2 on NPP, through time, we 296 

analyzed percent change in NPP relative to each model’s mean.  Once relativized, models and 297 

tree rings displayed similar levels of variability in NPP and ring width: model NPP variability 298 

was 16 ± 8%, NPPTR was 12%, and RW was 20%.  Even though ED2-LU had the highest NPP 299 

variability in absolute terms, with a standard deviation through time of 1.83 MgC m-2 yr-1, but 300 

JULES-STATIC displayed higher temporal NPP variability relative to its mean (29%).  In 301 

contrast, SiBCASA showed the least absolute and relative NPP variability through time: 0.28 302 

MgC m-2 yr-1, 5% of its mean.  The higher relative NPP variability of JULES-STATIC was 303 

accompanied by the most stable biomass (temporal standard deviations of 3%) while JULES-304 

TRIFFID showed the least temporal variability of composition with only a mean 2% variability 305 

through time (Table 2).  LPJ-GUESS, whose mean NPP and NPP variability were close to the 306 

ensemble mean, had the highest variability of both composition and biomass (35% and 24%, 307 

respectively). 308 

 309 

NPP and RW sensitivity to climate and CO2  310 

Comparisons between models and tree-ring data at sub-centennial temporal scales reveal 311 

large disparities between the effects of climate and CO2 on NPP and tree growth (Fig. 2). At the 312 
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1980-2010 temporal extent, the ensemble of models and tree-ring data agreed on a positive 313 

relationship between NPP or growth and precipitation, but mean model sensitivity (0.09 ± 0.05% 314 

mm-1 yr-1) was nine times higher than both tree-ring NPP and ring widths (both 0.01% mm-1 yr-315 

1).  The overall signs of sensitivity were opposite between models and tree-ring data for 316 

temperature (model ensemble = -0.99 ± 4.03% ˚C-1, RW = 11.0% ˚C-1, NPPTR = 14.2% ˚C-1) and 317 

CO2 (model ensemble = 0.20 ± 0.16% ppm-1, RW = -0.7% ppm-1, NPPTR = 0.01% ppm-1).  318 

However, the 95% confidence interval for NPPTR does encompass 0 and is consistent with 319 

relatively CO2-insensitive models such as LPJ-WSL. A priori detrending of ring width to ring 320 

width index dramatically reduced temperature, precipitation, and CO2 sensitivity in the 321 

individual-based tree-ring analysis, causing temperature and CO2 sensitivities to be more 322 

consistent with model sensitivities, but less consistent with NPPTR (S5).  Trends within and 323 

among the sensitivities of models and tree-ring data were similar between analyses including all 324 

sites and when analyses were restricted to just Harvard and Howland (S6).  Increasing temporal 325 

scale had relatively minor effects on climate sensitivity in model NPP and increased sensitivity 326 

in RW (Fig. 2, S7).  This resulted in greater consistency among precipitation responses in RW 327 

and models, but continued model-data disagreement in temperature and CO2 at the 1901-2010 328 

scale.  Temperature sensitivity of NPP in LINKAGES was a notable exception to this trend, and 329 

showed similar positive effects of lower growing season temperatures as the tree-ring datasets, 330 

but then diverged and displayed negative effects of warm temperatures. 331 

Spatial and temporal variability in NPP among models corresponded to differences 332 

among models in emergent ecosystem sensitivities to temperature, precipitation, and CO2. At the 333 

full temporal extent of our model simulations (850-2010), models showed consistent positive 334 

effects of precipitation and CO2 on NPP, although with varying magnitudes of the effect (Fig. 2).  335 
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For precipitation, the ensemble of models had an average 0.13 ± 0.11% increase in NPP per 336 

millimeter precipitation, but individual models showed sensitivities ranging from 0.02 ± 0.03% 337 

mm-1 yr-1 in SiBCASA to 0.32 ± 0.16% mm-1 yr-1 in JULES-STATIC.   Ensemble NPP 338 

sensitivity to CO2 was 0.36 ± 0.34% ppm-1 with individual effects in models with CO2 ranging 339 

from 0.06 ± 0.04% ppm-1 in CLM-BGC to 1.03 ± 0.20% ppm-1 in JULES-STATIC.  340 

LINKAGES, which lacks CO2 effects in its model structure, supports the ability of the GAM 341 

approach to correctly attribute impacts of climate and CO2 on NPP by displaying a small NPP 342 

response of -0.01 ± 0.00% ppm-1.  Temperature was the only effect included in models to show 343 

differences in the direction of NPP sensitivity.  Most models had a generally negative 344 

temperature effect and the ensemble mean effect was a decrease of 2.37 ± 9.14% in NPP per ˚C. 345 

JULES-STATIC showed the strongest effect with a 23.48 ± 0.89% decrease per ˚C.  Overall, 346 

LINKAGES had a positive temperature effect (14.77 ± 19.43% per ˚C), although this effect 347 

became negative at higher temperatures.  Over the full course of model simulations, the presence 348 

of fire was correlated with decreased sensitivity to temperature (t=-2.3, p=0.03) and CO2 (t=-2.8, 349 

p<0.01).  Decreased model NPP sensitivity to temperature was also associated with increased 350 

biomass variability through time (t=-2.7, p=0.01).  Models with more variable composition over 351 

multiple centuries also tended to be less sensitive to CO2, but this trend was not significant (t=-352 

2.0, p=0.06). 353 

An analysis of variance indicated there was greater agreement among model sensitivities 354 

to precipitation and CO2 at the two shorter temporal scales than at the multi-centennial (850-355 

2010) extent (Fig. 2; precipitation: t=4.6, p<0.01, CO2: t=4.0, p<0.01), but temperature showed 356 

similar ensemble variability across temporal scales (p>0.05).  The presence of fire in ecosystem 357 

models correlated with reduced sensitivity to temperature, precipitation, and CO2, but only at the 358 
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multi-centennial temporal scale (Table 3).  Slow ecosystem processes had weakened effects on 359 

model NPP sensitivity to climate and CO2 at the shorter temporal scales of empirical data and 360 

were not significantly associated with patterns in model sensitivities at these multi-centennial 361 

scales (Table 3).  Similarly, models with high temporal variability of biomass were also less 362 

sensitive to temperature, but only over the course of multiple centuries.  Factors associated with 363 

changes in composition including composition stability and whether a model had dynamic or 364 

static vegetation had no correlation with climate sensitivity in our model ensemble. 365 

 366 

Drivers of model ensemble patterns agreement through time 367 

Differences in model sensitivity to increasing CO2 explained increasing model ensemble 368 

uncertainty in change in NPP since 1900 (Fig. 3). Model ensemble variability of normalized NPP 369 

prior to 1900 was 11.0 ± 5.3% (Fig. 3b).  After 1900, this variability more than doubled to 20.6 ± 370 

7.4%.  This shift in model agreement occurred as NPP in most models shifted from being 371 

primarily influenced by precipitation to showing varying degrees of CO2 enhancement (Fig. 3b, 372 

c).  In the 1980-2010 extent, the effect of CO2 on NPP in models that include dynamic CO2 373 

ranged from +2% to +110% with model variability in CO2 response proportionate to that of 374 

inter-model NPP deviation during this time period (CO2 variability = 29 ± 3%; NPP variability = 375 

28 ± 5%, Fig. 3c).  LINKAGES was the only model to not include a CO2 driver and our 376 

statistical method misattributed a slight 0.6% decrease in NPP to increasing CO2.   377 

  378 

Discussion  379 

 Analysis of emergent responses to temperature, precipitation, and CO2 at multi-decadal 380 

and multi-centennial time scales reveals many inconsistencies among models and data. The ten 381 
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terrestrial ecosystem models included in our study showed variability in both mean NPP across 382 

space and relative changes in NPP through time (Fig. 1).  Similar discrepancies have been widely 383 

observed in other multi-model comparisons, which have attributed differences among models to 384 

numerous causes including ecosystem feedbacks and uncertainties in model processes and 385 

parameterization (Piao et al., 2013; Friedlingstein et al., 2014; Walker et al., 2014).  We found 386 

widely varying patterns of climate and CO2 effects among models and data across multiple 387 

temporal scales (Fig. 2).  However, the ensemble of models displayed less variation in climate 388 

and CO2 responses at short temporal scales.  Small differences in model structure and 389 

parameterization compound over time and drive model divergence, skewing model projections at 390 

ecology- and policy-relevant timescales.  Fire and changes in biomass are only associated with 391 

differences in precipitation and CO2 sensitivity among models at the multi-centennial scale, 392 

indicating that feedbacks involving disturbance and biomass only have discernible impacts on 393 

climate and CO2 over multiple forest generations (Table 3).  Although model responses to 394 

precipitation are the most variable, responses to CO2 are the greatest source of ensemble 395 

divergence of the past 100 years.  396 

Models and empirical datasets have widely varying estimates of baseline NPP, so 397 

standardization is important to compare the impacts of climate and CO2 through time across 398 

datasets. To be consistent across all models in the ensemble, we analyzed total ecosystem NPP, 399 

which includes the total carbon allocated to both above- and belowground tissues.  Most models 400 

in our ensemble simulated NPP values within the range of what has been observed for forests 401 

common in the Northeastern and Upper Midwestern United states.  Representative field-based 402 

estimates of NPP for our study region range from 1.3 MgC ha-1 yr-1 in mature boreal forests to as 403 

high as 8.7 MgC ha-1 yr-1 in the oak-hickory forests that dominate further south when a 50% 404 



Model and data NPP sensitivity to climate 20 

carbon content of biomass is assumed (Jenkins et al., 2001; Luyssaert et al., 2007; Goulden et 405 

al., 2011).  Even if the models were perfectly accurate, their values would still be greater than 406 

the aboveground-only NPP quantified through tree rings in our study, which is estimated to be 407 

between 45 and 65% of the total carbon.  Furthermore, our tree-ring productivity estimates only 408 

include the aboveground biomass increment from one year to the next, which will not capture 409 

any biomass that is produced and turns over within a year.  A recent comparison of tree-ring 410 

estimates of NPP at Harvard Forest indicated good agreement with repeat forest censuses (Eisen 411 

& Plotkin, 2015; Dye et al., 2016), but are substantially lower than values estimated through 412 

remote sensing for coniferous and deciduous forests at the same site (5.5 and 6.8 MgC ha-1 yr-1, 413 

respectively; Turner et al., 2005).  In order to reconcile total and aboveground NPP estimates, 414 

better quantification of amounts and controls of allocation and turnover among tissues is 415 

essential (Jenkins et al., 2001; Litton et al., 2007; Luyssaert et al., 2007). Some empirical studies 416 

suggest that the fraction of NPP allocated to aboveground wood could vary from year to year due 417 

to tree maturation, increasing CO2, or interannual climate variability (DeLucia et al., 2005; 418 

Norby et al., 2005; Doughty et al., 2014). Although some ecosystem models allocate carbon in 419 

response to changing resource limitations (De Kauwe et al., 2014), most do not and the models 420 

used in this analysis are based on simple allometric rules.  Despite these inconsistencies in NPP 421 

values among models and empirical datasets, it is informative to compare the emergent 422 

sensitivities of productivity to climate and CO2 across datasets. 423 

 Emergent model NPP sensitivities to temperature and precipitation are not supported by 424 

the responses observed in plot or individual tree-ring records.  Specifically, most models were 425 

over-sensitive to precipitation relative to tree rings and had predominantly negative or no 426 

response to temperature whereas both tree-ring NPP and raw rings widths showed consistently 427 
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positive responses (Fig. 2).  The strongly negative effect of temperature coupled with a strongly 428 

positive effect of precipitation in the models suggests that the ecosystem models in our ensemble 429 

may be over-sensitive to both temperature- and precipitation-driven droughts despite rapid post-430 

drought recovery seen in many ecosystem models (Anderegg et al., 2015).  Although the tree 431 

rings in our study show positive correlations with temperature in both raw ring width and a 432 

priori detrended ring width index, other studies provide support for negative effects of high 433 

temperatures on tree growth in the eastern United States (e.g. Rollinson et al., 2016).  434 

Nonetheless, models appear to be lacking moderating feedbacks that can cause positive 435 

temperature effects at low temperatures or reduce precipitation sensitivity.  Indeed, the model in 436 

our ensemble that most closely matches the empirical relationship between temperature and NPP 437 

is LINKAGES, which calculates NPP directly from growing degree days rather than from 438 

separate GPP and autotrophic respiration functions (Post & Pastor, 1996). 439 

 Models were also over-sensitive to precipitation relative to tree rings.  Traditional tree-440 

ring analyses have focused on growth responses to drought indices such as the Palmer Drought 441 

Severity Index that combines temperature, precipitation, and soil moisture into a single drought 442 

metric (e.g. Speer et al., 2009; McEwan et al., 2011).  However, process-based ecosystem 443 

models drive productivity from independent forcing of temperature and precipitation and 444 

temperature- versus precipitation-based droughts may impact ecosystems differently (Anderegg 445 

et al., 2013).   Furthermore, models can vary in their representation of soil and hydrology so that 446 

the same temperature and precipitation drivers may result in different droughts both among 447 

models and compared to empirical system (Cook et al., 2015).  Tree-ring studies that have used 448 

mixed-modeling frameworks to look at the simultaneous influences of temperature and 449 

precipitation on growth have revealed stronger influences of temperature on growth than 450 
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precipitation (Rollinson et al., 2016).  In order to improve the ecosystem-scale model responses 451 

to both temperature and precipitation, further empirical research is needed to separate 452 

temperature and precipitation effects on tree growth.  453 

Model responses to precipitation were more variable than temperature or CO2 and 454 

consequently there was little consensus in our model ensemble about when and where ecosystem 455 

productivity was driven by temperature versus precipitation (Figs. 2 & 3). Despite sensitivity 456 

disparities with tree-ring data, the strong control of precipitation in many models at the multi-457 

centennial scale supports hypotheses that drought may have been instrumental in driving 458 

ecosystem dynamics and species shifts in New England 500-600 years before present (Clifford & 459 

Booth, 2015). However, the relative insensitivity of productivity to temperature is difficult to 460 

reconcile with apparent temperature-driven millennial-scale compositional shifts in the 461 

paleoecological record (Prentice et al., 1991; Blois et al., 2013).  In the model ensemble, fire and 462 

changes in biomass variability reduce model sensitivity to temperature rather than changes in 463 

relative composition, which suggests this lack of temperature sensitivity is not due to stabilizing 464 

shifts in plant functional types.  Challenges of recreating spatial and temporal patterns of 465 

observed composition is a pervasive problem in ecosystem modeling and is known to have 466 

cascading impacts that bias other aspects of ecosystem dynamics including NPP and 467 

transpiration (Matthes et al., 2016).  Improved plant functional type parameterization within and 468 

across models through careful data collection will undoubtedly help address some of the 469 

discrepancies in magnitude and relative importance of temperature and precipitation seen 470 

between models and data in our study. 471 

Differences in model responses to increasing CO2 drive model ensemble uncertainty in 472 

NPP since 1900 (Fig. 3).  The discrepancy of CO2 enhancement effects in the model ensemble 473 
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reflects the long-running debate in empirical studies about whether or not increased CO2 has 474 

sustained effects on tree growth and ecosystem productivity. One synthesis from Free-Air CO2 475 

Enrichment (FACE) studies, where conditions were raised to ~170 ppm above modern, increased 476 

productivity by 23%, or 13% ppm-1 (Norby et al., 2005). This is slightly less than half of the 477 

43% increase in NPP attributed to CO2 in our model ensemble over a similar increase in CO2 478 

over the past 100 years (Fig. 3).  However, a 30-year study that found 12% increased stem width 479 

from increased CO2 attributed most of this difference to early growth increases that diminished 480 

as the trees matured (Hättenschwiler et al., 1997).  The effect of increasing competition for 481 

resources such as nitrogen and light during forest maturation has been used to explain a lack of 482 

CO2 enhancement on tree growth in older forests quantified through tree rings (van der Sleen et 483 

al., 2014; Fernández-de-Uña et al., 2016).  In tree rings, rising CO2 has been associated with 484 

increased water use efficiency, but there has been little evidence that this translates into 485 

increased stem growth (Gedalof & Berg, 2010; Andreu-Hayles et al., 2011; Peñuelas et al., 486 

2011; van der Sleen et al., 2014; Frank et al., 2015).   487 

Many of the explanations for a lack of CO2-induced growth increases in tree-ring widths 488 

center around the challenges of separating out the effects of increasing CO2 from increasing tree 489 

size and stand-level forest dynamics (Jacoby & D’Arrigo, 1997; Andreu-Hayles et al., 2011). In 490 

our results, stand-level NPP from tree rings showed no CO2 effect, but individual ring widths 491 

displayed a negative effect that arises from the aforementioned challenges even though we 492 

explicitly accounted for increasing individual size in our analyses (Fig. 2, S5). This model- and 493 

data-based uncertainty in the long-term effect of increasing CO2 on ecosystems is the greatest 494 

source of uncertainty in current and future forest carbon cycle modeling (Sitch et al., 2008; 495 

IPCC, 2013).  Both fire and changes in biomass are correlated with CO2 sensitivity in our 496 
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ensemble of models across temporal scales (Table 3), indicating that disturbance and recovery 497 

processes may have strong influence on how CO2 impacts ecosystem NPP.  Consequently, 498 

accurate representation of causes of forest disturbances and process of recovery at local scales is 499 

necessary to reconcile models with empirical data and to make improved predictions of future 500 

forest dynamics under continued global change (Seidl et al., 2011; Dietze et al., 2014; Steinkamp 501 

& Hickler, 2015).  502 

  503 

Conclusions 504 

 Models and data display conflicting responses of NPP to climate and CO2 and these 505 

differences are more pronounced at the multi-centennial time scales of past climate-driven 506 

ecosystem change.  Models are generally over-sensitive to growing season precipitation relative 507 

to tree-ring datasets and display negative responses to temperature while tree rings show 508 

consistent positive effects.  Further research on independent temperature and precipitation effects 509 

is necessary to diagnose systematic weaknesses in ecosystem models. Similarly, differences in 510 

model responses to CO2 drive divergence of model ensemble NPP over the past century as the 511 

effects compound through time while CO2 concentration consistently increases.  Despite 512 

empirical evidence for positive CO2 effects on individual processes included in ecosystem 513 

models, the net effects on tree growth and forest-level NPP remain unclear and poorly 514 

constrained.  Differences in disturbance as measured through the presence of fire in model 515 

simulations only impacts the sensitivity of productivity to climate and CO2 at multi-centennial 516 

times scales that capture multiple tree generations. The paths toward model improvement and 517 

reconciling discrepancies with data will be model-specific as each model has unique structural 518 

and parameterization requirements.  However, accurate representation of fire and other 519 
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disturbance processes and ecosystem recovery in models will require improved synthesis of 520 

short-term ecophysiological processes with gradual shifts in forest composition and structure 521 

seen in historical and paleoecological records.  We advocate that this process of refinement 522 

include consideration and formal evaluation of emergent, ecosystem-level behavior at the multi-523 

decadal and multi-centennial temporal scales at which changes in forest composition and 524 

biomass occur.  This approach would better align model evaluation with the organizational and 525 

temporal scales of forest dynamics and policy decisions. 526 
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Supporting Information Captions 

Supporting Information 1: Growing season temperature and precipitation time series for 850-

2010 A.D. for all six sites that were used as model drivers and in for sensitivity analysis. 

Supporting Information 2: Model simulation protocol. 

Supporting Information 3: Location and record information for tree-ring width information from 

the International Tree Ring Databank (Grissino-Mayer & Fritts, 1997). 

Supporting Information 4: Mean and 95% confidence interval of spine-detrended ring width 

index (RWI) for all tree ring records used in analyses. 

Supporting Information 5: Sensitivity of relativized NPP and tree-ring width index (RWI) to 

growing season temperature, growing season precipitation, and CO2 across three temporal scales.  

Supporting Information 6: Sensitivity of relativized NPP and tree-ring width to growing season 

temperature, growing season precipitation, and CO2 across three temporal scales restricted to 

Harvard and Howland sites.   

Supporting Information 7: Relativized sensitivity of model NPP or ring width to growing season 

(May – September) temperature, growing season precipitation, and CO2 by temporal extent. 
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Table 1: Location, modern forest type, and mean model driver growing season (May through 

September) temperature and precipitation for the six modeling locations and which data types 

were available at each site for sensitivity analysis. Temperature and precipitation values 

presented are mean ± standard deviation from 850-2010 A.D.  Data type codes are as follows: M 

= ecosystem models, RW = raw tree-ring widths, NPPTR = tree-ring NPP reconstruction. 

 

Name Longitude Latitude 
Forest 
Type 

Temp (˚C) 
Precip 
(mm) 

Data Types 

Demming Lake -95.17 47.17 Mixed 15.6 ± 1.0 375 ± 74 M, RW 

Billy’s Lake -94.58 46.28 Mixed 16.4 ± 1.0 398  ± 81 M 

UNDERC -89.53 46.22 Mixed 14.3 ± 0.9 411 ± 74 M, RW 

Minden Bog -82.83 43.61 Evergreen 16.4 ± 0.8 375 ± 65 M 

Harvard Forest -72.18 42.54 Deciduous 15.6 ± 0.7 520 ± 86 M, RW, NPPTR 

Howland Forest -68.73 45.25 Mixed 13.9 ± 0.8 492 ± 80 M, RW, NPPTR 
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Table 2: List of models and key model characteristics used in analyses.  Static vegetation models 

were prescribed site composition based on modern forest type information (Table 1). However, 

because composition was assessed as fraction biomass or leaf area (LPJ & JULES models), 

relative composition could shift through time.  Composition and biomass variability was 

quantified as the standard deviation of the relative fraction evergreen or biomass through time 

over the full modeling temporal extent. For fire occurrence, “No” indicates no fire occurred in 

the model simulations at any locations. Version numbers are not tracked in SiBCASA. 

 

Model Vers. 
Vegetation 

Scheme 

Composition 
Variability 

(%) 
Fire 

Occurrence 

Biomass 
Variability 

(%) 

Citation 

CLM-BGC 4.5 Static 32% Yes 22% 

Oleson et al., 
2010 

CLM-CN 4.5 Static 29% Yes 17% 

Oleson et al., 
2010 

ED2 2.1 Dynamic 20% No 20% 

Medvigy et al., 
2009 

ED2-LU 2.1 Dynamic 21% No 19% 

Medvigy et al., 
2009 

JULES-STATIC 4.1 Static 25% No   3% 

Best et al., 2011; 
Clark et al., 2011 

JULES-TRIFFID 4.1 Dynamic 02% No   6% 

Best et al., 2011; 
Clark et al., 2011 

LINKAGES 1 .0 Dynamic 22% No 19% 

Post & Pastor, 
1996 

LPJ-GUESS 3.1 Dynamic 35% Yes 24% 

Sitch et al., 2003; 
Gerten et al., 

2004; Smith et 
al., 2014 

LPJ-WSL 1.0 Dynamic 28% Yes 12% 

Sitch et al., 2003; 
Gerten et al., 

2004 

SiBCASA  Static 00% No   4% 

Schaefer et al., 
2008 
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Table 3: ANOVA effect sizes of changes in climate and CO2 sensitivity for four key 

characteristics of ecosystem models and ecosystem dynamics.  Effects are expressed as mean 

change in normalized NPP (%) per unit climate effect ± standard error.  Static vegetation and fire 

effects are relative to dynamic vegetation scheme and absence of fire, respectively. * and bold 

indicate significance at p<0.05. 

Effect Character 1980-2010 1901-2010 850-2010 

Temperature Static Vegetation 3.8 ± 3.68    4.13 ± 3.68    4.17 ± 3.68    

  Composition Var. 12.67 ± 14.92    7.67 ± 17.3    -8.16 ± 20.47    

  Fire Occurs 0.99 ± 3.31    -1.4 ± 3.31    -8.18 ± 3.31   * 

  Biomass Var. -0.67 ± 7.2    -9.89 ± 8.82    -20.03 ± 9.15   * 

Precipitation Static Vegetation -0.01 ± 0.2    0.15 ± 0.2    0.06 ± 0.2    

  Composition Var. 0.03 ± 0.2    -0.06 ± 0.23    -0.25 ± 0.27    

  Fire Occurs -0.01 ± 0.04    -0.02 ± 0.04    -0.11 ± 0.04   * 

  Biomass Var. 0.06 ± 0.1    0.01 ± 0.12    -0.2 ± 0.13    

CO2 Static Vegetation -0.01 ± 0.2    0.15 ± 0.2    0.06 ± 0.2    

  Composition Var. -0.34 +/- 0.7    -0.33 +/- 0.81    -1.81 ± 0.96    

  Fire Occurs -0.17 +/- 0.15    -0.15 +/- 0.15    -0.45 ± 0.15   * 

  Biomass Var. 0.09 +/- 0.39    -0.13 +/- 0.48    -0.61 ± 0.5    
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Figure Captions 

Figure 1: Net primary production (NPP) across all sites for the full modeling temporal extent 

(850-2010) for all ten ecosystem models. Sites are as follows: a) Demming Lake, b) Billy’s 

Lake, c) UNDERC, d) Minden Bog, e) Harvard Forest, f) Howland Forest. Lines indicate the 10-

year running means.  Black dots at Harvard and Howland indicate tree-ring estimates of NPP. 

Figure 2: Normalized sensitivity of NPP and tree ring width to growing season temperature, 

growing season precipitation, and CO2 across three temporal scales.  Climate and CO2 effects 

have been normalized to the mean NPP or ring width for each model to facilitate comparison 

across models and data of different scales.  Colored lines indicate the mean estimated response 

and color shaded area indicate a 95% confidence interval around that response.  Gray shaded 

regions indicate the ranges of climate or CO2 not observed in the models at that temporal scale 

and are presented only for aiding visualization and as such differences among models in these 

regions should not be interpreted.  

Figure 3: a) 10-year running mean net primary productivity for ten terrestrial ecosystem models 

(lines) with 95% confidence intervals from among-site variability (shaded areas).  b) 10-year 

running mean of the ensemble mean of normalized model NPP (colored line) with shaded 95% 

confidence interval (from spread among models) showing relative change in NPP through time 

in the model ensemble.  Color of each line indicate the relative control of temperature (red), 

precipitation (blue) and CO2 (green) on change in relative NPP, dashed line indicates the 

normalized mean of 100%.  c) Mean effect of temperature (red), precipitation (blue), and CO2 

(green) on normalized NPP in the model ensemble. Lines indicate the ensemble mean and the 

shaded area indicates the 95% confidence intervals.  

 

 


