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Declan G. Murphy, MRC AIMS Consortium, David Mataix-Cols, and Katya Rubia
ABSTRACT
BACKGROUND: Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) are often comorbid and
share similarities across some cognitive phenotypes, including certain aspects of attention. However, no functional
magnetic resonance imaging studies have compared the underlying neural mechanisms contributing to these shared
phenotypes.
METHODS: Age- and IQ-matched boys (11–17 years old) with ASD (n 5 20), boys with OCD (n 5 20), and healthy
control boys (n 5 20) performed a parametrically modulated psychomotor vigilance functional magnetic resonance
imaging task. Brain activation and performance were compared among adolescents with OCD, adolescents with
ASD, and control adolescents.
RESULTS: Whereas boys with ASD and OCD were not impaired on task performance, there was a significant group
by attention load interaction in several brain regions. With increasing attention load, left inferior frontal cortex/insula
and left inferior parietal lobe/pre/post-central gyrus were progressively less activated in boys with OCD relative to the
other two groups. In addition, boys with OCD showed progressively increased activation with increasing attention load in
rostromedial prefrontal/anterior cingulate cortex relative to boys with ASD and control boys. Shared neurofunctional
abnormalities between boys with ASD and boys with OCD included increased activation with increasing attention load in
cerebellum and occipital regions, possibly reflecting increased default mode network activation.
CONCLUSIONS: This first functional magnetic resonance imaging study to compare boys with ASD and OCD
showed shared abnormalities in posterior cerebellar–occipital brain regions. However, boys with OCD showed a
disorder-specific pattern of reduced activation in left inferior frontal and temporo-parietal regions but increased
activation of medial frontal regions, which may potentially be related to neurobiological mechanisms underlying
cognitive and clinical phenotypes of OCD.
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Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by social and communication difficul-
ties and stereotyped repetitive behaviors (1) with a prevalence
of 0.6% to 2.0%, predominantly in male individuals (2).
Obsessive-compulsive disorder (OCD) is characterized by
recurrent, intrusive, and distressing thoughts (obsessions)
and repetitive behaviors (compulsions) (1), affecting 1% to
3% of the population, with a higher prevalence in boys among
pediatric samples (3). Rates of comorbidity of OCD in autistic
children have been estimated to be as high as 37% (4).
Conversely, estimates of ASD rates in OCD patients are lower
at around 6% (5,6). Clinically, compulsions in OCD are some-
times difficult to separate from repetitive behaviors in ASD.
Both disorders also commonly present with inattention and
even attention-deficit/hyperactivity disorder (ADHD), which
may in some cases contribute to respective phenotypes
& 2017 Society of Biological Psychiatry. Pu
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including attention problems (7,8). These overlaps have been
attributed to shared genetic risk and biological mechanisms
as well as diagnostic mislabeling (9), highlighting a need to
improve understanding of the underlying neural mechanisms
to disentangle comorbidity between the disorders and identify
novel biomarkers and treatment targets (10).

Vigilance incorporates sustained attention, or the ability to
maintain focus toward infrequently occurring stimuli (11), and
focused attention, or the ability to concentrate on one stimulus
while excluding the influence of other stimuli (12). There is
evidence for deficits in vigilance and sustained attention in
ASD (13,14), albeit with some negative findings (15). In OCD,
some studies support attention deficits across various
domains (focused attention, sustained attention, selective
attention, attention span, and information processing) relative
to control subjects (16–18), whereas other studies find no
blished by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/). 1
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deficits (19,20). However, focused attention is perhaps the
most widely studied attention domain in OCD, and the majority
of studies support focused attention deficits (12). Attentional
priority to obsessions is a key feature of OCD, and individuals
with OCD have shown self-reported impaired attentional
control (21). Thus, impairments in focused and sustained
attention seemingly fit with clinical characteristics of the
disorder and have been supported by the neuropsychological
literature (12). Discrepancy is likely due to heterogeneous
samples and tasks.

On cognitive and symptom-based measures, ASD has been
related to inattention. Thus, ASD can be characterized by short
attention span, and impulsivity and inattention symptoms are
common (22). Furthermore, individuals with ASD are typically
impaired on neurocognitive measures of sustained and selec-
tive attention (7). There is evidence for fronto-striatal, parietal,
and cerebellar abnormalities in ASD during selective and
flexible attention (23,24). Specifically, hypoactivity has been
observed in ASD in middle–frontal gyrus, caudate, and anterior
cingulate cortex (ACC) (25). However, only two functional
magnetic resonance imaging (fMRI) studies have measured
sustained attention in ASD: one in adolescents (26) and one in
a combined sample of adolescents and adults (13). These
investigations found that individuals with ASD exhibited
decreased activation in left dorsolateral–prefrontal striato-
thalamic and parietal regions but increased activation in the
cerebellum, presumably compensating for frontal hypoactiva-
tion, and in precuneus, reflecting poor deactivation of the
default mode network linked to increased mind wandering (26).
The first cross-sectional fMRI developmental investigation of
sustained attention in ASD found that control subjects, but not
individuals with ASD, had enhanced activation in inferior and
dorsolateral–prefrontal, striatal, temporal, and cerebellar
regions with increasing age, suggesting abnormal functional
maturation of attention networks in ASD (13).

Clinical symptoms of inattention have been reported espe-
cially in pediatric patients with OCD (27), and patients with
OCD have shown deficits in selective and focused attention
(12). Pediatric and adult studies of OCD across various
cognitive domains have suggested that the disorder is char-
acterized by dysfunctional attention networks involving basal
ganglia and medial and orbitofronto-striatal regions (16).
However, there is additional evidence that abnormalities may
also be driven by dysfunctional temporo-parietal and cerebel-
lar networks (28,29), supporting phenotypes of distracted
focused attention to external stimuli and inability to disengage
from obsessions. Specifically, patients with OCD exhibit
hypoactivation in lateral–prefrontal cortex (PFC), medial–orbi-
tofrontal cortex, and caudate but increased activation in
ventrolateral PFC and ACC during selective and other
attention-based tasks (18,30), suggesting top-down ventro-
lateral PFC and ACC control over striatal underactivation.
However, no fMRI studies have examined vigilance in OCD or
compared ASD and OCD.

Given diagnostic overlap and potential etiological links
between ASD and OCD, it is critical to understand neurofunc-
tional mechanisms that are shared or unique between these
disorders. Work has begun to focus on delineating neural
mechanisms between these disorders (31), but a comparison
in the context of attention is lacking. Despite a dearth of robust
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging ] 20
neurocognitive associations between attention problems and
these disorders, investigating this domain in ASD and OCD
may be useful for pinpointing differences or similarities in
associated brain networks giving rise to clinical phenotypes in
each disorder. Thus, this study compared brain function of
boys with ASD, boys with OCD, and typically developing
control boys during a parametrically modulated fMRI vigilance
task with increasing sustained attention loads. fMRI inves-
tigations of psychomotor vigilance using other paradigms
(e.g., continuous performance test) in healthy adolescents
and adults showed activation in inferior and dorsolateral–
prefrontal, striato-thalamic, parieto-temporal, and cerebellar
regions (32,33). Therefore, we hypothesized that both disor-
ders would show underactivation in inferior frontal and dorso-
lateral–prefrontal striato-cerebellar sustained attention
networks relative to control boys and that this effect would
be more pronounced with increasing attention load.
METHODS AND MATERIALS

Participants

A total of 60 right-handed (34) boys [20 typically developing
control boys, 20 boys with ASD, and 20 boys with OCD, 11–17
years old, IQ $ 70 (35)] were included. ASD diagnosis was
made by a psychiatrist using ICD-10 criteria (36) and con-
firmed with the Autism Diagnostic Interview–Revised (37). The
Autism Diagnostic Observation Schedule (38) was also com-
pleted. All boys with ASD reached cutoffs for autism in all
domains of the Autism Diagnostic Interview–Revised and the
Autism Diagnostic Observation Schedule. Based on the
structured interview, comorbidity with other disorders includ-
ing OCD was excluded by a consultant psychiatrist. Parents
also completed the Social Communication Questionnaire (39)
and the Strengths and Difficulties Questionnaire (SDQ) (40)
(see Supplement). Participants with ASD had a physical
examination to exclude medical disorders and biochemical,
hematological, and chromosomal abnormalities associated
with ASD. All boys with ASD were medication naïve.

The 20 boys with OCD were recruited from a national and
specialist OCD clinic at the Maudsley Hospital (London, UK).
OCD diagnosis was made by a psychiatrist or clinical psy-
chologist in accordance with ICD-10 criteria after an in-depth,
semistructured interview between patient and clinician was
used to administer an expanded version of the Children’s
Yale–Brown Obsessive Compulsive Scale (CY-BOCS) (41).
Absence of comorbidity, including ASD, was confirmed by a
consultant psychiatrist after administration of the structured
CY-BOCS interview. Parents completed the SDQ. Four boys
with OCD were prescribed stable doses of selective serotonin
reuptake inhibitors (see Supplement).

The 20 healthy age- and handedness-matched control boys
were recruited by advertisement and initially screened over the
phone for the current or lifetime presence of any exclusion
criteria including comorbidity. Healthy control boys scored
below clinical cutoffs on the SDQ and the Social Communi-
cation Questionnaire and had no history of any psychiatric or
physical comorbidity.

Exclusion criteria included comorbid psychiatric disorders,
medical disorders affecting brain development, drug or alcohol
17; ]:]]]–]]] www.sobp.org/BPCNNI
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dependency, head injury, genetic conditions associated with
ASD, abnormal brain structural MRI findings, and MRI contra-
indications. A total of 31 individuals (15 control and 16 ASD)
also participated in our fMRI studies of sustained attention in
ASD versus ADHD (26) and functional maturation of sustained
attention networks in ASD versus control individuals (13).
Some participants participated in other fMRI tasks during their
visit, data from which are published elsewhere (42–45).

The study was conducted in accordance with the Declara-
tion of Helsinki. Ethical approval was obtained from the local
research ethics committee (05/Q0706/275). Study details were
explained to children and guardians, and written informed
consent was obtained for all participants.
Psychomotor Vigilance Task

Subjects practiced the task briefly in a mock scanner. The 12-
minute task (13) is an adapted variant of psychomotor
vigilance and delay tasks (46,47) requiring sustained and
focused attention. Subjects responded as quickly as possible
within 1 second via a right-handed button press on presenta-
tion of a timer counting up in milliseconds from zero. A
premature response was recorded if the button was pressed
before timer presentation. The timer appeared after short
predictable delays of 0.5 second in series of 3 to 5 stimuli
(260 total), or after an unpredictable delay of 2, 5, or 8 seconds
(20/each), pseudorandomly interspersed into blocks after 3 to
5 delays of 0.5 second. The 0.5-second delays are typically
anticipated, placing a larger demand on sensorimotor syn-
chronization (48), whereas the longer infrequent delays place a
higher load on sustained attention/vigilance.
Analysis of Performance

Univariate repeated-measures analyses of variance (ANOVAs)
with group as a between-subject factor and delay (2, 5, or 8
seconds) as a within-subject repeated measure examined
group differences and delay effects on mean reaction time
(MRT), intrasubject response variability (standard deviation) of
reaction time (SDintrasubject), and omission errors.
fMRI Acquisition

Gradient-echo echo planar magnetic resonance imaging data
were acquired on a 3T General Electric Signa HDx Twinspeed
scanner (Milwaukee, WI) using a quadrature birdcage head
coil. In each of 22 noncontiguous planes parallel to the
anterior–posterior commissure, 480 T2*-weighted images
depicting blood oxygenation level–dependent (BOLD) contrast
spanning the whole brain were acquired (echo time 5 30 ms;
repetition time 5 1.5 seconds; flip angle 5 60o; in-plane
resolution 5 3.75 mm; slice thickness 5 5.0 mm; slice skip 5

0.5 mm). A whole-brain high-resolution structural scan (inver-
sion recovery gradient echo planar imaging) on which to
superimpose the activation maps was also acquired in the
intercommissural plane (echo time 5 40 ms; repetition time 5

3 seconds; flip angle 5 90o; slices 5 43; slice thickness 5

3.0 mm; slice skip 5 0.3 mm) providing complete brain
coverage.
Biological Psychiatry: Cognitive Neuroscien
fMRI Analysis

Event-related activation data were acquired in randomized trial
presentation and analyzed using nonparametric methods
[XBAM v4.1, www.brainmap.co.uk (49,50)]. XBAM makes no
normality assumptions, uses median statistics to control out-
lier effects, and uses permutation testing, giving excellent type
I error control (51). After preprocessing, time-series analysis
for individual subjects was based on published wavelet-based
data resampling methods for fMRI data (see Supplement)
(50,52).

For between-group comparisons, a 3 3 3 split-plot ANOVA
(3 delays and 3 groups) was tested for group, delay, and group
by delay interaction effects using a randomization-based test
for voxel or cluster-wise differences (50). Less than 1 false
positive activation cluster was expected at p , .05 (voxel level)
and p , .01 (cluster level). Statistical measures of BOLD
response for each participant were then extracted in each
significant cluster, and post hoc t tests were conducted to
identify between-group differences.

Influence of Behavior, Symptoms, and Medication

To examine whether activation in regions showing a group by
delay interaction was related to clinical symptoms or task
performance, we extracted statistical BOLD responses for the
longest delay (the delay with the largest group effect) from
these clusters and correlated this (Spearman two tailed) with
MRT and SDintrasubject within each group. Within diagnostic
groups, we correlated BOLD responses from clusters that
were abnormal relative to control boys (e.g., cerebellum/
occipital in both groups and the other three clusters in OCD;
see Results) with disorder-relevant symptom measures,
Autism Diagnostic Observation Schedule social/communica-
tion subscales for ASD and CY-BOCS scores for OCD.

To test for medication effects on activation for the 4 boys
with OCD who were prescribed selective serotonin reuptake
inhibitors, analyses were repeated covarying for medication
status and excluding medicated participants.
RESULTS

Participants

Groups did not differ on age or IQ (Table 1). As expected,
groups differed on total scores and subscores of the SDQ.
Post hoc tests showed that on total and peer relations
subscales, all patients were impaired relative to healthy control
boys, but boys with ASD were more severely impaired than
boys with OCD (total: all ps , .001; peer: all ps , .05). On
emotional subscales, both diagnostic groups were impaired
relative to control boys (p , .001) but did not differ from each
other. On prosocial and hyperactivity/inattention subscales,
boys with ASD were impaired relative to control boys and boys
with OCD (p , .001), who did not differ from control boys. On
the conduct problems subscale, only boys with ASD differed
from control boys (p , .005).

Performance Data

Repeated-measures ANOVAs showed no significant within-
subjects effect of delay on MRT, F1.7,95.1 5 1.99, p 5 .15,
ce and Neuroimaging ] 2017; ]:]]]–]]] www.sobp.org/BPCNNI 3
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Table 1. Participant Characteristics for Healthy Control Boys and Boys with ASD or OCD

Variable
HC (n 5 20),
Mean (SD)

ASD (n 5 20),
Mean (SD)

OCD (n 5 20),
Mean (SD) F Test

Degrees of
Freedom p Value

Age, Years 15.1 (2.0) 15.2 (1.3) 15.7 (1.4) 0.9 2,57 .43

IQ 119.7 (11.9) 112.2 (14.4) 117.7 (13.4) 1.7 2,57 .19

SCQ Total Score 2.32 (2.3) 18.66 (8.1) – 77.0 1,47 ,.001

SDQ Total Score 5.6 (4.2) 19.7 (6.8) 12.5 (5.6) 35.6 2,66 ,.001

SDQ Emotional Distress Subscale 0.9 (1.8) 4.4 (2.9) 4.4 (2.6) 13.1 2,66 ,.001

SDQ Conduct Subscale 0.9 (1.1) 2.7 (2.2) 1.9 (1.5) 6.6 2,66 .003

SDQ Peer Relations Subscale 1.5 (1.7) 6.6 (2.3) 3.3 (3.0) 28.7 2,66 ,.001

SDQ Hyperactive Impulsive/Inattentive Subscale 2.7 (2.4) 5.9 (2.6) 3.0 (2.7) 12.5 2,66 ,.001

SDQ Prosocial Behavior Subscale 8.4 (2.4) 4.4 (2.4) 7.7 (2.6) 18.6 2,6 ,.001

ADOS Communication Score – 3.6 (1.2) – – – –

ADOS Social Interaction Score – 9.0 (2.3) – – – –

ADOS Communication 1 Social – 12.7 (3.1) – – – –

ADOS Stereotypy Score – 1.5 (1.5) – – – –

ADI Communication Score – 16.6 (4.7) – – – –

ADI Social Interaction Score – 20.0 (5.3) – – – –

ADI Repetitive Behavior Score – 6.5 (2.4) – – – –

CY-BOCS Total Score – – 22.3 (5.8) – – –

CY-BOCS–Obsessions – – 10.8 (3.6) – – –

CY-BOCS–Compulsions – – 12.0 (3.1) – – –

ADI, Autism Diagnostic Interview; ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum disorder; CY-BOCS, Children’s Yale–
Brown Obsessive Compulsive Scale; HC, healthy control; OCD, obsessive-compulsive disorder; SCQ, Social Communication Questionnaire; SDQ,
Strengths and Difficulties Questionnaire.
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SDintrasubject, F2,114 5 0.56, p 5 .57, or omissions, F1.7,98.8 5

0.48, p 5 .59.
There was no significant group effect on MRT, F2,57 5 1.50,

p 5 .23, SDintrasubject, F2,57 5 0.78, p 5 .46, or omissions,
F2,57 5 1.00, p 5 .37.

There was no significant group by delay interaction effect
for MRT, F3.3,95.1 5 0.77, p 5 .53, SDintrasubject, F4,114 5 1.71,
p 5 .15, or omissions, F3.5,98.8 5 1.82, p 5 .14 (Supplemental
Table S1).

Movement

Groups did not differ on minimum (F2,57 5 1.00, p 5 .38),
maximum (F2,57 5 0.30, p 5 .76), or mean (F2,57 5 0.003, p 5

1.00) head translation in three-dimensional Euclidian space.

Group Maps of Brain Activation

Images of within-group brain activation for each delay (2, 5, or
8 seconds) contrasted against 0.5-second trials are described
in Supplemental Figure S1.

Delay Effect

All subjects showed distributed activation with increasing
delay in a bilateral network comprising ventromedial/dorso-
lateral/inferior PFC, anterior/posterior cingulate, basal ganglia
supplementary motor area, temporo-parietal and cerebellar
regions, and thalamus and hippocampal gyri (Supplemental
Figure S2).

Group Effect

Split-plot ANOVA revealed significant group effects in left
insula/inferior frontal gyrus (IFG) extending into pre/postcentral
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging ] 20
gyrus/superior temporal lobe (STL) and right posterior cingu-
late cortex/STL extending into middle temporal lobe/occipital
lobe (Figure 1 and Table 2).

Post hoc analyses showed that boys with OCD had
decreased activation in left insula/IFG relative to control boys
(p , .001) and boys with ASD (p 5 .002), who did not differ
from control boys, and in right posterior cingulate cortex/STL
relative to control boys (p 5 .002) and boys with ASD
(p 5 .001), who did not differ from control boys.

Group by Delay Interaction Effects

Split-plot ANOVA showed significant group by delay interac-
tion effects in four clusters, one of which overlapped with
observed results in the group effect analysis: left insula/IFG
extending into precentral gyrus/STL/middle temporal lobe, left
inferior parietal lobe/pre/postcentral gyrus, rostromedial PFC/
superior frontal gyrus/ACC, and cerebellar vermis/occipital
lobe/lingual gyrus (Figure 2 and Table 2).

Post hoc analyses showed that in left IFG/insula (Figure 2A)
and left inferior parietal lobe/pre/post-central gyrus
(Figure 2B), boys with OCD had progressively reduced acti-
vation with increasing delay (p , .005) relative to boys with
ASD and control boys (p , .005), who did not differ and whose
activation in this region did not change with delay. In
rostromedial PFC (Figure 2C), boys with OCD had increased
activation with increasing delay (p , .004). There was no
between-group difference in the 2-second condition, but for 5
and 8 seconds, boys with OCD had increased activation
relative to boys with ASD and control boys (p , .005), who
did not differ and whose activation in this region did not
change with delay. In cerebellum/occipital lobe (Figure 2D),
diagnostic groups had increased activation with increasing
17; ]:]]]–]]] www.sobp.org/BPCNNI
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Figure 1. Between-group differences in brain activation among healthy
control (HC) boys, boys with autism spectrum disorder (ASD), and boys with
obsessive-compulsive disorder (OCD). Analysis of variance shows the main
effect of group on brain activation for all delays (2, 5, and 8 seconds)
combined, contrasted against 0.5-second trials. Talairach z coordinates are
shown for slice distance (in mm) from the intercommissural line. The right
side corresponds with the right side of the brain. **p , .005, ***p , .001.
BOLD, blood oxygen–level dependent; IFG, inferior frontal gyrus; L, left;
MTL, middle temporal lobe; PCC, posterior cingulate cortex; R, right; STL,
superior temporal lobe.
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delay (ASD: p , .05; OCD: p , .005) and shared enhanced
activation in all delays relative to control boys (ASD vs. control:
p , .04; OCD vs. control: p , .001).

Influence of Performance, Clinical Symptoms, and
Medication

Within patients, there were no significant correlations between
clinical measures and brain activation. There was no relationship
between performance and activation within any of the three groups.

When medication was covaried, results remained
unchanged, suggesting that medication did not significantly
affect activation differences observed during the task. When
analyses were repeated excluding these 4 patients, findings
were still observed at a more lenient significant threshold of
p , .05, likely as an effect of reduced power to detect group
differences.
DISCUSSION

This is the first fMRI study to directly compare boys with ASD
and boys with OCD to investigate shared or disorder-specific
Biological Psychiatry: Cognitive Neuroscien
abnormalities in brain function and is the first to make this
comparison using sustained attention. During a parametrically
modulated vigilance task, boys with OCD had disorder-
specific patterns of reduced activation in left-lateral inferior
fronto-parieto-temporal regions but enhanced activation in
medial frontal regions with increasing task difficulty relative
to healthy control boys and boys with ASD, who did not differ
from one another. Both disorders shared enhanced activation
relative to control boys with increasing delay in cerebellum/
occipital lobe.

Neither diagnostic group differed from control boys on task
performance (MRT, SDintrasubject). Across all groups, partici-
pants activated distributed ventromedial, dorsolateral, and
inferior prefronto-striato thalamic and temporo-parietal net-
works with increasing attention load, suggesting that the task
elicited the expected brain response given that dorsolateral
and inferior fronto-striato-temporo-parietal networks are
important for maintaining attention (26,33).

Boys with OCD had disorder-specific activation decreases
relative to control boys and boys with ASD in left insula, IFG,
and STL, which furthermore showed decreases in activation
as a function of increasing attention load in the OCD group but
not in the other groups. The insula is involved in salience
detection and timing functions (53,54). Reduced insular and
paralimbic activation presumably reflects these regions’ role in
motivation control, which may influence attention (55). Thus,
OCD-specific deactivation in this region may be a disorder-
specific signature, shifting cognitive resources away from
internal thoughts to elicit task-relevant attention comparable
to control boys. The insula is furthermore involved in switching
between task-related central executive networks and task-
unrelated default mode network activations, suggesting that
the insula facilitates dampening down of default mode activity
during sustained attention (56). Thus, OCD-specific decreased
insula activation with increasing attention load could relate
clinically to difficulty maintaining attention toward task-
relevant stimuli due to attentional priority to task-unrelated
internally generated obsessions.

Left IFG is a key part of the ventral attention network and,
along with lateral temporo-parietal regions, is important for
attention-orienting maintenance (57). Investigations of ventral
sustained attention systems generally implicate right-
hemispheric regions (56,58) [but see (59) for evidence of left-
hemispheric activation]. It is conceivable that observed
left-hemispheric activation reflects sensorimotor effects of
the right-handed button press. This particular vigilance task
has shown in previous studies (13,26) to elicit predominantly
left-lateralized activation in fronto-insular regions in healthy
adults and children, supported by our within-group findings of
predominantly left hemispheric fronto-insular activation pre-
sented in the Supplement. Moreover, this effect could be due
to this region’s role in motor timing and sensorimotor
synchronization (54). There have been age-related findings of
increased IFG/insula activation during sustained attention and
cognitive control between childhood and adulthood (32,60),
suggesting abnormal functional maturation in OCD relative to
ASD and control subjects, in line with structural MRI studies
showing abnormal white matter development (61) and
decreased cortical thickness in adults with OCD relative to
control adults (62). Taken together, this evidence suggests
ce and Neuroimaging ] 2017; ]:]]]–]]] www.sobp.org/BPCNNI 5
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Table 2. ANOVA Effects for Brain Activation Differences Among Boys With ASD, Boys With OCD, and Healthy Control Boys

Subject Contrast Brain Regions of Activation Brodmann Areas
Peak Talairach Coordinates,

x, y, z Voxels p Value

Main Effect of Group

OCD , HC, ASD L insulaa/IFG/pre/postcentral gyrus/STL 45/44/6/4/43/22 240, 0, 22 49 .009

OCD , HC, ASD R PCCa/STLa/MTL/occipital lobe 23/31/22/39/19 29, 263, 9 38 .006

Group by Delay Interaction Effects

OCD , HC, ASD L insulaa/IFG/precentral gyrus/STL/MTL 47/44/45/6/41/22/21 243, 11, 22 91 .0008

OCD , HC, ASD L IPLa/pre/postcentral gyrus 40/6/4/3/1 251, 230, 37 48 .0009

OCD . ASD, HC rmPFCa/superior frontal/ACC 9/10/32 11, 56, 20 63 .001

ASD, OCD . HC Cerebellum vermisa/occipital lobe/lingual gyrus 17/18/19 7, 270, 213 49 .003

ACC, anterior cingulate cortex; ANOVA, analysis of variance; ASD, autism spectrum disorder; HC, healthy control; IFG, inferior frontal gyrus; IPL,
inferior parietal lobe; L, left; MTL, middle temporal lobe; OCD, obsessive–compulsive disorder; PCC, posterior cingulate cortex; R, right; rmPFC,
rostromedial prefrontal cortex; STL, superior temporal lobe.

aIndicates cluster peak.

Figure 2. Group by delay interaction among healthy control boys, boys with autism spectrum disorder (ASD), and boys with obsessive-compulsive disorder
(OCD) and delay condition (2, 5, or 8 seconds). Analysis of variance shows group by delay interaction effects on brain activation. Talairach z coordinates are
shown for slice distance (in mm) from the intercommissural line. The right side corresponds with the right side of the brain. Red asterisks indicate significant
difference between diagnostic group and control boys. Black asterisks indicate significant difference within group between conditions. *p , .05, **p , .005.
ACC, anterior cingulate cortex; BOLD, blood oxygen–level dependent; IFG, inferior frontal gyrus; IPL, inferior parietal lobe; L, left; MTL, middle temporal lobe;
rmPFC, rostromedial prefrontal cortex; STL, superior temporal lobe.
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that abnormal inferior frontal functional maturation may be a
potential biomarker for OCD.

Boys with OCD also had disorder-specific decreased
activation in inferior parietal and superior and middle
temporal regions with increasing attention load relative to
control boys and boys with ASD. Inferior parietal/superior
temporal lobes show decreased activation as a function of
time during vigilance in healthy individuals (63), suggesting
that this effect may be exaggerated in OCD, particularly
because the effect was more pronounced with increasing
delays. Similar reductions in inferior fronto-parieto-cerebellar
vigilance and motivation networks have been found during
sustained attention in adolescents with ADHD (26,64,65),
suggesting that abnormalities may represent underlying mech-
anisms of inattention that are disorder specific to OCD versus
ASD. Interestingly, our previous study comparing vigilance in
ASD and ADHD (26) found reduced left dorsolateral–prefrontal
activation in younger subjects with ASD relative to control
subjects, but these findings were based on a comparison of
participants with ASD and participants with ADHD not
included in the current study, potentially reflecting age-
related differences.

Inferior parietal and temporal regions are involved in atten-
tional orienting to time and readjustment of attention after
disengagement (58). Thus, reduced activation in this region
with increasing delay in OCD but not ASD could suggest that
sustained attention is more neurofunctionally impaired in OCD
than in ASD, particularly during increasing attention load. This
may be related clinically to a poor ability to reengage with
task-relevant attention in individuals with OCD if they become
distracted by intrusive thoughts.

Whereas participants with OCD showed disorder-specific
patterns of progressively decreased activation with increasing
attention load in lateral fronto-parieto-temporal regions, they
also showed progressively increased activation in medial
frontal ACC/medial PFC (MPFC) relative to boys with ASD
and control boys. MPFC/ACC hyperactivation is a classic
pattern in OCD during attention-based tasks (28), particularly
in the context of error monitoring (29). Anterior MPFC has
been implicated in withholding preplanned responses and
seems to facilitate action intention across delays (66). More-
over, this region may downregulate motor activity, acting as a
control mechanism inhibiting response until target presenta-
tion (67). Thus, increased MPFC activation in OCD with
increasing attention load as left lateral fronto-temporo-
parietal activation decreased could reflect compensation to
elicit behavior similar to control boys and boys with ASD.

Taken together, OCD-specific findings of reduced left
inferior frontal and temporo-parietal activation but increased
MPFC/ACC activation relative to control subjects is in line with
common patterns of reduced lateral fronto-temporo-parietal
activation/morphology in OCD but increased function/mor-
phology in MPFC during inhibition, error monitoring, and
symptom provocation (31,68,69). The current findings extend
this evidence to attention and vigilance, suggesting that this
pattern may be more characteristic of OCD pathophysiology.

Both disorders shared increased activation in cerebellar
vermis/lingual gyrus, with increasing delays relative to control
subjects. The cerebellum is implicated in the pathophysiology
of ASD (70) and OCD (71). In ASD, this fits with enhanced
Biological Psychiatry: Cognitive Neuroscien
cerebellar vermis activation relative to control subjects and
subjects with ADHD during sustained attention (26) and may
be associated with structural deficits (72) and abnormal fronto-
cerebellar connectivity in ASD (73). Moreover, the cerebellum
has been implicated in attention to time intervals (74), sug-
gesting that ASD and OCD share deficits in this aspect of
attention orienting involved in vigilance to temporal delay. A
recent fMRI meta-analysis of sustained attention (56) found
that the cerebellar vermis is activated with increasing delays,
suggesting its role in timing and anticipation of motor
responses, in line with findings of impaired anticipatory timing
in patients with cerebellar lesion (75). Abnormalities in the
lingual gyrus have been linked to impaired sustained attention
in depression (76). The current results extend this finding to
OCD, suggesting that posterior regions are implicated in
circuitry relevant to vigilance/attention and impaired in clinical
populations associated with internal thought and rumination.
The finding of progressively increased activation in this region
in boys with OCD relative to control boys may compensate for
neurofunctional impairments in OCD in left lateral inferior
fronto-temporo-parietal attention-related regions, leading to
preserved task performance in this group.

Interestingly, while neither disorder showed performance
deficits, there were shared and disorder-specific neurofunc-
tional abnormalities for OCD relative to ASD. There are several
explanations for this. Subject numbers required for fMRI
studies are smaller than those required for neuropsychological
analyses, reducing statistical power for behavioral analysis.
Moreover, the aim of fMRI studies is to understand differences
in neural networks between cases and controls during task
performance. To relate activation differences to pathology and
not simply to performance differences, it is important that
performance did not differ between groups (77). Across child
and adult psychiatry, neurofunctional differences have been
demonstrated between cases and controls despite compara-
ble task performance (78–81). Therefore, apparently similar
task performance is achieved with different neural activation
between groups, particularly in boys with OCD, who showed
disorder-specific patterns of decreased lateral inferior fronto-
temporal and increased medial frontal activation. It is possible
that the increased medial frontal activation may be compen-
satory in response to reduced lateral inferior fronto-temporal
activation, suggesting that patients with OCD relied less on
lateral and posterior attention mechanisms and more on
medial prefrontal regions for task performance. Conversely,
both disorders achieved comparable performance to control
subjects with increased cerebellar-occipital activation, which
may reflect shared neurofunctional mechanisms of enhanced
default mode activity.

Despite these differences in brain activation, groups did not
differ in performance. However, this is an advantage because
brain activation was therefore not confounded by performance
differences. Brain activation is typically more sensitive than
performance to detect group differences in these patient
groups [see, e.g., (44,82–86)]. There was furthermore no
correlation between clinical measures or task performance
and activation. Whereas the subject numbers have been
shown to be sufficient for fMRI analyses (51), the performance
and correlation analyses are underpowered, which may
explain the negative findings.
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This study has several limitations. While patients with
psychiatric comorbidities were excluded, we cannot rule out
the presence of subthreshold symptoms of other disorders
such as ADHD. This is in line with the debate around
comorbidity versus overlapping phenotypes and their respec-
tive contribution to behavior and clinical presentation, partic-
ularly in the context of ASD and ADHD (22). It would have been
interesting to investigate correlations with more detailed
attention-based behavioral questionnaires. Nevertheless,
SDQ scores have been shown to strongly correlate with
inattention symptoms on other measures such as the Child
Behavior Checklist (40,87). Similarly, a standard OCD measure
(e.g., CY-BOCS) was not administered to patients with ASD.
However, absence of OCD comorbidity in individuals with ASD
was confirmed by a psychiatrist based on a structured inter-
view. A study strength is the inclusion of noncomorbid,
medication-free boys with ASD. However, 4 boys with OCD
were prescribed selective serotonin reuptake inhibitors. There
is evidence for neurofunctional effects of serotonin (88), but
after covarying for and excluding medicated patients, the
findings remained (albeit at a slightly more lenient threshold),
suggesting that medication did not significantly affect brain
function. Lastly, phenotypes of OCD are closely linked to
anxiety (89). Whereas anxiety ratings were not collected before
scanning, the possibility that OCD patients were more anxious
compared with the other groups should not be discounted.
This may partially explain the OCD group’s reduced recruit-
ment of attention-related brain regions and suggests that
activation differences are indicative of anxiety as opposed to
fundamental attention problems.

Future work could compare ASD individuals with and
without comorbid OCD with noncomorbid OCD individuals,
building on this novel comparison to elucidate the mecha-
nisms underlying clinical overlap of ASD and OCD. Moreover,
it would be interesting to compare these patient groups with
attention-related disorders such as ADHD to provide further
insight into shared and/or disorder-specific neurofunctional
attention mechanisms.

Conclusions

This study provides the first evidence suggesting that adoles-
cents with OCD have disorder-specific abnormalities in sus-
tained attention networks, including left inferior and medial
PFC and temporo-parietal regions, relative to adolescents with
ASD, who had no frontal abnormalities. Findings suggest
lateral inferior/medial fronto-temporo-parietal abnormalities
during sustained attention may be a distinct neural signature
of OCD but not of ASD. Individuals with ASD and OCD,
however, shared abnormally enhanced activation in cerebel-
lum/occipital lobe relative to healthy control individuals. These
results provide promising evidence for identification of bio-
markers that may clarify underlying mechanisms driving
sustained attention and respective symptom profiles in autism
and OCD.
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