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Abstract

Data Assimilation means to find a trajectory of a dynamical model that matches a given set

of observations. A problem of data assimilation experiments is that there is no possibility

of replication. This is due to the fact that truly ’out-of-sample’ observations from the same

underlying flow pattern but with independent errors are usually not available. A direct

evaluation against the available observations is likely to yield optimistic results since the

observations were already used to find the solution.

A possible remedy is presented which simply consists of estimating the optimism, giving

a more realistic picture of the out-of-sample performance. The approach is simple when

applied to data assimilation algorithms employing linear error feedback. Moreover, the

simplicity of this method allows the optimism to be calculated in operational settings. In

addition to providing a more accurate picture of performance, this approach provides a

simple and efficient means to determine the optimal feedback gain matrix.

A key feature of data assimilation schemes which employ linear error feedback, is the

feedback gain matrix used to couple the underlying dynamical system to the assimilating

algorithm. A persistent problem in practice is to find a suitable feedback. Striking the

right balance of coupling strength requires a reliable assessment of performance which is

provided by our estimate of the out-of-sample error. Numerical and theoretical results

demonstrate that in linear systems with gaussian perturbations, the feedback determined

in this way will approach the optimal Kalman Gain in the limit of large observational

windows.
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Chapter 1

Introduction

Our daily weather forecasts start out as initial value problems on the national weather

services supercomputers (Kalnay 2001). Numerical weather prediction (NWP) provides the

basis for weather forecasting beyond the first few hours. These forecasts are performed by

running computer models of the atmosphere that, given some observations, can simulate

the evolution of the atmosphere. The integration in time of an atmospheric model is an

initial value problem. In order to achieve a good forecast, it is necessary that the computer

model be a realistic representation of the atmosphere and that the initial conditions be

known accurately. The process which we call data assimilation, uses both observations of

the atmosphere and short range forecasts to estimate the initial conditions.

Formally, data assimilation involves the incorporation of observational data into a

numerical model to produce a model state that accurately describes the observed reality,

Le Dimet & Talagrand (1986). An illustration of data assimilation is shown in figure (1.1).

The problem is as follows: Given some observations (black line, left panel) and a dynamical

model (right panel), find a trajectory of the model (red line, right panel) which, when

mapped into observation space, follows the observations (red line, left panel).

The data assimilation algorithms must produce a trajectory that is close to the obser-

vations up to a certain degree of accuracy and must verify dynamical and/or statistical

2
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Figure 1.1: The problem of data assimilation: Given some observations (black line, left
panel) and a dynamical model (right panel), find a trajectory of the model (red line, right
panel) which, when mapped into observation space, follows the observations (red line, left
panel).

relationships which are known to be satisfied by the model. Some initial information about

the dynamical and/or statistical properties of the reality should be introduced into the

analysis of the assimilation algorithm. The trajectory of the dynamical system is then

evaluated using the observations.

There are many different types of data assimilation algorithms that approach the

problem in different ways; however ultimately their goals are very similar. As such most

data assimilation schemes work in cycles over time. The initial information from the

previous cycle, called the background field, is used at the start of every new cycle. Since

any cycle uses observations available up to that point, the initial guess at time n only

depends on observations up to n − 1. Nonetheless, the background field is meant to be

the first guess of the state at time n. The feedback gain matrix couples the model of the

underlying state to the data assimilation scheme. It depends on the observations up to

the previous cycle and may or may not depend on the time evolution. Determining this

gain (or coupling) matrix has proven to be problematic as striking the right balance of

coupling strength is difficult. Data assimilation schemes differ on how the background field

and gain matrix are calculated.
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Once the trajectory is obtained, it is desirable to know how good a trajectory it is.

This is done by mapping the trajectory into observation space and comparing it with the

measured observations. However, these observations were used to obtain the trajectory in

the first place, therefore if the trajectory produced follows the observations well, it does not

necessarily mean that it is a ‘good’ trajectory. It is possible that the algorithm is simply

reproducing the observations without picking up any of the underlying dynamics. In other

words comparing the observations with the output of the data assimilation algorithm may

provide an overly optimistic picture of performance. Moreover, assessing the performance

this way could easily be cheated. An example of such a case is taking the output of the

scheme to be the observations themselves. This would result in zero error however the

trajectory obtained is not a good one.

The problem is that correlations between the output and observations are not taken

into account. These correlations are present because the observations we are comparing

against have been used in the data scheme to obtain the output. An immediate and easy

solution would be to use independent observations from the same period and region as the

original data and compare the obtained trajectory with these independent observations.

Such measurements however are hardly ever available and as such alternative methods

must be found.

The problem outlined above appears frequently in statistics. It is known as overfitting

and there are many ways to deal with this problem. One way is to consider the out-of-

sample performance of the model. This concept is used to measure how well a process

generalises to unseen data and is used in many different applications; see for example

Bishop (1995) where it is used in neural networks and Efron (1986) where it is used in

statistical learning.

To implement the out-of-sample error in data assimilation, we assume that the observa-

tions are corrupted by additive random noise as done in Mallia-Parfitt & Bröcker (2016). If

these observations are then assimilated into a dynamical model, the results should be close
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to hypothetical observations from the same underlying flow patterns but with independent

errors. If the results are not close to these hypothetical observations, then the scheme

will not be reproducing the underlying dynamics of the model. The out-of-sample error

simply gives us an assessment of how close the results are to these theoretical observations.

On average, we can think of the out-of-sample error as the error with respect to the true

observations plus a constant; the variance of the observations (Mallia-Parfitt & Bröcker

2016).

Calculating the out-of-sample error can be easily done in the case of data assimilation

schemes that employ linear error feedback. The expression derived to determine the

out-of-sample error is similar to Mallows’ Cp statistic used in model selection in statistical

learning (Hastie et al. 2009, Efron 2004). It will be shown that for schemes employing

linear error feedback, the out-of-sample error is easily calculated even operationally.

A key feature of data assimilation schemes which employ linear error feedback is the gain

or coupling matrix used to couple the underlying system to the algorithm. A persistent

problem in practice is to find a suitable feedback gain matrix. If the coupling is too

weak the stability of the system cannot be guaranteed while if the coupling is too strong,

results deteriorate because the noise will be overly attenuated. Striking the right balance

requires a reliable assessment of the performance which is provided by our estimate of the

out-of-sample error.

In the case of linear systems with gaussian perturbations, the optimal gain matrix is

the Kalman Gain (Anderson & Moore 1979). This is a particular form of the feedback

gain matrix that minimises the mean-squared error and provides the best linear unbiased

estimate. Computing the theoretically optimal Kalman Gain requires knowledge of the

dynamical noise which is not usually available in practice. However, our experiments

suggest that choosing the feedback gain matrix by assessing the out-of-sample performance

produces a gain matrix which has the same asymptotic behaviour as the Kalman Gain.

An advantage of this is that the gain chosen in this way does not require the explicit
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knowledge of the dynamical model or dynamical noise. Our experiments demonstrate

that the technique can be used in situations where the feedback gain matrix is completely

unspecified and also in situations where it has a pre-determined structure but contains

unknown parameters.

This suggestion, that the gain matrix minimising the out-of-sample error, converges to

the asymptotic Kalman Gain in the limit of large observational windows is intriguing and

as such is investigated further.

We first consider constant feedback gain matrices that minimise the expected out-of-

sample error. We consider such matrices as we believe they will lead to simpler filters

since they would not need to the updated at every time step. Given the fact that the

Kalman gain converges to a known limit, called the asymptotic Kalman gain, we prove

that a constant gain matrix that minimises the expected out-of-sample error converges to

this same limit.

In practice however, we cannot calculate this expected error. Instead it is only possible

to estimate the error by for example the empirical mean. This leads to estimates of the gain.

The question then is does the same results hold true for the estimate of the minimising

gain? To answer this question, we think of the problem in a slightly different way. An

alternative way of looking at the problem outlined above, is to think of it as an estimation

problem. By this we mean that we look for the feedback gain matrix that minimises a

given criterion function.

Suppose that we are interested in a parameter θ attached to the distributions of some

observations X1, . . . , Xn and let the sample space be denoted by χ. A popular method for

finding an estimator θ̂n = θ̂n(X1, . . . , Xn), is to maximise (or minimise) a criterion function

of the type

θ 7→Mn(θ) =
1

n

n∑
i=1

mθ(Xi) (1.1)

where mθ : χ 7→ R are known functions. In our data assimilation setting the parameter θ

represents the feedback gain matrix and the known functions mθ represent the out-of-sample
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error.

An estimator maximising (or minimising) Mn(θ) over some parameter space Θ, is called

an M-estimator (Van der Vaart 2000). We are interested in the asymptotic behaviour

of sequences of such estimators. The ultimate goal is to establish that the sequence of

estimators is consistent. This means that the sequence of θ̂n converges in probability to θ,

where in our setting θ represents the asymptotic Kalman Gain. This non-trivial fact is

shown to be true in the case of linear systems with gaussian perturbations employing a data

assimilation scheme which employs linear error feedback. The proof presented to establish

this result however is missing a small piece. There is one small fact that we were unable

to prove completely. It comes down to a very specific result that ensures all minimising

feedback gains are stabilising. This fact was rigorously proven in the deterministic version

of the proof (Chapter 5), however we were unable to do the same for the stochastic case

(Chapter 6). Full details and an intuitive argument are given in the relevant sections.

Some further numerical experiments are also presented. These concern non-linear

systems with linear observations as the out-of-sample error theory developed for linear

systems is applicable to such systems. We present numerical results for two non-linear

systems, one in Lur’e form and one fully non-linear dynamical system. In this setting, it is

not so straightforward to establish the convergence of the gain matrix. Non-linear systems

are more complicated in that without dynamical noise, it cannot be said that the feedback

gain matrix converges in a meaningful way. Nonetheless, the numerical experiments show

some interesting results.

1.1 Some Notation

1. The symbol ‘D’ is used to represent the total derivative of a function f : Rm → Rn,

so Df(x) is a linear mapping from Rm → Rn.

2. We use Dx and Dy to represent partial derivatives, i.e. for a function f : Rm1×Rm2 →
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R
n, Dxf(x, y) is linear Rm1 → Rn and Dyf(x, y) is linear Rm2 → Rn.

3. We denote by O(A,H) the observability matrix of the pair (A,H). See Section 4.2

for definition.

4. For symmetric matrices F, G we have,

(a) F ≥ 0 means F has nonnegative eigenvalues ⇔ xTFx ≥ 0 ∀x 6= 0.

(b) F  0 means F ≥ 0 but F 6= 0 which means that F has nonnegative eigenvalues,

not all of them zero.

(c) F > 0 means that all eigenvalues are positive ⇔ xTFx ≥ 0 ∀x 6= 0. If F is

nonsingular then F ≥ 0 is equivalent to F > 0.

5. Stochastic o and O symbols. The notation oP (1) denotes a sequence of random

vectors that converges to zero in probability. The expression OP (1) is short for a

sequence that is bounded in probability (Van der Vaart 2000).

1.2 Chapter Overview

In Chapter 2 we review different data assimilation algorithms and introduce the assimilation

schemes which employ linear error feedback. Mallows’ Cp statistic is introduced as it is the

motivation behind the work presented in Chapter 3 and we consider current linear data

assimilation diagnostics.

In Chapter 3, having chosen an assimilation scheme and using Mallows’ Cp statistic

as motivation, we investigate the concept of the out-of-sample error for linear dynamical

systems and present numerical experiments (Mallia-Parfitt & Bröcker 2016).

Chapter 4 gives details of the Kalman Filter, its asymptotic properties and an in-depth

discussion on the notions of Observability and Controllability. These concepts play a

crucial role in the following chapters and thus are given the attention required.
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Chapter 5 is interested in how the constant feedback gain matrix chosen to minimise

the expected out-of-sample error compares to the Kalman Gain for linear systems. In

Chapter 6 we consider the asymptotic behaviour of the gain minimising the empirical mean

of the out-of-sample error, as this is the error we can calculate in practice. To do this we

treat the problem as an estimation problem and prove that the sequence of estimators is

consistent.

In Chapter 7 we consider non-linear systems and use algorithms which employ linear

error feedback to test the concept of the out-of-sample error for two different non-linear

systems with linear observations (Mallia-Parfitt & Bröcker 2016). Numerical experiments

are presented.

Concluding remarks follow in Chapter 8.



Chapter 2

Data Assimilation, Diagnostic

Methods and Ridge Regression

2.1 Review of Data Assimilation Algorithms

There are many different algorithms used to achieve the goals set out by the data assimilation

problem. These algorithms fall into different classes, with each class varying in the approach

taken to achieve the required results, Le Dimet & Talagrand (1986). Recall that data

assimilation algorithms must produce a trajectory that satisfies two requirements. The

trajectory must be close to the measured observations up to some degree of accuracy and

secondly, it must satisfy dynamical and/or statistical relationships satisfied by the reality.

In early data assimilation experiments, interpolations of the measured observations

to grid points were done by hand, Kalnay (2001). These fields of initial conditions were

then manually digitized and due to the time consuming nature of the task, it soon became

evident that an automatic objective analysis was required, Charney (1951). This led to

the development of spatial interpolation methods (Panofsky 1949, Gilchrist & Cressman

1954, Barnes 1964).

However, spatial interpolation of observations to gridded fields is not the only problem.

10
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The fact that the data available (i.e the measured observations) are not enough to initialise

the model, is a far greater problem that needs to be addressed. Therefore it became

apparent that some additional information needs to be added into the algorithm to prepare

the initial conditions for forecasts. This additional information is called the background or

a priori information, Le Dimet & Talagrand (1986). Initially climatology was used as this

first guess however eventually, a short range forecast was chosen, Kalnay (2001).

Data Assimilation algorithms work in cycles over time. In a cycle for a global model,

the background field is a model forecast, xb. To obtain the a priori information, the

background field is interpolated to the location of the observation, and if they are different,

converted from model variables to observed variables, η. Therefore, the initial guess of the

observations is h(xb), where h(·) is the observation operator that maps model variables

into observation space. The difference η − h(xb) are called innovations and the analysis,

xa, is obtained by

xa = xb + K[η − h(xb)] (2.1)

where we simply add the innovations to the background with weights K, determined

based on the statistical error covariance of the forecast and observations.

The different classes of algorithms are based on (2.1); they differ only by the approach

taken to calculate the background and the weights to produce the analysis. The early

methods such as Successive Correction Method (SCM),(Cressman 1959, Barnes 1964),

calculate the weights empirically in which they are a function of distance between the

observation and the grid point.

In Optimal Interpolation methods, (Gandin 1965, Lahoz et al. 2010, Lorenc 1981), the

matrix of weights is determined by minimizing the analysis errors at each grid points. Such

methods are essentially linear regression algorithms and thus are statistical in nature.

A third class of algorithms are variational methods. These methods produce results

which minimise a given measure of the distance to the observations, while also satisfying

an explicit dynamical constraint, Le Dimet & Talagrand (1986). In variational approaches,
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one defines a cost function proportional to the square of the distance between the analysis

and both the background and the observations, Kalnay (2001). The method which uses

the cost function

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(h(x)− η)TR−1

n (h(x)− η) (2.2)

where B is the background error covariance matrix and R is the observation error

covariance matrix, is known as 3D-VAR (Sasaki 1958, 1970).

The background term of the cost function is important for many reasons. Observa-

tions are not regularly distributed in time or space and not all areas in the assimilation

window are observed. The covariance matrix B will determine how information is extrapo-

lated from observed regions to unobserved areas. Mathematically, the problem would be

underdetermined in those regions without the background term, Tremolet (2006).

The observation term in the cost function describes the discrepancy between recorded

observations and their equivalent obtained from the estimated state x. The cost function J

is a weighted measure of those discrepancies. This gives data a weight inversely proportional

to the variance of the errors affecting them, giving more weight to accurate information,

Lawless (2012).

Lorenc (1986) showed that if the cost function in (2.2) is used, the Optimal Interpolation

method and 3D-VAR approach are in fact equivalent. The minimum of the cost function

is obtained for x = xa (i.e the analysis) and the solution obtained by minimising (2.2) is

the same as in (2.1) if the weight matrix is defined by

K = BHT (HBHT + R)−1. (2.3)

The difference between Optimal Interpolation and the 3D-VAR approach is in the

method used to obtain the solution. In Optimal Interpolation, the weights are determined

for each grid point while in 3D-VAR the minimisation of the cost function is performed
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directly, thus allowing global use of the data Kalnay (2001). The resulting solution is called

the Best Linear Unbiased Estimate (BLUE), Greene (1997).

The variational approach has been extended to four dimensions (4D-VAR) by including

within the cost function the distance to the observations over a time window. Formally,

the problem of 4D-VAR is to find the initial state that minimises the weighted least

squares distance to the background while minimising the weighted least squares distance

of the model trajectory to the observation over the time interval [t0, tN ], Lawless (2012).

Mathematically, we write this as an optimization problem:

Find the analysis state xa0 at time t0 that minimizes the function

J(x0) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
n=0

(h(xn)− ηn)TR−1
n (h(xn)− ηn) (2.4)

subject to the states xn satisfying a specified non-linear dynamical system. In the case

N = 0, there is no model evolution and the scheme reverts to being three-dimensional

variational data assimilation (3D-VAR).

As previously stated, the BLUE analysis is equivalently obtained as a solution to the

variational optimisation problem and through statistical interpolation methods. Equation

(2.1) with weight matrix (2.3) is the mathematical expression of the fact that we want the

analysis to depend linearly on the innovations. We also want the analysis state to be as

close as possible to the true state in the sense that we want it to be a minimum variance

estimate. In the case of Gaussian errors (which we assume here), the minimum variance

estimate is equivalent to the maximum likelihood estimate in the probabilistic approach to

understanding the data assimilation problem. See Appendix A for details.

The Kalman Filter The Kalman Filter is a sequential method used to assimilate

observations over time. A more in depth analysis of the Kalman Filter can be found

in Chapter 4. It is an extension to the BLUE concept described earlier in which the

background is provided by a forecast that starts from the previous analysis. Whereas
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4D-Var assimilates all the observations at once in the assimilation time window, the Kalman

Filter steps through the observations sequentially, producing the optimal analysis each

time. A feature of the Kalman Filter is the forecast of the covariance matrices, which we

denote by Γn for the analysis error covariance matrix at time tn and Σn for the forecast

error covariance matrix at time tn, Jazwinski (1970).

Suppose we have the following linear system

xn+1 = Anxn + qn (2.5)

where qn is an unbiased gaussian error with covariance matrix Qn with linear observa-

tions

ηn = Hxn + rn (2.6)

where rn is unbiased gaussian error with covariance matrix Rn. Then the Kalman Filter

algorithm is as follows:

State Forecast ẑn = An−1zn−1

Error Covariance Forecast Σn = An−1Γn−1An−1 + Qn−1

Kalman Gain Kn = ΣnH
T
n (HnΣnH

T
n + Rn)−1

State Analysis zn = ẑn + Kn(ηn −Hnẑn)

Analysis Error Covariance Γn = (I−KnHn)Σn

(2.7)

This can be generalised to have non-linear model and observation operators in which

case it is called the Extended Kalman Filter, Anderson & Moore (1979). There are many

similarities between 4D-Var and the Kalman Filter however it is important to understand

the differences between them. 4D-Var is cheaper computationally and it is more optimal

inside the time interval for optimisation since it uses all the observations at once. However,

4D-Var assumes that the model is perfect (i.e. Q = 0) and it can only be run for a finite
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time interval while the Kalman Filter can, in principle, be run indefinitely. The Kalman

Filter also provides an estimate of any uncertainty in the final analysis whereas 4D-Var

does not.

All the schemes mentioned above fall into the category of algorithms that employ linear

error feedback. The term ’linear error feedback’ refers to the fact that the analysis depends

linearly on the innovations.

Regardless of which scheme is used, the performance of the algorithm needs to be

evaluated and this is done by mapping the obtained trajectory (the analysis) into observation

space to compare it with the observations which were already used to obtain the trajectory

in the first place. The trouble is that just because the trajectory produced follows the

observations well, it does not mean that it is a good trajectory. It is possible that the

algorithm is simply reproducing the observations without picking up any of the underlying

dynamics.

The easiest solution would be to use independent observations from the same period

and region as the original data and compare the obtained trajectory with these independent

observations. Such measurements however are hardly ever available. The aim of this thesis

is to find a way to analyse the true performance of data assimilation algorithms which

employ linear error feedback. We first investigate current tools and diagnostics available to

assess the performance of data assimilation algorithms.

2.2 Linear DA Diagnostics

Since most operational assimilation schemes are based on the variational formalism (Courtier

& Talagrand 1987), the tools available to evaluate the performance of the algorithms rely

on this formalism. However, as we have seen, the variational approach to the problem is

similar to the other methods.

Variational algorithms rely on the theory of least-variance linear statistical estimation
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(Talagrand 1997). The pieces of information used in these schemes are given by observation

and background estimates of the state. The analysis systems are thusly dependent on

appropriate statistics for both the observation and background errors. One source of

information on these errors is contained in the statistics of the innovations.

For linear data assimilation there exist two innovation based diagnostics we can use to

determine an optimal linear analysis. These are the χ2 test (Ménard & Chang 2000b) and

Desroziers diagnostic (Desroziers et al. 2005).

2.2.1 χ2 Diagnostic

The χ2 diagnostic is a measure of consistency between the variances of random variables.

In data assimilation, the random variable is an innovation, i.e. the difference between the

observations and the model equivalent, at the same time and location. This diagnostic

for data assimilation has been studied by many including, Ménard & Chang (2000a) and

Bennett & Thorburn (1992).

For data assimilation the χ2 test is defined as

χ2 = dTΓ−1d, d = η −Hẑ (2.8)

where d is the innovation vector. The innovation covariance, which we denote by Ξ, is

defined by

Ξ = HBHT + R (2.9)

is the innovation covariance, B is the background error covariance matrix, R is the

observation error covariance matrix and H is the observation operator.

The expected value of χ2 is given by

E(χ2) = E(dTΞ−1d) = tr(Ξ−1Ξ) (2.10)
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where Ξ = E(ddT ) is the sample covariance of the innovations. If Ξ = Ξ then the

expected value becomes

E(χ2) = d (2.11)

where d is the dimension of the observation space. Note that the condition Ξ = Ξ is a

necessary but not sufficient condition for (2.11) to hold. Equation (2.11) must hold in an

optimal linear analysis.

2.2.2 Desroziers Diagnostic

As an extension to the χ2 diagnostic Desroziers & Ivanov (2001) developed a method to

tune observation error and background error parameters. Desroziers et al. (2005) proposed

a more direct approach to estimate observation and background error parameters. It

involves four consistency checks: Consistency diagnostic on innovations, background error,

observation errors and analysis errors.

Denote the following relations:

dob = η −Hẑ

dab = HK(η −Hẑ)

doa = (1−HK)(η −Hẑ).

(2.12)

Then the four diagnostics are given by

E[dob(d
o
b)
T ] = HBHT + R, E[dab (d

o
b)
T ] = HBHT

E[doa(d
o
b)
T ] = R, E[dab (d

o
a)
T ] = HΓHT

(2.13)

where Γ is the analysis error covariance matrix defined by Γ = B−KHB. The above

conditions should be fulfilled in an optimal linear analysis. The four conditions above

require

E[η −Hẑ][η −Hẑ]T = HBHT + R (2.14)
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to be satisfied; which is the same as χ2 diagnostic requirement. This condition is

necessary but not sufficient for an optimal linear analysis.

Diagnostic Methods provide tools to answer questions of the form: How much would the

analysis change if one single influential observation were removed? How much information

is extracted from the available data? How large is the influence of the latest data on the

analysis? How much influence is due to the background?

In an attempt to answer such questions, Cardinali et al. (2004) derive statistical concepts

of ordinary least squares regression to corresponding statistical data assimilation schemes.

They show that the observation and background influences complement each other. For

any observations, either very large or small influence could be sign of inadequacy in the

assimilation. This is similar to the discussion on Ridge Regression given next, in Section 2.3,

which leads on to a discussion on Mallows’ Cp statistic and the out-of-sample performance

of processes.

2.3 Linear Ridge Regression

As we have already stated, the purpose of this thesis is to assess the performance of data

assimilation algorithms keeping in mind that even though the obtained trajectory might

follow the observations, that does not mean the algorithm is working as expected. There is

always the possibility that the algorithm is simply reproducing the results without picking

up any of the underlying dynamics.

This problem however, appears everywhere in statistics and there are various ways to

deal with it; BIC, AIC and Mallows’ Cp Statistic are three examples (Hastie et al. 2009).

In particular we shall focus on the Cp statistic and hence give after a brief discussion on

this topic next. In order to understand the Cp statistic in more detail we first give a quick

overview of regularised linear regression.

Given a vector of inputs XT = (X1,X2, . . . ,Xp), we want to predict the output Y (a
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univariate random variable) via the linear regression model

Y = Xβ + ε (2.15)

where β are the regression coefficients. We want to fit the linear model to a set

of training data and we do this by implementing a regularised least squares approach.

Regularized regression finds the β that minimises the penalized residual sum of squares

given by

RSS(β) =
N∑
i=1

(yi − xTi β)2 + λ ‖β‖2 (2.16)

which we write in matrix form as

RSS(β) = (y −Xβ)T (y −Xβ) + λβTβ (2.17)

where λ ≥ 0 is a complexity (or ridge) parameter, X is an N × p matrix and y is an

N -vector of the outputs of the training set. Differentiating with respect to β and setting

equal to zero yields the unique solution β̂ridge given by

β̂ridge = (XTX− λI)−1XTy (2.18)

where I is the p× p identity matrix. The predicted values are then defined by

Ŷ = Xβ̂. (2.19)

Ridge regression shrinks the coefficients by imposing a penalty on their size. The

complexity parameter λ controls the amount of shrinkage; the larger the value of λ, the

greater the shrinkage. Notice that with the choice of the quadratic penalty βTβ in (2.18),

the ridge regression solution is a linear function in y.

The motivation for ridge regression is that even if the input matrix X is not of full
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rank, the problem is non-singular. This is because the solution adds a positive constant

to the diagonal of XTX before inversion. The Singular Value Decomposition of the input

matrix X gives us some further insight into the nature of ridge regression. See Appendix

B for details.

2.3.1 Mallows’ Cp Statistic

Suppose we have the model

Y = f(X) + ε (2.20)

where Eε = 0 and Eε2 = σ2. We can derive an expression for the expected prediction

error of the regression fit f̂(X) at some input point x0. Using squared error loss we see

that

Err(x0) = E[(Y − f̂(x0))2 |X = x0 ]

= E[(Y − f(x0))2] + E[(f(x0)− Ef̂(x0))2] + E[(f̂(x0)− Ef̂(x0))2]

= σ2 + Bias2(f̂(x0)) + Var(f̂(x0))

(2.21)

This expression suggests that there will be a trade-off between the bias and variance.

For a linear model fit,

f̂(X) = Xβ̂ (2.22)

where β̂ is the parameter vector fitted by least squares, we have

Err = E[Y − f̂(X)] = σ2 + {(I −H)f(X)}2 + tr(H)σ2 (2.23)

where H is the hat matrix defined by

H = X(XTX + λI)−1XT . (2.24)

Equation (2.23) is called the expected prediction error or test error which is the expected



2.3. LINEAR RIDGE REGRESSION 21

error over an independent test sample. The training error, which is the error over the test

sample, is expressed as

err = σ2 + {(I −H)f(X)}2 − tr(H)σ2, (2.25)

which, together with (2.23), gives us a relationship between the test error and the

training error. The degrees of freedom is defined by

df = tr(H) = d (2.26)

where d is the dimension (see Appendix B for details) and so, if we let ErrIN = 1
N

∑
Err

and err = 1
N

∑
err, we have,

err− ErrIN = −2tr(H)σ2

N
= −2dσ2

N
. (2.27)

Once we have an estimate σ̂2 to σ2, the noise variance, we write

Cp = err +
2dσ̂2

N
(2.28)

which is a version of the Cp statistic. The Cp statistic can be expressed in a different

way as in James et al. (2013), however we shall use this formulation as it illustrates the

point we are trying to make very well.

Using this criterion we adjust the training error by a factor proportional to the number

of basis function used (i.e the number of degrees of freedom, d). Typically the training

error, err, will be less than the prediction error, Err, because the same data is being used

to fit the method and assess its error. A fitting method typically adapts to the training

data and hence the training error will be an optimistic estimate of the test error.
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2.3.2 Numerical Simulations

We present some numerical simulations using the theory described above. We implement

the ridge regression method on a given set of data with known coefficient vector so that we

will be able to see the idea of the Bias-Variance Trade-off.

Recall that in ridge regression we want to minimise the residual sum of squares defined

by,

RSS(β) = (y −Xβ)T (y −Xβ) + λβTβ (2.29)

where λ ≥ 0 is a complexity (or ridge) parameter, X is an N × p matrix and y is an

N -vector of the outputs of the training set. Differentiating with respect to β and setting

equal to zero yields the unique solution β̂ given by

β̂ridge = (XTX− λI)−1XTy (2.30)

where I is the p× p identity matrix. Note however that the intercept β0 is left out of

the penalty term. So, more accurately, the function we want to minimise is given by

RSS(β) =
N∑
i=0

(yi − xTi β) + λ

p∑
i=1

β2 + β2
0 . (2.31)

Figure (2.1(a)) shows the coefficient paths as lambda is increased. Notice that the

intercept is not affected by the penalty and while the other coefficients get shrunk to zero

as lambda increases, it settles down to a non-zero constant.

There are two errors we are interested in. The first is the error between our targets,

y, and the fitted values, ŷ and the second is between the true coefficient values and our

estimated coefficient values. We consider first the error between our targets and the fitted

values. As explained above, we consider this error by considering both the training error

and the test error (red diamonds). A plot of these is shown in figure (2.1(b)). It is evident

that, as expected, the training error (blue circles) is smaller than the test error and that it
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Figure 2.1: Plots produced in the ridge regression numerical experiments. The regression
coefficient paths are plotted against the ridge parameter λ in fig. 2.1(a) and against the
degrees of freedom in fig. 2.1(d). The vertical line draws attention to the optimal value
of the degree of freedom. The test and prediction errors are shown in fig. 2.1(b) in blue
circles, red diamonds respectively. The error between the true coefficient and the estimated
coefficient is shown in fig. 2.1(c) in blue squares. This latter plot illustrates the trade-off
between the bias and the variance. The minimum of the curve provides the optimal value
of the degree of freedom that minimises the test error.
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gets smaller as the model complexity is increased. The test error on the other hand begins

to increase again. This increase in the test error is due to the increase in the variance.

There is some intermediate model complexity that gives minimum expected test error.

In this example, this minimum is achieved when df = degrees of freedom ≈ 13.5 which

corresponds to a value of lambda = 0.3.

Figure (2.1(d)) shows the coefficient paths plotted against the degrees of freedom with

a vertical line drawn at df = 13.5. For the purposes of model selection we should take

the model with lambda value = 0.3 as this gives us minimum prediction test error. This

method involves in-sample prediction error which is achieved by estimating 2dσ2/N and

adding it to the training error err. Note that this only works for estimates that are linear

in their parameters. In this case we have used the Cp statistic (2.28) where we adjust the

training error by a factor proportional to the number of basis functions used.

Since in this example we have the true coefficient values we can determine the error

between the true vector and our estimated vector of coefficients. Figure (2.1(c)) shows

this error as a function of lambda. We can see that there is an initial decrease which

corresponds to the decrease in variance and then an increase in the error, which corresponds

to an increase in bias. We can see here, there is a trade-off between bias and variance. As

the model becomes more complex, it uses training data more and thus is able to adapt to

more complicated underlying structures. Hence there is a decrease in bias but an increase

in variance.

In the next chapter we use the Cp statistic as inspiration to assess the performance of

data assimilation algorithms by evaluating the so called out-of-sample error, analogous to

the test error. We hope that evaluating this error will give us a more realistic idea of the

model performance. The trade off between the bias and the variance here will be replaced,

when used in the setting of data assimilation, by a trade off in the strength of the coupling

introduced between the underlying model of the reality and the assimilation scheme to

obtain an optimal analysis. In the above, we see that for model selection purposes there is



2.3. LINEAR RIDGE REGRESSION 25

an optimal λ which minimises the expected prediction error. Similarly for data assimilation

algorithms we expect to find an optimal weight or coupling matrix to achieve optimal

performance.

Chapter Summary In this chapter we have seen a brief review of the concept of data

assimilation. We also saw some examples of the different data assimilation algorithms

available. These algorithms differ in how the background field and gain matrix are

calculated.

We briefly discussed current diagnostics used in the setting of data assimilation to

determine how good the algorithms truly are. We considered two diagnostics that enable

us to determine if the analysis determined is optimal.

An explanation of ridge regression and Mallows’ Cp statistic was also presented. The

work in this section is the motivation behind the work presented in Chapter 3 and Mallia-

Parfitt & Bröcker (2016) where we adapt these concepts to be used for data assimilation

algorithms.



Chapter 3

The Out-of-Sample Error for Data

Assimilation

In this chapter we shall investigate the out-of-sample error for data assimilation algorithms

which employ linear error feedback. To implement the out-of-sample error in data as-

similation, we assume that the observations obtained are corrupted by random noise as

done in Mallia-Parfitt & Bröcker (2016). If these observations are then assimilated into a

dynamical model, the results should be close to theoretical observations with independent

errors. These theoretical observations must be from the same underlying flow patterns but

with independent errors. If the results are not close to these hypothetical observations,

then the model will not be reproducing the underlying dynamics of the model.

The out-of-sample error simply gives us an assessment of how close the results are

to theoretical observations. The tracking error, which is the error with respect to the

measured observations, is not a good estimate of the out-of-sample error. This is because

the measured observations have already been used to find the solution and so the tracking

error tends to misestimate the true out-of-sample performance. On average, we can think

of the out-of-sample error as the error with respect to the true observations plus a constant;

the variance of the observations (Mallia-Parfitt & Bröcker 2016).

26
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The expression we develop to calculate the out-of-sample error can be estimated using

terms that are readily available. Specifically we show that the out-of-sample error is the

sum of the tracking error and a term which we call the optimism. This optimism gives us

a representation of how the model and observations depend on each other and it quantifies

how much the tracking error misestimates the out-of-sample error. The derived expression

is very similar to the Cp statistic used in model selection in statistical learning, see Chapter

2 and Hastie et al. (2009), Efron (2004). The optimism takes a very simple form if we

assume that the model employs a linear error feedback.

Numerical experiments are presented to validate the expression for the out-of-sample

error and the optimism. Further numerical results illustrate the convergence of the gain

matrix that minimises the out-of-sample error, to the asymptotic Kalman Gain in the limit

of large observational windows. The experiments show that the technique can be used in

situations where the feedback gain matrix is completely unspecified and also in situations

where it has a pre-determined structure as done in Mallia-Parfitt & Bröcker (2016).

3.1 Estimating the Optimism

Suppose we have observations, ηn ∈ Rd which are given by

ηn = ζn + σrn (3.1)

where the desired signal, ζn, is made up of non random, unknown parameters which we

try to estimate. The observation errors, rn are assumed to be serially independent errors

with mean Ern = 0 and variance ErnrTn = 1.

Data assimilation is the procedure by which trajectories {zn ∈ RD} are computed with

the help of a dynamical model and observations, ηn. These trajectories should reproduce

the observations up to some degree of accuracy. We express this latter part of the procedure

formally as: There exists a function h : RD → Rd so that the output yn = h(zn) is close to
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the observations ηn up to some degree of accuracy. The exact structure of the model is not

important at this stage.

We measure the deviation of the output from the observations by means of the tracking

error,

ET = E[yn − ηn]2. (3.2)

To define the out-of-sample error we assume that we have another set of observations,

η′n, which are given by

η′n = ζn + σr′n (3.3)

where rn has the same stochastic properties as rn but is independent from rn, i.e

Ernr′n = 0. The desired signal, ζn, is the same as in ηn. Therefore we can define the

out-of-sample error as

ES = E[yn − η′n]2 = E[yn − ζn]2 + σ2, (3.4)

where the second equation is obtained by substituting (3.3) into E[yn − η′n]2 and noting

that r′n is uncorrelated with both yn and ζn. The output error (first term on the right hand

side of (3.4)), is ultimately the error we want to minimise with our choice of parameters.

However, since the observations are corrupted, the output error is a difficult quantity to

determine.

The tracking error is a bad estimate of the output error and can easily be cheated. It

is not difficult to design an algorithm that produces zero tracking error by simply using

the observations themselves as the output. That is any data assimilation scheme which

satisfies yn = ηn, n = 1, . . . , N achieves optimal performance with respect to the tracking

error as a performance measure.

Using this idea of out-of-sample error it is possible to get a handle on the output error

as it is evident that the out-of-sample error is simply the output error added to the variance

of the observational noise. The relationship between the tracking and out-of-sample errors
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is given by

E[yn − η′n]2 = E[yn − ηn]2 + 2σE[yTn rn]. (3.5)

This is seen by substituting (3.1) into (3.2) and noting that E[(yn − ζn)rn] = E[ynrn]

since ζn is not a random variable. The term 2σE[ynrn] is called the optimism. The optimism

should be understood as a correlation between rn filtered through yn and rn itself. It is a

measure of how much the tracking error misestimates the out-of-sample error.

3.2 Data Assimilation through Synchronisation

Synchronisation between dynamical systems has been studied for some time, see for example

Pikovsky et al. (2001); Huijberts et al. (1999); Boccaletti et al. (2002). Synchronisation

in the setting of data assimilation has also been studied, see Bröcker & Szendro (2012);

Szendro et al. (2009); Yang et al. (2006).

As motivation suppose that the reality is given by the non linear dynamical system

xn+1 = f̃(xn)

ζn = h̃(xn)
(3.6)

where xn ∈ RD is referred to as the state and ζn ∈ Rd are the true observations. For

this non linear dynamical system we construct a sequential scheme

ẑn+1 = f(zn)

zn+1 = ẑn+1 −Kn(h(ẑn+1)− ηn+1)

yn = h(zn)

(3.7)

where Kn is a D× d coupling matrix which may depend on the observations η1, . . . ηn−1

but not on ηn and yn is the model output where we hope that yn ∼= ζn. Here f and h are

approximations to the functions f̃ and h̃, respectively. The function f(zn) describes the

model dynamics and is thought of as capturing our a priori knowledge of the observations.
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The coupling introduced in this scheme creates a linear feedback, in the sense that the

error between yn = h(ẑn) and the observations ηn, i.e the innovation, is fed back into the

model.

Synchronisation refers to a situation in which, due to coupling, the error yn−ηn becomes

small asymptotically irrespective of the initial conditions for the model (Pikovsky et al.

2001). Often a control theoretic approach is taken to determine conditions which guarantee

the model output, yn = h(zn), converging to the observations, ηn or even zn → xn which

ultimately, is what we want to achieve.

Consider now the optimism as in (3.5). In order to calculate the optimism, assume that

the function h(xn) is linear so that h(xn) = Hxn, where H is a d×D matrix. Then we

can re-write the system (3.7) as

zn+1 = f(zn)−Kn(h(f(zn))− ηn+1)

= (1−KnH)f(zn) + Kn(ζn+1 + σrn+1).
(3.8)

We have seen in (3.5) that the tracking and out-of-sample errors are related by the

optimism, 2σE[ynrn]. For this particular system (3.7) the explicit expression for the

optimism is given by

2σE[yTn rn] = 2σE[(Hzn)T rn] (3.9)

= 2σE[{H(1−KnH)f(zn−1) + HKn(ζn + σrn)}T rn] (3.10)

= 2σE[(H(1−KnH)f(zn−1))T rn]

+ 2σE[(HKnζn)T rn] + 2σ2E[(HKnrn)T rn] (3.11)

= 2σ2E[rTnKT
nHT rn] (3.12)

= 2σ2tr(K
T

nHTE[rnr
T
n ]) (3.13)

where Kn = E[Kn]. The first two equalities, (3.9) and (3.10), are obtained by substi-
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tuting the relevant information while (3.11) is obtained by simply expanding the previous

equation. The derivation from (3.11) to (3.12) requires some explanation. Notice first that

only the third term of (3.11) survives. The first term is equal to zero because f(zn−1) and

Kn are uncorrelated with rn since they only depend on observations up to n − 1. The

second term is also equal to zero because ζn is not a random variable and because the

coupling matrix Kn is uncorrelated with rn. Therefore, we are only left with the third

term of (3.11) in (3.12). Since E(rnr
T
n ) = 1, (3.13) implies that

E[yn − ηn]2 = E[yn − η′n]2 − 2σ2tr(K
T

nHT ). (3.14)

In the case when d = 1, which is the case we consider in the numerical experiment later,

this reduces to

E[yn − ηn]2 = E[yn − η′n]2 − 2HKnσ
2. (3.15)

Equation (3.15) has this simple form because of the linearity assumption in the observa-

tion operator. It tells us that to estimate the out-of-sample error, we need to estimate the

optimism and then add it to the tracking error. This means that, in theory, it is possible

to approximate the out-of-sample error using information that is readily available.

This is particularly useful as it is not necessary to know anything about the dynamical

noise in the model. The terms required to calculate the out-of-sample error are all needed

in the scheme itself; these include the gain matrix, observational noise variance and the

system matrices. This is advantageous and as such can be applied operationally as no

information about the underlying dynamical noise is required.
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3.3 Numerical Experiment I: Linear Map

In this first numerical example the following experimental setup was used: The reality is

given by

xn+1 =

−1 10

0 0.5


︸ ︷︷ ︸

A

xn + ρqn+1 (3.16)

with corresponding observations

ηn = Hxn + σrn (3.17)

where H = [1 0], and ζn = Hxn. We assume that the dynamical model and observa-

tions are corrupted by random noise. For these experiments we have xn ∈ R2 and ηn ∈ R.

The model and observation errors, qn and rn respectively, are assumed to be independent

gaussian errors with mean 0 and variance 1. The notation ρ ∈ Rd×d and σ ∈ Rd×d represent

the standard deviation of the model and observational noise respectively. Their values are

taken to be between 0 and 1 (both not included).

Here we consider data assimilation by means of synchronisation so we set up an observer

analogous to our sequential scheme (3.7),

zn+1 = ẑn+1 + Kn(ηn+1 −Hẑn+1), yn = Hzn (3.18)

where

ẑn+1 =

−1 10

0 0.5


︸ ︷︷ ︸

A

zn. (3.19)

In this case the model is coupled to the observations through a linear coupling term

which is dependent on the difference between the actual output and the output value

expected based on the next estimate of the state. For these experiments we will take the
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coupling matrix Kn to be constant, so from here on in we write Kn = K.

We need to choose the matrix K appropriately so that we can vary the coupling strength.

If the coupling is too strong the observations will be tracked too closely and if the coupling

is too weak the observations are tracked badly or not at all.

The error dynamics in this example are given by

en+1 = xn+1 − zn+1

= (A−KHA)en + Krn+1 − (1−KH)qn+1.
(3.20)

Since the noisy part of the error dynamics is stationary, synchronisation can be guar-

anteed if the eigenvalues of the matrix (A − KHA) all lie within the unit circle. In

order to synchronise the model and observer we use a result from control theory, for

which we need a few definitions. Let HA = C so that the error dynamics are given

by en+1 = (A − KC)en plus the stationary terms. A pair of matrices (A,C) is called

observable when the observability matrix

O = [C CA CA2 . . . CAD−1]T (3.21)

has full rank. If this condition holds then the poles of the matrix (A−KC) can be

placed anywhere by proper selection of K. In particular they can be placed within the

unit circle where they are stable and so the error en will tend to zero asymptotically (Dorf

& Bishop 2005).

In our example, xn ∈ R2 so our observability matrix is

O = [HA HA2]T . (3.22)

It is straightforward to check that the linear system we are working with here is
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observable even though A itself is not stable. Since

H = [1 0] and A =

−1 10

0 0.5

 (3.23)

it follows that

HA = [−1 10] and HA2 = [1 − 5] (3.24)

and hence the observability matrix defined by (3.22), in this case, has full rank.

The appropriate K for a desired characteristic polynomial, q(λ), of the matrix (A−

KHA) follows from Ackermann’s Formula (Dorf & Bishop 2005) which is given by

K = q(A)O−1[0 . . . 1]T . (3.25)

where O is the observability matrix. Suppose that the desired characteristic equation

is given by

q(λ) = (λ+ α)(λ− α) (3.26)

so that λ1 = −λ2 and |λ1| = |λ2| = α. Then Ackermann’s formula yields

K =

 1− 2α2

0.05− 0.2α2

 ⇒ HK = 1− 2α2. (3.27)

From (3.27) we see that as α→ 0, HK→ 1. Thus,

yn = Hzn = (1−HK)Hẑn + HKηn → ηn, (3.28)

meaning that the data assimilation scheme simply replaces yn with ηn, implying that

the tracking error tends to zero. However this does not imply perfect data assimilation, by

which we mean that the tracking tending to zero does not imply that the out-of-sample
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error is also small.

From (3.15) and (3.27) we know that

E[yn − η′n]2 − E[yn − ηn]2 = 2σ2
(
1− 2α2

)
. (3.29)

To calculate the errors in the numerical simulation we approximate the expected value

of a random variable, E[X], by the empirical mean squared error. Thus, (3.29) becomes

1

N

N∑
n=1

(yn − η′n)2 − 1

N

N∑
n=1

(yn − ηn)2 = 2σ2
(
1− 2α2

)
. (3.30)

Any uncertainty in the calculation of the optimism will be assessed by running the

experiment many times, each time changing the observational noise rn so that the sample

estimate is different every time. We then construct confidence intervals as a measure of

accuracy.

The results obtained from our numerical experiment to test the theory described above

are shown in Figure 3.1 and Mallia-Parfitt & Bröcker (2016). Figure 3.1(a) shows a plot

of the tracking error in blue squares and the out-of-sample error in black diamonds. It is

clear that the tracking error tends to zero with decreasing α. This is what we expected

and is confirmed by using our analytical expression for the optimism.

It is evident from Figure 3.1(a) that while the tracking error tends to zero, the out-of-

sample error initially decreases and then increases resulting in a well-defined minimum.

This is because as the coupling strength increases, the observations are tracked too closely

and thus the output adapts too closely to the observations resulting in an increase of the

out-of-sample error; however the tracking error continues to decrease to zero. On the other

hand when α is large and the coupling strength is weak, the observations are tracked poorly

resulting in large tracking and out-of-sample errors.

The well defined minimum of the out-of-sample error can also be seen in Figure 3.1(b).

Figure 3.1(b) shows the out-of-sample error (black diamonds) for the range of α where
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Figure 3.1: Figure 3.1(a) shows a plot of the tracking error in blue squares and the
out-of-sample error in black diamonds. The errors are plotted against the inverse of α for
σ = 0.1 and ρ = 0.01. Figure 3.1(b) shows a plot of the state error in blue circles and
the out-of-sample error (black diamonds) for 100 realisations of the observational noise
rn with σ = 0.1. It is displayed for the range of α where the minimum occurs. The error
bars represent 90% confidence intervals. The black vertical line draws attention to the
minimum of the out-of-sample error.

the minimum occurs. The figure shows the out-of-sample error for 100 realisations of the

observation noise rn with σ = 0.1. The error bars represent 90% confidence intervals for

each value of α with the lower bound for the errorbars plotted at the fifth percentile and

the upper bound plotted at the 95th percentile.

When running data assimilation algorithms, the state error, defined by

1

n

n∑
i=1

e2
i =

1

n

n∑
i=1

(zi − xi)2, (3.31)

is what we ultimately want to be minimal. However, we only have access to the observed

error namely

1

n

n∑
i=1

(yi − ηi)2. (3.32)

Due to this we consider whether minimising the out-of-sample error is equivalent to
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minimising the state error. Figure 3.1(b) also shows the state error (blue circles) for σ = 0.1

and ρ = 0.01. Again 90% confidence intervals are plotted for every α. The black vertical

line draws attention to the minimum of the out-of-sample error which coincides with the

minimum of the state error. It is evident, at least in this example, that the minimising

gain is the same for both errors.

3.4 Numerical Experiment II : Gain Convergence for

the Linear Map

As a result of the process outlined above we are also able to determine the optimal coupling

matrix, K, to be used in the algorithm. The gain that minimises the out-of-sample error

in the above experiments, is determined by arbitrarily choosing the parameter α. In order

to analyse the asymptotic behaviour of this gain, we shall consider all possible gains that

stabilise the system.

We ran some numerical experiments to test how the gain matrix that minimises the

out-of-sample error behaves asymptotically. For the linear example in Section 3.3, the

following experimental setup was used: The reality is given by the linear system (3.16) and

(3.17) and the observer is set up in exactly the same way as in (3.18).

The results obtained in this experiment are shown in Figure 3.2 and Mallia-Parfitt &

Bröcker (2016). The model noise is iid with Eqn = 0, EqnqTn = 1 and ρ = 0.01 while for the

observational noise, which was also iid with mean zero and variance one, we used σ = 0.1.

The time evolution of the model which we denote by n was taken to vary between zero

and 3.5× 105. For each n the optimal gain was determined and recorded.

It is expected that the gain matrix will converge as n increases. A natural question that

arises from this expectation is what the limit if that convergence is. Consider the equation

Σ∞ = A[Σ∞ − Σ∞HT (HΣ∞HT + σ2)−1HΣ∞]AT + Q. (3.33)



38 CHAPTER 3.

0 1 2 3 4

n #105

0

0.1

0.2

0.3

0.4

0.5

jjK
!
5

1
jj

jj5
1

jj

(a)

0 1 2 3 4

n #105

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

jj6
!
6

1
jj

jj6
1

jj
(b)

Figure 3.2: Figure 3.2(a) shows the convergence of the gain minimising the out-of-sample
error to the asymptotic gain for increasing n. We plot the quantity ‖K− κ∞‖ / ‖κ∞‖
against n in blue squares. Figure 3.2(b) shows the quantity ‖λ− λ∞‖ / ‖λ∞‖ against n in
blue diamonds, where λ = (λ1, λ2) represents the eigenvalues of the matrix (A−KHA).

This equation describes the limit n → ∞ of the covariance matrix Σn defined by Σn =

E[(xn − ẑn)(xn − ẑn)T ]. Equation (3.33) is called the Discrete Algebraic Riccati Equation

(DARE). It is well known in Kalman Filter theory (see for example Anderson & Moore

(1979)) that the optimal gain matrix for a linear filter is the Kalman Gain which is defined

by

κn = ΣnH
T (HΣnH

T + σ2)−1 (3.34)

where Σn is given by

Σn = A(Σn − ΣnH
T (HΣnH

T + σ2)−1HΣn)AT + Q. (3.35)

Kalman Filter theory states that for large n, the error covariance (3.35) converges to (3.33)

which in turn implies that the Kalman Gain (3.34) converges to the asymptotic gain which

is defined by

κ∞ = Σ∞HT (HΣ∞HT + σ2)−1 (3.36)
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The asymptotic gain, κ∞, is obtained by solving the Discrete Algebraic Riccati Equation

(DARE) given by (3.33) and using the solution to calculate (3.36). Using Maple’s inbuilt

DARE solver it is straightforward to determine the solution to this equation for the

experimental setup described above. The Algebraic Riccati Equation is solved using the

method described in Arnold III & Laub (1984). We expect that the constant gain matrix

that minimises the out-of-sample error, also converges to the asymptotic gain.

The results obtained are shown in Figure 3.2 and Mallia-Parfitt & Bröcker (2016).

Figure 3.2(a) shows a plot in blue squares of the relative error, ‖K− κ∞‖ / ‖κ∞‖ against n.

It is clear that the constant gain matrix that minimises the out-of-sample (or output) error

converges exponentially to the asymptotic gain. Moreover, it is illustrated in Figure 3.2(b)

that the eigenvalues of the matrix (A−KHA) for each gain minimising the out-of-sample

error, converge to the eigenvalues of the matrix (A − κ∞HA). Figure 3.2(b) shows

the quantity ‖λ− λ∞‖ / ‖λ∞‖ plotted against n in blue diamonds, where λ = (λ1, λ2)

represents the eigenvalues of the matrix (A−KHA). The convergence of the eigenvalues

is also exponential. The values of these eigenvalues confirm that the minimising gains

stabilise the system since all of then are within the unit circle.

It is worth noting that these eigenvalues are not symmetric. Therefore even though the

control theoretic approach provided us with a minimising gain it wasn’t the optimal one

since we had constrained it by fixing the eigenvalues of the matrix in question. However, it

provided us with a good motivation to investigate the convergence of the optimal gain.

Chapter Summary In this chapter we have defined the out-of-sample error and opti-

mism in the context of data assimilation. Using data assimilation through synchronisation

as our algorithm, we presented several numerical experiments for linear systems with linear

observations. The results presented show that the out-of-sample error is indeed a good

measure of performance and that it is easily calculated even in operational settings. This

is because the observations are taken to be linear and the calculation of the out-of-sample

error does not require explicit knowledge of the model error covariance.
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These results also raise some interesting questions about the asymptotic behaviour of

the errors and the gain matrices that minimise these errors. Further numerical simulations

suggest that the gain matrix that minimises the out-of-sample error converges to the

asymptotic Kalman Gain in the limit of large observational windows. Moreover, the results

presented suggest that the gain matrix that minimises the out-of-sample error is the same

as the gain that minimises the state error.



Chapter 4

Optimal Filtering

The numerical experiments in the previous chapter and in Mallia-Parfitt & Bröcker (2016)

suggest that the feedback gain matrix minimising the out-of-sample error converges to the

asymptotic gain in the limit of large observational windows. In Chapters 5 and 6 we shall

prove this fact rigorously, however before we do so, we digress briefly to give a detailed

introduction to the Kalman Filter and its asymptotic properties. We present in detail the

discrete time Kalman Filter for linear systems with gaussian perturbations. In this setting,

the Kalman Filter is the optimal linear filter. It is essential to understand these concepts

prior to the main proof of this thesis as certain ideas are used and/or adapted in the next

chapters.

Following this in-depth discussion regarding the Kalman Filter and its asymptotic

properties, we consider in detail the notions of controllability and observability. We have

already seen the importance of observability in the numerical experiments presented in

Chapter 3 and in Mallia-Parfitt & Bröcker (2016). Both controllability and observability

are crucial in the set up of the Kalman Filter equations, the asymptotic properties of the

filter and eventually in the main work performed for this thesis.

41
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4.1 The Discrete-Time Kalman Filter

Section 2.1 gave a brief overview of the Kalman Filter equations. Here, they are derived in

detail and some further information and properties of the filtering problem are presented.

In particular we give extra attention to its asymptotic properties. Suppose we have, for

n ≥ 0, the system defined by the following equations,

xn+1 = Anxn + qn

ηn = Hnxn + rn

(4.1)

where {qn}, {rn} are independent, zero mean, gaussian white processes with

E(qnq
T
n ) = Qn, E(rnr

T
n ) = Rn. (4.2)

The filtering problem, in broad terms, requires the deduction of information about xn

using measurements up until time n, Anderson & Moore (1979). However, in order to

simplify the problem, we shall seek to deduce information about xn using observations until

time n− 1 and then update the system to time n so that, in effect, we shall be considering

a one-step prediction problem. This one-step prediction problem requires computations of

the sequence E{xn|η0, . . . ηn−1} for n = 0, 1, . . .. We shall denote this quantity by ẑn.

Once we have this quantity, we want to know how good of an estimate it is. This is

measured by the error covariance matrix Σn, which is defined by

Σn = E{(xn − ẑn)(xn − ẑn)T |η0, . . . , ηn−1}. (4.3)

Once we have these estimates, we will want to compute the true filtered estimate,

E{xn|η0, . . . , ηn} which we shall denote by zn. The associated error covariance, which we
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are also interested in calculating, is denoted by Γn and defined by

Γn = E{(xn − zn)(xn − zn)T |η0, . . . , ηn}. (4.4)

Due to the ’n − 1’ notation we define the initial data for n = 0 to be ẑ0 = E(x0),

Σ0 = {(x0 − z0)(x0 − z0)T} given no measurements. Bringing all these ideas together, we

state the Discrete-Time Kalman Filtering Problem formally as follows:

For the linear, finite-dimensional, discrete-time system of (4.1) defined for n ≥ 0,

suppose that {qn}, {rn} are independent, zero mean gaussian processes with ErnrTn =

Rn, EqnqTn = Qn. Suppose further that the initial state x0 is a gaussian random

variable with mean ẑ0 and covariance Σ0 independent of {qn} and {rn}. Determine

the estimates

ẑn = E{xn|η0, . . . , ηn−1}, zn = E{xn|η0, . . . , ηn} (4.5)

and the associated error covariances Σn and Γn as defined in (4.3) and (4.4) respec-

tively.

The solution to the Kalman Filtering problem is given below. We omit the proof here

however a full First Principles Derivation of the Kalman Filtering Equation can be found

in Chapter 3 of Anderson & Moore (1979).

The Kalman Filter is described, for n ≥ 0, by the equations

ẑn = Anzn−1, zn = ẑn + Kn(ηn −Hnẑn) (4.6)

where Kn is the gain matrix and is determined from the error covariance matrix by

Kn = ΣnH
T (HnΣnHn + Rn)−1. (4.7)
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We assume here that HnΣnHn + Rn is invertible. This normally holds and is in fact

guaranteed if Rn is positive definite, Anderson & Moore (1979).

In order to relate the above equations with the discussions on data assimilation algo-

rithms in Chapter 2, note that the term denoted by ẑn is the background term and the

term zn is the analysis. The error covariance matrices Σn and Γn are the background and

analysis covariance matrices respectively. The gain matrix Kn is the same weight matrix

given in Chapter 2 and the structure of the gain matrix here is the same as in (2.3) since

Σn is the background error covariance matrix.

The conditional error covariance matrices are given recursively by

Σn = An−1[Σn−1 −Kn−1Hn−1Σn−1]AT
n−1 + Qn−1

= An−1(1−KH)Σn−1A
T
n−1 + Qn−1

(4.8)

and

Γn = (1−KnHn)Σn. (4.9)

The equations yielding zn and Γn are sometimes called measurement-update equations

and the equations yielding ẑn and Σn are called time-update equations, Anderson & Moore

(1979).

The Kalman Filter is a linear, discrete-time, finite-dimensional system. These are all

desirable qualities making this filter rather nice to work with. Since Σn, Kn are independent

of the measurement process, they can be calculated before the filter is actually run. This

means that no one set of measured observations helps any more than any other to eliminate

some uncertainty about xn.

The Kalman Filter is the optimal filter of all linear filters (Anderson & Moore 1979)

and the particular gain Kn as given in (4.7), which is called the Kalman Gain, minimises

the error covariance Γn. This is straightforward to calculate by taking the derivative of Γn

with respect to the gain and setting equal to zero. The resulting expression that must be
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satisfied is given by

(KnH− 1)ΣnH
T + HΣn(KnH− 1)T + KnR + RKT

n = 0, (4.10)

and it follows that the Kalman Gain defined by (4.7) is indeed the optimal solution.

It is possible to generalise the above and have one or more of the matrices An,Hn,Qn,Rn

take values which depend on the measurement process. In this case some of the previous

statements still hold true. For example the expressions for ẑn and Σn are still valid but the

gain matrix Kn and the error covariance Σn cannot be computed in advance as they now

depend on {η0, . . . ηn−1}.

4.2 Time-Invariance and Asymptotic Stability of the

Kalman Filter

In general, An, Hn and Kn depend on n; that is the filter described in Section 4.1 is a

time-varying filter. Time-invariant filters are those with An, Hn and Kn independent of

n. Clearly for the filter in Section 4.1 to be time invariant, the gain matrix Kn must be

constant and unless there is some cancellation in the time variation of An and KnHn to

force (An −KnHnAn) to be constant, the matrices An and Hn must be constant too.

Certain assumptions applied to the underlying system do lead to the filter being

time-invariant. These assumptions are time invariance of the system being filtered and

stationarity of the random processes associated with the underlying system. It can be

shown that these two conditions are in fact sufficient to guarantee time invariance of the

filter, Anderson & Moore (1979).

As well as time-invariance of the filter, we are interested in the asymptotic stability

of the filter; we shall only consider time invariant filters when investigating this concept.

An equivalent task is to explain when the eigenvalues of the error matrix, (A−AKH) (if



46 CHAPTER 4.

we consider the background error covariance), or (A−KHA) (if we consider the analysis

error covariance), lie inside the unit circle. We shall present precise conditions under which

the filter is time-invariant and asymptotically stable.

In order to pin down the conditions which guarantee simultaneously that the optimal

filter is both time-invariant (or asymptotically time-invariant) and asymptotically stable,

we make the assumptions that the system is both completely controllable and observable.

Denote by O(A,H), the observability matrix which is defined by

O(A,H) = [H HA HA2 . . . HAn−1]T . (4.11)

Then we have the following definitions.

Definition 4.2.1. A linear dynamical system as in (4.1) is said to be observable if any of

the following equivalent conditions hold.

1. The observability matrix, O(A,H), has rank n.

2. ker H has no A invariant subspaces.

3. If Ax = λx then Hx 6= 0.

Definition 4.2.2. The linear system given by (4.1) is called controllable if the signal

process noise is non-degenerate which means that

ATx = λx ⇒ xTQx 6= 0. (4.12)

Observability and controllability are two very important concept that will have a big

impact on later work. An in-depth discussion of these notions is presented in Section 4.3.

Asymptotic time invariance of the filter arises when there is an asymptotically constant

solution to the variance equation,

Σn = A(Σn − ΣnH
T (HΣnH

T + R)−1HΣn)AT + Q. (4.13)
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Denote by Σ∞ the asymptotically constant solution to (4.13). The associated gain is called

the asymptotic gain, denoted by κ∞ and defined by

κ∞ = Σ∞HT (HΣ∞HT + R)−1 (4.14)

and the question arises as to whether the eigenvalues of (A−Aκ∞H) all lie within the

unit circle, ensuring asymptotic stability of the filter. Note that this is the limit of the

convergence of the gain K minimising the out-of-sample error in the numerical examples

of Chapter 3. The main conclusions are given in theorem 4.2.1 below and in Chapter 4 of

Anderson & Moore (1979).

Theorem 4.2.1. If the model is time invariant, observable, controllable and R is strictly

positive definite, then

1. For any non negative symmetric initial condition we have

lim
n→∞

Σn = Σ∞ (4.15)

with Σ∞ independent of the initial condition and satisfying a steady-state version of

(4.13):

Σ∞ = A[Σ∞ − Σ∞HT (HΣ∞HT + R)−1HΣ∞]AT + Q. (4.16)

This equation is called the Discrete Algebraic Riccati Equation (DARE).

2.

|λi(A−Aκ∞H)| < 1 (4.17)

with κ∞ as in (4.14).

3. Σ∞ is the unique non-negative definite solution to (4.16).

The proof of this theorem is given in Chapter 4 of Anderson & Moore (1979) and
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Appendix C. Complete controllability is required to establish asymptotic stability of the

filter, and this is explicitly seen in the proof.

Complete observability on the other hand makes a more subtle appearance in the proof.

Observability of the system is required to ensure the existence of Σ∞. To see this suppose

there is a mode that is not observed and not asymptotically stable, yet it is excited by

the input. Since it is not observed, the best estimate of it is zero and the error variance

will be the variance of the mode. Since it is not asymptotically stable the variance will

be unbounded and a steady state value cannot exist. Therefore complete observability is

needed to ensure the existence of Σ∞.

4.3 Observability and Controllability

As was shown in Section 4.2, the assumptions that the system being analysed is both

controllable and observable are crucial. They will also play a very important role in

establishing the main result required of this thesis. Observability in particular will be

essential. This is mainly because we are minimising the out-of-sample error which is an

error in observation space. For this section we digress briefly to explore these concepts

further and discuss their implications.

Recall that a pair of matrices (A,H), as given in the system (4.1), is said to be

observable when the observability matrix

O(A,H) = [H HA HA2 . . . HAn−1]T (4.18)

has full rank. There are other equivalent definitions which are omitted here but given

in definition 4.2.1. If this condition holds then the poles of the error matrix can be placed

anywhere by proper selection of K. In particular they can be placed within the unit circle

ensuring that the error dynamics are stable. In our situation the error dynamics in the
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noise free case (i.e rn, qn = 0) are given by

xn+1 − zn+1 = (A−KHA)(xn − zn). (4.19)

Therefore, we require that the pair of matrices (A,HA) be observable.

Lemma 4.3.1. Suppose A is invertible. Then (A,H) observable implies (A,HA) observ-

able.

Proof. Consider the observability matrix O(A,HA),

O(A,HA) = [HA HA2 HA3 . . . HAn]T

= O(A,H) ·A.
(4.20)

Since (A,H) is an observable pair, the corresponding observability matrix has full rank.

The matrix A is also of full rank as it is invertible so it follows that

rank(O(A,H) ·A) = rank(O(A,H)). (4.21)

Hence, O(A,HA) has full rank and (A,HA) is an observable pair.

Lemma 4.3.2. Suppose (A,H) is an observable pair and let K be an arbitrary feedback

gain matrix with the appropriate dimensions. Then the pair (A−KH,H) is also observable.

Proof. The pair of matrices (A,H) being observable means

Ax = λx, (x 6= 0) ⇒ Hx 6= 0. (4.22)

Suppose that for arbitrary K, (A −KH,H) is not an observable pair. Then there

exists x 6= 0 such that (A − KH)x = λx so that Hx = 0. However, this implies that

Ax = λx which means that x is now an eigenvector of A. But since (A,H) is observable,

we cannot have Hx = 0. Thus we have a contradiction and so it follows that (A−KH,H)

is an observable pair.
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Lemma 4.3.3. Suppose A is invertible and (A,H) is an observable pair. Then the pair

(A−KHA,HA) is also observable.

Proof. From lemma 4.3.1 it follows that (A,HA) is an observable pair. Applying lemma

4.3.2 to the pair (A,HA) yields the required result, namely that O(A−KHA,HA) is an

observable pair.

Consider now the pair (A − KHA,H). To investigate whether or not this pair of

matrices is observable, consider the corresponding the observability matrix:

O(A−KHA,H) =



H

H(A−KHA)

...

H(A−KHA)n−1


=



H

(1−HK)HA

...

(1−HK)HA(A−KHA)n−2


=

 H

(1−HK)O(A−KHA,HA)

 .
(4.23)

Since lemma 4.3.3 tells us that O(A − KHA,HA) is of full rank, it follows that

provided (1 − HK) is non-singular, the pair (A − KHA,H) is observable. A natural

question that arises then is: When is this matrix invertible?

Example: The Kalman Gain

If the feedback gain matrix K is given by the Kalman Gain,

Kn = ΣnH
T (HΣnH

T + R)−1 (4.24)
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then the matrix (1−HKn) is non-singular. This follows from the fact that

HKn = HΣnH
T (HΣnH

T + R)−1

= (HΣnH
T + R−R)(HΣnH

T + R)−1

= 1−R(HΣnH
T + R)−1

⇒ 1−HKn = R(HΣnH
T + R)−1

(4.25)

which is an invertible matrix.

This is just one example of when (1−HK) is non-singular. Since we are working with

minimisers of the observed errors, it is extremely important that we have the above result

and we shall see that this fact plays a very important role in proving that the minimising

gain of either the out-of-sample or observed error, converges to the asymptotic Kalman

gain κ∞ as given in equation (4.14).

Controllability is also a very important concept. We have already seen the definition

for controllability in definition 4.2.2. There are other equivalent definitions that can be

given to define controllability, see for example Appendix C of Anderson & Moore (1979).

What is of particular interest is the connection between observability and controllability.

It is not difficult to see that the pair (A,H) being observable is equivalent to the pair

(AT ,HT ) being controllable according to definition 4.2.2. For clarity purposes consider the

following alternative definition of controllability,

Definition 4.3.1. The pair of matrices (A,H) is said to be controllable if

ATx = λx ⇒ HTx 6= 0, x, λ 6= 0. (4.26)

The implication of this is as follows. Suppose the pair (A,H) is observable. Then by

definition 4.2.1,

Ax = λx ⇒ Hx 6= 0. (4.27)



52 CHAPTER 4.

However, by definition 4.3.1, this is equivalent to (AT ,HT ) being controllable. This

in turn implies that when the system is assumed to be completely controllable and

observable, equations (4.26) and (4.27) both hold at the same time. This duality property

of observability and controllability will be used in later chapters to establish important

facts about the out-of-sample error, its minimisers and their asymptotic behaviour.

Chapter Summary In this chapter we have presented an in-depth discussion on the

discrete-time Kalman Filter for linear systems with gaussian perturbations. It was estab-

lished that the Kalman Filter is the optimal linear filter for such systems.

We investigated its asymptotic properties and determined that it is both asymptotically

stable and time-invariant. In order to prove asymptotic stability and time-invariance, it

was necessary to assume the system was completely observable and controllable. As such,

the concepts of observability and controllability were discussed in more detail and their

duality property was introduced.



Chapter 5

Minimising the Error Covariance

The Kalman Filter, as described in Chapter 4, is the best linear filter available for linear

systems with gaussian perturbations. Asymptotically, it is stable and time invariant; two

desirable qualities. However, it can be computationally expensive to run even though

some terms can be computed prior to running the filter itself. This is because a matrix

inversion is required at every step to determine the optimal feedback gain. This feedback

also depends on n and on the background error covariance matrix (which we denote by

Σn) and this matrix is difficult to determine. If one studies the recursive equation for this

covariance matrix, it becomes evident that knowledge of the model error covariance is

essential. Unfortunately this information is often unavailable in practice and so certain

assumptions and compromises must be made. In operational settings the model error

covariance has to be estimated, resulting in further uncertainties.

The numerical experiments presented in Chapter 3 suggest that a constant feedback

gain matrix that minimises the empirical out-of-sample error exists and that it is the same

as the gain matrix that minimises the state error. Moreover, the numerical experiments

suggest that the minimising feedback gain converges to the asymptotic Kalman gain in the

limit of large observational windows. An advantage of determining the optimal feedback

gain matrix in this way is that knowledge of the dynamical model error covariance is

53
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unnecessary.

In this chapter, using the results in Section 4.2, we shall rigorously prove that the

constant feedback gain matrix minimising the out-of-sample error exists, and with increasing

observational windows converges to the asymptotic Kalman gain. Unfortunately however,

this is not quite what can be done in practice. This is because we can only estimate the

true error covariance as we do not have the access to the true values required. Therefore,

in practical situations and in fact in our numerical experiments in Chapter 3, the errors

are estimated by the empirical mean namely,

1

n

n∑
i=1

(zi − xi)2 or
1

n

n∑
i=1

(yi − η′i)2. (5.1)

leading to estimators of the optimal gain. The question that arises then concerns the

asymptotic behaviour of this estimator. In Chapter 6, we establish that this estimator has

the same asymptotic behaviour as the Kalman gain.

5.1 The Gain Minimising the Out-of-Sample Error

5.1.1 Design of an Observer

Suppose we have an initial state x0 ∈ RD, with mean ẑ0 and covariance Σ0. Suppose also

that we have a time invariant dynamical model given by

xn+1 = Axn + qn (5.2)

where xn ∈ RD is the state and qn are iid random variables with zero mean and

covariance Q. The measured observations are given by

ηn = Hxn + rn (5.3)
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where ηn are observations in some space which we take to be Rd and rn are iid random

variables with zero mean and covariance R. It is assumed that rn and qn are uncorrelated.

Note also that this model is time invariant since A, H, Q and R are taken to be constant.

When we refer to the model we shall mean the quadruple (A,H,Q,R) and we will say

that the initial data is given by (ẑ0,Σ0).

For the system defined by (5.2) and (5.3), we construct an observer of the form

ẑn = Azn−1

zn = ẑn + Kn(ηn −Hẑn)

(5.4)

where Kn is the gain matrix which may or may not depend on n. The feedback gain

matrix depends on the observations up to time n − 1 but does not depend on ηn. The

coupling introduced by this gain matrix creates a linear feedback in the sense that the error

between Hẑn and the observations (i.e. the innovations) is fed back into the model. The

background term ẑn is an estimate of xn based on our a priori knowledge of the system,

up to but not including time n. The trajectory obtained from this scheme, zn ∈ RD (i.e

the analysis), lives in the state space RD.

Lemma 5.1.1.

Eẑn = Exn (5.5)

Σn = E[(ẑn − xn)(ẑn − xn)T ] = AΓn−1A
T + Q (5.6)

Γn = E[(zn − xn)(zn − xn)T ] = (I−KnH)Σn(I−KnH)T + KnRKT
n (5.7)

Proof. We prove the equality in (5.5) by induction. First note that

Exn = AExn−1 = Anẑ0, (5.8)

which follows by induction since the random variables qn are iid with zero mean and
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the initial state x0 has mean ẑ0. Then we have for the case k = 1,

Eẑ1 = Aẑ0 −AK0H (ẑ0 − Ex0) = Aẑ0 = Ex1. (5.9)

Assume this relation holds for the case k = n− 1 and we want to show it also holds for

the case k = n;

Eẑn = AEẑn−1 −AKn−1H (Eẑn−1 − Exn−1) = AEẑn−1 = Exn. (5.10)

Therefore, by induction, equation (5.5) holds.

We derive equations (5.6) and (5.7) together. Consider the error covariance matrix

Γn = E[(zn − xn)(zn − xn)T ]

= E[((1−KnH)(ẑn − xn) + Knrn)(1−KnH)(ẑn − xn) + Knrn)T ]

= (1−KnH)Σn(1−KnH)T + KnRKT
n

(5.11)

where

Σn = E[(ẑn − xn)(ẑn − xn)T ]

= E[(A(zn−1 − xn−1)− qn)(A(zn−1 − xn−1)− qn)T ]

= AΓn−1A
T + Q.

(5.12)

These relations are obtained by simply substituting the expressions for xn and zn into Γn

and using the fact that the observational noise rn is uncorrelated with the dynamical noise

qn.

See Chapter 3 of Anderson & Moore (1979) for an alternative derivation of these

covariance matrices.

The relations given in lemma 5.1.1 are in their most general form and hold for any

feedback gain matrix Kn. The Kalman gain (see Chapter 4) is a particular form of the
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matrix Kn, which we henceforth denote by κn, that minimises the mean squared error

given the model and initial data. The equation and properties of the Kalman Gain are

given in the following lemma,

Lemma 5.1.2. The Kalman Gain, κn, minimises the mean squared error, Γn and it is

defined by

κn = ΣnH
T (HΣnH

T + R)−1. (5.13)

Proof. For the Kalman gain to minimise the mean squared error covariance, it needs to

satisfy

DΓn(κn).∆ = 0 (5.14)

for any perturbations ∆ of κn; that is any ∆ ∈ RD×d. By differentiating (5.7) and using

that DΓn = 0 and that Σn does not depend in κn, it follows that κn must satisfy

(KnH− 1)ΣnH
T + HΣn(KnH− 1)T + KnR + RKT

n = 0 (5.15)

from which it is straightforward to establish that κn is indeed given by (5.13).

To show that κn is a minimiser of the mean squared error covariance, we need to

establish that

Γn(κn + ∆) ≥ Γn(κ). (5.16)

Using a Taylor series expansion, it is straightforward to show that

Γn(κn + ∆) = Γn(κn) + DΓn(κn).∆ + ∆HΣnH
T∆T + ∆R∆T (5.17)

and since we know κn must satisfy (5.14) and that the last two terms in (5.17) are

non-negative definite the required result is obtained. Even though no assumptions on

uniqueness are being made here, it can be concluded that κn is unique if R > 0, Anderson

& Moore (1979). This condition, that the observation error covariance matrix is strictly
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positive definite, is required anyway to guarantee the existence of the Kalman Gain.

An observer given by (5.4) that uses the Kalman gain (5.13) as its feedback gain matrix

is known as the Kalman Filter. In the class of linear filters which produce an estimate

by minimising a mean squared error, the Kalman Filter is the optimal one (Anderson &

Moore 1979); see Chapter 4.

We will now investigate the properties of the feedback gain matrix that minimises the

out-of-sample error covariance. Recall that to define the out-of-sample error we assume

that we have another set of observations, η′n, which are given by

η′n = ζn + σr′n (5.18)

where r′n has the same stochastic properties as rn but is independent from rn, i.e

Ernr′n = 0. The out-of-sample error is then defined by

E[(yn − η′n)2] = HE(zn − xn)(zn − xn)THT + tr(R′)

= HΓnH
T + tr(R′).

(5.19)

where R′ is the covariance of the iid noise r′n. Note that R′ = R however for notational

purposes we write R′ in order to distinguish between the two. To minimise the out-of-

sample error as defined above, we take the derivative with respect to K and set equal to

zero. Doing so yields

HDKΓn(K,Γ0).∆HT = 0 (5.20)

and we see from this, that minimising the out-of-sample error is equivalent to minimising

the observed error, HΓnH
T , since the observation error covariance R (or R′) has no

dependence on the feedback gain matrix.

Lemma 5.1.3. The Kalman Gain, κn, defined by (5.13) minimises the observed error,

HΓnH
T .



5.1. THE GAIN MINIMISING THE OUT-OF-SAMPLE ERROR 59

Proof. To see this consider the following. Since κn is the optimal gain matrix in the sense

that it minimises the state error covariance matrix Γn, we have

Γn(κn + ∆) ≥ Γn(κn). (5.21)

This implies that

HΓn(κn + ∆)HT ≥ HΓn(κn)HT (5.22)

and by the definition of ” ≥ ” for matrices (see Chapter 1), it follows that the Kalman

Gain minimises the observed error.

It is clear from the above, that the Kalman gain minimises the observed error; thus

the Kalman Filter is optimal also in the sense that it minimises the observed or even the

out-of-sample error. We have seen however that the Kalman Filter may be problematic

as it requires knowledge of Q. In order to calculate the empirical out-of-sample error,

knowledge of Q is not required. Therefore, using this error as a measure of performance

and to determine the optimal gain matrix, is advantageous. Therefore, we investigate the

expected out-of-sample error, in particular for a constant gain matrix. We choose such a

gain as we hope it will lead to a simpler filter as the feedback matrix will not need to be

updated at every step.

5.1.2 Design of a Suboptimal Filter

Consider an observer of the form (5.4) for which we keep the feedback gain matrix constant

so that we have Kn = K. Our aim is to choose this gain matrix so that it minimises the

observation error, HΓnH
T , or the out-of-sample error over the whole assimilation window.

For notational purposes we write, when the gains are all the same

HΓnH
T = ψn(K,Γ0) (5.23)
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to indicate the dependence on the initial condition, Γ0.

Suppose that the system defined by (5.2) and (5.3) is completely observable and

controllable as defined in definitions 4.2.1 and 4.2.2 respectively. Suppose also that the

observation error covariance matrix is strictly positive definite (i.e. R > 0) so that the

results presented in Chapter 4 hold.

In order to establish that the feedback gain matrix that minimises the expected out-of-

sample error converges to the asymptotic Kalman Gain, we use the following result. It is a

deterministic version of theorem 5.7 in Van der Vaart (2000) which is stated and proven in

Chapter 6, theorem 6.1.1.

Theorem 5.1.1. Consider the continuous functions

ψ : K → R≥0, ψn : RD → R≥0 (5.24)

with K ⊂ RD compact and assume that ψn has a minimiser, which we shall denote by Kn.

This minimiser is not necessarily unique. Assume further that

1. Kn ∈ K for n ≥ n0 for some n0

2. ψn → ψ uniformly on K

3. ψ has a unique minimiser κ∞.

Then Kn → κ∞.

The n stated in the above theorem refers to the size of the observational window.

That is, the minimising gain converges to the asymptotic Kalman gain as the size of the

observational window increases.
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Proof. Assume n ≥ n0. Then

0 ≤ ψ(Kn)− ψ(κ∞)

= ψ(Kn)− ψn(Kn)︸ ︷︷ ︸
A

+ψn(Kn)− ψn(κ∞)︸ ︷︷ ︸
B

+ψn(κ∞)− ψ(κ∞)︸ ︷︷ ︸
C

.
(5.25)

Now, A → 0 and C → 0 by assumption (2) in the statement of the theorem and B ≤ 0

because Kn minimises ψn by assumption and so ψn(κ∞) ≥ ψn(Kn). Hence ψ(Kn) →

ψ(κ∞).

Since K is compact, we consider the sub-sub-sequence nlk such that Knlk
converges

to some κ∗. But since ψn → ψ uniformly and κ∞ is the unique minimiser of ψ, κ∗ must

be equal to κ∞. Repeating the argument for all converging subsequences yields the same

conclusion, thus Kn → κ∞.

In order to prove that the gain matrix minimising the expected observed error or the

expected out-of-sample error converges to the asymptotic Kalman gain, we need to check

that each of the four items given in theorem 5.1.1 hold.

We first establish point (3) in theorem 5.1.1. Recall that the asymptotic Kalman gain

is defined by

κ∞ = Σ∞HT (HΣ∞HT + R)−1. (5.26)

The expression for ψ is given by

ψ = HΓ∞HT = H(A−KHA)Γ∞(A−KHA)THT

+H(1−KH)Q(1−KH)THT + HKRKTHT

(5.27)

which is obtained by taking limits in equation (5.7). Then we have the following proposition.

Proposition 5.1.1. κ∞ minimises ψ uniquely.

Proof. Taking the derivative, assuming it exists in an open neighbourhood of the gain
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matrix, of the observed asymptotic error, ψ as given in (5.27) and setting this equal to

zero tells us that we need the gain matrix to satisfy

0 = DHΓ∞(K)HT .∆ (5.28)

= ∆H
[
RKT −HQ(1−KH)T −HAΓ∞(A−KHA)T

]
HT (5.29)

+ H
[
KR− (1−KH)QHT − (A−KHA)Γ∞ATHT

]
HT∆T (5.30)

and since this must hold for all ∆ the minimising K must satisfy

0 = H
[
KR− (1−KH)QHT − (A−KHA)Γ∞ATHT

]
HT

= H
[
K(HΣ∞HT + R)− Σ∞HT

]
HT

where Σ∞ = AΓ∞AT + Q. So we can see that K = κ∞ is one solution to the problem,

however we wish to show that it is unique. Notice that

HK = HΣ∞HT (HΣ∞HT + R)−1 ⇒ 1−HK = R(HΣ∞HT + R)−1, (5.31)

is a non-singular matrix so it follows from the results presented in Chapter 4.3 that the

pair of matrices (A−KHA,H) is observable.

For any two symmetric matrices M1,M2, we write M1 ≥M2 if M1 −M2 is positive

definite but not zero. Let K1,K2 be two stabilising feedback gains so that Γ(K1) ≥ Γ(K2);

that is K2 performs better than K1.

Bearing this in mind, suppose that there exists another stabilising feedback gain, K∗,

so that Γ(κ∞) ≥ Γ(K∗), i.e. κ∞ performs worse than K∗. Multiplying from the left and

right by H preserves the inequality so

HΓ(κ∞)HT ≥ HΓ(K∗)HT . (5.32)
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Assuming that HΓ(κ∞)HT = HΓ(K∗)HT would then imply,

0 = H(Γ∞(κ∞)− Γ∞(K∗))HT

= H(A− κ∞HA)n(Γ∞(κ∞)− Γ∞(K∗)) (A− κ∞HA)n T HT

(5.33)

as all the other terms in the expression for Γ would cancel each other out. Let M =

Γ∞(κ∞)− Γ∞(K∗), so it follows that

HMHT = 0 ⇒ H
{

(A−K∗HA)nM (A−K∗HA)n T
}

HT = 0. (5.34)

Using the spectral decomposition of M,

M =
d∑
i=1

λiviv
T
i (5.35)

where λi are the eigenvalues of the matrix M and vi are the corresponding eigenvectors,

we see that

0 = HMHT =
d∑
i=1

λi(H(A− κ∞HA)nvi)
2 (5.36)

for all n. Since M 6= 0 there is λj > 0 and hence H(A − κ∞HA)nvj = 0 for all n,

which contradicts the observability of (A− κ∞HA,H). Thus M = 0, finishing the proof.

Therefore κ∞ is the unique minimiser.

Take the parameter space K to be defined as K = {K;σ(A −KHA) ≤ 1 − ε} ∩ K0,

where K0 is a compact region. We will find ε and K0 later, see 5.72.

Since K is a stabilising feedback gain in K, ψ is well defined and given K as above we

can confirm point (2) in theorem 5.1.1.

Lemma 5.1.4. Let σ(X) denote the spectral radius of X. Then we have ψn(K,Γ0) →

ψ∞(K,Γ0) uniformly if and only if σ(A − KHA) ≤ 1 − ε and K ∈ K where K =

{K;σ(A−KHA) ≤ 1− ε} ∩ K0 is compact.
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Proof. We need to show that
∥∥H(Γn+l − Γn)HT

∥∥ ≤ Cλn for some λ < 1. Consider the

trace of this matrix;

trace[H(Γn+l − Γn)HT ] ≤ d′
∥∥HTH

∥∥ ‖(Γn+l − Γl)‖ (5.37)

where the inequality follows by definition and d′ is the dimension of the system. Note

that

Γn+l − Γn = (A−KHA)n(Γl − Γ0) (A−KHA)n T . (5.38)

Let W = (A−KHA). Since K is chosen to stabilise the system, as well as minimise

the mean squared error, we know that the eigenvalues of the stability matrix must lie

within the unit circle. Therefore, if σ(X) denotes the spectral radius of a matrix X, we

have that σ(W) ≤ 1− ε. Now consider taking the trace of (5.38);

trace
[
Wn(Γl − Γ0) Wn T

]
≤ d.σ

[
(Γl − Γ0) Wn T Wn

]
(5.39)

= d
∥∥(Γl − Γ0) Wn T Wn

∥∥ (5.40)

≤ d ‖(Γl − Γ0)‖ ‖Wq‖
1
q

2n (5.41)

where d is the dimension of the system. The inequality in (5.39) follows by definition

and (5.40) is obtained as an equality because the matrix is symmetric; (5.41) follows from

the definition of a norm.

Since σ(·) denotes the spectral radius, we can write

σ(W) = lim
q→∞
‖Wq‖

1
q (5.42)

and since σ(W) ≤ 1− ε it follows that

‖Wq‖
1
q ≤ 1− ε. (5.43)
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Therefore, using this fact in (5.41) we see that

trace
[
Wn(Γl − Γ0) Wn T

]
≤ d ‖(Γl − Γ0)‖ (1− ε)n. (5.44)

Since we are working on the compact parameter space K, we can establish that q and ε

are independent of K. The value q that satisfies the bound above depends on K but the

same q is valid for an open neighbourhood of the matrix W. Since K is compact there can

only be finitely many q’s that satisfy (5.43). Therefore we can choose the largest such q

and corresponding ε to get a uniform upper bound. Therefore set C = d ‖(Γl − Γ0)‖ and

λ = 1− ε and it follows that

trace[H(Γn+l − Γn)HT ] ≤ d′
∥∥HTH

∥∥Cλn = C ′λn (5.45)

where we simply let C ′ = d′
∥∥HTH

∥∥C, to obtain the required result.

To prove the other direction assume ψn(K,Γ0)→ ψ∞(K,Γ0). Then we have that

ψn(K,Γ0) = H(A−KHA)Γn−1(K,Γ0)(A−KHA)THT

+H(1−KH)Q(1−KH)THT + HKRKTHT

(5.46)

which implies by continuity that

ψ∞(K,Γ0) = H(A−KHA)Γ∞(K,Γ0)(A−KHA)THT

+H(1−KH)Q(1−KH)THT + HKRKTHT

(5.47)

from which it follows that K must stabilise the system. To see this suppose that it

doesn’t so that we have (A −KHA)Tω = λω for some λ with |λ| ≥ 1 and non-zero ω.

Since (A−KHA,H) is an observable pair, we only need to consider eigenvalues of the

form ω = HTx. This follows from the duality of controllability and observability (see

Section 4.3). It follows then that (A−KHA)THTx = λHTx.
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By rearranging equation (5.47) we get that

H
{

Γ∞ − (A−KHA)Γ∞(A−KHA)T
}

HT

= H
{

(1−KH)Q(1−KH)T + KRKT
}

HT

(5.48)

from which it follows that

(1− |λ|2)xTHΓ∞HTx = xTH
{

(1−KH)Q(1−KH)T + KRKT
}

HTx. (5.49)

The left hand side of the above equation is non-positive while the right hand side is

clearly non-negative, therefore for the equation to make sense both sides must be equal

to zero. This implies that (HK)Tx = 0 and xTHQHTx = 0. By our assumption that K

doesn’t stabilise the system, (HK)Tx = 0 implies that ATHTx = λHTx which together

with xTHQHTx = 0 implies a lack of controllability since

ATHTx = λHTx ⇒ xTHQHTx = 0 (5.50)

follows from the definition of controllability given in definition 4.2.2. Therefore, K must

be a stabilising gain.

This then just leaves the assumption that ψn has a minimiser and point (2) in theorem

5.1.1 to be checked and ε and K0 to be determined. We shall prove these together.

Lemma 5.1.5. There is n0 ∈ N, δ > 0 so that for any n ≥ n0, if ψn has a minimiser Kn,

we must have ψn(Kn) ≤ R(1− δ).
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Proof. Consider first the following calculation

HΓ∞(κ∞)HT = HΣ∞HT −HΣ∞HT (HΣ∞HT + R)−1HΣ∞HT

= HΣ∞HT − (HΣ∞HT + R−R)(HΣ∞HT + R)−1(HΣ∞HT + R−R)

= R−R(HΣ∞HT + R)−1R

< R

(5.51)

since R > 0 and so we have ψ(κ∞) < R. Then we can say ψ(κ∞) ≤ R(1 − 2δ). Since

ψn(κ∞)→ ψ∞(κ∞), as established in lemma 5.1.4, we can pick n0 large enough so that

ψn(κ∞) ≤ R(1− δ), ∀n ≥ n0. (5.52)

If ψn has a minimiser, Kn, then this potential minimiser has to be better than κ∞.

Otherwise, we may as well use the asymptotic gain in the algorithm. Hence, using the

bound in (5.52) we have the required result.

Note that if K is such that ψn(K) ≤ R(1− δ) for all n ≥ n0 then it also true that

ψ(K) ≤ R(1− δ). (5.53)

Let K0 := {K;ψ(K) ≤ R(1− δ)}. Then it follows that this set is closed and will contain

any potential minimiser of ψn, n > n0.

Lemma 5.1.6. The set K0 as defined above is compact.

Proof. Suppose we are on K0 and n ≥ n0. We begin by writing, for each k = 1, . . . , n,
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Γk(K,Γ0) as

Γk(K,Γ0) = WkΓ0 Wk T +
k−1∑
i=0

Wi(1−KH)Q(1−KH)T Wi T

+
k−1∑
i=0

WiKRKT Wi T

(5.54)

where W = (A−KHA). Since Γn is a covariance matrix it is non-negative definite

and will remain non-negative definite if we multiply from the left and right by H. The

individual terms on the right hand side of (5.54) are all non-negative definite, so we have

that

R(1− δ) ≥ ψn ≥ HΓnH
T ≥

n−1∑
k=0

HWkKRKT Wk T HT . (5.55)

Note that since the terms in (5.54) are all non-negative definite, they satisfy the bound

individually.

When n = 1 we have that R(1−δ) ≥ (HK)2R which implies that 1−δ ≥ (HK)2. This

means that HK is bounded below and it follows that the pair (H,A−KHA) is always

observable on K. This is because, as was explained in Section 4.3, the pair (H,A−KHA)

is observable when HK 6= 1. Thus since HK is bounded below by 1 − δ, the pair

(H,A−KHA) is observable.

When n = 2 we get, after performing a similar calculation, that

1− δ > (HK)2 + ((1−HK)HAK)2, (5.56)

which implies that HAK must also be bounded. Repeating the argument for increasing

powers of n up to n − 1 yields the implication that HK,HAK, . . . ,HAn−1K, all be

bounded below since we get the expression

1− δ ≥ HK + (1−HK)HAK + . . .+ (1−HK)HAn−1K. (5.57)
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However notice that this is simply the matrix (1−HK)O(A,H) applied to K. So we have

that O(A,H) ·K must be bounded. But since we have assumed complete observability,

O(A,H) is invertible. Thus K0 is bounded. We have already established that K0 is closed,

therefore it is compact.

So far then, we have established that ψn has a minimiser on K0 because K0 is compact

and ψn is continuous. We need to ensure that this minimiser exists on K, that is, in

addition the minimising gain must satisfy σ(A−KHA) ≤ 1− ε, i.e. K must stabilise the

error dynamics.

Lemma 5.1.7. There is a constant C so that if n ≥ n0, then

ψn(K) ≥ C
1− (1− ε)2n

1− (1− ε)2
(5.58)

for all K ∈ K0 with σ(A−KHA) ≥ 1− ε.

Before we prove this lemma, we prove the following results as they will be needed in

the proof.

Lemma 5.1.8. There exists c > 0 so that for all v ∈ CD, ‖v‖ = 1 and λ ∈ CD with

vT (A−KHA) = λvT so that

∀ε > 0∃δ : if
∥∥vTK

∥∥ < δ ⇒ vTQv ≥ c− ε. (5.59)

Proof. By controllability, if ωTA = λωT ⇒ ωTQω > 0. Take c = min{ωTQω;ωTA =

λωT , ‖ω‖ = 1}. Since Q is non-degenerate on every eigenspace of A and there are finitely

many distinct eigenvalues we have c > 0.

Suppose the claim is not true. Then there exist sequences Kn, vn with
∥∥vTK

∥∥→ 0 but

vTnQvn ≤ c− ε, satisfying

vTn (A−KnHA) = λnv
T
n (5.60)
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Since ‖vn‖ = 1, we take subsequences so that vn → v. Taking the limit yields vTA = λvT .

Then λn → λ as all other terms in (5.60) converge. But this means vTQv ≥ c.

Corollary 5.1.1. There exists α > 0 so that for all v, ‖v‖ = 1 and vT (A−KHA) = λvT ,

vTKRKTv + vT (1−KH)Q(1−KH)T ≥ α. (5.61)

Proof. Since R > 0, there exists r > 0 such that vTKRKTv ≥ r
∥∥vTK

∥∥2
. Further,

vT (1−KH)Q(1−KH)Tv = vTQv + f(vTK), f(0) = 0.

Let ε > 0 so that c−2ε, c as in the above lemma. Now pick δ so small that if
∥∥vTK

∥∥ ≤ δ,

vTQv ≥ c− ε, |f(vTK)| ≤ ε by the above lemma and the continuity of f .

Hence vTKRKTv+vT (1−KH)Q(1−KH)T ≥ C−2ε. If
∥∥vTK

∥∥ ≥ δ, then r
∥∥vTK

∥∥2 ≥

rδ2. We can pick α = min{c− 2ε, rδ2} > 0.

We can now prove lemma 5.1.7.

Proof of Lemma 5.1.7. Using the results presented in lemma 5.1.8 and corollary 5.1.1, for

v ∈ CD with ‖v‖ = 1 and |λ| ≥ 1− ε we get that

vTΓnv ≥
1− |λ|2n

1− |λ|2
· α (5.62)

where α is as given in corollary 5.1.1. This equation is obtained by writing out in full the

expression for vTΓnv, and noting that vT (A−KHA) = λvT . Using this together together

with corollary 5.1.1 the result follows.

By the properties of the trace of a matrix it follows that

tr(Γn) ≥ 1− |λ|2n

1− |λ|2
· α. (5.63)

Define U(K) := O(A − KHA,H) and note that since the pair (H,A − KHA) is

observable, as explained in the proof of lemma 5.1.6, U(K) is invertible on K0.
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Now for any two non-negative definite matrices X and Y we have by the Cauchy-

Schwartz inequality (see for example Hunter & Nachtergaele (2001)), that

tr(XY) ≤
√

tr(X2)tr(Y2). (5.64)

Since X and Y are non-negative definite in our case it follows that tr(X2) ≤ tr(X)2 so

that (5.64) becomes

tr(XY) ≤ tr(X)tr(Y). (5.65)

Bearing this in mind consider

tr(Γn) = tr
(
[U(K)TU(K)]−1[U(K)TU(K)]Γn

)
≤ tr

(
[U(K)TU(K)]−1

)
· tr
(
U(K)ΓnU(K)T

)
.

(5.66)

The first term on the right hand side of the above equation is bounded by some constant

C ′ since K ∈ K0. As for the second term on the right hand side of (5.66) consider,

tr
(
U(K)ΓnU(K)T

)
=
∑
i,j

UijΓnUjk

=
d−1∑
k=0

H(A−KHA)kΓn (A−KHA)k
T

HT

≤ HΓnH
T + HΓn+1H

T + . . .+ HΓd+n−1H
T

(5.67)

These inequalities follow from the explicit expression for Γ given in (5.7). Since all the

terms individually on the right hand side of the above are non-negative definite, it follows

that one of them is bounded below by the left hand side divided by the dimension, in this

case d. As it holds for all the terms individually, the bound holds for HΓnH
T in particular,

so that we have

HΓnH
T ≥

tr
(
U(K)ΓnU(K)T

)
d

. (5.68)

By substituting the above into (5.66) and using the bound given in (5.63), it follows
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that

1− |λ|2n

1− |λ|2
· α
dC ′
≤ HΓnH

T (5.69)

which with λ = 1− ε, is the required result.

Now take ε0 so small that σ(A−κ∞HA) ≤ 1− ε0. We have to find ε < ε0 and n1 ≥ n0

so that

1− (1− ε)2n1

1− (1− ε)2
≥ R. (5.70)

Take n1 = max(S, n0), then by de L’Hôpital’s Rule

1− (1− ε)2n1

1− (1− ε)2

ε→0→ S (5.71)

where S will be defined shortly. Take ε small so that 1 − (1 − ε)2n1/1 − (1 − ε)2 > S/2,

where we take S so that

α

dC ′
S

2
≥ R. (5.72)

Therefore by lemma 5.1.7, if n ≥ n1, K ∈ K with σ(A−KHA) ≥ 1− ε, then ψn(K) ≥ R.

This means that such a K cannot be a minimiser of ψn as soon as n ≥ n1, proving the

remaining facts in theorem 5.1.1. Thus we have the following final result.

Theorem 5.1.2. The feedback gain matrix K that minimises the out-of-sample error,

ψn(K), over the compact set K and stabilises the system, converges to the asymptotic

Kalman Gain κ∞ in the limit of large observational windows.

Proof. It has been established above that the four points given in theorem 5.1.1 are satisfied

by our problem. The claim then follows.

Minimising the State Error The numerical experiments in Chapter 3 suggested that

for linear systems, the out-of-sample error is equivalent (in a certain sense) to the asymptotic

state error covariance. In this context equivalent means that minimising the out-of-sample
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error covariance is equivalent to minimising the state error covariance. This can be easily

seen as follows.

It was established in proposition 5.1.1 that the asymptotic Kalman Gain κ∞, uniquely

minimises the asymptotic out-of-sample error covariance, HΓ∞HT + R′. Consider the fixed

point equation for the asymptotic state error covariance,

Γ∞ = (A−KHA)Γ∞(A−KHA)T + (1−KH)Q(1−KH)T + KRKT . (5.73)

Taking the derivative (assuming it exists) of this with respect to K and setting equal to

zero yields

0 = DΓ∞(K).∆ = ∆
[
RKT −HQ(1−KH)T −HAΓ∞(A−KHA)T

]
(5.74)

+
[
KR− (1−KH)QHT − (A−KHA)Γ∞ATHT

]
∆T (5.75)

and since this must hold for all ∆ the minimising K must satisfy

0 = KR− (1−KH)QHT − (A−KHA)Γ∞ATHT

= K(HΣ∞HT + R)− Σ∞HT

⇒ K = Σ∞HT (HΣ∞HT + R)−1 = κ∞

where Σ∞ = AΓ∞AT + Q.

It follows that this is the unique optimal gain matrix. Therefore, both the state and

out-of-sample error covariances are minimised uniquely by the same feedback gain matrix.

Hence, in this sense they are equivalent.

Chapter Summary In this chapter we have presented the proof that the constant gain

matrix that minimises the expected out-of-sample error exists. We considered constant

gain matrices as they lead to simpler filters as the optimal gain matrix does not need
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to be updated at every step, avoiding the matrix inversion required for the traditional

Kalman Filter. Further to this it was established that such a gain matrix converges to

the asymptotic gain in the limit of large observational windows. The asymptotic limit

mentioned here is the limit of the Kalman Gain defined in Chapter 4.

This fact was established by first constructing the compact space in which we are

working. This then led to the fact that the out-of-sample error was minimised by a feedback

gain that always entered the region in which it stabilised the error dynamics. Using the

fact that the asymptotic gain is the unique minimiser of the asymptotic observed error,

the conclusion that the minimiser converges to the asymptotic Kalman Gain, κ∞, was

obtained. Some comments on the equivalence of minimising the state and out-of-sample

error covariances were also made.



Chapter 6

Minimising the Empirical Mean of

the Error

It has been established that the minimiser, Kn, of the expected observed or out-of-sample

error converges to the asymptotic Kalman gain, κ∞ in the limit of large observational

windows. However in practice, only an estimate of this minimiser is available. In practical

situations and in fact in our numerical experiments in Chapter 3, the errors are estimated

by the empirical mean namely,

1

n

n∑
i=1

(zi − xi)2 or
1

n

n∑
i=1

(yi − η′i)2. (6.1)

leading to estimators of the optimal gain. Therefore it is desirable to establish that the

estimator κ̂n, used to estimate Kn, converges in probability to the asymptotic Kalman

gain.

The problem then is as follows. Given that the estimator κ̂n, minimises the function

φn where φn is the empirical mean that estimates the out-of-sample error and that the

asymptotic Kalman gain minimises the asymptotic out-of-sample error uniquely, is it true

that κ̂n → κ∞ as n → ∞ in probability? Numerical evidence presented in Chapter 3

and in Mallia-Parfitt & Bröcker (2016) suggests that this is the true for linear dynamical

75
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systems with gaussian perturbations and linear observations. We shall now prove this.

This is achieved by observing that the estimator considered essentially minimises a sum

of functions of observed data and as such can be thought of as an M-estimator (see Chapter

1). Using this approach and results which exist to prove consistency of such estimators, we

shall endeavor to prove that the minimising gain of the empirical mean of the out-of-sample

error, converges to the asymptotic gain in the limit of large observational windows.

The proof used in this chapter is similar to the one presented in Chapter 5 for the

deterministic case. Unfortunately, however there is one piece of the proof that is missing in

this stochastic case. As part of the proof, we require that the probability for a minimiser to

be stabilising goes to 1 for large n. We cannot however state this for certain as we cannot

say that all potential minimisers stabilise the error dynamics. A full explanation of the

problem is given in detail at the end of the chapter.

The theory of M-estimators and their properties, such as consistency and asymptotic

normality, is covered in detail in Van der Vaart (2000), Ferguson (1996). A brief of overview

of the main results in the theory of M-estimators is presented here.

6.1 Theory of M-Estimators

The work presented in this section is the general theory that motivated our approach.

We present the theory of M-estimators and conditions for which such estimators are

asymptotically consistent in a general context. The results given here are not applicable

without compactness of the parameter space in which we are working. The content is

obtained from Van der Vaart (2000).

Suppose we are interested in a parameter θ attached to the distribution of some

observations, Xi for i = 1, . . . , n. A popular method for finding an estimator θ̂n is to
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maximise (or minimise) the criterion function of the type

φn(θ) =
1

n

n∑
i=1

fθ(Xi). (6.2)

An estimator maximising φn over a set Θ, is called an M -estimator and we are interested

in the asymptotic behaviour of sequences of M-estimators.

Usually the maximising (or minimising) value is found by setting a derivative equal to

zero. Thus the term M-estimator is also used for estimators satisfying systems of equations

of the form

Ψn(θ) =
1

n

n∑
i=1

mθ(Xi) = 0. (6.3)

Such equations that define an estimator, are known collectively as estimating equations

and when it corresponds to a maximisation problem, it is called a Z-estimator, however

the name M-estimators is widely used. An example of an M-estimator is the maximum

likelihood estimator, Van der Vaart (2000). To see this suppose X1, . . . , Xn have a common

density pθ. Then the maximum likelihood estimator maximises the log likelihood

θ 7→
n∑
i=1

log pθ(Xi). (6.4)

Thus, a maximum likelihood estimator is an M-estimator as in (6.2) with fθ = log pθ. If

the density is partially differentiable with respect to θ for each fixed x, then the maximum

likelihood estimator also solves an equation of type (6.3), with mθ equal to the vector of

partial derivatives.

A note of interest is that the definition (6.2) of an M-estimator may apply in cases where

(6.3) does not. For example, if X1, . . . , Xn are iid according to the uniform distribution on

[0, θ], then it makes sense (by defining log 0 = −∞) to maximise the log likelihood

θ 7→
n∑
i=1

(
log 1[0,θ](Xi)− log θ

)
. (6.5)
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However, this function is not smooth in θ and there exists no natural version of (6.3).

Thus, in this example the definition as the location of a maximum is more fundamental

than the definition as a zero.

6.1.1 Consistency of M-Estimators

Since the estimator θ̂n is used to estimate the parameter θ, it would be ideal if the sequence

converges in probability to θ. If this is the case for every possible parameter value, then

the sequence of estimators is consistent, Van der Vaart (2000). For example the sample

mean, Xn is asymptotically consistent for the population mean, EX, provided it exists.

This follows from the law of large numbers. This naturally extends to other sample

characteristics, such as the sample median which is consistent for the population median.

The question that follows then is what can be said about M-estimators in general?

Suppose that the M -estimator θ̂n maximises φn(θ). The asymptotic value of θ̂n depends

on the asymptotic value of φn. By the Law of Large Numbers we may have that

φn(θ)
P→ φ(θ) = Efθ (6.6)

for every θ, provided the expectation exists. The letter P above the arrow indicates

convergence in probability. Convergence as given in (6.6) is not quite enough. Uniform

convergence is needed.

It seems reasonable to expect that the maximiser θ̂n of φn converges to the maximising

value θ0 of φ. The main result that proves this is given in the following theorem, (Van der

Vaart 2000). The theorem statement and proof are reproductions of theorem 5.7 in Van der

Vaart (2000).

Theorem 6.1.1. Let φn be random functions and let φ be a fixed function of θ such that

sup
θ∈Θ
|φn(θ)− φ(θ)| P→ 0, (6.7)
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and for all ε > 0

sup
θ:d(θ,θ0)≥ε

φn(θ) < φ(θ0). (6.8)

Then any sequence of estimators, θ̂n with φn(θ̂n) ≥ φn(θ0)− oP (1) converges in probability

to θ0.

Proof. We have that φn(θ̂n) ≥ φn(θ0) − oP (1). We know that φn(θ0)
P→ φ(θ0), therefore

φn(θ̂n) ≥ φ(θ0)− oP (1) and hence

0 ≤ φ(θ0)− φ(θ̂n) ≤ φn(θ̂n)− φ(θ̂n) + oP (1)
P→ 0 (6.9)

since

sup
θ
|φn(θ)− φ(θ)|+ oP (1)

P→ 0 (6.10)

by assumption. By the second part of the assumption, there exists for every ε > 0 a number

η > 0 such that φ(θ) < φ(θ0)− η for every θ with d(θ, θ0) ≥ ε. The event {d(θ̂n, θ0) ≥ ε} is

contained in the event {φn(θ̂n) < φ(θ0)− η} and the probability of this converges to zero.

In the above, we can replace op(1) with ε as there is no sign specified.

The conditions of the theorem contain a stochastic and a deterministic part. The

deterministic part, equation (6.8), ensures that the maximum θ0 is a unique maximiser and

also that it is a well-separated point of maximum of φ. This means that only parameters

close to θ0 may yield a value of φ(θ) close to the maximum value φ(θ0). The stochastic

condition, equation (6.7), requires uniform convergence of φn.

6.1.2 Conditions for Consistency of M-Estimators

The above approach to prove consistency has two requirements; one deterministic and

one stochastic. We shall discuss these requirements separately and determine a set of

conditions which guarantee these.
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First we shall discuss conditions for which the maximiser θ0 is a well-separated point

of maximum. A sufficient set of conditions is given in lemma 6.2.1, see problem 5.27 in

Van der Vaart (2000). This result tells us that uniqueness of the minimiser for continuous

functions on a compact space are the conditions required to establish that the minimiser

is a well-separated (or isolated) point of minimum. The stochastic condition in theorem

6.1.1 requires uniform convergence of φn. In our situation, the asymptotic gain is the

expected value of the gain minimising the actual error, not its empirical mean. Therefore,

we are interested in more generic random functions and we need a method to prove uniform

convergence in probability.

In this spirit, let Gn(θ) be a generic sequence of random functions, that we consider to

be given by

Gn(θ) = φn(θ)− φ(θ). (6.11)

Then we have the following theorem for generic Uniform Convergence, Newey (1991).

This theorem uses the concept of stochastic equicontinuity (which we discuss in more detail

later) and pointwise convergence to characterise uniform convergence on a compact set. It

is a stochastic generalisation of the continuous result with the same goal, see Rudin (1964).

It is motivated by its relationship to well known results on weak convergence of stochastic

processes, e.g Billingsley (1968).

Theorem 6.1.2. If Θ is a compact space, Gn(θ)
P→ 0, ∀θ ∈ Θ and {Gn(θ) : n ≥ 1} is

stochastically equicontinuous, then

sup
θ∈Θ
|Gn(θ)| P→ 0. (6.12)

Before we prove this theorem, we make some remarks on the conditions required to

achieve the result. In particular, we are interested in discussing the concept of stochastic

equicontinuity. The formal definition of stochastic equicontinuity is given below and in

Andrews (1994).
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Definition 6.1.1. {Gn(θ) : n ≥ 1} is stochastically equicontinuous on Θ if ∀ε > 0, ∃δ > 0

such that

lim sup
n→∞

P

(
sup
θ∈Θ

sup
θ′∈B(0,δ)

|Gn(θ)−Gn(θ′)| > ε

)
< ε. (6.13)

The following two lemmas give equivalent definitions of stochastic equicontinuity. We

omit the proof of this here however see Section 2 of Andrews (1994) for the details.

Lemma 6.1.1. {Gn(θ) : n ≥ 1} is stochastically equicontinuous on Θ if for any random

sequences {θn ∈ Θ}n≥1 and {θ∗n ∈ Θ}n≥1 such that ‖θn − θ∗n‖
P→ 0, ‖Gn(θn)−Gn(θ∗n)‖ P→ 0.

Lemma 6.1.2. The sequence of random functions {Gn(θ) : n ≥ 1} is stochastically

equicontinuous if and only if for every sequence of constants {δn : n ≥ 1} ⊆ R+ with

δn → 0, we have

sup
θ,θ∗∈Θ,d(θ,θ∗)≤δn

‖Gn(θ)−Gn(θ∗)‖ P→ 0.

Using these definitions we can prove the stochastic generalisation of uniform convergence

given in theorem 6.1.2 and Newey (1991).

Proof of Theorem 6.1.2. Since Θ is compact, for any δ > 0, there exists a finite subset

{θk : k = 1, . . . , K} of Θ such that B(θk, δ : k = 1, . . . , K) cover Θ. Let ε > 0, arbitrary

and δ be the positive number such that (6.13) holds. Then,

P
(

sup
θ∈Θ
|Gn(θ)| > 2ε

)
= P

(
max
k

sup
θ∈B(θk,δ)

|Gn(θ)−Gn(θk) +Gn(θk)| > 2ε

)

≤ P

(
max
k

sup
θ∈B(θk,δ)

|Gn(θ)−Gn(θk)|+ max
k
|Gn(θk)| > 2ε

)

≤ P

(
max
k

sup
θ∈B(θk,δ)

|Gn(θ)−Gn(θk)| > ε

)
+ P

(
max
k
|Gn(θk)| > ε

)
≤ P

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

|Gn(θ)−Gn(θk)| > ε

)
+ P

(
max
k
|Gn(θk)| > ε

)
.

(6.14)

Thus,

lim
n→0

supP (sup
θ∈Θ
|Gn(θ)| > 2ε) ≤ ε+ 0 = ε (6.15)
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which implies that

sup
θ∈Θ
|Gn(θ)| P→ 0. (6.16)

In order to establish that the random functions we are considering are stochastic

equicontinuous we need to find a set of conditions that guarantee this fact. Results

which give us conditions with which to prove stochastic equicontinuity as in Andrews

(1994),Newey (1991) will be presented next. However first we have a short discussion on

the notion of tightness for random vectors (Van der Vaart 2000, Newey 1991).

A random vector X is tight if for every ε > 0 there exists a constant M such that

P(‖X‖ > M) < ε. A set of random vectors {Xα : α ∈ A} is called uniformly tight if M

can be chosen the same for every Xα. That is, for every ε > 0 there exists a constant M

such that

sup
α
P(‖Xα‖ > M) < ε. (6.17)

This mean that there exists a compact set to which all Xα give probability almost one.

Another name for uniformly tight is bounded in probability, (Van der Vaart 2000), and we

shall use the notation Xn = Op(1).

Every weakly converging sequence Xn is uniformly tight. According to Prohorov’s

theorem, (Prohorov 1956), the converse is also true: Every uniformly tight sequence

contains a weakly converging subsequence.

The following theorem as given in Newey (1991) characterises the connection between

tightness and stochastic equicontinuity.

Theorem 6.1.3. Suppose there exists N ∈ N such that almost surely

|Gn(θ)−Gn(θ∗)| ≤ Bnh(d(θ, θ∗))

holds for all θ, θ∗ ∈ Θ and n ≥ N , where h is a deterministic function and h(x) → 0 as
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x→ 0 and Bn = Op(1). Then {Gn(θ) : n ≥ 1} is stochastically equicontinuous.

Proof. Let δn → 0. Then for n sufficiently large,

sup
θ,θ∗∈Θ,d(θ,θ∗)<δn

|Gn(θ)−Gn(θ∗)| ≤ Bnh(δn) = Op(1)o(1) = op(1). (6.18)

Hence by definition of stochastic equicontinuity we conclude that {Gn(θ) : n ≥ 1} is

stochastically equicontinuous.

Extending the tools designed above, we shall prove that the estimator κ̂n of the optimal

gain Kn converges to the asymptotic Kalman gain for linear systems. The theory discussed

and developed here reduces our task to proving the assumptions given in theorem 6.1.1.

This theorem is very similar to theorem 5.1.1. The difference here is that the conditions

are now stochastic in nature. The main difficulty we have is we do not have compactness

for our problem but this is a requirement for the theory above to hold.

6.2 Minimising the Out-of-Sample Error

The set up of the problem is the same as in Chapter 5. However, we shall recall the details

for clarity before we prove the main result. Suppose we have an initial state x0, with mean

ẑ0 and covariance Σ0. Suppose also that our model is given by

xn+1 = Axn + qn (6.19)

where x is the state and qn are iid random variables with zero mean and covariance Q

and we have observations given by

ηn = Hxn + rn (6.20)

where rn are iid with zero mean and covariance R and R is strictly positive definite.
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Assume that rn and qn are uncorrelated and note that this model is time invariant since

A, H, R and Q are taken to be constant.

For the system defined by (6.19) and (6.20), we construct an observer of the form

ẑn = Azn−1

zn = ẑn + K(ηn −Hẑn)

(6.21)

where K is the gain matrix that is kept constant. The coupling introduced by this

gain matrix creates a linear feedback in the sense that the error between Hẑn and the

observations is fed back into the model. The ẑn is an estimate of xn based on our a priori

knowledge of the system, up to but not including time n.

We also assume that the system is completely observable and controllable. Recall the

definitions for observability and controllability are given in Chapter 3

It was established in Chapter 5 that the gain matrix, κn, that minimises the expected

out-of-sample error,

E[Hen + r′n]2 = HΓnH
T + R′ (6.22)

converges to the asymptotic Kalman gain, κ∞. We now want to show that the sequence

κ̂n that minimises the empirical mean of the out-of-sample error, and estimates Kn also

converges to the asymptotic gain. Here en = zn − xn and r′n is iid noise with covariance

matrix R′, which is independent of the observation noise rn but comes from the same

underlying flow pattern. The empirical mean is the quantity which we can calculate in

practical situations and as such are interested in its asymptotic properties. Since we want

to minimise the mean of the out-of-sample error, we think of the estimator κ̂n, as an

M -estimator and thus the problem becomes one of proving consistency of the M-estimator.

Naturally, the asymptotic value of κ̂n depends on the asymptotic value of φn. The

deterministic function ψ(K) in this case is defined by the asymptotic error covariance
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HΓ∞HT + R′, which is defined by

ψ(K) = H(A−KHA)Γ∞(A−KHA)THT

+H(1−KH)Q(1−KH)THT + HKRKTHT + R′.

(6.23)

This is a fixed point equation that characterises the asymptotic behaviour of the error

covariance.

6.2.1 Consistency of the Estimator

The requirements for consistency as characterised by theorem (6.1.1) are that κ∞ is a

well-separated point of minimum and that the sample average that describes the empirical

mean of the out-of-sample error converges uniformly to the asymptotic error in (6.23).

Establishing these facts reduces to proving the assumptions in the following theorem. First,

let en = zn − xn, then the out-of-sample error is defined by

φn(K) =
1

n

n−1∑
i=0

(Hei − r′i)2 − 2tr (HKR) (6.24)

Theorem 6.2.1. Consider the continuous functions φn and ψ as defined in (6.24) and

(6.23) respectively, with K ⊂ RD compact. Let κ̂n be the minimiser of φn. Assume

1. P(φn has no minimiser)→ 0

2. P(κ̂n /∈ K)→ 0

3. sup
K∈K
|φn(K)− ψ(K)| P→ 0

4. ψ has a unique minimiser κ∞.

Then κ̂n
P→ κ∞.

Notice that this theorem is very similar to theorem 5.1.1. The difference here is that

the conditions are now stochastic in nature.
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Before we prove this theorem, we establish a small detail that will be required in the

proof. This detail concerns the asymptotic Kalman gain, κ∞. Point (4) in the theorem

explains that κ∞ must be the unique minimiser of ψ. In fact more is true. Coupled with

the fact that K is compact and ψ is continuous, it follows that κ∞ is a well-separated (or

isolated) point of minimum. This means that only parameters close to κ∞ may yield a

value of ψ(K) close to the minimum value ψ(κ∞). The following results establish this fact.

See problem 5.27 in Van der Vaart (2000).

Lemma 6.2.1. For a compact set Θ and continuous function φ, uniqueness of θ0 as a

maximiser implies that θ0 is a well-separated point of maximum.

Proof. Let G ⊂ Θ be open. Then Gc is a closed subset of Θ and is compact. Since φ is

continuous it achieves its maximum on a compact set. Hence there exists some θ∗ ∈ Gc

such that

φ(θ∗) = sup
θ∈Gc

φ(θ). (6.25)

Since θ0 is the unique maximiser of φ we have that

φ(θ0) > φ(θ∗) = supφ(θ) (6.26)

which is the required result.

Lemma 6.2.2. Under the same conditions of theorem 5.1.1, κ∞ is a well-separated point

of minimum of ψ(K).

Proof. Our parameter space is given by K which we assume is compact as in theorem 5.1.1.

This will be proved later. Proposition (5.1.1) gives us uniqueness of the minimiser κ∞

and so from lemma (6.2.1) it follows that κ∞ is a well separated point of minimum of

ψ(K).

Proof of Theorem 6.2.1. Let Gn := {φn has a minimiser }∩{κn ∈ K}. If Gn happens

then the proof of this theorem goes through in exactly the same way as the proof of theorem
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6.1.1.

If not however, it follows that

P(GC) ≤ P(ψn has no minimiser) + P(Kn /∈ K). (6.27)

By assumption both of the terms on the right hand side of the above equation converge

to zero in probability, so the result stays the same.

Notice that compactness is a necessary condition in the result. However, in our specific

case, the isolation of the point is true regardless of compactness. This can be seen by

considering the space K established in Chapter 5 as this will be the space used here also.

By design, it ensures that for any gain that is not a minimiser, the error ψ(K) grows very

large. Therefore, there cannot be another gain that gives a value close to ψ(K). Hence, κ∞

is a well-separated point of minimum. The compactness of the space however, is needed

for other elements of the proof and as such still needs to be included.

As we did in Chapter 5, we need to check that each of the four assumptions made in

theorem 6.2.1 hold. If this is true then we will have proven that the estimator κ̂n that

minimises φn and estimates κn converges to the asymptotic gain in probability.

Assumption (4) in the statement of thereom 6.2.1 is identical to its counterpart in

theorem 5.1.1. This is because the limit and its minimser are the same in both cases. Thus

point (4) in the above has already been established in proposition 5.1.1.

The parameter space K is defined again by K = {K;σ(A−KHA) ≤ 1− ε}∩K0, where

K0 is a compact region. We will determine ε and K0 later.

Since K is a stabilising feedback gain in K, ψ is well defined and given K as above we

will now confirm point (3) in theorem 6.2.1. It is simply the statement that φn converges

to φ uniformly in probability. We shall prove stochastic uniform convergence using the

results presented in Section 6.1.2.
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Let en = zn − xn, then as we have already seen, the out-of-sample error is defined by

φn(K) =
1

n

n−1∑
i=0

(Hei − r′i)2 − 2tr (HKR) (6.28)

which depends on, in particular, the term 1
n

∑
eie

T
i . We will now prove that |ei − εi| → 0

where εi is a stationary process with Cov(εi) = Γ∞.

Consider the error en which is defined by

en = (A−KHA)en−1 + Krn − (1−KH)qn (6.29)

and by induction it follows that

en+m = (A−KHA)me0

+
m−1∑
i=0

(A−KHA)i{Krn+m−i − (1−KH)qn+m−i}.
(6.30)

Now define

e
(m)
0 =

m−1∑
i=0

(A−KHA)i{Kr−i − (1−KH)q−i} (6.31)

where we assume ri, qi are extended to the past. This can be done since the noise terms

are all iid.

Lemma 6.2.3. The error, e
(m)
0 , is a Cauchy Sequence if σ(A−KHA) ≤ 1− ε.

Proof. Let W = A−KHA and consider

e
(m+l)
0 − e(m)

0 =
m+l−1∑
i=m

Wi {Kr−i − (1−KH)q−i} . (6.32)
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Then taking the expected value of the above yields,

E
[
(e

(m+l)
0 − e(m)

0 )2
]

=
m+l−1∑
i=m

Wi {Kr−i − (1−KH)q−i}Wi T

≤
∞∑
i=m

Wi {Kr−i − (1−KH)q−i}Wi T

= Wm

(
∞∑
i=0

Wi {Kr−i − (1−KH)q−i}Wi T

)
WmT

(6.33)

which converges in L2 as required since σ(A−KHA) ≤ 1− ε.

Consider now the L2 limit given by

ε0 = lim
m→∞

e
(m)
0 =

∞∑
i=0

(A−KHA)i{Kr−i +−(1−KH)q−i}. (6.34)

If we now use the random variable ε0 as the initial condition, the process given by

εn = (A−KHA)nε0 +
n−1∑
i=0

(A−KHA)i{Krn−i − (1−KH)qn−i} (6.35)

is stationary. Comparing this to the error obtained when we use the initial condition

e0 = z0 − x0 we see that

en − εn = (A−KHA)n(e0 − ε0)
n→∞→ 0 (6.36)

since σ(A−KHA) ≤ 1− ε. From now on we assume en is stationary. Equipped with the

above information we can now prove stochastic uniform convergence of the sample error as

explained in theorem 6.1.2. Define Gn(K) := φn(K)− ψ(K) then pointwise convergence is

given in the following proposition.

Proposition 6.2.1. Gn(K)
P→ 0 for all K ∈ K.

Proof. The out-of-sample error, φn(K), as defined in (6.28) converges to ψ(K) by the ergodic

theorem (see for example Collet & Eckmann (2007)). Thus the pointwise convergence in
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probability is established.

Stochastic equicontinuity can also be established using theroem 6.1.3.

Lemma 6.2.4. If K is in the compact set K and σ(A −KHA) ≤ 1 − ε then Gn(K) is

stochastically equicontinuous.

Proof. We establish stochastic equicontinuity by showing that

Gn(K)−Gn(K′) ≤ Bnh(|K−K′|) (6.37)

for K,K′ ∈ K, Bn = Op(1) and h a deterministic, continuous function. Since Gn is defined

by Gn(K) := φn(K)− (HΓ∞(K)HT + R′) we have that

|Gn(K)−Gn(K′)| ≤ 1

n

∑
i

|υ2
i (K)− υ2

i (K
′)|+ |H(Γ∞(K)− Γ∞(K′))HT | (6.38)

where υi = Hei − ri. The first term on the right hand side of the above equation can

be expressed in the following way

υ2
i (K)− υ2

i (K
′) = (υi(K)− υi(K′))(υi(K) + υi(K

′)) (6.39)

and

υi(K)− υi(K′) = H(ei(K)− ei(K′)); υi(K) + υi(K
′) = H(ei(K) + ei(K

′)) + 2ri. (6.40)

From the structure of these errors since we have assumed complete observability and

r′i are iid and therefore tight, we simply need to establish stochastic equicontinuity for

(ei(K)−ei(K′)), (ei(K)+ei(K
′)) and (Γ∞(K)−Γ∞(K′)). Proving stochastic equicontinuity

for the term HKR as it appears in (6.28) is trivial.
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By using the explicit expression for the error, ei, we obtain

ei(K)− ei(K′) = (A−KHA)(ei−1(K)− ei−1(K′)) + (K−K′)(ri + Hqi)

+ ((A−KHA)− (A−K′HA)) ei−1(K′).

(6.41)

The second and third terms on the right hand side of (6.41) can be expressed in the

following way:

((A−KHA)− (A−K′HA)) ei(K
′) + (K−K′)(ri + Hqi)

= (K−K′)(ri + Hqi −HAei−1(K′))

= bi(K−K′)

(6.42)

and since (ri + Hqi) are iid, tightness follows while since ei(K
′) converges in distribution

it too is tight; so that bi = Op(1). The convergence in distribution of ei follows from the

earlier discussion when we considered the stationary random variable ε0. This is because

asymptotically, ei and ε0 have the same distribution.

For the first term on the right hand side of (6.41) we use induction. Suppose we start

with the same initial condition, i.e e0(K) = e0(K′), then for i = 1 we have

e1(K)− e1(K′) = (K−K′)(r1 + Hq1 −HAe0) = B1h(|K−K′|) (6.43)

where B1 = Op(1) and h(x) = x. Assume this is true for i = l and consider

el+1(K)− el+1(K′) = (A−KHA)(el(K)− el(K′))

+(K−K′)(rl+1 + Hql+1 −HAel(K
′))

≤ (A−KHA)Blh(|K−K′|) + bl+1(K−K′)

(6.44)
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and since σ(A−KHA) ≤ 1− ε we have

|ei(K)− ei(K′)| ≤ B̃i−1h(|K−K′|) + bi|K−K′| (6.45)

with B̃i = Op(1).

Performing the same calculation and argument on (ei(K) + ei(K
′)) yields

|ei(K) + ei(K
′)| ≤ Ci−1g(|K−K′|) + ci|K + K′| (6.46)

with Ci, ci = Op(1) and so it follows that

|ei(K)− ei(K′)||ei(K) + ei(K
′)| ≤ Lif(|K−K′|) (6.47)

where Li = Op(1) is a combination of Bi, Ci, ci, bi and f is a continuous function.

Therefore we have that

1

n

∑
i

|e2
i (K)− e2

i (K
′)| ≤ 1

n

∑
i

Lif(|K−K′|). (6.48)

Now consider the final term to prove is stochastic equicontinous, (Γ∞(K)− Γ∞(K′)).

Note that

|Γ∞(K′)− Γ∞(K)| ≤ E|e0(K′)− e0(K)||e0(K′) + e0(K)|T (6.49)

where e0 = (A−KHA)e0 +Kr0− (1−KH)q0 and Γ∞ = Ee0e
T
0 . it is then straightforward

to see that

|Γ∞(K′)− Γ∞(K)| ≤ E|(K′ −K)(HAe0 − r0 −Hq0)||(K′ + K)(HAe0 − r0 −Hq0)

+2(e0 + q0)|

≤ Q0v(|K′ −K|)
(6.50)
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where Q0 = Op(1) and v is a continuous function.

Since all the expression are stochastic equicontinuous, it follows that

|Gn(K)−Gn(K′)| ≤ Lnf(|K−K′|) +Q0v(|K′ −K|) (6.51)

which proves the required result.

Therefore, using these results we can establish uniform convergence in probability.

Lemma 6.2.5. Gn(K) converges uniformly in probability, i.e sup
K∈K
|Gn(K)| P→ 0.

Proof. By theorem 6.1.2 and lemma 6.2.4 with the addition outlined above, it follows that

sup
K∈K
|Gn(K)| P→ 0. (6.52)

This then just leaves points (1) and (2) in theorem 6.2.1 to be checked and ε and K0 to

be determined. We shall prove these together.

The results proven in lemmas 5.1.5 and 5.1.6, still hold and apply here. The former

result states that for any minimiser κ̂n, given that it exists, satisfies φn(κ̂n) ≤ R(1− δ).

This is still true now except that it is true in probability. The proof is the same; the

conclusion is as follows,

P(φn(κ̂n) > R(1− δ))→ 0. (6.53)

The second lemma mentioned above proves that the set K0 defined by

K0 := {K;ψ(K) ≤ R(1− δ)}, (6.54)

is compact. This remains identical in this case as the limit ψ is the same in both the

deterministic and stochastic cases.
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Therefore we have established that φn has a minimiser on K0 because K0 is compact

and φn is continuous. We need to ensure that this minimiser exists on K, that is, in

addition the minimising gain must satisfy σ(A−KHA) ≤ 1− ε, i.e. K must stabilise the

error dynamics.

In the deterministic case presented in Chapter 5, using the result established in lemma

5.1.8, we determined that ψn(K) ≥ R, which excluded this gain and any others like it from

being minimisers. In other words, we proved that any minimising gain of the expected

out-of-sample error must stabilise the error dynamics. We did this by finding a uniform

bound outside of the space K.

Proving this in the stochastic case has been difficult and as such has not been completed.

This result is formulated in the following conjecture.

Conjecture 6.2.1. Let νk = Hek, where ek = xk − zk. There exists an ε such that for all

δ

P

(
inf

K:σ(A−KHA)>1−ε

1

n

n∑
k=1

νkν
T
k ≤ R− δ

)
→ 0. (6.55)

For an intuitive discussion about this conjecture, consider for a moment the state error,

en = xn − zn, given by

en+1 = (A−KHA)en − (1−KH)qn+1 + Krn+1

= (A−KHA)en + sn.

(6.56)

By the results in lemma 5.1.8 and corollary 5.1.1 we know that Es2
n ≥ α > 0. We can

also write

vT en =
n−1∑
l=0

λlsn−l (6.57)

for vT (A−KHA) = λvT . Now by results in the theory of random polynomials (see for

example Erdos & Turán (1950), Hughes & Nikeghbali (2008)), the zeros of vT en cluster

on the unit circle. Since sn are iid, any meaningful cancellation between in vT en can only
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happen if λ = O(1). But the out-of-sample error is an average over such polynomials

squared. Intuitively, (6.55) can only happen if the zeros are very different to vT en.

Once the Conjecture is established the following final result then follows immediately.

Theorem 6.2.2. The gain matrix K that minimises φn(K) over the compact set K and

stabilises the system such that σ(A−KHA) < 1, converges in probability to the asymptotic

gain κ∞.

Chapter Summary When calculating errors in practical situations, it is only possible

to determine an estimate of the errors. In the numerical experiments presented in Chapter

3 we calculated the out-of-sample error by means of the empirical mean. As such it was

necessary to determine whether the minimiser of this empirical mean converges to the

asymptotic Kalman gain as suggested in Chapter 3 and Mallia-Parfitt & Bröcker (2016).

In this chapter we have presented the proof that the constant gain matrix that minimises

the empirical mean of the out-of-sample error and estimates the optimal gain, converges to

the asymptotic Kalman gain in the limit of large observational windows.

This was accomplished by treating the estimator κ̂n as an M-estimator and used the

concept of stochastic uniform convergence to prove that it is a consistent estimator. The

conditions required to prove this non-trivial fact are that κ∞ is a well-separated point of

minimum, the error uniformly converges in probability to the asymptotic error and that

the parameter space is compact. Unfortunately, we were unable to complete the result as

Conjecture 6.2.1 has not been proven.



Chapter 7

The Out-of-Sample Error for

Non-Linear Systems

By considering data assimilation schemes which employ linear error feedback, it has been

established in Chapters 5 and 6 that the feedback gain matrix minimising the out-of-sample

error, or even the empirical mean of the out-of-sample error (which is what can be calculated

in practice), converges to the asymptotic Kalman gain in the limit of large observational

windows. We now wish to consider non-linear systems.

We define the out-of-sample error, optimism and tracking error for non-linear systems

and determine, numerically, that the theory developed in Chapter 3 for linear systems,

applies in the non-linear setting. The theory is applicable to non-linear systems with linear

observations since calculation of the out-of-sample error only depends on the structure of

the observations not on the underlying dynamical system. Knowledge of the dynamical

system enters the calculation through the assimilation algorithm.

In the case of non-linear dynamical systems we cannot as easily calculate an explicit

expression for the asymptotic gain neither can we be certain that the optimal gain will

converge in a meaningful way. This is because the asymptotic behaviour of the optimal gain

depends heavily on the presence of dynamical noise and cannot be expected to converge

96
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in a significant way without the presence of model noise. However, we present numerical

experiments for two non-linear systems with linear observations as done in Mallia-Parfitt

& Bröcker (2016).

7.1 Non-Linear System

Consider non-linear dynamical systems of the form

x̃n+1 = f(x̃n)

ηn = h(x̃n)

(7.1)

where f and h are non-linear functions. As for the linear case, the construction of an

observer requires some properties of observability. When a linear system is observable it is

observable regardless of the noise input. For non-linear systems, this is no longer true as,

in general, they have singular inputs that make them unobservable.

For such a system (7.1) define the observability map O by

O(x) =



h(x)

h ◦ f(x)

...

h ◦ fn−1(x)


, (7.2)

where h ◦ f(x) = h(f(x)), f 1 = f , f j = f ◦ f j−1. The system in question is called

observable around a point x0 if the Jacobian (∂O/∂x)(x0) is invertible. Observability is

always required; however there are several approaches designed to construct an appropriate

observer.

The design of state estimation for non-linear systems has been studied thoroughly,

with different approaches being taken to achieve the required results. Krener & Isidori



98 CHAPTER 7.

(1983) and Krener & Respondek (1985) presented a contribution to this observer theory for

systems in which the dynamics of the observation error is linear. However the conditions

to achieve this are rather restrictive. Another algorithm was proposed by Zeitz (1987), in

which time derivatives of the input were used; unfortunately convergence of the observer

cannot be guaranteed in this case.

An approach based on high gain cancellation of the non-linearity was proposed by

Tornambe (1989). However, this approach does not guarantee the asymptotic convergence

of the estimated state to the true state. Ciccarella et al. (1993) construct High Gain

Observers that can be extended to multiple input-multiple output non-linear systems. They

show that the required asymptotic or sometimes exponential convergence can be achieved

for a large enough gain.

A complete contribution to this theory is explained in Gauthier et al. (1992). They

establish that a with non-linear change of coordinates, the state of a non-linear system can

be globally asymptotically tracked by means of an observer whose gain is determined via

a solution of a Lyapunov-like equation. This approach requires the existence of a global

diffeomorphism and is the approach considered here.

Formally, we write this as the following problem. Consider the system (7.1), with no

noise input and with scalar output. Assume that f(0) = 0, h(0) = 0. The problem is to

find conditions ensuring existence of an invertible coordinate change x = T (x̃) such that

the original non-linear system is equivalent to

xn+1 = Axn + ξ(ηn)

ηn = Hxn

(7.3)

where the pair (A,H) is observable in the traditional definition 4.2.1. The following

result gives a solution to the problem, (Lin & Byrnes 1995, Huijberts et al. 1999). It is the

discrete analogue of theorem 5.1.3 presented in Nijmeijer & van der Schaft (1990).
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Theorem 7.1.1. A discrete-time system (7.1) with single output is locally equivalent to a

system (7.3) with observable pair (A,H) via a coordinate change x = T (x̃) if and only if

i the pair (∂h(0)/∂x̃, ∂f(0)/∂x̃) is observable

ii the Hessian matrix of the function h ◦ fn ◦ O−1(s) is diagonal.

Condition (i) means that the Jacobian (∂O/∂x̃)(0) is invertible. Condition (ii) can be

interpreted in the following way. If condition (i) holds, the transformation s = O(x̃) is a

local diffeomorphism and so s forms a new set of local coordinates for the dynamics (7.1)

around the origin. In these new coordinates, the system (7.1) takes the form

sn+1 =



s
(2)
n

s
(3)
n

...

s
(k)
n

fs(sn)


, ηn = s(1)

n (7.4)

where fs(s) = h◦fn◦O−1(s) and s(i) := h◦f i−1. Equation (7.4) is called the observable

form of the system (7.1), (Huijberts et al. 1998). Condition (ii) is then equivalent to the

local existence of functions φ1, . . . , φn : R→ R such that

fs(s) = ξ1(s(1)) + ξ2(s(2)) + . . .+ ξn(s(n)). (7.5)

With these functions known, the transformation

xi = sn+1−i −
n∑

k=i+1

ξk(s
(k−i)) (7.6)
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for i = 1, . . . , n then transforms the observable form (7.4) into the required form,



x
(1)
n+1 = ξ1(yn)

x
(2)
n+1 = x

(1)
n + ξ2(ηn)

...

x
(k)
n+1 = x

(k−1)
n + ξk(ηn)

ηn = x
(k)
n .

(7.7)

Therefore, we shall be considering systems of the form

xn+1 = Axn + ξ(Hxn)

ηn = Hxn.

(7.8)

Systems of this form are known as systems in Lur’e form. The observer is set up in a

similar way to Chapter 3 so that our sequential scheme is given by

ẑn+1 = Azn + ξ(ηn+1)

zn+1 = ẑn+1 −Kn(Hẑn+1 − ηn+1)

yn = Hzn

(7.9)

where Kn is the feedback gain matrix which may depend on the observations η1, . . . ηn−1

but not on ηn and yn is the model output. Once again we shall be considering data

assimilation through synchronisation.

Due to the linearity in the observation operator, the calculations for the out-of-sample

error, tracking error and optimism are the same as in the linear case. The statistic we use

to calculate the out-of-sample error is also identical to the linear case and recall that is

given by

E[yn − ηn]2 = E[yn − η′n]2 − 2σ2tr(K
T

nHT ). (7.10)
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The linearity in the observation operator allows for simple calculation of the optimism

and hence the out-of-sample error. Evidently, even in this non-linear case, calculating the

out-of-sample error is straightforward and we do not need any information about the model

error. The only information required is the feedback gain matrix, observation operator,

and observational error covariance matrix

7.2 Numerical Experiment I: Hénon Map

We carried out numerical experiments to test the methodology described above and in

Chapter 3 as done in Mallia-Parfitt & Bröcker (2016). The following experimental setup

was used: The reality is given by

xn+1 =

a b

1 0


︸ ︷︷ ︸

A

xn + c

(Hxn)2

0

+ d (7.11)

which for the values a = 0, b = 0.3, c=−1.4, d = [1 0]T is the chaotic Henon Map with

corresponding observations

ηn = Hxn + σrn (7.12)

where H = [1 0], and ζn = Hxn. The model describing the reality is completely

deterministic and we assume that the observations are corrupted by random noise. For

these experiments we have xn ∈ R2 and ηn ∈ R.

Here we consider data assimilation by means of synchronisation so we set up an observer

roughly analogous to our sequential scheme (7.9),

zn+1 = ẑn+1 + Kn(ηn+1 −Hẑn+1), yn = Hzn (7.13)
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where

ẑn+1 =

a b

1 0


︸ ︷︷ ︸

A

zn + c

η2
n

0

+ d (7.14)

where a, b, c, d are the same as for the reality. In this case the model is coupled to the

observations through a linear coupling term which is dependent on the difference between

the actual output and the output value expected based on the next estimate of the state.

However there is also a non linear coupling introduced here by the presence of η2
n in the

background term. Note that (7.10) is still valid nonetheless because ẑn+1 is still uncorrelated

with rn+1. For these experiments we will take the coupling matrix Kn to be constant so

from here on in we write Kn = K.

We need to choose the matrix K appropriately so that we can vary the coupling strength.

If the coupling is too strong the observations will be tracked too closely and if the coupling

is too weak the observations are tracked badly or not at all. We first consider the noise-free

situation so that ηn = Hxn. The error dynamics in this case are given by

en+1 = xn+1 − zn+1

= xn+1 − ẑn+1 −KH(xn+1 − ẑn+1)

= (1−KH)(xn+1 − ẑn+1)

= (A−KHA)(xn − zn)

= (A−KHA)en.

(7.15)

The matrix (A−KHA) is stable even if K = 0. This means that synchronisation occurs

even if there is no linear coupling between the model output and observations because of

the non linear coupling introduced in the model (7.14). The eigenvalues for such a case

are λ1,2 = ±
√
b, where b is as in the matrix A. However, it might be that with noise, the
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out-of-sample error is not optimal for this coupling and can be improved with some other

linear coupling.

To investigate this possibility we once again use results from control theory and thus

need observability of the system to be satisfied. In our example, xn ∈ R2 so our observability

matrix is

O = [HA HA2]T . (7.16)

It is straightforward to check that the system we are working with here is observable

provided that b 6= 0. Since

H = [1 0] and A =

0 0.3

1 0

 (7.17)

it follows that

HA = [0 0.3] and HA2 = [0.3 0] (7.18)

and hence the observability matrix in this case, has full rank.

The appropriate K for a desired characteristic polynomial, q(λ) of the matrix (A−KHA)

follows from Ackermann’s Formula (Dorf & Bishop 2005) which is given by

K = q(A)O−1[0 . . . 1]T . (7.19)

Suppose that the desired characteristic equation is given by

q(λ) = (λ+ α)(λ− α) (7.20)
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so that λ1 = −λ2 and |λ1| = |λ2| = α. Then by Ackermann’s formula we get

K =

1− α2/b

aα2/b2

 ⇒ HK = 1− α2

b
(7.21)

where a = 0 and b = 0.3 as in the matrix A. From (7.21) we see that as α→ 0, HK→ 1.

Thus,

yn = Hzn = (1−HK)Hẑn + HKηn → ηn, (7.22)

meaning that our data assimilation scheme simply replaces yn with ηn, implying that the

tracking error is zero. However this does not imply perfect data assimilation, by which we

mean that the tracking tending to zero does not imply that the out-of-sample error is also

small.

From (7.10) we know that

E[yn − η′n]2 − E[yn − ηn]2 = 2σ2

(
1− α2

b

)
. (7.23)

Recall that the aim of this work is to find a way to estimate the out-of-sample error to get

a more realistic picture of model performance. We have already determined that when

there is no linear coupling (i.e. K = 0) the system is stable and synchronisation occurs.

We can see from (7.23) that this happens when α = ±
√
b. There are two further cases to

consider. When α2 > b the feedback, due to the linear coupling, is negative. Therefore, in

this case we will not be able to improve the out-of-sample error. However as α tends to

zero the optimism will increase and be bounded by 2σ2. Therefore when α2 < b it may be

possible to improve the out-of-sample error and determine a coupling matrix K 6= 0 to use

in the model.

To calculate the errors in the numerical simulation we approximate the expected value
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Figure 7.1: Figure 7.1(a) shows a plot of the tracking error in blue squares and the
out-of-sample error in black diamonds. The errors are plotted against the inverse of α for
σ = 0.01. Figure 7.1(b) shows a plot of the out-of-sample error in black diamonds for 100
realisations of the observational noise rn with σ = 0.01. It is displayed for the range of α
where the minimum occurs. The error bars represent 90% confidence intervals. The state
error is show in blue circles also for 100 realisations of the observation noise with 90%
confidence intervals. The vertical line draws attention to the minimum of both curves.

of a random variable, E[X], by the empirical mean squared error. Thus, (7.23) becomes

1

N

N∑
n=1

(yn − η′n)2 − 1

N

N∑
n=1

(yn − ηn)2 = 2σ2

(
1− α2

b

)
. (7.24)

Any uncertainty in the calculation of the optimism will be assessed through bootstrapping.

This is a statistical method used to assign measures of accuracy to sample estimates. In our

case we run the experiment many times, each time changing the noise rn so that the sample

estimate is different every time. We then construct confidence intervals as a measure of

accuracy.

The results obtained from our numerical experiment to test the theory described above

are shown in Figure 7.1 and Mallia-Parfitt & Bröcker (2016). For these experiments we

used σ = 0.01, n = 10000 and varied the parameter α between 0 and 1. Figure 7.1(a)

shows the tracking error in blue squares and the out-of-sample error in black diamonds
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plotted against the inverse of α. We can see that the tracking error tends to zero with

decreasing α. This is what we expected and is confirmed by using our analytical expression

for the optimism.

The tracking and out-of-sample errors meet when α2 = b. To the left of this, when

α2 > b, the tracking error is greater than the out-of-sample error. To the right, when

α2 < b, the tracking error is smaller than the out-of-sample error. In fact the tracking error

tends to zero while the out-of-sample error decreases and then starts to increase again

resulting in a well defined minimum. This is because as the coupling strength increases,

the observations are tracked too closely and thus the model output adapts too closely to

the observations resulting in an increase in the out-of-sample error, much like we saw in

the linear case. On the other hand, when α is large and the coupling strength is weak, the

observations are tracked badly resulting in large tracking and out-of-sample errors.

The well defined minimum of the out-of-sample error is shown more clearly in Fig-

ure 7.1(b). Figure 7.1(b) shows the out-of-sample error (black diamonds) for the range of

α where the minimum occurs. The figure shows the out-of-sample error for 100 realisations

of the noise rn with σ = 0.01. The error bars represent 90% confidence intervals for each

α where the lower limit of the errorbars is plotted at the fifth percentile while the upper

limit is plotted at the 95th.

Figure 7.1(b) also shows the sate error (blue circles) for 100 realisations of the noise rn

with σ = 0.01 and again with 90% confidence intervals for each α. The state error which

we recall is defined by

1

n

n∑
i=1

e2
i =

1

n

n∑
i=1

(zi − xi)2. (7.25)

The black, vertical line draws attention to the minimum of the out-of-sample error. However,

we can see that the minimum is actually the same for both errors. When running data

assimilation schemes, the state error is the error we are interested in minimising, however

we only have access to the error in observation space. Even though this is the case, we

have shown numerically that the minimising gain is the same for both errors.
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What is particularly of interest here is that even though the dynamical system included

a non linear term, the methodology still applies, provided that the eigenvalues of the matrix

(A−KHA) are < 1− ε. If we consider the error dynamics for the noisy case we see that

en+1 = (A−KHA)en + Krn+1 − (1−KH)(qn+1 + ξ(Hxn)− ξ(ηn)) (7.26)

where ξ(·) represents the nonlinearity in the dynamical system. These error dynamics

contain a linear part and a non linear part. This experiment suggests that the eigenvalues

of the linear part of the error dynamics have to be < 1− ε for the theory described above

and in chapter 3 to hold.

7.3 Numerical Experiment II : Gain Convergence for

Hénon Map

As a result of the process outlined above we are also able to determine the optimal coupling

matrix, K, to be used in the algorithm. The gain that minimises the out-of-sample error

in the above experiments, is determined by arbitrarily choosing the parameter α. In order

to analyse the asymptotic behaviour of this gain, we need to consider all possible gains

that stabilise the system, much like we did for the linear systems in Chapter 3.

We ran some numerical experiments to test how the asymptotic behaviour of the gain

matrix that minimises the out-of-sample error behaves asymptotically as in Mallia-Parfitt

& Bröcker (2016). For this non-linear numerical experiment the following experimental

setup was used: The reality is given by

xn+1 =

a b

1 0


︸ ︷︷ ︸

A

xn + c

(Hxn)2

0

+ d+ ρqn+1 (7.27)
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Figure 7.2: Figure 7.2(a) shows the convergence of the gain minimising the out-of-sample
error by plotting the norm of the gain matrix K as n increases for σ = 0.01. Figure 7.2(b)
is a plot of the norm of the eigenvalues of the matrix (A−KHA) for each gain minimising
the out-of-sample error and we see that the eigenvalues too converge exponentially.

which for the values a = 0, b = 0.3, c=−1.4, d = [1 0]T is the chaotic Henon Map with

corresponding observations

ηn = Hxn + σrn (7.28)

where H = [1 0]. The observer is set up in exactly the same way as in (7.13). The

observational noise rn is iid with mean zero and variance one and notice that we have

added dynamical noise to the model in equation (7.27). This dynamical noise is also iid

with Eqn = 0 and EqnqTn = 1. If this noise wasn’t present in the underlying system, then

we could not expect the gain matrix to converge in a meaningful way as the gain may not

be well defined. Even without coupling, it is possible that the observer and model will

synchronise due to the presence of the η2
n term in the background term. However this does

not mean the appropriate gain matrix in this case is the optimal one.

The results obtained in this experiment are shown in Figure 7.2. The observational

noise is iid with Ern = 0, ErnrTn = 1 with σ = 0.001. The dynamical noise is also iid with

mean zero and variance one with ρ = 0.004. The true evolution of the model which we
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denote by n was taken to vary between 0 and 4× 105. For each n the optimal gain was

determined and recorded. We also calculated the eigenvalues of the matrix (A−KHA)

for each minimising gain. It is expected that the gain matrix will converge as n increases,

however in this non-linear case, determining the exact structure of this limit is not so

straightforward.

When we considered the linear system in Chapter 3, we had the optimal linear filter (i.e

the Kalman Filter) to compare the results with. However here, even though the observer is

linear, the Kalman Filter is not optimal and thus the asymptotic gain as defined previously

is not the limit in the convergence. Further to this, such a limit is difficult to determine.

This is because we have little information on the correlation between the non-linear term

and the other terms in the error dynamics. That being said we can still deduce some

information from these numerical experiments.

The results are shown in Figure 7.2. Figure 7.2(a) shows a plot in blue squares of ||K||

against n. It is evident from the figure that the constant gain matrix that minimises the

out-of-sample error converges exponentially. This is further confirmed in Figure 7.2(b) in

which it is clear that the eigenvalues of (A −KHA) for each gain also converge. This

second figure shows a plot in blue diamonds of ||λ|| against n and we can see that the

convergence here is also exponential.

7.4 Numerical Experiment III: Lorenz ’96

For this third numerical experiment (as presented in Mallia-Parfitt & Bröcker (2016)), the

reality is given by the Lorenz’96 model which is governed by the following equations

ẋi = −xi−1(xi−2 − xi+1)− xi + F (7.29)
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and exhibits chaotic behaviour for F = 8. By solving the above differential equation we

obtain a discrete model for our reality which we denote by

xn+1 = Φ(xn). (7.30)

We take corresponding observations of the form

ηn = Hxn + σrn (7.31)

where H is the observation operator and rn is iid noise. We shall take the state dimension

to be D = 12, the observation space to be d = 4 and we define the observation operator so

that we observe every third element of the state. The system we construct here is fully

non-linear with linear observations.

The assimilating model will use the Lorenz’96 model coupled to the observations through

a simple linear coupling term, as done in the the previous numerical experiments. We set

the coupling matrix K, to be defined by

K = κHT (7.32)

where κ is a coupling parameter taken to be between 0 and 1. With this information, the

assimilating model is defined by the following equations

ẑn+1 = Φ(zn); zn+1 = ẑn+1 + κHT (ηn+1 −Hẑn+1). (7.33)

Once again we will vary the coupling strength in the observer by adjusting the coupling

parameter κ. If the coupling is too strong, the observations will be tracked too rigorously

and so the observational noise will not be filtered out. If the coupling is too weak the

observations are tracked poorly; so once again we expect the out-of-sample error to take a

minimum at some non-trivial value of κ.
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Figure 7.3: Figure 7.3(a) presents the out-of-sample error (black diamonds) and the tracking
error (blue squares). Figure 7.3(b) illustrates the out-of-sample error (black diamonds)
and the state error (blue circles) with the error bars representing 90% confidence intervals.
The black vertical line draws attention to the minimum of the out-of-sample error.

As always we are interested in the behaviour of the state error and, ultimately, this

is the error we want to be minimal. We saw in Section 7.2 that the minimiser for the

out-of-sample error was the same as for the state error. This shall be investigated here

also.

The results obtained are shown in Figure 7.3 and in Mallia-Parfitt & Bröcker (2016).

The model was integrated with a time step δ = 1.5× 10−2. Once again the observational

noise is iid with Ern = 0, ErnrTn = 1 and σ = 0.01. Since the gain is given by equation

(7.32), the optimism reduces to 8σ2κ. To calculate the the errors, a transient time was

ignored to give the system time to synchronise. In Figure 7.3(a) the out-of-sample error

(black diamonds) is presented together with the tracking error (blue squares). The black

vertical line draws the eye to the minimum of the out-of-sample error. As in the previous

experiments, the tracking error reduces to zero while the out-of-sample error increases due

to the change in coupling strength.

Figure 7.3(b) presents the out-of-sample error (black diamonds) and the state error
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(blue circles). The figure shows the errors for 100 realisations of the observational noise,

rn. The error bars represent 90% confidence intervals for each value of κ with the lower

limit of the error bars taken at the fifth percentile and the upper limit taken at the 95th.

Again, the black line draws attention to the minimum of the out-of-sample error and we

once again see that the minima of the state and out-of-sample errors coincide. It is evident

that these results support the results determined previously in the numerical experiments.

The minimisers of the out-of-sample error and state error coincide just as shown in

Section 7.3. The tracking error, with increasing coupling strength, decreases and converges

to zero while the out-of-sample error increases and thus has a well defined minimum. The

optimism monotonously increases with increasing coupling strength.

Thus it is clear here that even for fully non-linear systems with linear observations,

the theory of out-of-sample error holds. This is because the calculation of the optimism

only depends on the observation operator and does not depend on the structure of the

background term; neither does it depend on how the background term is obtained.

The asymptotic behaviour of the optimal gain depends heavily on the presence of

dynamical noise. As we have seen previously, the gain cannot be expected to converge in a

significant way without the presence of model noise. For example it is possible that the

dynamics may enter a region of stability resulting in a reduction of the error. In this case

it would make sense to reduce or eliminate the coupling; however such gain matrices are

not being considered here.

Ideally we would like to rigorously prove that for non-linear systems, the sequence

of minimising feedback gains converges to some asymptotic gain. This task is not an

impossible one; in fact the same linear proof presented in Chapter 6 can be adapted (for

the most part) to work for non-linear systems. Unfortunately, there is one fundamental
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hurdle that cannot be so easily overcome. To see this consider a dynamical model given by

xn+1 = Axn + ξ(Hxn) + qn+1

ηn = Hxn + rn

(7.34)

where x is the state, η are the observations and qn and rn are iid model and observation errors

with covariance matrices Q and R respectively. Assume that qn and rn are uncorrelated

and that ξ is Lipschitz continuous. Assume also that the observation error covariance

matrix is strictly positive definite.

For the system given by (7.34) we construct an observer of the form

ẑn = Azn−1 + ξ(ηn−1)

zn = ẑn + Kn(ηn −Hẑn)

(7.35)

where Kn is the gain matrix which may or may not depend on n. Then the error

dynamics are given by

en+1 = (A−KHA)en − (1−KH)(qn+1 − ξ(ηn) + ξ(Hxn)) + Krn+1 (7.36)

and the error covariance matrices can be calculated to obtain the following equations:

Γn = E[(zn − xn)(zn − xn)T ] = (I−KnH)Σn(I−KnH)T + KnRKT
n (7.37)

Σn = E[(ẑn − xn)(ẑn − xn)T ] = AΓn−1A
T + Q + Tn−1 (7.38)

where

Tn = E[(ξ(ηn)− ξ(Hxn))(ξ(ηn)− ξ(Hxn))T ]

+E[A(zn − xn)(ξ(ηn)− ξ(Hxn))T ] + E[(ξ(ηn)− ξ(Hxn))(zn − xn)TAT ].

(7.39)
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The ideas using the theory of M-estimators to prove the result can still be applied

however it is essential that we have further information about the correlation between the

non-linear term in (7.36) and the remaining terms in the error dynamics. This is the main

difficulty in constructing a rigorous proof. More restrictive assumptions will have to be

made on the non-linear term and on the system itself.

In addition to this problem, we still have to find a candidate for the asymptotic gain

in the non-linear case. It may be reasonable to take this candidate to be the asymptotic

limit of the error covariance in (7.37), however this will include taking the limit of the

extra term, Tn, which represents the correlation between the non-linearity and the error

itself. If the gain matrix converges then Tn also converges; this is not difficult to determine.

However, more information is still required as we have very little information about how

this term behaves asymptotically.

Chapter Summary In this chapter we considered non-linear systems and the concept

of the out-of-sample error for systems in Lur’e form and fully non-linear systems but with

linear observations. We illustrated the theory working using the chaotic Hénon Map and

Lorenz ’96 system as the underlying dynamical models in the experiments. Numerical

results show that the theory works in a very similar way to the linear case presented

earlier in Chapter 3 and Mallia-Parfitt & Bröcker (2016). Establishing that the feedback

gain matrix converges is slightly trickier in this setting however it has been established

numerically for system in Lur’e form. Rigorously proving this fact is not so straightforward

as we have little information about the non-linear term and its correlation with the other

terms in the error dynamics.
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Conclusion

When considering data assimilation algorithms, it is essential that the performance of these

schemes is analysed. Perhaps even more important than simply assessing the performance,

the analysis must be done in such a way that it provides a true and honest assessment of

the algorithm. The traditional way of determining how well an algorithm performs, is to

compare the output with the measured observations. However, this can easily provide a

false assessment of the performance since the measurements are already used to obtain the

output in the first place. Using completely independent observations from the same time

and region to assess the performance will be the ideal option, however practically this is

not feasible as such observations hardly ever exist.

A possible remedy was suggested by considering the out-of-sample error which we recall

is simply the error between the output and the true observation added to the variance

of the observational noise. Numerical experiments utilising both linear and non-linear

systems, suggested that this error provides a better assessment of performance. Where the

tracking error (the error between the output and measured observations) approached zero

with increasing coupling strength, the out-of-sample error increased again, resulting in a

well-defined minimum and thus an optimal coupling parameter.

When running data assimilation schemes, the error we are ultimately interested in

115
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reducing is the error between the underlying state and the trajectory obtained by the data

assimilation algorithm. However, calculating this error is not possible in practice as we do

not have access to the underlying state. Thus we must do the best we can using errors in

observation space as the measured observations are the only real data that we have access

to. Numerical experiments for both linear and non-linear systems, suggest however that

the minimum of the out-of-sample error coincides with the minimum of the state error.

These numerical experiments were also used to determine the asymptotic behaviour of

the optimal gain matrix that produced minimal out-of-sample error. Moreover, for linear

systems, the limit of this convergence was shown to be the same as that for the Kalman

Gain, the optimal gain used in the Kalman Filter. The challenge that followed was to

rigorously prove that the optimal gain did indeed converge to the asymptotic Kalman Gain.

Proving this result for the expected error covariance was done first and it was established

that the sequence of gain matrices that minimise the out-of-sample error does indeed

converge to the asymptotic gain. However, in practice, it is the empirical mean of the error

that is calculated not the error itself. Therefore, it was necessary to determine whether

the minimiser of the empirical mean of the out-of-sample error converged to the minimiser

of the asymptotic error, i.e the asymptotic Kalman Gain.

Using ideas from the theory of asymptotic statistics, in particular the theory of M-

estimators, a detailed proof of the aforementioned result was presented. The proof boiled

down to establishing that the estimator was asymptotically consistent, however a direct

application of known theorems was not so straightforward in this specific setting. That

being said, results using stochastic equicontinuity to establish uniform convergence were

adapted and given certain assumptions the required result was established. There is still

one outstanding result (Conjecture 6.2.1) that prevents us from completing the proof in

its entirety. We cannot state for certain that all potential minimisers stabilise the error

dynamics. This was achieved for the deterministic case (i.e. Chapter 5), however it is not

so straightforward for the stochastic case.



117

Naturally, proving this result for non-linear system was considered. The numerical

experiments for systems in Lur’e form and indeed for fully non-linear systems also, estab-

lished that the theory of the out-of-sample error applies. The results presented show that

provided certain conditions are met, an optimal gain matrix can be determined in the sense

that the out-of-sample error is minimised. Moreover, once again it was shown numerically

that the minimum of the out-of-sample error is the same as that for the state error.

When considering the convergence of the optimal gain matrix for non-linear systems,

the presence of dynamical noise in the underlying system becomes extremely important.

If there is no model noise present, then we cannot expect the gain matrix to converge in

a meaningful way as this gain may not be well defined. For example it is possible that

the dynamics may enter a region of stability, resulting in a reduction of the error. In this

case it would make sense to reduce or completely eliminate the coupling parameter. This

would need the coupling matrix to be adaptive in some way; a concept not considered

here. However, if one does add model noise to the system, convergence of the optimal

gain may occur. In this event it is desirable to prove that the same results that hold for

linear systems, apply in the non-linear case. In the case of a Lur’e system, the added

complication comes from the presence of the nonlinearity. In particular the problem is in

the correlation between the non-linear term and the other terms in the error dynamics. In

order to apply a similar proof to that of the linear system, a good understanding of this

correlation will be required.



Appendix A

The Best Linear Unbiased Estimate

Analysis

Recall that the problem of four-dimensional variational data assimilation (4D-Var) is to

find the initial state that minimizes the weighted least squares distance to the background

while minimizing the weighted least squares distance of the model trajectory to the

observation over the time interval [t0, tN ], Lawless (2012). Mathematically, we write this

as an optimization problem:

Find the analysis state xa0 at time t0 that minimizes the function

J(x0) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
n=0

(h(xn)− ηn)TR−1
n (h(xn)− ηn) (A.1)

subject to the states xn satisfying a specified non-linear dynamical system. The minimiza-

tion problem given by (A.1) can be interpreted in a statistical or deterministic sense. From

Bayes’ Theorem it can be shown that xa0 gives the maximum likelihood estimate of the state

under the assumptions that all errors considered are Gaussian. Alternatively, the term

measuring the fit to the background state can be thought of as a form of regularisation in

fitting the observations, Lawless (2012).

The Best Linear Unbiased Estimate (BLUE), obtained through least squares fitting is
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given by

xa = xb + K(η − h(xb)), K = BHT (HBHT + R)−1 (A.2)

where K is called the gain or weight matrix. This BLUE analysis is equivalently obtained

as a solution to the variational optimisation problem. Euqation (A.2) is the mathematical

expression of the fact that we want the analysis to depend linearly on the difference between

the background and the observations. We also want the analysis state to be as close as

possible to the true state in the sense that we want it to be a minimum variance estimate.

In the case of Gaussian errors (which we assume here), the minimum variance estimate is

equivalent to the maximum likelihood estimate.

To show that the BLUE analysis is equivalently obtained as a solution to the variational

optimisation problem, consider the optimization problem for 3D-Var: Find the state x that

minimises the cost function,

J(x) = (x− xb)TB−1(x− xb) + (η − h(x))TR−1(η − h(x)). (A.3)

If we assume that xa is the state that minimises J(x) so that ∇J(xa) = 0 and that h is

linear so that h(x)− h(xb) = H(x− xb) where H = ∂h/∂x we have that

0 = ∇J(xa)

= B−1(xa − xb)−HTR−1(η − h(xa))

= B−1(xa − xb)−HTR−1(η − h(xb)−H(xa − xb))

⇒ xa − xb = (B−1 + HTR−1H)−1HTR−1(η − h(xb)).

(A.4)

By the Shermann-Morrison-Woodbury formula (Bartlett 1951) we see that

(B−1 + HTR−1H)−1HTR−1 = BHT (HBHT + R)−1. (A.5)
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Hence, we have that

xa = xb + K(η − h(xb)), K = BHT (HBHT + R)−1 (A.6)

as expected. We can also calculate the analysis error covariance matrix which is defined by

A = (I−KH)B(I−KH)T + KRKT . (A.7)

This expression is obtained directly from calculating E[(xa − xt)(xa − xt)T ]. In the case

where K = BHT (HBHT + R)−1, the optimal choice for K, the analysis error covariance

matrix reduces to

A = (I−KH)B. (A.8)

Calculating the BLUE directly can result in some difficulties as it requires the inversion of

large matrices. We also require a definition of the B matrix which is not always possible in

real world systems and it is difficult to use non-linear observation operators. Therefore, we

need to consider minimising the cost function directly which is the aim of variational data

assimilation.

The cost function can be minimised using iterative numerical methods such as conjugate

gradient or quasi-Newton methods. On each iteration the value of the cost function and its

gradient at the current iterate must be calculated. To do this we solve the discrete adjoint

equations which we obtain through the method of Lagrange Multipliers. Define Lagrange

multipliers λ and the Lagrangian

L = J(x0) +
N∑
n=0

λTn+1(xn+1 − f(xn)). (A.9)

The necessary conditions for a minimum are

∂L

∂λn
= 0 and

∂L

∂xn
= 0. (A.10)
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The first of these conditions yields xn+1 = f(xn), which is just our original constraint while

the second yields the discrete adjoint equations given by

λn = FT
nλn+1 −HT

nRT
n (h(xn)− ηn), n > 0 (A.11)

with λn+1 = 0. Here Hn and Fn are the Jacobians of the non-linear operators hn and fn

with respect to the state variables xn.These Jacobians are referred to as the tangent linear

operator and the tangent linear model (TLM) respectively, Lawless (2012). The gradient

of the cost function, J(x), with respect to the initial state, x0, is then

∇J(x0) = B−1(x0 − xb)− λ0 (A.12)

where the operators HT
n and FT

n are the adjoints of the observation operator and the

non-linear model. The adjoint is equal to the matrix transpose of the Jacobians these

adjoints are usually taken with respect to the Euclidean inner product, Lawless (2012).

For numerical optimization methods, each iteration requires one run of the forward

model to calculate the value of the cost function and one run of the adjoint model (A.11) to

calculate the value of the gradient. This makes 4D-Var very expensive from a computational

point of view. The possibility of implementing variational data assimilation in an operational

setting came with the proposal of incremental variational data assimilation, Courtier et al.

(1994).



Appendix B

Singular Value Decomposition

Singular Value Decomposition (SVD) is the method of choice for solving most linear least

squares problems since it is considered to be a very stable method, Press et al. (1988).

SVD methods are based on the following theorem.

Theorem B.0.1. Any m× n matrix X whose number of rows m is greater than or equal

to the number of columns n can be written as the product of an m× n column orthogonal

matrix U, an n× n diagonal matrix D with positive or zero elements and the transpose of

an n× n orthogonal matrix V:

X = UDVT (B.1)

The SVD of the matrix X has the form X = UDVT . Here U,D,V are as required in

Theorem (B.0.1).

Using the singular value decomposition we can write the ridge regression fitted vector

as

Xβ̂ridge = X(XTX + λI)−1XTy = Hλy

= UD(D2 + λI)−1DUTy

=

p∑
i=1

ui
d2
i

d2
i + λ

uTi y

(B.2)
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where ui are the columns of U and di are the singular values of X and Hλ is called the hat

matrix. Notice that d2
i /(d

2
i +λ) ≤ 1 since λ ≥ 0. Ridge regression computes the coordinates

of y with respect to the orthonormal basis U; it then shrinks these coordinates by the

factors d2
i /(d

2
i + λ). The greater amount of shrinkage is applied to the coordinates of basis

vectors with smaller d2
j , Hastie et al. (2009).

Using the singular value decomposition for ridge regression (B.2), we can get a closed

form expression for the effective degrees of freedom. This quantity is given by

df(λ) = tr(Hλ)

= tr(X(XTX + λI)−1XT )

=

p∑
i=1

d2
i

d2
i + λ

.

(B.3)

This is a monotone decreasing function of λ and it is known as the effective degrees of

freedom of the ridge regression fit. Usually in a linear regression fit with p variables, the

degrees of freedom of the fit is p, the number of free parameters; however in ridge regression

they are fit in a restricted fashion controlled by λ although all p coefficients will be non-zero.

Note that when λ = 0, df(λ) = p and df(λ)→ 0 as λ→∞.



Appendix C

Asymptotic Properties of the

Kalman Filter

The proof of Theorem 4.2.1 is done in the following four steps, as done in Anderson &

Moore (1979):

• Σn is bounded for all n.

• For zero initial condition, Σn is monotone increasing with n and together with the

bound in the first point, it establishes the existence of lim Σn. Equation (4.16) will

be recovered.

• The stability property is established.

• Allow for arbitrary non-negative symmetric initial condition, Σ0.

• Establish uniqueness and positive definiteness of Σ∞.

We shall prove these items in that order next.

Proof of Theorem 4.2.1.

Bound on the Error Covariance

124



125

We define a suboptimal filter whose error covariance must over bound Σn. By the

assumption of observability of the pair (A,H), there exists a matrix Ke such that |λi(A−

AKeH)| < 1.

Define a suboptimal, asymptotically stable filter by

zen+1 = Azen + Ke[ηn −Hzen], ze0 = 0. (C.1)

The error covariance is given by

Σe
n = E(xn − zen)(xn − zen)T

= (A−AKeH)Σe
n(A−AKeH)T + AKeRKT

e AT + Q.

(C.2)

If we are comparing (C.1) with an optimal filter initialised by Σ0, the initial uncertainty

in x0 is Σ0 and by (C.1), we have Σe
0 = Σ0. But (C.1) is a sub-optimal filter so in general,

Σe
n ≥ Σn ≥ 0. Because of the stability of this suboptimal filter, Σe

n has a bounded solution

for any initial condition. Thus we have obtained a bound on Σn.

Use of Zero Initial Condition

Suppose now that Σ0 = 0. We shall show that Σn is increasing with n. The argument

simply says that if two filtering problems are considered that are identical except that

the initial uncertainty is greater for one than the other, then the ordering property in the

errors in estimating the state at an arbitrary time will be preserved.

Consider the variance equation in (4.13) with two initial conditions Σ
(1)
0 , Σ

(2)
0 with the

property that

0 = Σ
(1)
0 ≤ Σ

(2)
0 . (C.3)

We shall use induction to establish that
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Σ(1)
n ≤ Σ(2)

n (C.4)

which implies that the ordering property of the initial conditions is preserved. This

ordering is true for n = 0 and now assume that it is also true for n = 1, . . . , i− 1. Then an

optimal version of the variance equation yields,

Σ
(2)
i = min

K
[(A−AKH)Σ

(2)
i−1(A−AKH)T + Q + AKRKTAT ]

= (A−AK∗H)Σ
(1)
i−1(A−AK∗H)T + Q + AK∗R K∗ T AT

≥ (A−AK∗H)Σ
(1)
i−1(A−AK∗H)T + Q + AK∗R K∗ T AT

≥ min
K

[(A−AKH)Σ
(1)
i−1(A−AKH)T + Q + AKRKTAT ]

= Σ
(1)
i

(C.5)

where K∗ is the minimising gain. The underlying time-invariance of all the quantities

in the variance equation save for the covariance matrix itself and that the initial condition

was zero, leads to the required result that Σn is monotone increasing.

In the previous section we showed that the error covariance was bounded above, so we

know that the limit in (4.15) exists when Σ0 = 0. Taking limits in (4.13) yields the DARE

(4.16).

Asymptotic Stability of the Filter

Assume controllability as defined in definition 4.2.2. Then we can prove asymptotic

stability of the filter by contradiction. In that spirit, suppose asymptotic stability does not

hold so that (A−AKH)Tv = λv for some λ with |λ| ≥ 1, v 6= 0. Then,

Σ∞ = (A−AK∞H)Σ∞(A−AK∞H)T + AK∞RKT
∞AT + Q (C.6)

and by our assumption, we get
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(1− |λ|2)vTΣ∞v = vTAK∞RKT
∞ATv + vTQv. (C.7)

The left hand side of this equation is non-positive since |λ| ≥ 1 while the right hand

side is clearly non-negative. Therefore, both side must equal zero. This implies that

(AK∞)Tv = 0 and vTQv = 0. But (AK∞)Tv = 0 implies that ATv = λv by our assump-

tion that asymptotic stability does not hold, and combined with the fact that vTQv = 0, we

have a lack of controllability. Thus, we have a contradiction and so the filter is asymptotic

stable.

Non-Zero Initial Covariance

In order to generalise the above for any non-zero initial condition, we use the squeeze

theorem. Consider, as we have seen so far, the optimal filter initialised by a zero initial

condition (Σ0 = 0). Then consider the same optimal filter being initialised with a non-zero

initial condition so that 0 ≤ Σ0. Finally consider a suboptimal stable filter initialised at

some non-zero Σe
0 = Σ∞. Since this filter is a suboptimal one, the initial data satisfies the

following relation,

0 ≤ Σ0 ≤ Σe
0. (C.8)

The error covariance for the optimal filter initialised at zero converges to Σ∞; the

error covariance for the suboptimal filter initialised at Σ∞ will remain equal to the initial

condition. Therefore, by the squeeze theorem it follows that the error covariance initialized

by Σ0 converges to Σ∞ also.

An alternative proof of this generalisation can be found in Anderson & Moore (1979).

Σ∞ is the unique positive definite solution to (4.16)

The steady state equation (4.16) is non linear. Therefore it can be generally expected to
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have more than one solution. Only one however can be non-negative definite and symmetric.

Suppose that Σ̂ 6= Σ∞ is such a solution. Then with an initial condition of Σ̂, (4.16) yields

by continuity, Σn = Σ̂ for all n while (4.15) yields limn→∞Σn = Σ∞ 6= Σ̂, which is a

contradiction. This means that the asymptotic gain in (4.14) is uniquely obtained.
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