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ABSTRACT 

The seasonal differences of neutral or acceptable temperatures between summer and winter were 

revealed by previous researchers, but the studies on the difference of human thermal adaption in 

transitional seasons are insufficient. To clarify this, this paper analyzes the data from a nationwide field 

study database, including a year-long survey which was carried out in 505 residential buildings in six 

cities located in the Hot Summer and Cold Winter (HSCW) zone of China involving 11,524 subjects. 

Results show a significant difference of adaptive responses in different seasons. Air temperature is 

found to be the most significant driver for behavioral responses, and a lag of behavioral responses 

behind climate change in transitional seasons is observed. Occupants not only adjust clothing 

insulation according to air temperature in different seasons, but also actively control indoor air 

movement, including closing/opening windows and using fans. The seasonal, monthly and daily 
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neutral temperatures are studied, implying that occupants’ thermal experience history has significant 

effect on their thermal comfort by behavioral, physiological and psychological paths. Thus, the running 

mean air temperature method and aPMV model are recommended for thermal comfort evaluation in 

free-running space. The research results provide comprehensive understanding of the thermal comfort 

demand which directly affects the energy needs for heating and cooling purpose. The findings provide 

scientific evidence to the concept that dynamic thermal comfort temperature range should be 

considered in the evaluation of indoor thermal environment.  

Keywords: Seasonal variation; Thermal sensation; Dynamic thermal environment; Behaviors; Neutral 

temperature; Adaptive thermal comfort 

 

Nomenclature 

PMV Predicted Mean Vote 

TSV Thermal Sensation Vote 

AMV   Actual Mean Vote (of thermal sensation) 

aPMV   adaptive model of PMV 

ePMV  extended model of PMV 

MTU Monthly Temperature Up (winter → spring → summer) 

MTD Monthly Temperature Down (summer → autumn → winter) 

Va   indoor air velocity, m/s 

Vout   outdoor air velocity, m/s    

RHa   indoor relative humidity, % 

RHout    outdoor relative humidity, % 

Ta     indoor air temperature, ºC   

Tout      outdoor air temperature, ºC   

Tout, m      monthly mean outdoor air temperature, ºC   

Tn neutral temperature, ºC 
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Tn, s seasonal neutral temperature, ºC 

Tn, m monthly neutral temperature, ºC 

Tn, d daily neutral temperature, ºC 

Tod-i the 24-h daily mean temperatures of i days ago, ºC 

AC Air-conditioned 

NV Naturally Ventilated 

SD Standard Deviation 

HSCW Hot Summer and Cold Winter 

P Probability 

R2 determination coefficient 

Icl ensemble clothing insulation 

PFU Proportion of Fan Use 

PWO Proportion of Windows Opened 

N Number of samples 

 

1 Introduction 

The existing building stock in cities in China’s Hot Summer and Cold Winter (HSCW) climate 

zone covers some 9 billion m2 of which residential buildings accounted for 66% in 2012 [1] . The 

HSCW zone has unique climate characteristics, i.e. hot long summers, cold wet winters, a rainy climate 

with monsoon, and so on, as described in reference [2]. Due to economic growth, there has been a 

continued and growing demand for the improvement of the indoor thermal environment and 

consequently the growth of energy demand for both heating and cooling [1, 3]. Such situations have a 

considerable adverse impact on the nation’s energy reduction target [4].  

In residential buildings, besides the building design [5], occupants’ behavioral habits, varieties of 

thermal sensation and comfort requirements [6] significantly impact on energy consumption. There 

would be a potential waste of energy [7] to maintain the indoor thermal environment within the thermal 
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comfort thresholds using the thermal comfort standards if there is not a full understanding of the 

different thermal sensation characteristics in different seasons in free-running buildings. Our previous 

study in naturally ventilated classrooms demonstrates that occupants’ thermal sensations dynamically 

respond to the outdoor climate [8]. Because of adaptions to the natural climate using available facilities, 

occupants have a wider acceptable temperature range in NV (Naturally ventilated) buildings than that 

in AC (Air-conditioned) buildings [9-11]. Many studies [12-20] also conclude that differences exist in 

occupants’ thermal sensations between summer and winter, due to the obvious differences in outdoor 

climates between these two seasons.  

China has a diverse climate and consequently is divided into five climate zones for building 

thermal design purposes [21]. Among the five zones, the HSCW zone has unique climatic 

characteristics and the residents have diverse adaptations for ensuring thermal comfort [22-26] in free-

running space. This has attracted many scholars to engage in this research. Some previous studies were 

concentrated in a specific city for year-long study [26-27], whilst some studies focused on a specific 

season (e.g. summer) in this area [28-29]. However, most studies [30-33] were only conducted during 

a specific season in one city/province.  

The aim of this study is to obtain a sophisticated understanding of residents’ thermal sensations 

and their dynamic responses to the variation in outdoor climates for different seasons in free-running 

space. This will provide a fundamental knowledge of the thermal comfort demand for residential 

buildings in this region. Consequently, a dynamic solution to achieve indoor thermal comfort in 

residential buildings will possibly be developed to meet the requirements for both thermal comfort and 

energy efficiency.  

2 Methods 

Onsite field measurements and a questionnaire survey have been conducted in this research. 

Statistical regression methods are used for the analysis of data.  
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2.1 Brief of the field study 

A large-scale, nationwide, thermal comfort survey was conducted in the five climate zones of 

China during the period 2008–2011 [34]. The field study in each city lasted for more than twelve 

months. The data were collected in daytime from 8:30 to 20:30 by visiting selected typical buildings 

in a city on three to five occasions in each month. During the field study, thermal comfort questionnaire 

surveys were conducted, while the indoor and outdoor thermal environmental parameters, such as air 

temperature, relative humidity, and air velocity were measured.  

 

Figure 1: The six surveyed cities in the Hot Summer and Cold Winter zone of China 

This paper presents the study of 505 residential buildings involving 11,524 subjects in the six 

cities located in the Hot Summer and Cold Winter zone covering Chongqing, Chengdu, Wuhan, 

Nanjing, Hangzhou and Changsha as illustrated in Figure 1.   

2.2 Subjective questionnaire 

The questionnaire was written in Chinese, and designed to obtain comprehensive information on 

human responses to the thermal environment. Subjects’ thermal sensation vote uses the ASHRAE 

seven-point thermal sensation scale (-3 cold, -2 cool, -1 slightly cool, 0 neutral, +1 slightly warm, +2 

warm, +3 hot).  
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Occupants’ clothing insulation uses the clo-checklist method, which was explained clearly in the 

questionnaire. Occupants can check their own types of clothing ensembles according to a list of clothes 

types provided in the Chinese code ‘GB/T50785-2012: Appendix C: Clothing Insulation’ [35], which 

was translated from ‘ISO7730: Annex C: Estimation of thermal insulation of clothing ensembles’ [36]. 

The values of different clothes types’ insulation were obtained according to this code. Meanwhile, the 

status of windows (opened/closed) and fans (used/not used) was recorded during the survey. 

2.3 Environmental parameters measurements 

Indoor and outdoor environmental parameters including air temperature, relative humidity and 

air velocity were simultaneously measured during the survey. Because there were no obvious sources 

of heat radiation indoors, the indoor black globe temperature was not measured and assumed to equal 

the indoor air temperature in this study. Table 1 shows the instruments used to measure these 

environmental parameters, their accuracy and measuring ranges. According to ASHRAE 55 [37], the 

indoor measurement point was located at the height of the occupants’ abdomen, i.e. at 0.6m level above 

the floor for the seated occupants and 1.1m level above the floor for the standing occupants respectively. 

The outdoor measurement points were placed in an open area near the buildings at the height of 1.1m.  

Table 1: Instruments information. 

Description Trade name Parameters measured Range Accuracy 

Digital temperature-humidity 

instrument 

dwyer485 

Air temperature -30～85 ºC ±0.5 ºC 

Relative humidity 0～100％ ±2％ 

Hot-wire anemometer Testo425 Air velocity 0～20 m/s ±(0.03 m/s +5% measured value) 

 

2.4 Buildings 

Among the buildings accommodating the apartments involved in the survey, most of them are 
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located in downtowns of which 32.3% are along a main street and 54.7% are located inside residential 

communities, and other 13.0% are located in the suburbs. 60.1% of the surveyed buildings are 

reinforced concrete structures and the others are brick-concrete structures. Most buildings were less 

than 30 years old at the time of the survey. The buildings surveyed had one-, two-, three- and four-

bedroom apartments usually with one dining and one living room. The average area of a room within 

the apartment was about 22.64m2; all the surveyed rooms have operable outside windows. 

2.5 Subjects 

The subjects were 47.4% male and 52.6% female, and mostly aged between 20 and 60. More than 

95% of subjects weighed between 40 and 80 kg, and most of their heights were between 150 and 

180cm. Most of them had lived in the surveyed cities for between 8 and 42 years. The daily occupancy 

time in the apartment was mostly between 6 and 17 hours.  

3 Results Analysis  

3.1 Thermal environments  

The monthly thermal environment parameters including air temperature, relative humidity and 

air velocity all around the year are illustrated in Figure 2. The twelve months in a year are traditionally 

divided into four seasons: winter (including December, January and February), spring (including 

March, April and May), summer (including June, July and August) and autumn (including September, 

October and November). The environmental parameters of the survey are summarized in Table 2. It 

can be seen that the minimum and maximum outdoor air temperatures are - 4.00oC and 41.50oC 

respectively, and the corresponding indoor air temperatures fluctuate from 1.50oC to 38.70oC. The 

yearly mean outdoor and indoor air temperatures are 19.76oC and 20.50oC respectively. Most of the 

time in winter, the air temperature is lower than the yearly mean value, whereas most of the time in 

summer the air temperature is higher than the yearly mean value. 
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Table 2: Summary of the seasonal variations in thermal environmental parameters 

Parameters Tout Ta RHout RHa Vout  Va 

 (oC) (oC) (%) (%) (m/s) (m/s) 

Winter 

(N=2652) 

Mean 9.57 11.78 59.11 60.86 0.93 0.09 

Min. -4.00 2.00 10.00 24.20 0.00 0.00 

Max. 22.00 25.50 99.90 97.60 4.83 2.00 

SD 4.21 3.37 18.40 14.20 0.96 0.18 

Spring 

(N=2965) 

Mean 20.05 20.42 65.59 66.87 1.16 0.17 

Min. 2.00 5.00 20.00 22.30 0.00 0.00 

Max. 36.60 34.20 99.00 97.00 6.70 1.91 

SD 5.92 4.86 17.83 14.91 1.11 0.31 

Summer 

(N=2521) 

Mean 29.57 28.98 70.35 70.79 0.97 0.28 

Min. 18.20 15.90 38.00 41.60 0.00 0.00 

Max. 41.50 38.70 98.40 98.00 5.56 4.42 

SD 3.58 2.86 11.31 9.90 1.03 0.41 

Autumn 

(N=3385) 

Mean 20.31 21.07 66.37 67.12 0.94 0.23 

Min. 1.70 1.50 30.00 32.60 0.00 0.00 

Max. 34.00 33.70 99.10 98.50 5.91 3.00 

SD 6.61 5.99 14.15 12.95 1.16 0.42 

Yearly 

(N=11523) 

Mean 19.76 20.50 65.35 66.42 1.00 0.20 

Min. -4.00 1.50 10.00 22.30 0.00 0.00 

Max. 41.50 38.70 99.90 98.50 6.70 4.42 

SD 8.59 7.37 16.17 13.63 1.08 0.35 

 

Due to the high frequency of rain in the region, the seasonal mean outdoor/indoor relative 

humidity is relatively high and ranges from 59.11% to 70.79% in different seasons. The seasonal mean 

indoor relative humidity is close to the outdoor value, and it is slightly higher in summer than that in 

winter. Throughout the year, the mean outdoor air velocity in different seasons is in the range of 

0.93m/s to 1.16m/s. The mean indoor air velocity in winter (0.09m/s) is obviously lower than that in 

spring (0.17m/s), autumn (0.23m/s) and summer (0.28m/s). It is revealed that there is a positive linear 

correlation between indoor air velocity and the indoor air temperature bins for the whole year, which 

can be expressed as: 

Va = 0.0088 Ta + 0.0122            R2 = 0.70                   (1) 

For the purpose of analysis of seasonal variation, a year is divided into two groups: Monthly 

Temperature Up (MTU) and Monthly Temperature Down (MTD) periods. The MTU is the months that 

the monthly average temperature is higher than the one of the previous month and vice versa, the MTD 

is lower, as seen in Figure 2. From the figure we can see that the MTU covers the months between 
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February and July; the MTD between August and January in the next year. In the MTU, it is gradually 

getting warmer and hotter, while in the MTD it is getting cooler and colder.  

  

a 

 

b 

 

c 

Figure 2: Monthly variations of thermal environment: a) air temperature (two dash lines indicate yearly mean 

indoor/outdoor air temperature); b) relative humidity; c) air velocity 

 

MTU MTD 

Summer Autumn Spring Winter 

Yearly mean line 

MTD 

Winter 

Spring 

Spring 

Summer 

Summer 

Autumn 

Autumn 

Winter 
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3.2 Behavioral responses 

3.2.1 Definition 

The clothing insulation (Icl) is calculated by the clo-checklist method, as Section 2.2 describes. 

Proportion of fan use (PFU) is defined as the ratio of the number of fans being used to the total number 

being surveyed at one environmental parameter bin (or time period, e.g. a month, the same in the 

following), which reflects the possibility of fans being used at a certain environmental parameter (or 

time period). Proportion of windows opened (PWO) is defined as the ratio of the number of rooms 

with windows open to the total surveyed number of rooms at one environmental parameter bin (or time 

period).  

3.2.2 Monthly variations 

In this section, behavioral responses are analyzed in each single month. Occupants respond to 

environment variously in different months, as shown in Figure 3. Fan is mostly used in summer and 

shows different pattern in transition season, i.e. people use fan more in autumn than in spring because 

of thermal experience. The change of monthly clothing insulation and PWO with monthly mean air 

temperature (Figure 2a) are generally negative correlated and positive correlated respectively. Their 

values are stabilized in summer and winter, while change rapidly in transition season. PWO shows a 

lag behind monthly air temperature change in autumn, as it does not drop until November when air 

temperature starts to decrease after September (Figure2a).  
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Figure 3: Monthly behavioral responses in whole year 

3.2.3 Relationship with thermal environment 

Air temperature bins are created for every 1oC interval, relative humidity bins are created for 

every 1% interval, and air velocity bins are created for every 0.05m/s interval. Those environmental 

parameter bins which contain a very small quantity of samples are not used for analysis.  

Firstly, Spearman test is applied to see if there is a relationship between thermal environmental 

parameter bins and behavioral responses in whole year. Then the thermal environmental parameters 

with a significant and strong relationship (rs>0.3 or rs<-0.3) are further described or statistically tested. 

As Table 3 shows, only the indoor and outdoor air temperature meet the correlation conditions. 

Table 3: Spearman-rho (i.e. rs) rank correlation coefficient between environmental parameters and behavioral 

responses 

 Tout (oC) Ta (oC) RHout (%) RHa (%) Vout (m/s)  Va (m/s) 

Icl -0.797* -0.813* -0.114* -0.141* 0.019 -0.173* 

PFU 0.330* 0.342* 0.077* 0.095* 0.027 0.206* 

PWO 0.394* 0.372* -0.061* -0.096* -0.018 0.208* 

* p < 0.001 

To statistically test the correlations between environmental parameter bins and PFO or PWO 

respectively, logistic regression is used. Logistic regression is a useful method to analyze binary 

response variables with only two outcomes whose probability varies with a stimulus [38, 39]. Efron's 

pseudo R2 is applied to evaluate the goodness-of-fit of logistic model in this study, and the level of 

significance is set at sig. <0.01. 
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3.2.4 Seasonal characteristics with air temperature  

Since air temperature is the most significant driver for the behavioral responses, more detail of 

the analysis about the regression equations and seasonal variations are described in this section. 

3.2.4.1 Clothing adaptation  

 

Figure 4: Seasonal variations of clothing insulation (mean value ± SD) with indoor air temperature 

The clothing insulation variations with indoor air temperature in the four seasons are shown in 

Figure . The mean values of clothing insulation in winter, spring, autumn and summer are 1.30 clo, 

0.69 clo, 0.60 clo and 0.26 clo, respectively. When the thermal conditions gradually become warmer, 

occupants adjust to lighter clothing patterns, especially in the adaptive zone (between 13oC and 25oC) 

as depicted in the figure. However, clothing adaptations reach “limitation point” in summer (higher 

than 25oC) and winter (below 13oC). Beyond this “limitation point” even though the temperature 

increases/decreases, clothing insulation remains almost the same, which is consistent with other studies 

[8, 12, 13, 26, 40]. The seasonal variation of clothing insulation at the same temperature is also revealed 

in Figure 4. 

3.2.4.2 Utilization of fans 

The PFU with indoor air temperature in different seasons are shown in Figure . In winter and 

spring, the PFU is nearly zero. In autumn, the PFU is around 0.1 when the temperature is higher than 

20 oC. In summer, the PFU has a strong correlation with indoor air temperature changing from 0 to 0.7 
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when the indoor air temperature varies from 25oC to 36oC 

Logistic regression is used to fit the PFU with the indoor air temperature. The PFU for a whole 

year in this study can be expressed as: 

PFU = 
𝑒−11.354+0.343∗𝑇𝑎

1+𝑒−11.354+0.343∗𝑇𝑎
                              (2) 

The pseudo R2 is 0.98, which means the degree of fit is good. 

 

Figure 5: Proportion of fan use with indoor air temperature (width of dot - sample size, black solid curve - 

regression curve of whole-year data, equation in the graph - expression of the regression curve and the following 

bubble graph are the same) 

3.2.4.3 Proportion of windows opened  

Figure 6 shows the relationship of the PWO and the outdoor air temperature. The PWO rises from 

about 0.3 to 0.8 when the outside temperature increased from 2oC to 17oC in winter. However, it 

fluctuates within the range of 0.8 - 1.0 in summer, which does not change significantly according to 

the outside temperature. Also, the PWO is generally higher in autumn than that in spring.  

Logistic regression is used to fit the PWO with the outdoor air temperature for the whole year, 

which is expressed as: 

PWO = 
𝑒−1.255+0.133∗𝑇𝑜𝑢𝑡

1+𝑒−1.255+0.133∗𝑇𝑜𝑢𝑡
                    (3) 
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The pseudo R2 is 0.92, which means that the fit is good. 

 

 

Figure 6: Proportion of windows opened with outside temperature 

3.3 Thermal comfort  

3.3.1 Seasonal thermal sensation vote 

The thermal sensation vote (TSV) varied in different seasons, as shown in Figure 7. The linear 

regression of the TSV with the indoor air temperature for each season is listed in Table 4, and 

determination coefficient R2 is used to indicate the goodness of fit, which is above 0.90 in each season, 

meaning a strong goodness of fit. 

Table 4: Regression equation of thermal sensation in different seasons 

Season Regression equation R2 Tn, s (oC) 

Winter TSV = 0.066 Ta - 1.39 0.93 21.02 

Spring TSV = 0.057 Ta - 1.20 0.95 21.11 

Summer TSV = 0.155 Ta - 3.76 0.93 24.25 

Autumn TSV = 0.064 Ta - 1.52 0.97 23.83 

Tn, s: Seasonal neutral temperature; Ta: indoor air temperature. 

The regressions can be used to quantify the thermal sensitivity responding to the indoor air 

temperature. The gradients of equations for winter, spring, summer and autumn are 0.066, 0.057, 0.155 

and 0.064 respectively, which represent the rate of change of the thermal sensation with air temperature. 
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The summer linear regression equation has the largest gradient indicating that occupants are more 

thermally sensitive to indoor air temperature variation in summer than in other seasons.  

The neutral temperature is calculated when the TSV equals zero. This varies from season to 

season in the range of 21.02oC in winter to 24.25oC in summer, as shown in Figure 7. The seasonal 

neutral temperatures are listed in Table 4. We can see that the neutral temperature in summer is higher 

than that in winter, which is consistent with other research [12-20]. However, the neutral temperature 

in autumn is higher than that in spring though both seasons have similar outdoor/indoor average air 

temperatures, as shown in Table 2.   

From Figure 7, differences in the thermal sensation between autumn and spring are observed, that 

is, occupants feel slightly cooler in autumn (represented by a diamond) than in spring (represented by 

a triangle) at the same temperature.  

 

Figure 7: Seasonal variations of TSV with indoor air temperature 

3.3.2 Monthly neutral temperature 

By setting up the linear regression equation of TSV with indoor air temperature for a single month, 

the monthly neutral temperature is calculated when the TSV equals zero in this equation. Then the 

relationship between neutral temperature and outside temperature in the survey is obtained as follows: 

Tn, m = 0.153Tout, m + 19.30                      R² = 0.55             (4)   
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The linear regression is plotted as the black dash line in Figure 8. 

Obviously, in this study, the linear fit of monthly neutral temperature with monthly mean outdoor 

air temperature is not very strong (R² = 0.55), and overestimates the value in spring whilst 

underestimating the value in autumn (Figure 8). The monthly neutral temperatures have an obvious 

difference between MTD and MTU, which may be due to the lag of actual or perceptive control, 

different thermal experiences of previous months, and shifts in occupant expectations. The polynomial 

fit is shown as follows:   

MTD:  Tn, m = -0.0179Tout, m
2 + 0.872Tout, m + 13.89       R² = 0.80        (5) 

MTU:  Tn, m = 0.0077Tout, m
2 - 0.161Tout, m + 21.48        R² = 0.72        (6) 

 

Figure 8: Monthly neutral temperature changes with the monthly mean outdoor air temperature (Note: MTD – 

Monthly Temperature Down period; MTU – Monthly Temperature Up period.) 

3.3.3 Daily neutral temperature with running-mean air temperature 

According to Nicol and Humphreys [41], the neutral temperature is more important for a group 

of people on a particular day, rather than over the several days or weeks of the survey period, because 

the level of adaptation of the people has been changing on different days. The neutral temperature is 

calculated by the following equation:  

Tn = Ta + TSV/G                                     (7) 

Note: G is the Griffiths Constant, which is assumed to be 0.5. Ta is the indoor air temperature, 
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which is used as a measure of operative temperature in this study, since there were no obvious sources 

of heat radiation indoors in most conditions.  

Using the data for the same day from the surveyed buildings in a city as a group, the daily neutral 

temperatures on each surveyed day is calculated by equation (7). To obtain the relationship between 

the daily neutral temperature (Tn, d) and outside climate considering thermal experience history, the 

running mean air temperature (Trm) method is applied, which is defined as:  

Trm =  lim
𝑛→∞

∑ (𝛼𝑖−1∗𝑇𝑜𝑑−𝑖)
𝑛
𝑖=1

∑ 𝛼𝑖−1𝑛
𝑖=1

                        (8) 

Where, α is a constant value (<1, appropriate to be 0.8). Tod-i is the 24-h daily mean temperatures 

for the previous days. In this case, previous daily mean temperatures in 30 days (i.e. n=30) are used to 

calculate the running mean air temperature.  

Thus the relationship between neutral temperature and outside climate for the whole year is found 

as follows: 

Tn, d = 0.709 Trm + 8.25            R² = 0.87             (9) 

This linear regression is plotted as the black dash line in Figure 9. 

Using the same method as above, while the outcome of Tn, d and Trm was divided into four seasons 

(as defined in Section 3.1) based on their date, the seasonal variation of the relationship between Tn, d 

and Trm is shown in Figure 9 and Table 5. 
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Figure 9: Daily neutral temperature with outdoor daily running mean air temperature (the black dash line – 

whole year data, the colorful straight line – seasonal data) 

Table 5: Regression equation of neutral temperature with running mean air temperature in different seasons 

Season Regression equation R2 

Winter Tn, d = 0.34 Trm – 10.91 0.19 

Spring Tn ,d = 0.73 Trm – 8.12 0.77 

Summer Tn, d = 0.29 Trm – 19.90 0.18 

Autumn Tn, d = 0.76 Trm – 7.36 0.81 

Tn, d: Daily neutral temperature; Ta: indoor air temperature. 

 

The daily neutral temperature shifted with outside climate mainly in transitional seasons. It can 

be seen that the daily neutral temperature has a strong correlation with the outdoor running mean air 

temperature in spring and autumn, and the regression lines show no significant difference between 

spring and autumn, which coincide with the whole-year regression line using this same method. 

Whereas, the relationship is very weak in summer and winter, implying the occupants’ limitation of 

adaption during these seasons. 

We can also find that the neutral temperature has a stronger relationship with the running mean 

outdoor air temperature than with the monthly mean outdoor air temperature over the whole year, 

which can be seen from the coefficient of determination R2 of Equation (4) compared with that from 

Equation (9) which are derived from these two different methods. It can be deduced that thermal 

experience history has a significant effect on occupants’ thermal comfort.  

4 Discussions 

4.1 Variation of thermal sensation between spring and autumn 

There is strong evidence that thermal sensations vary in different seasons. There are several 

possible reasons to explain the difference of thermal sensation between spring and autumn. The thermal 

environments in real buildings are dynamic ones (i.e. not steady-state). It is complex to predict 

occupants’ thermal sensations by physical parameters in dynamic environments [42-46], especially 
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considering their adaptation to the dynamic thermal environment in real buildings [47]. 

According to the adaptive comfort theory, if a change produces discomfort, people react in ways 

which tend to restore their comfort [48]. This can be generally categorized into three main paths: 

behavioral adjustment, physiological acclimatization, and psychological adaption [49].  

Firstly, the behavioral patterns in the two transitional seasons are different and show a lag of 

behavioral response to the changing climate. People take actions after they feel uncomfortable, but 

they keep their previous state in mind. In this study, we find that occupants wore less clothing (Figure ), 

and the frequencies of ‘proportion of windows opened and fan use’ are higher in autumn than those in 

spring (Figure  and Figure 6), which is closer to the former season. Due to the lower clothing 

insulation and higher indoor air velocity (Table 2), people feel cooler in autumn than they do in spring 

at the same indoor air temperature (Figure ), which also results in a higher neutral temperature in 

autumn (Table 4). Besides that, other behavioral responses, which are not analyzed in this study, can 

also affect thermal comfort. For example, a study [50] observed that people increased their physical 

activities in spring. 

Secondly, the processes of thermal acclimatization operate in opposite ways in spring and autumn. 

Laboratory experiments [51, 52] found that for the same thermal condition, subjects’ skin temperature, 

tympanic temperature, metabolic rate and body fat were higher in winter than they were in summer. 

After the cold acclimatization in winter, occupants are more sensitive to a warm environment in spring. 

And after the cold deacclimatization in summer, occupants become sensitive to cold, which can also 

cause a lower thermal sensation vote in autumn than in other seasons (Figure ).  

Thirdly, psychological adaption including habituation, expectation, preference, and perceived 

control also play an important role in occupants’ thermal responses to thermal environment change. A 

study [53] found that the psychological adaption can speed up the process of thermal adaption to the 

variations of the outdoor climate conditions. Another study [54] also revealed that occupants’ 

expectations affect their ability of adapt to a non-neutral indoor climate. Some studies indicated that 
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subjects with high perceived control tended to report more positive comfort perceptions [55, 56], and 

lack of perceived control reduced thermal comfort [57]. The unique culture and living habits of people 

in this region may also make the results of this study differ from other studies with different regions 

and people [48]. 

4.2 Predicted thermal sensation by adaptive algorithms 

Fanger and Toftum [58] introduced an extended Predicted Mean Vote (PMV) model known as the 

ePMV to adjust the PMV model applicable in free-running buildings. 

The expression for the ePMV model is as follows: 

ePMV = e   PMV                           (10) 

Where, e is the expectancy factor, varying between 1 and 0.5. For air-conditioned buildings, e 

equals 1. For non-air-conditioned buildings, this factor is assumed to depend on the local climate and 

increasing usage of mechanical conditioning. As indicated above, in areas where the weather is warm 

only in summer, e is assumed to be 0.7-0.9.  

Yao et al. [59] proposed an Adaptive Predicted Mean Vote (aPMV) and several technical measures 

for improving the indoor thermal comfort in buildings. 

The expression for the aPMV model is as follows: 

aPMV =                              (11) 

Where, λ is the adaptive coefficient for warm and cool conditions to account for factors such as 

climate; culture; social; and physiological, psychological, and behavioral adaption. 

This model was applied to the current Chinese National Standard ‘Evaluation Standard for Indoor 

Thermal Environments in Civil Buildings GB/T50785-2012’ [35]. The value of the adaptive coefficient 

λ for residential buildings in the HSCW zone is given by GB/T50785-2012 as follows: λ= 0.21 for 

warm conditions, λ= -0.49 for cool conditions. 
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Figure 10: Comparison of thermal sensation models for different seasons 

Note: AMV – actual mean vote of thermal sensation; e = 0.8 (ePMV); λ=0.21 when PMV ≥ 0, λ=−0.49, when PMV 

< 0 (aPMV). 

 

The thermal sensation vote predicted by aPMV, ePMV and PMV models are compared with the 

actual mean vote of thermal sensation (AMV) which is equal to the TSV value (in Section 3.3.1) from 

the survey of this study. As Figure 10 shows, the thermal sensation vote is better predicted by the 

aPMV and ePMV models than by the PMV model. The predicted value of the aPMV model is more 

accurate than the ePMV model, implying that e = 0.8 is not the suitable value for free-running 

residential buildings in the HSCW zone of China. For warm conditions in summer and cool conditions 

in winter, the aPMV model performed quite well using the value of λ provided in GB/T50785-2012, 

which is recommended for thermal comfort evaluation in residential buildings in this region. 
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5 Conclusions 

This paper presents research into thermal sensation variation according to the changing of seasons 

based on the data collected in 505 free-running mode residential buildings involving 11,524 subjects 

in six cities in the HSCW Zone in China. A significant difference of human thermal adaption at 

different seasons has been demonstrated. The main conclusions are drawn as follows:  

(1) Behavioral responses show variety in different seasons. 

 Air temperature is found to be the most significant driver to occupants’ thermal adaption 

behaviors in the whole year. And a lag of behavioral responses behind climate change in 

transitional seasons is observed. 

 Occupants adjust their clothing insulation according to ambient temperature mainly in 

transitional seasons when temperature is between 13oC and 25oC. 

 Occupants also take actively response to control the indoor air velocity: a highest proportion 

of windows are closed in winter when outside temperature is low, and occupants rely on using 

fans more when the temperature is above 25oC in summer. These adaptive behaviors result in 

the highest indoor air velocity recorded during the survey in summer and the lowest in winter. 

(2) Significance of seasonal variations of thermal sensations and neutral temperatures have been 

revealed.  

 The seasonal neutral temperatures in summer and winter are 24.25oC and 21.02oC respectively 

in HSCW zone of China. However, the seasonal neutral temperature in autumn is higher than 

that in spring (23.83oC and 21.11oC respectively), although the outside and indoor temperatures 

are similar in autumn and spring. 

 The lag of behavioral response to seasonal climate change is also observed, which amplifies 

the thermal sensation difference between spring and autumn. Due to the higher proportion of 

fan usage and windows opened, indoor air velocity is generally higher in autumn than that in 

spring, and the clothing insulation is generally lower. Occupants feel cooler at the same 



23 
 

temperature in autumn, resulting in a higher neutral temperature in autumn than that in spring.  

(3) The dynamic evaluation of the thermal comfort temperature is strongly recommended for 

residential buildings.  

 When predicting the comfort temperature using the monthly mean outdoor temperature method, 

the degree of prediction accuracy will be better when the time period is divided into Monthly 

Temperature Down (MTD) and Monthly Temperature Up (MTU) periods. 

 Using the running mean outdoor temperature is better than the monthly mean temperature for 

the prediction of the comfort temperature considering the effect of thermal experience history 

in transitional seasons. 

 There is a good agreement of the aPMV prediction results with the values of the AMV from 

the survey. Therefore, the aPMV suggested in the GB/T50785-2012 model is suitable for 

making predictions of thermal sensations in free-running residential buildings in the HSCW 

Zone of China.  
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