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Nomenclature 
RH Relative humidity (%) 

rs,i external radius of layer I (m) 

A body surface area (m2) ST vasoconstriction signal (l/h) 

Ar 
effective radiation area of body 

(m2) 
t time (s) 

BFi total blood flow of layer i (l/h) T' temperature change rate (℃/s) 

c specific heat [J /(kg•℃)] Ta mean air temperature (℃) 

C convective heat losses (W/m2)  Tb temperature of blood (℃) 



Cres 
respiratory convective heat flow per 

body surface area (W/m2) 
Tcl 

mean temperature of the outer 

surface of the clothed body (℃) 

DL vasodilation signal (l/h) Ti temperature of tissue (℃) 

Ediff 
diffusion evaporative heat loss 

per body surface area (W/m2) 
Tr 

mean radiant temperature (℃) 

Eres 

evaporative heat loss from 

respiration per body surface area 

(W/m2) 

Tset,c 

core temperature set point (℃) 

Errc input signals of core layer (℃) Tset,s skin temperature set point (℃) 

Errs input signals of skin layer (℃) Tv venous temperature (℃) 

Esw 
evaporative heat loss by sweating 

per body surface area (W/m2) 
Va mean air velocity (m/s) 

fcl clothing area factor Vi volume of layer I (m3) 

H height of human body (cm) W weight of human body (kg) 

hc 
convective heat transfer 

coefficient (W/m2·℃) 
αm,i proportion of layer i in weight (%) 

Icl 
total thermal insulation of 

clothing (clo) 
β 

counter-current factor 

L length of cylinder (m) ε 
average emissivity of clothing or 

body surface 

M total metabolic rate (W/m2) λ 
heat conductivity coefficient 

[W/(m·k)] 

Mb total basal metabolic rate (W/m2) ρ density (kg/m3) 

Mb,i 
heat production by basic 

metabolism per cubic metre (W/m3) 
σ 

Stefan-Boltzmann constant[W/ 

(m2·K4)] 

mcl weight of the clothing (kg) 

Subscript 
Ms,i 

heat production by shivering per 

cubic metre (W/m3) 

Mshi shivering heat production (W/m2)  i layer number 

Mw,i 
heat production by activity 

metabolism per cubic metre (W/m3) 
1 layer of core 

Pa water vapour partial pressure (Pa) 2 layer of muscle 

Qb total blood flow to cylinder (m3) 3 layer of fat 

Qi 
blood flow per cubic metre of 

layer i [m3/(sm3)] 
4 layer of skin 

r radius of cylinder (m) b central blood node 

R radiative heat losses (W/m2)  cl clothing node 

Rd 
dynamic sensitivity of 

thermoreceptors (s) 
    

 

  



Abstract  

Thermoregulation models of the human body have been widely used in thermal comfort 

studies. The existing models are complicated and not fully verified for application in 

China. This paper presents a simplified thermoregulation model which has been 

statistically validated by the predicted and measured mean skin temperature in warm 

environments, including 21 typical conditions with 400 Chinese subjects. This model 

comprises three parts: i) the physical model; ii) the controlled system; and iii) the 

controlling system, and considers three key questions formerly ignored by the existing 

models including: a) the evaporation efficiency of regulatory sweat; b) the proportional 

relation of total skin blood flow and total heat loss by regulatory sweating against body 

surface area; and c) discrepancies in the mean skin temperatures by gender. The 

developed model has been validated to be within the 95% confidence interval of the 

population mean skin temperature in three cases. 

 

Keywords:  

Thermoregulation Model; Thermal Response; Skin Temperature  



 

1. Introduction  

The thermal interaction of the human body with the environment involves two 

processes: i) the heat transfer between the human body and the thermal environment, 

simultaneously including radiation, convection, conduction, evaporation and 

respiration; and ii) the self-regulation function of the human body which responds to 

varied thermal environments, such as vasoconstriction, vasodilation, shivering and 

sweating (Cheng et al., 2012). Thermoregulation models of the human body are 

developed to simulate these two processes of interaction and predict the human thermal 

response under different thermal conditions and have been widely used in the field of 

physiology or thermal comfort studies (Parsons, 2014). An accurate thermoregulation 

model will help improve the accuracy of the current thermal comfort prediction models, 

and provide a basic theoretical analysis of the accuracy of the various models in 

application (De Giuli et al., 2014; Holopainen et al., 2014). 

The simplified Gagge’s 2-node model of thermoregulation (Gagge et al., 1971) is one 

of the most popular models in the field of thermal comfort study. Moreover, various 

complex thermoregulation models have been further developed by improving the 

modelling of body segmentation, particularly for heat insulation (Arezes et al., 2013), 

thermoregulatory systems and heat transfer (Fiala et al., 2001; Munir et al., 2009; 

Stolwijk, 1971; Werner and Webb, 1993; Xu and Werner, 1997), considering individual 

body characteristics (Takada et al., 2009; Zhang et al., 2001), and increasing the number 

of body segments to obtain a higher resolution temperature distribution on the skin 

surface (Huizenga et al., 2001; Tanabe et al., 2002).  

These models are mostly developed based on European or American populations; 

however, their accuracy lacks effective validation (Yang et al., 2015a). There is little 



strong evidence in the existing research to show that existing models are applicable to 

the Chinese population. Thermal comfort prediction for the Chinese people still remains 

in an early research stage which is largely based on the modification of the traditional 

models but is still lacking systematic analysis (Zhou et al., 2013; Zhou et al., 2014). In 

this context, this paper aims to i) validate the predictive accuracy of the classic Two-

Node model for the Chinese population; and ii) develop and validate a new simplified 

model based on the laboratory experiments.  

The mean skin temperature was used for the validation of the developed model. In the 

existing studies, skin temperature has been demonstrated to be strongly related to the 

thermal interaction between the human body and the thermal environment, which is 

also an important indicator of thermal comfort (Parsons, 2014). It has been successfully 

used to validate increasingly complex and sophisticated predictive models for 

thermoregulatory responses, and to build thermal sensation models. 

The systems predicting the interaction between people and their environment are 

complex (Andrew Thatcher, 2016). Here, the developed model shows advantages over 

many other existing models. The individual differences in human thermal responses are 

caused by some characteristics which can be quantitatively defined (age, height, weight, 

etc.), but may also contains some of the potential differences which are not so easily 

described such as the property of each layer of the body including core composition, 

muscle composition, fat composition and skin composition respectively. The mean 

basal metabolic rate of the Chinese population is re-measured in this study. It has 

allowed the simplification of the human body abstraction as a cylinder with its specific 

geometric dimensions and heat transfer direction, which cannot be provided by simply 

adjusting the parameters of existing models for the Chinese population. Meanwhile, the 



introduction of a cylinder model and the development of control plates make it more 

convenient and accurate in application compared to other models (Yang et al., 2015b). 

 

2. Description of the new model 

The proposed model consists of three parts: the physical model of the human body, the 

controlled system and the controlling system. 

 

2.1 Physical model of the human body 

In this physical model, the human body is abstracted as a cylinder consisting of four 

concentric layers: the core, muscle, fat and skin. A central pool of blood delivers the 

arterial blood to the capillaries and tissues in each layer, and meantime the blood flows 

back to the central pool through the veins. The schematic diagram of this physical 

model is shown in Figure 1. Assuming that the physical characteristics in each layer are 

uniform, the physical parameters of each layer are recalculated from the data of 

reference (Gordon et al., 1976; Stolwijk, 1971) and listed in Table 1. 



 

Figure 1. The schematic diagram of the physical model of the human body 

Table 1. The physical parameters of the layers (Gordon et al., 1976; Stolwijk, 1971) 

Layer Core Muscle Fat Skin 

Density (kg/m3) 1 =977 2 =1115 3 =850 4 =1000 

Specific heat (J /(kg•℃)) 1c
=2968 2c

=3105 3c
=2510 4c

=3760 

Heat conductivity coefficient (w/(m•k)) 1 =0.42 2 =0.66 3 =0.21 4 =0.21 

 

Considering the size of the physical model, the height dimension is far greater than the 

radius dimension. In the simulation, heat is only supposed to be transferred in a radial 

direction. Radial dependency of temperature is calculated in the model. In this paper, 

abbreviations with subscripts of i=1,2,3,4 represent the layers of core, muscle, fat and 

skin respectively. The subscripts b and cl represent the central blood and clothing nodes 

respectively. 



The geometric characteristics of the physical model can be calculated from the basic 

information of the human body (gender, height, weight and body fat percentage). The 

surface area A (m2) of a Chinese human body can be obtained by Equations 1 and 2 for 

male and female subjects (Wang, 1994). The length of the cylinder L (m) and the 

external radius of layer i (which is denoted by 
,s ir (m)) can be calculated by Equations 

5 and 6 respectively.   

=0.0057 0.0121 0.0882A H W   (for males) ………………………..Eq. (1) 

=0.0073 0.0127 0.2106A H W   (for females) ……………………...Eq. (2) 

,i m im W  …………………………………………………………..Eq. (3) 

= /i i iV m   ……………………………………………………………Eq. (4) 
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L
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  …………………………………………………………Eq. (6) 

Where H is the height (cm); W is the weight (kg); 
,m i  is the proportion of layer i in 

the weight, which is recalculated by reference to Stolwijk (1971) and shown in Table 2; 

iV  is the volume of layer i (m3). 

Table 2. The proportions of layers by weight (Stolwijk, 1971) 

Core ( 1m ，) Muscle and Fat ( 2m ，+ 3m ，) Skin ( 4m ， ) Total  

22% 73% 5% 100% 

 

Therefore, gender, height, weight and body fat percentage can be used as the inputs for 

the physical model. The default values for Chinese male and female subjects in the 

model are set as 170cm, 70kg, 20% and 160cm, 55kg, 25% respectively (Yang, 2015). 

 



2.2  Controlled system 

The controlled system is used to simulate the internal heat transfer of the body and the 

heat transfer between the body surface and the thermal environment. 

Based on the physical model of the human body, the scheme of thermal interaction for 

humans with the environment can be seen from Figure 2. 

 

Figure 2. The scheme for the thermal interaction of humans with the environment 

2.2.1. Energy equation 

The energy equation in a one-dimensional cylindrical coordinate system based on 

classical heat transfer theory is:  

 
2

, , ,2

1i i i
i i i b i w i s i i b b b i

T T T
c M M M Q c T T

t r r r
   

   
       

   
 …….Eq. (7) 

Where,  ,iT r t  is the temperature of tissue (℃);  ,b iM r  is the heat production by 



basic metabolism in Watts per cubic metre (W/m3);  , ,w iM r t  is the heat production 

by activity metabolism per cubic metre (W/m3);  , ,s iM r t  is the heat production by 

shivering per cubic metre (W/m3);   is the counter-current factor, by which the 

approximate heat exchange between arterial blood and venous blood is considered. The 

effect of the counter-current usually takes place in cold conditions and   equals 1 in 

this paper for warm conditions.  ,iQ r t  is the blood flow per cubic metre [m3/(sm3)]; 

bc  is the specific heat of central blood, which equals 3,760 [J /(kg•℃)] ; b  is the 

density of central blood, which equals 1,000 (kg/m3); bT  is the temperature of central 

blood (℃).  

Table 3. The mean basal metabolic rate of the Chinese population bM  (W/m2)(Yao, 2005)  

Gender  
Age  

11-15  16-17  18-19  20-30  31-40  41-50   Over 51  

Male  54.28 53.69 46.14 43.82 44.05 42.77 41.38 

Female  47.88 50.44 42.77 40.68 40.79 39.52 38.47 

 

,b iM  can be calculated from the total basal metabolic rate bM  (W/m2), which is 

related to gender and age; the data for the Chinese population is shown in Table 3 (Yao, 

2005): 

, /b i i b iM M A V  ……………………………………………………….Eq. (8) 

Where, i  is the proportion of the basal metabolic rate taken up by layer i. 

Gordon et al. (1976) gave the reference value as shown in Table 4. 

Table 4. The proportion of the basal metabolic rate for each layer of the human body  

(Gordon et al., 1976) 

Core ( 1 ) Muscle ( 2 ) Fat ( 3 ) Skin ( 4 ) Total  

4.1% 74.9% 0.7% 20.9% 100.0% 



 

Assuming 
,w iM  is only related to the activity level and this energy is produced by the 

muscle, the following equations are used to describe
,w iM : 

,1 ,3 ,4 0w w wM M M    …………………………………………………Eq. (9) 

 ,2 2/w bM M M A V   ………………………………………………..Eq. (10) 

Where, M  is the metabolic heat generation for a certain activity (W/m2), which is 

provided by the international standard (ASHRAE-55, 2004); bM  is assumed to be the 

basal metabolic rate for the population aged from 20-30. 

,s iM  and iQ  are variable and controlled by the controlling system. 

bT  is considered to be independent of the radius and determined by the energy equation: 

 
,

, 1

4

,

1

s i

s i

r
b

b b b b b i v i b
r

i

dT
c Q c Q T T

dt
 



   ………………………………….Eq. (11) 

Where, 
,0sr  represents the radius of the cylinder’s centre, which is equal to 0;  , ,v iT r t

is the venous temperature (℃), and it is assumed to be equal to the temperature of the 

adjacent tissue, that is: 

   , , ,v i iT r t T r t  ……………………………………………………..Eq. (12) 

bQ  is the total blood flow to the cylinder (m3) and is obtained by integration over the 

volume of a cylinder with length L: 

,

, 1

4

1

2
s i

s i

r

b i
r

i

Q L Q rdr


   …………………………………………….Eq. (13) 

 

2.2.2. Boundary and initial conditions 

The boundary condition at the centre of the cylinder is: 



0
i

r

T
Cres Eres

r



 


 …………………………………………Eq. (14) 

Where, Cres  and Eres  are the convective and evaporative heat loss from respiration 

per body surface area respectively (W/m2)(Fanger, 1970):  

 0.0014 34res aC M T   …………………………………..Eq. (15) 

 0.0000173 5867res aE M P   ……………………………Eq. (16) 

The continuity of temperature and heat flux at an interface between two layers of 

different tissues is expressed in Equations 17 and 18. 

   , 1 ,0, 0,i s i i s iT r t T r t    (i=1, 2, 3) ………………………Eq. (17) 

, ,

1
1

0 0s i s i

i i
i i

r r

T T

r r
  



 

    
   

    
 (i=1, 2, 3) …………………….Eq. (18) 

At the skin surface, the heat brought to the surface by conduction from the deep body 

is equal to the heat removed from the surface by evaporation and conduction. Therefore, 

the boundary condition at the skin surface is:  

0.155

i i cl
i cl sw diff

cl

T T T
f E E

r I

 

   


 
 ,44, si r r 

 …………….Eq. (19) 

Where,  clI t  is the total thermal insulation of clothing (clo), which can be estimated 

or calculated by ISO 7730 (ISO-7730, 2005);  swE t  is the evaporative heat loss by 

sweating per body surface area (W/m2);  diffE t  is the diffusion evaporative heat loss 

per body surface area (W/m2).  

 clf t  is the clothing area factor, which can be roughly estimated by Equation 20 

(McCullough et al., 1985): 

1.0 0.3cl clf I  ……………………………………………..…… Eq. (20) 

swE is regulated by the thermoregulatory controlling system; 
diffE  can be calculated 



from Equation 21 (Fanger, 1970). 

    ,4=0.00305 256 , 3373diff s aE t T r t P  …………………Eq. (21) 

Considering the fact that people are usually in light clothing in warm conditions, the 

clothing node is simplified as follows: 

 
0.155

cl i cl
cl cl

cl

dT T T
m c A A C R

dt I


    ………………………….Eq. (22) 

Where, clm  is the weight of the clothing (kg), the default value is set as 0.2 kg in warm 

conditions; clc  is the specific heat of clothing (J /(kg•℃)), Yi et al. (2004) provide the 

data for some common materials, the value for cotton is 1,210.  

 C t  and  R t  are the convective and radiative heat losses from the outer surface of 

a clothed body, both of which are related to the difference between the mean 

temperature of the outer surface of the clothed body clT  (℃) and the mean air 

temperature aT  (℃), as shown in Equation 23. 

 = cl c cl aC f h T T  ………………………………………………Eq. (23) 

Where, ch  is the convective heat transfer coefficient (W /m2·℃); Equations for 

estimating ch  are expressed as (Fanger, 1970): 

 
0.25

=2.38c cl ah T T  (when  
0.25

2.38 12.1cl a aT T V  ) ………Eq. (24) 

=12.1c ah V  (when  
0.25

12.1 2.38a cl aV T T  )………………. Eq. (25) 

   
4 4

= 273 273r
cl cl r

A
R f T T

A
    

 
 ………………………...Eq. (26) 

Where, 

  = average emissivity of clothing or body surface, (dimensionless). 

  = Stefan-Boltzmann constant, 85.67 10 W/ (m2·K4). 



rA  = effective radiation area of body, m2. 

rT  = mean radiant temperature, ℃ 

The ratio Ar/A is 0.70 for a sitting person and 0.73 for a standing person (Fanger, 1970). 

Emissivity   is close to unity (typically 0.95), unless special reflective materials are 

used or high-temperature sources are involved. 

The mean radiant temperature rT  can be determined by the measurement of the black 

globe temperature (
gT ) and the air temperature and air velocity at the level of this globe 

(ISO-7726, 2001). 

1) In the case of natural convection: 

   

1/4
1/4

8
4 0.25 10

273 273
g a

r g g a

g

T T
T T T T

D

         
  
  

…………….. Eq. (27) 

Where, 
g is the emissivity of the black globe (dimensionless); D is the diameter of the 

globe (m). 

For the standard globe D=0.15 m, 0.95g   (matt black paint) and Equation 27 

becomes: 

   
1/4

4 1/4
8273 0.4 10 273r g g a g aT T T T T T        

  
 ……………….Eq. (28) 

2) In the case of forced convection: 

   
1/4

8 0.6
4

0.4

1.1 10
273 273a

r g g a

g

V
T T T T

D

  
     

  

 ………………………Eq. (29) 

For the standard globe： 

   
1/4

4
8 0.6273 2.5 10 273r g a g aT T V T T       

  
 ……………….………Eq. (30) 

The initial conditions which specify the values of all dependent variables at time zero 



should be provided. The initial values may be equilibrium values which are obtained 

from a previous steady-state calculation (denoted as 0a tT  , 0r tT  , 0a tv  , 0a tRH  , 

0cl tI  , 0tM  ), or they may be non-equilibrium values which result from a previous 

transient process. In either case, they consist of body temperature specifications at the 

instant the transient process begins, which are denoted as 0i tT  . 

 

2.3 Controlling system 

The controlling system is used to simulate the thermoregulatory control mechanisms in 

the human body. It includes the regulation of blood flow, sweating and shivering. The 

proposed controlling system is based on the traditional controlling system provided in 

Stolwijk (1971) and further improved by an empirical formula.  

 

2.3.1. Signal input 

The input for the controlling system consists of two signals collected from the core 

layer and skin layer respectively. These signals are integrated temperatures formed by 

the hypothalamus temperature and the skin temperature, which can be expressed as: 

   ,0 , ,0c s set c d sErr T r T R T r     ………………………..Eq. (31) 

   ,4 , ,4s s set s d sErr T r T R T r     ………………………..Eq. (32) 

Where, cErr  are the input signals of the core layer (℃) and sErr  are the input signals 

of skin layer (℃);  ,0sT r  represents the temperature of the thermoreceptor in the 

hypothalamus and  ,4sT r  represents the temperature of the thermoreceptor under the 

skin; 
,set cT  and 

,set sT  are the temperature set points for the core and skin respectively 



(℃); 
dR  is the dynamic sensitivity of the thermoreceptor and T   represents the 

temperature change rate (℃/s).  

The set point temperatures (
,set cT  and

,set sT ) can be acquired by simulating the body 

under a thermally neutral condition with no work and no regulatory control. The 

experiment was designed to show the body's adaptation in a neutral thermal 

environment. The human body was in a steady state at the end of the exposure stage 

when the change rate of the body's average skin temperature was <0.01℃/min. The 

steady neutral environmental parameters and human body temperature set points are 

recorded in Tables 5 and 6. Parameters for male and female subjects to achieve thermal 

neutrality were obtained by the previous experimental study and these two sets are listed 

in Table 5. The calculated set point temperatures are different for each gender and 

results are shown in Table 6. 

Table 2. Parameters for a thermally neutral condition 

Parameters Ta(℃) RH(%) Va(m/s) Tg(℃) M(W/m2) Icl(clo) 

Male  26 74.11 0.05 26.47 58.15 0.4 

Female  26.2 73.55 0.06 26.42 55.15 0.4 

 

Table 6. The set point temperatures of the human body 

Temperature set points (℃) Tset,c Tset,s 

Male  36.94 34.16 

Female  36.67 33.8 

 

The value or the quantitative analysis for Rd is not totally revealed according to the 

existing references (Kobayashi and Tanabe, 2013; Tanabe et al., 2002), it represents the 



human sensitivity to the change of the ambient temperature. Here we chose empirical 

values for the prediction accuracy of the model: when 0T   , Rd=0(0); when 0T   , 

Rd=0 (s) for males, and Rd=1800 (s) for females (Yang, 2015). 

 

2.3.1.1. Vasomotion  

The total blood flow for layers BFi (l/h) is calculated by Equations 33 to 36. The blood 

flow for core and fat tissue remains constant. For muscle compartments, a blood flow 

of 1.0 l/h was required for 1.16W metabolic heat production (Tanabe et al., 2002). The 

skin blood flow is controlled by the effect of vasodilation or vasoconstriction in the 

thermoregulation system, which is assumed to be proportional to the body surface A. 

1=255BF  ……………………………………………………….Eq. (33) 

 2 ,2=14.74 /1.16w shiBF M M A    ………………………..…Eq. (34) 

3=3.5BF …………………………………………………………Eq. (35) 

/10

4

11.89
2

1 1.89
sErrDL A

BF
ST


  


 ……………Eq. (36)  

117 7.5c sDL Err Err    (if DL <0, then DL =0)……………..Eq. (37) 

0.63 0.63c sST Err Err     (if ST <0, then ST =0) ………….Eq. (38) 

Therefore:  

6=0.278 10 BF /i i iQ V  ……………………………….…………Eq. (39) 

 

2.3.1.2. Sweating  

The heat loss by regulatory sweating per body surface area Esw (W/m2) is calculated by 

Equations 40 and 41: 

For males, 



  /10
223 20 2 /1.89sErr

sw c sE Err Err  …………………..……… Eq. (40) 

For females, 

  /10
111 10 2 /1.89sErr

sw c sE Err Err  …………………….………Eq. (41) 

Esw shows differences according to gender, the value for females is smaller than that for 

males under the same conditions. The total heat loss by regulatory sweating is also 

proportional to the body surface area A. 

 

2.3.1.3. Shivering heat production 

The shivering heat production per body surface area (W/m2) is calculated by Equation 

42: 

24.4 /shi c sM Err Err A  (if cErr >0 or sErr >0, then shiM =0) …………..Eq. (42) 

 

2.4 Numerical solution and computer programming  

The numerical solution for solving the thermoregulation model is an explicit method 

with centred finite difference. The spatial grid is radially divided with the spacing

0.002r m  . The time increment is set as 1s. 

The simulation program is written in Matlab 2010 and the programming flow chart is 

shown in Figure 3. It consists of five parts: INPUT, PHYSICAL, CONTROLLING, 

CONTROLLED and OUTPUT. Their functions are shown Table 7 below: 

 

 

Table. 7. Model structure distribution 

Model Structure Definition and Coverage 

Human body model Build physical model of human body and calculate the 



geometric, physiological and physical parameters of the 

model. 

Controlling system Calculate the parameters of the controlling system 

based on the human thermal physiological responses 

and thermal adaptability. 

Controlled system Calculate the body temperature according to the 

equations in a controlled system based on the 

application of classical heat transfer theory between the 

human body and the dynamic thermal environment. 

Input parameters Environment parameters 

Mean air temperature, Mean radiant temperature, Mean 

air velocity, Relative humidity, Metabolic rate, Thermal 

insulation of clothing. 

Human body parameters 

Gender, age, height, weight, body fat percentage.  

Output parameters Body temperature in any transient of the thermal 

process. 



 

Figure 3. Flow chart of the simulation program.  

(n: calculated numbers; t: calculated time; △t :time step; te: simulation time) 

 

3. Validation of the models 

A model is by definition simpler than the system it attempts to represent. Thus, 

validation by comparing the model prediction with the experimental data from human 

subjects is necessary. Not only does this process identify the prediction accuracy of the 

model, but it also helps to define the range of conditions in which the model is 

applicable. 

Skin temperature is strongly related to the thermal interaction between the human body 

and the thermal environment (Gagge et al., 1971; Stolwijk, 1971), which is also an 

important indicator of thermal comfort (Cheng et al., 2012; Fanger, 1970). It has been 

successfully used to validate increasingly complex and sophisticated predictive models 

for thermoregulatory responses (Munir et al., 2009; Yi et al., 2004; Zolfaghari and 



Maerefat, 2010), and to build thermal sensation models (Lomas et al., 2003; Wang, 

1994). Therefore, in this paper we choose the mean skin temperature to validate the 

accuracy of the models.   

The method for the model validation can be found in Yang et al. (2015a). According to 

this approach, the accuracy of the model has been primarily examined by inferential 

statistical analysis, and then assessed through the Bland-Altman method (Bland, J.M. 

and Altman, D.G., 1986) if necessary. By the validation, the accuracy of the model can 

be classified into three levels: Ⅰ—The model’s prediction is sufficiently statistically 

accurate; Ⅱ—The model’s prediction is sufficiently accurate to be used in applications; 

Ⅲ—The model’s prediction is not sufficiently accurate. 

Three series of experimental data from human subjects under the typical warm 

conditions have been obtained, they are: 

Case 1: clothed subjects in step-changing environments (26℃ to 

28℃/29℃/30℃/32℃/34℃, then back to 26℃). 

Case 2: nude subjects in step-changing environments (28℃ to 32℃/35℃). 

Case 3: clothed subjects in typical warm, steady state, environments. 

The proposed model has been validated by all the three sets of experiments with a total 

of 400 subjects. For comparison purposes, the existing Two-Node model, which is 

regarded as one of the most classic simplified thermoregulation models in thermal 

comfort studies, has also been validated by comparing its predictions with the 

experimental data of Case 1.  

 

3.1 Case 1 

A temperature step-changing experiment was carried out to validate the performance 

of the models under transient conditions. Ten male and ten female healthy subjects were 



recruited randomly to participate in the experiment. During the experiment, all the 

subjects were required to wear uniform clothing including light long-sleeve cotton 

shirts and trousers, and light shoes with a total clothing insulation level of 0.4clo (1clo 

equals 0.155 m2
•K/W). Five environment conditions were designed in this experiment. 

In each condition, the subjects firstly experienced a step-change thermal process from 

a neutral environment (Environment Ⅰ) to a typical warm environment (Environment 

Ⅱ), and then stayed in Environment Ⅱ for 1,800 seconds. The subjects then returned to 

the neutral condition (Environment Ⅲ) for another 1,800 seconds. The basic 

information of the subjects and the environment conditions in Case 1 are listed in Tables 

8 and 9 respectively. 

Table 8. Subjects’ information in Case 1 (mean ± standard deviation) 

Subjects Male Female 

Age 24±1 24±1 

Height (m) 170±7 159±6 

Weight (kg) 58±5 51±8 

Body fat percentage (%) 16.9±2.97 25.6±5.3 

Clothing insulation (clo) 0.4±0 0.4±0 

Activity level (met) 1.0±0 1.0±0 

 

Table 9. Thermal conditions of the experiment in Case 1 (mean ± standard deviation) 

Case 1 

Air 

Temperature 

(℃) 

Relative 

Humidity 

(%) 

Air Velocity 

(m/s) 

Globe 

Temperature (℃) 

Condition 1 

Environment Ⅰ 26.0±0.2 71.9±3.0 0.05±0.00 26.4±0.2 

Environment Ⅱ 28.2±0.1 54.6±0.2 0.18±0.04 28.4±0.1 

Environment Ⅲ 26.0±0.2 70.5±3 0.06±0.01 26.5±0.2 



Condition 2 

Environment Ⅰ 26.1±0.1 77.3±2.8 0.05±0.01 26.5±0.1 

Environment Ⅱ 29.0±0.1 54.7±0.8 0.17±0.07 29.3±0.1 

Environment Ⅲ 26.2±0.2 75.9±2.5 0.05±0.01 26.6±0.1 

Condition 3 

Environment Ⅰ 26.1±0.2 71.5±3.9 0.06±0.01 26.5±0.3 

Environment Ⅱ 30.3±0.2 58.1±3.3 0.14±0.09 30.4±0.2 

Environment Ⅲ 26.0±0.3 71.0±3.6 0.06±0.02 26.5±0.3 

Condition 4 

Environment Ⅰ 26.5±0.3 70.8±3.7 0.18±0.04 26.5±0.3 

Environment Ⅱ 32.0±0.1 53.9±3.9 0.20±0.03 32.0±0.1 

Environment Ⅲ 26.8±0.3 69.6±4.9 0.08±0.02 26.8±0.3 

Condition 5 

Environment Ⅰ 26.0±0.1 77.2±1.1 0.05±0.01 26.3±0.2 

Environment Ⅱ 33.8±0.1 56.1±0.7 0.20±0.04 33.9±0.0 

Environment Ⅲ 26.2±0.1 75.4±2.5 0.06±0.01 26.5±0.1 

 

During the experiment, skin temperature measurements at 13 locations on the body 

including the forehead, chest, back, upper arm (right and left), lower arm (right and 

left), dorsal hand (right and left), calf (right and left), and thigh (right and left) were 

performed automatically with a frequency of 0.5 Hz. The 8-point weighted method 

(Gagge and Nishi, 2011) was adopted to calculate the body mean skin temperature (Tsk) 

as represented by Equation (43): 

Tsk =0.07Tforehead +0.175Tchest +0.175Tback +0.07Tupper arm+ 0.07Tlower arm+ 0.05Thand+ 

0.19Tthigh+ 0.20Tcalf ………………………………….……………………………Eq. (43) 

In order to validate and compare the performance of the new model and the classic 

Two-Node Gagge Model (Gagge et al., 1971), the two models were operated to simulate 

the above thermal process. The predicted and measured skin temperatures during the 

3,600 seconds in the experiments of Case 1 are shown in Figure 4 and Figure 5 for male 



and female subjects respectively. According to the model evaluation method (Yang et 

al., 2015a), statistical validation is conducted by comparing model predictions with the 

confidence intervals of the population means. For the model, all the predictions lie 

within the 95% confidence interval of the population means, indicating no statistically 

significant difference between the population means and the predictions of the model. 

The accuracy of the new model in predicting the transient responses for subjects with 

light clothing is evaluated as LevelⅠ. However, for the Gagge Model, significant 

differences were found between the model predictions and the measured data, 

especially in high-temperature conditions (Conditions 4 and 5). The Gagge Model 

cannot be statistically validated in this case. Further empirical validation for the Gagge 

Model is carried out by the Bland-Altman method (Bland, J.M. and Altman, D.G., 1986; 

Yang et al., 2015a). The 'limit of agreement' of the predictions of the Gagge Model and 

population means are calculated as [-0.49, 0.09] and [-0.52, 0.19] for males and females 

respectively, which suggests the predictions of the Gagge Model may be 0.49℃ below 

or 0.09℃ above the measured sample means for male subjects (similarly 0.52℃ below 

or 0.19℃ above for female subjects). The Gagge Model is unacceptable if we regard 

the accuracy requirement for the skin temperature in thermal comfort studies as ‘the 

difference between the model prediction and the sample mean in most cases must be 

less than 0.3℃’, and it should be evaluated as Level Ⅲ. Therefore, predictions from our 

new model are superior to the Gagge model in case 1. 
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(b) Condition 2 

 

(c) Condition 3 
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(d) Condition 4 

 

(e) Condition 5 

Figure 4. Model validation for Case 1 (male subjects) 
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(a) Condition 1 

 

(b) Condition 2 
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(c) Condition 3 

 

(d) Condition 4 
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(e) Condition 5 

Figure 5. Model validation for Case 1 (female subjects) 

3.2 Case 2 

A further experiment was set up for nude subjects to validate the new simplified model. 

Ten half-naked healthy male students were randomly recruited as subjects and each 

participated in one of two condition sets in this experiment. In both conditions, the 

subjects experienced a temperature step-change process from a neutral environment 

(Environment Ⅰ) to a typical warm environment (Environment Ⅱ) and then stayed in 

Environment Ⅱ for a period of 3,600 seconds. The data for the subjects and the thermal 

conditions in Case 2 are listed in Tables 10 and 11 respectively. Skin temperatures were 

collected as in Case 1. 

Table 10. Subjects’ information in Case 2 (mean ± standard deviation) 

Age 24±1 

Height (m) 174±6 

Weight (kg) 60±7 

Body fat percentage (%) 15.8±2.5 

33

33.5

34

34.5

35

35.5

36

36.5

0 600 1200 1800 2400 3000 3600

M
ea

n
 S

k
in

 T
em

p
er

a
tu

re
 (
℃

)

Time (s)

The Developed Model

Gagge Model

Sample Means

Confidence Interval of

Population Means



Clothing insulation (clo) 0.03±0 

Activity level (met) 1.0±0 

 

Table 11. Thermal conditions of the experiment in Case 2 (mean ± standard deviation) 

Case 2 

Air 

Temperatur

e (℃) 

Relative 

Humidity 

(%) 

Air Velocity 

(m/s) 

Globe 

Temperature (℃) 

Condition 

1 

Environment Ⅰ 28.0±0.2 61.7±5.2 0.06±0.01 28.1±0.3 

Environment Ⅱ 31.9±0.1 55.1±0.3 0.09±0.02 32.0±0.1 

Condition 

2 

Environment Ⅰ 28.2±0.1 60.4±2.8 0.06±0.01 28.3±0.2 

Environment Ⅱ 34.7±0.1 55.8±0.3 0.18±0.04 34.7±0.1 

 

The predicted values of the new model and experimental results of body skin 

temperature are shown in Figure 6. For all the conditions, no significant difference was 

found between the model prediction and the target population. According to the model 

validation method (Yang et al., 2015a), the accuracy of the model is evaluated as Level 

I, which means that the new model is statistically accurate to simulate the transient 

mean skin temperature for the nude population under typical warm conditions. 



 

(a) Condition 1 

 

(b) Condition 2 

Figure 6. Validation of the Developed Model for Case 2 

 

3.3 Case 3 

Steady-state experiments were conducted to validate the new model’s accuracy in 

various typical warm environments. The warm environments include the variation of 
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temperature, humidity and air velocity. Three series of human exposure experiments 

with fourteen conditions in total were carried out in a climate chamber. In each series, 

ten male and ten female healthy subjects were recruited. During the experiment, 

subjects were required to wear uniform clothing including short-sleeve shirts, shorts 

and lightweight shoes with an insulation level of 0.26clo (1clo equal to 0.155m2·K/W). 

In each of the conditions, subjects were given sedentary office activities and 120 

minutes exposure was provided for subjects to reach a steady state. At the end of the 

exposure, skin temperatures at 13 locations on the body were recorded as illustrated in 

Case 1. The data on the subjects and the thermal conditions in Case 3 are listed in Tables 

12 and 13 respectively. The default body fat percentages are set as 15% and 25% for 

male and female subjects respectively. 

Table 12. Subjects’ information in Case 3 (mean ± standard deviation) 

Series  A B C 

Subjects Male Female Male Female Male Female 

Age 24±1 24±1 23±1 24±1 23±1 24±1 

Height (m) 173±5 160±7 175±5 159±4 172±6 160±3 

Weight (kg) 61±4 50±6 67±10 46±4 63±9 48±5 

Clothing insulation (clo) 0.26±0 0.26±0 0.26±0 0.26±0 0.26±0 0.26±0 

Activity level (met) 1.2±0 1.2±0 1.2±0 1.2±0 1.2±0 1.2±0 

 

Table 13. Thermal conditions of the experiment in Case 3 (mean ± standard deviation) 

Case 3 

Ambient Temperature (℃) Relative 
Velocity(m/s) 

Black-bulb 

Series Conditions 

A 1 26.9±0.2 54±4 0.11±0.02 26.6±0.1 



2 28.9±0.2 55±7 0.11±0.04 28.5±0.2 

3 31.0±0.2 51±7 0.14±0.04 30.4±0.1 

4 32.9±0.2 54±5 0.12±0.02 32.3±0.1 

B 

1 25.6±0.1 41±1 0.08±0.05 25.6±0.1 

2 25.9±0.1 60±1 0.1±0.06 25.6±0.1 

3 28.0±0.1 40±2 0.07±0.01 27.6±0.1 

4 27.9±0.1 60±1 0.09±0.03 27.6±0.2 

5 29.8±0.1 42±2 0.1±0.02 29.4±0.2 

6 29.9±0.1 60±1 0.09±0.03 29.4±0.1 

C 

1 28.0±0.1 90±1 0.6±0.03 28.0±0.1 

2 28.1±0.2 90±1 0.79±0.04 28.0±0.2 

3 30.0±0.2 80±1 0.81±0.04 29.8±0.2 

4 32.0±0.2 80±1 0.79±0.03 31.9±0.2 

 

 

(a) Series A 
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(b) Series B 

 

(c) Series C 

Figure 7. Validation of the Developed Model for Case 3 (male subjects) 

(The error bars represent the 95% confidence interval for the population means) 
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(a) Series A 

 

(b) Series B 
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(c) Series C 

Figure 8. Validation of the Developed Model for Case 3 (female subjects) 

(The error bars represent the 95% confidence interval for the population means) 

 

The predicted values of the new model and experimental results of the body skin 

temperature under different conditions are shown in Figure 7 and Figure 8 for male and 

female subjects respectively. The skin temperature for both males and females can be 

accurately predicted by the developed model. The performance of the new model in the 

steady state condition is evaluated as Level Ⅰ. 

 

4. Discussion 

A thermoregulation model of the human body has been presented. The new model is 

simplified compared to most existing models (e.g. (Fiala et al., 2001; Huizenga et al., 

2001; Wan and Fan, 2008) etc.). Nevertheless, the model is statistically accurate in 

estimating the transient skin temperature of the human body as discussed in the next 

section. The model has been validated by comparing its simulation with experimental 

results from responses by a total of 400 subjects under typical warm conditions, as 
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shown in Table 14. The advantage of this simplified model is that it can be more 

practical in application and yet further optimization of the empirical parameters can be 

more easily achieved. 

Table 14. Accuracy level in Case validation 

Case study Working conditions The accuracy of the model 

Case 1 Transient response for subjects 

with light clothing 

Level Ⅰ 

Case 2 Transient response for the nude 

population 

Level Ⅰ 

Case 3 Steady state Level Ⅰ 

 

In contrast with the existing models, the major contribution of this newly developed 

model is to point out three questions neglected in thermoregulation modelling and 

optimize them. They involve a) the evaporation efficiency of regulatory sweat; b) the 

effect of body surface area on thermoregulatory calculations; c) the gender difference. 

The developed model establishes its advantages over current models as shown in Table 

15. 

Table 15. Advantages and development of the new model over existing models 

Advantages Development compared with the existing models 

Differences between 

races 

1) Physical parameters of the physical abstract model.  

2) Metabolic heat production in the controlled system.  

3) Parameter selection and optimization in the controlling system. 

Differences between 

individuals 

1) Height, weight, body fat rate. 

2) Age Factor. 

3) Gender factor. 

Simplicity and accuracy 1) Simplicity: physical structure, the input parameters. 

2) Accuracy: model validation, accuracy level. 

 



4.1 Evaporation efficiency of regulatory sweating 

In the new model, the calculation of heat loss by regulatory sweating is optimized based 

on the empirical formula in Stolwijk (1971). The value of swE  calculated from the new 

model is obviously lower than that obtained from the model in Stolwijk (1971) under 

the same conditions. The original empirical formula for calculating swE  (Stolwijk, 

1971) was based on a common assumption that all the sweating can be evaporated 

directly. However, the reality is that considerable sweating will adhere to the body 

surface, clothing or drop down from the body rather than evaporating instantly as heat 

loss. Thus, the original calculation for swE  overestimates the evaporation heat loss and 

modified empirical formulas considering the ‘evaporation efficiency’ are employed as 

Equation 40 and Equation 41. In order to illustrate the optimization of evaporation by 

sweating, the study applied the original and modified equations for swE  respectively 

to simulate male subjects’ skin temperature in the thermal process of Condition 5 in 

Case 1, the results for the initial 1,800 seconds are shown in Figure 9. It is obvious that 

when applying the original calculation for swE , the predicted skin temperature is 

significantly lower than the measured value, which is the result of the overestimation 

of swE . This optimization of swE  has also been validated in all the high temperature 

conditions in our experiments. As the assumption that the sweating can be evaporated 

away completely is quite common in the existing models (e.g. (Gagge et al., 1971; 

Munir et al., 2009; Tanabe et al., 2002)), the question of sweating evaporation 

efficiency should be worthy of attention in further models. 
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Figure 9. Example to illustrate the optimization of evaporation by sweating 

 

 

4.2 Effect of body surface area on thermoregulatory calculation 

The body surface area (A) decides the heat transfer at the skin surface thereby further 

influencing the body temperature. However, in most existing models (e.g. (Gagge et al., 

1971; Stolwijk, 1971; Tanabe et al., 2002)), the effect of A is ignored when calculating 

the value of total heat loss by regulatory sweating or total skin blood flow, both of which 

should be theoretically proportional to A. As a modification, the new model introduces 

the variable A into the formula when estimating the total heat loss by regulatory 

sweating and total skin blood flow. Figure 10 shows the results of the model with 

(Equation 36 and Equation 43) or without (Equation 44 and Equation 45) consideration 

of A respectively when predicting the first 1,800 seconds of Condition 5 in Case 1 for 

females. According to the model evaluation method, the model’s performance is 

improved from Level Ⅱ to Level Ⅰ by introducing A into the calculation of total heat 

loss by regulatory sweating and total skin blood flow. The effect of A on the simulation 

results is usually insignificant for populations with similar physiques; however, when 
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populations have significantly different values of A, e.g. the value is calculated as 1.6m2 

for Chinese females compared with the 1.89m2 (Stolwijk, 1971) for an American or 

European ‘standard man’, the effect of A should not be ignored. This optimization, 

based on the effect of A, takes into account the different physiques of populations, 

which makes the model more reasonable and reliable. 
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Figure 10. Example to illustrate the effect of body surface area on thermoregulatory calculations 

 

 

4.3 Gender difference 

In the new model, the difference in gender is introduced into calculations of basal 

metabolic rate, fat percentage, body surface and evaporation heat loss etc., all of which 

will affect in the final temperature distribution of the body. The experiment in Case 1 

shows that under the same thermal conditions (e.g. Condition 5), the characteristics of 
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temperature regulation are significantly different for male and female subjects. As 

shown in Figure 11, these experimental results can be well illustrated by the new model 

with the consideration of gender difference, which is an improvement on the existing 

models.  

 

Figure 11. Example to illustrate the gender difference 

 

The differences in the thermal responses of males and females have been noticed by 

many studies because of their different physiological characteristics. The 

discriminations have been made in this study such as the calculation of body surface 

area “A” and the mean basal metabolic rate. Besides, the gender factor has a direct 

influence on the physical model of the human body including the height, weight and 

body fat percentage which cannot be avoided. So this study tries to solve the prediction 

deviation caused by gender by deducing a separate formula for males and females, 

together with certain actual measured data for the two groups. 

 

5. Conclusions  

This paper presents a simplified thermoregulation model of the human body. The new 
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model is statistically accurate in predicting mean skin temperature in warm 

environments and has been verified by three sets of experiments including 21 typical 

conditions with 400 subjects in total. This model consists of three parts: i) the physical 

model, which is an abstraction of the real body; ii) the controlled system, which is used 

to simulate the heat transfer of the body and environment; and iii) the controlling system, 

which describes the thermoregulatory control mechanisms of the human body.  

This newly-developed model has been used to analyse the mean skin temperate based 

on the data from the group of subjects and reveals three key phenomena which are 

normally ignored in the existing models: a) the role played by the evaporation efficiency 

of regulatory sweating; b) the proportional relation of total skin blood flow and total 

heat loss by regulatory sweating against body surface area and c) there are discrepancies 

in the mean skin temperature between the genders. The newly-developed model has 

been subject to experimental validation which supports its optimizational modifications 

that lead to advantages in application accuracy compared to current mainstream models. 

Meanwhile, the introduction of a cylinder model and the development of control plates 

make it more convenient in application compared to other human thermal prediction 

models. 

This model can be widely applied in the field of thermal comfort study, in particular for 

the prediction of transient skin temperature in different thermal processes. It is 

applicable for the iterative calculation of environmental and physiological parameters 

in the dynamic thermal environments in terms of different times and spaces.  
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