
Secure store and forward proxy for 
dynamic IoT applications over M2M 
networks 
Article 

Accepted Version 

Díaz-Sánchez, D., Sherratt, R. S. ORCID: 
https://orcid.org/0000-0001-7899-4445, Almenarez, F., Arias, 
P. and Marín, A. (2017) Secure store and forward proxy for 
dynamic IoT applications over M2M networks. IEEE 
Transactions on Consumer Electronics, 62 (4). pp. 389-397. 
ISSN 0098-3063 doi: 10.1109/TCE.2016.7838091 Available at 
https://centaur.reading.ac.uk/68989/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http:// ieeexplore.ieee.org/document/7838091/ 
To link to this article DOI: http://dx.doi.org/10.1109/TCE.2016.7838091 

Publisher: IEEE 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



 

Full-Text version 

 

Title:    Secure Store and Forward Proxy for Dynamic IoT Applications over M2M Networks 

 

Authors:   Daniel Díaz-Sánchez, Senior Member, IEEE 

Telematic Eng. Department, Carlos III Univ., 28911, Leganés, Madrid, SPAIN 

(e-mail: dds@it.uc3m.es) 

 

R. Simon Sherratt, Fellow, IEEE 

Department of Biomedical Engineering, the University of Reading, RG6 6AY, UK 

(e-mail: sherratt@ieee.org) 

 

Florina Almenarez, Member, IEEE 

Telematic Eng. Department, Carlos III Univ., 28911, Leganés, Madrid, SPAIN 

(e-mail: florina@it.uc3m.es) 

 

Patricia Arias, Member, IEEE 

Telematic Eng. Department, Carlos III Univ., 28911, Leganés, Madrid, SPAIN 

(e-mail: ariasp@it.uc3m.es) 

 

Andrés Marín, Member, IEEE 

Telematic Eng. Department, Carlos III Univ., 28911, Leganés, Madrid, SPAIN 

(e-mail: amarin@it.uc3m.es) 

 

 

This work has been partially supported by INRISCO TEC2014-54335-C4-2-R and Jose Castillejo Mobility Grant 

CAS14/00364.  

 

 

Publication: IEEE Transactions on Consumer Electronics 

Volume:   62 

Issue:     4 

pp.:      389 - 397 

Date:    November 2016 

DOI:    10.1109/TCE.2016.7838091 

Date of Publication: 02 February 2017

mailto:dds@it.uc3m.es
mailto:sherratt@ieee.org
mailto:florina@it.uc3m.es
mailto:ariasp@it.uc3m.es
mailto:amarin@it.uc3m.es
http://doi.org/10.1109/TCE.2016.7838091


 

Abstract 

Internet of Things (IoT) applications are expected to generate a huge unforeseen amount of traffic flowing from 

Consumer Electronics devices to the network. In order to overcome existing interoperability problems, several 

standardization bodies have joined to bring a new generation of Machine to Machine (M2M) networks as a result 

of the evolution of wireless sensor/actor networks and mobile cellular networks to converged networks. M2M is 

expected to enable IoT paradigms and related concepts into a reality at a reasonable cost. As part of the 

convergence, several technologies preventing new IoT services to interfere with existing Internet services are 

flourishing. Responsive, message-driven, resilient and elastic architectures are becoming essential parts of the 

system. These architectures will control the entire data flow for an IoT system requiring sometimes to store, 

shape and forward data among nodes of a M2M network to improve network performance. However, IoT 

generated data have an important personal component since it is generated in personal devices or are the result of 

the observation of the physical world, so rises significant security concerns. This article proposes a novel 

opportunistic flexible secure store and forward proxy for M2M networks and its mapping to asynchronous 

protocols that guarantees data confidentiality. 

 

Index Terms 

Machine to Machine, Internet of Things, IoT, privacy, encryption. 

 

I. INTRODUCTION 

The Internet of Things (IoT) [1] encompasses the related concepts of Machine to Machine (M2M) [2], Smart 

Cities [3] and Crowd Sensing [4]. These concepts and IoT are sometimes interchangeably used [5]. Smart Cities, 

despite its unclear definition [6], strives for transforming life and working environments within a region by  

embedding a wide range of electronic, digital and data technologies in government systems [7]. Crowd sensing 

pursues a fusion of human and machine intelligence [8]. It is a distributed problem-solving model where a crowd 

is engaged in solving a complex problem through an open call [4] by means of their personal devices. 

IoT considers the overall dataflow for a number of different concepts, as Smart Cities or Crowd Sensing, 

involving how the information is fetched from connected ‘things,’ then combined and presented to help 

efficiently use physical infrastructures [9], achieve local governance with improved e-participation [10], learn, 

adapt and innovate with environments effectively [11]. Beyond enabling the aforementioned concepts, the rise of 

IoT is proportional to the need to enable technologies at the right cost [12] and that affects IoT from the design of 

the connected thing to the final data processing. When it comes to data processing, elastic computing frameworks 

in the cloud [13] assist on the process of transforming the unprecedented amounts of data [14], [15] that will be 

generated in these scenarios into usable metrics, statistics and predictions. Moreover, due to the variety of 

different applications, flexible network architectures are also needed to transport data from devices to the 

backend. These infrastructures should, at least, enable interoperability, provide resilience and preserve 

confidentiality and privacy. For that reason, several standardization bodies have joined to develop M2M 

architectures [16]. M2M has its origin in Supervisory Control And Data Acquisition (SCADA) systems, but also 

encompasses the evolution of Mobile Cellular Networks and heterogeneous Wireless Sensor Networks (WSN) 



 

and Actor Networks to converged networks. Unlike traditional WSN, that usually serve a single 

application/organization, M2M networks are designed to improve interoperability among them, pursuing M2M 

networks to be shared among different applications and organizations. Due to that, M2M networks are becoming 

important connections into bigger systems as IoT. They consist of a large number of heterogeneous devices with 

different capabilities and functionalities that can inter-operate among them and with different back-ends. 

The wide range of IoT applications using M2M networks will generate a tremendous amount of traffic that will 

affect network performance. Moreover, unlike the traffic generated by traditional Internet services, which flows 

from the network to user devices, M2M traffic will flow from devices to the network. Thus, M2M networks 

should accommodate, among others, urgent, burst and regular traffic patterns without interfering with existing 

Internet services. To accomplish that, M2M networks provide intermediate storage, proxies and other network 

elements that allow traffic shaping and store and forward services preventing the network from collapsing. 

Managing networks in real time is now a reality with technologies including Software Defined Networking 

(SDN) [17] but may require redirecting data through untrusted networks or storing data opportunistically in 

intermediate untrusted proxies. Moreover, it may also require redirecting or forking traffic to different sinks in a 

dynamic way to overcome network congestion and cope with applications demands. However, the data handled 

by M2M networks in behalf of IoT applications contains huge amounts of personal data, either generated by 

personal devices (as it may happen with connected personal devices or crowd sensing) but also those generated as 

a result of observing the physical world (as it may happen in Smart City applications), rising reasonable concerns 

about confidentiality and privacy if data traverses untrusted networks.  

This article considers different IoT/M2M applications and the supported traffic patterns to propose an novel 

opportunistic and flexible secure store and forward proxy for M2M systems. Traditional public key encryption 

allows a user Alice to encrypt a message m to user Bob using Bob's public key so only Bob can decrypt because 

only Bob has his private key. The algorithm used by this proposed proxy allows a message m to be encrypted by 

Alice (using her private key) and delivered to a proxy without knowing who will be the recipient. If later on, Bob 

is designated as the recipient, Alice can provide a re-encryption key to the proxy that allows it to transform the 

message encrypted by Alice into a message encrypted to Bob without actually accessing the plaintext. In such a 

way, a proxy can aggregate and store encrypted data from Alice until instructed to deliver that data to a recipient 

transforming the data appropriately so the recipient can decrypt it. The article also explores its viability with 

common Consumer Electronics (CE) devices as those acting as end devices or middle backhaul network elements 

and the mapping of the protocol to asynchronous protocols including CoAP [18]. 

This article is based on a previous work [19]. The remaining of the article is structured as follows. Sections II 

introduces technologies related to this research and also explains other security approaches. The design of the 

secure proxy is elaborated in section III. Section IV goes into detail about the architecture and shows the proxy 

operation for a concrete case. Section V provides implementation details and some metrics. Finally conclusions 

are presented in section VI. 

 

 



 

II. BACKGROUND AND RELATED WORK 

A. IoT/M2M Architecture 

A plausible IoT system using M2M networks, according to current standardization efforts [2], is depicted in 

Fig. 1. It shows three different domains, the M2M device domain, the network domain and the application 

domain. 
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Fig. 1. IoT connected devices using M2M networks to reach Internet. Backends are connected through 

several providers. 

 

 

 

Depending on the application, a M2M area network may contain a huge number of devices including sensors, 

actuators, mobile devices, or industrial control devices that provide data as environmental, utility, fleet, energy 

control, etc. It also contains smart devices as gateways that collect, aggregate, store or filter data packets that are 

eventually transmitted through the network domain to the backend servers in the application domain. Devices 

using a given M2M network can communicate with others using gateways and gateways can cooperate with each 

other. Gateways access the network domain using long-range terrestrial links or radio backhauls. 

Finally, backend servers in the application domain process the data from the connected devices for a given 

purpose.  

B. M2M Communication Technology 

Devices in the ‘last mile’ within the device domain are frequently limited, either in memory, processing power, 

battery or both. Devices may need to rely on gateways to reach the application domain, may need to suspend to 

save battery or cooperate with near devices to accomplish their tasks. Thus, network technologies employed in 

this domain should also consider these constraints. Bluetooth was the first affordable Personal Area Network 

(PAN) technology available and is nowadays supported by the vast majority of commercial devices. However, it 

was designed for a limited number of use cases, not to address current IoT/M2M needs due to its power 



 

consumption. 

Zigbee [20], since its conception, was designed to support larger low-rate Personal Area Networks (LR-

WPAN) with lower data rates that required much less power to operate, and due to that, covered several use cases 

not considered by Bluetooth. That circumstance has partially changed with the development of Bluetooth Low 

Energy (BTLE) that, keeping BT data rate, offers several modes that suit some of the IoT/M2M use cases. Zigbee 

is the foundation for recent designs [21] as 802.15.4e that improves the support for some industrial applications; 

802.15.4f supporting bidirectional RFID; or 802.14.4g specially designed for Smart Utility Networks [22]. BTLE 

is an interesting alternative in heavy industrial environments since its modulation is more robust to RF jamming 

than Zigbee's. 

Other transmission technology as Z-Wave (short-range, low-rate with similar Zigbee consumption), DASH7 or 

Wireless M-Bus, have been proposed to deal with similar environments but lacks of a significant community 

adoption [23], [24]. WiFi, supporting short range communications, provides higher data rates making it useful in 

some cases to link areas within the last mile or middle mile (limited to special cases). WiMAX (IEEE 802.16) 

due to its long-range is especially interesting as a middle-mile backhaul to the network domain. 

C. M2M Communication Protocols 

IoT and M2M have inherited the use of web services or web APIs on top of the Representational State Transfer 

(REST) [25] architecture. RESTful environments have traditionally relied on HTTP, and thus TCP, to provide a 

scalable and reliable transport for the creation of resources, the update and retrieval of their representation. 

Together with the use of a comprehensive naming space based on URLs, the RESTful architecture is present in 

the majority of Internet services. 

However, HTTP and TCP are not adequate for constrained devices. TCP is a loss-less end-to-end connection 

oriented transport protocol that provides reliability, congestion control and flow control. Despite TCP simplifying 

the application when it comes to data transmission by placing intelligence in protocol, it requires to keep state at 

both endpoints during the entire life of an interaction, thus compromising valuable resources, particularly battery 

power. Moreover, HTTP is a text based request response protocol that has improved system interoperability but 

presents a significant overhead and encoding/parsing complexity; its point to point communication model is not 

suitable for some interesting IoT/M2M traffic patterns as notifications, while the adoption of HTTP Multicast has 

been very scarce. 

Absorbing huge amounts of traffic from devices scattered among a big area is a challenge involving every part 

of the system architecture. A coherent approach to the problem requires responsive, message-driven, resilient and 

elastic architectures. For that reason, the work on Constrained RESTful Environments (CoRE) concentrates on 

providing an adequate RESTful architecture for the most constrained devices and networks proposing 6LoWPAN 

[26] and Constrained Application Protocol (CoAP) [27], [28]. 6LoWPAN provides open systems based 

interoperability among low-power devices using constrained radio transmission technology, especially 802.15.4. 

In such a way, devices can access IP networks and communicate directly with existing IP devices using standard 

IP routing techniques at a reasonable cost. The major contribution of 6LoWPAN is enabling IPv6 simplifying the 

requirements thus improving adoption and enabling a huge address space.  

CoAP defines a generic web protocol for those constrained devices and networks fulfilling M2M requirements, 



 

unicast and multicast delivery over UDP, asynchronous and message driven exchanges with low overhead 

together with proxy and caching capabilities (that is consistent with M2M networks). CoAP defines a messaging 

model over UDP containing a short header, binary options and an optional payload. Every message contains a 

16bit long Message ID field that can be used for reliability. If a message should be confirmed it should contain a 

confirmable (CON) flag and the sender will wait for an ACK with the same Message ID. If a timeout expires 

without the corresponding ACK, the sender will retransmit the message following. Messages requiring no 

reliability will be sent without the CON header. Request and responses in CoAP are carried over this CoAP 

reliable messaging layer. Requests and responses carry a Method Code and a Response Code respectively, 

together with optional information as URI or media type. Methods and Response codes are consistent with 

RESTful systems. A Token is used to match responses to requests independently from the underlying messages; 

the token size can vary from 0 to 8 bytes.  

D. Traffic Characterization 

As discussed by Verma et al. [2], the existence of differentiated traffic patterns in M2M gives network 

operators an extra degree of freedom to prioritize M2M operation reducing congestion, latency and packet loss in 

the network core that is shared with existing internet services.  

A thorough discussion on the different M2M applications and their traffic characterization can be found in the 

literature [2], [29]-[31]. For the purpose of the research described in this article, two general application groups 

are differentiated. Rigid applications are those requiring immediate and/or constrained delivery. Emergency 

applications, critical infrastructure monitoring or alerts triggered by monitoring systems, are some examples of 

applications that need immediate delivery. Others as surveillance, live video, or media distribution, are examples 

of applications that need bounded network delay or rate to work.  

Adaptive applications are those tolerant to either delay or rate. Smart grid, environmental monitoring, vending 

and any other M2M application data, excluding alarms and urgent messages, are worth to be processed, but not 

immediately. For instance, environmental monitoring may generate a large amount of traffic that, once processed, 

helps to evaluate interesting variables including air quality. However, whenever the measured values delivered 

are below a given alarm threshold, that data, that does not need to be processed immediately, may be stored 

conveniently at intermediate network nodes until network conditions improve in case of congestion. In such a 

way, data loss and network congestion can be minimized.  

E. Related Work 

Many aspects of security in M2M networks have been already covered by underlying protocols. Datagram 

Transport Layer Security (DTLS) [32] describes and adaptation of Transport Layer Security that works over 

UDP, and thus, can be used as a transport for CoAP [33]. Alternatively, 6LoWPAN has been extended to support 

IPSEC [34]. These approaches tackle end to end security but require pre-existing trust relationships among nodes. 

Others deal with message authentication [35] or explore novel approaches [36] including identity [37] and 

privacy.  

M2M has its origin in Industrial Control System (ICS) as SCADA, but incorporates protocols that have been 

proven resistant to many different attacks on the Internet. However, since the worm Stuxnet revealed that 

Industrial Control System (ICS) can be compromised, several efforts has been proposed to amend existing ICS 



 

systems that are worth mentioning. ModBus [38] is an application layer protocol used to communicate 

supervisory data to SCADA systems that lacks authentication and is vulnerable to various security attacks. 

Profibus [39] is a master/slave protocol that supports isolated communication based on token possession but also 

lacks of authentication allowing spoofed nodes to impersonate the master. Other solutions [40] propose 

mechanisms to verify node integrity in a distributed Industrial Control System (ICS) requiring a previous trust 

relation. Unlike the aforementioned ICS security solutions, the presented solution from this work does not only 

target industrial control system but also general IoT/M2M applications. It is not constrained by controller/node 

architecture, and it allows for unidirectional asynchronous communication between devices and backends so 

devices can send data asynchronously over virtual isolated channels. Moreover, unlike [40], IPSEC or 

TLS/DTLS, the presented solution from this work does not require pre-existing relations among entities since 

recipients can be determined after data is transmitted and proxies can be untrusted. In such a way this work 

provides a mechanism for secure opportunistic network storage based on proxy re-encryption that helps 

managing M2M traffic by relying in any available network storage even if it is located within an untrusted 

domain. End to end security as provided by DTLS or IPSEC otherwise, requires data sinks to be trusted so their 

certificates or raw public keys are known to the sender (or can be verified) in advance.  

The proxy re-encryption algorithms this work relies on the notion of ‘atomic proxy cryptography,’ first 

introduced by Mambo and Okamotom [41], using a semi-trusted proxy that transforms a cipher text for Alice into 

a cipher text for Bob without actually accessing the plaintext. Popular well-known approaches to proxy re-

encryption are BBS (Blaze, Bleumer & Strauss) [42] and AFGH (Ateniese, Fu, Green & Hohenberger) [43], [44]. 

BBS is based on ElGamal. In BBS, the proxy, knowing the key for Alice to Bob direction, can derive the key for 

Bob to Alice direction as the multiplicative inverse. This is not a feature but a problem since the proxy, which can 

be untrusted, does not need additional information to derive the inverse. Moreover, to accomplish bidirectional 

communication, two keys (direct and inverse) should be kept since deriving the inverse every time is 

computationally expensive. AFGH is based on Bilinear maps [45] and has the property a proxy knowing the 

transformation key for one direction cannot derive the opposite direction key from it. Moreover, a message that 

has been encrypted for proxy re-encryption with AFGH can be recovered by the origin before and after proxy re-

encryption permitting the source to recover, forward or re-encrypt a message for another destination if network 

conditions change again as it may happen in dynamic scenarios.  

III. SECURE PROXY DESIGN 

The purpose of proxy re-encryption algorithms is to provide confidentiality among data sources and sinks even 

if data should traverse, be stored or managed by, an untrusted third party.  

It should be noted that an untrusted entity is considered an entity owner of the data that has no preexisting trust 

relation with. This can happen because the entity is actually unknown to the owner, is a competitor etc., so should 

not have access to unencrypted data. Thus, it does not mean the entity is rogue or malicious. In the context of 

M2M, those networks or entities, despite unknown, thus untrusted, can be identified using the mechanisms M2M 

provides for that purpose. Malicious entities or networks are otherwise considered distrusted and should not be 

used since reliability cannot be guaranteed.  

Proxy re-encryption algorithms are very useful over existing end to end security mechanisms when some of 



 

these circumstances occur: 1) potential data sinks are not known in advance either because network errors force 

to send data to alternative data sinks, or new data sinks willing to collect data from connected devices are added 

dynamically; 2) there is no control or trust relation with all the entities the data will flow through; 3) intermediate 

unknown or untrusted entities as proxies or storage, are needed to avoid data loss or circumvent congested 

networks.  

A. Algorithm Selection and Key Generation 

As discussed in the previous section, the biggest traffic component in M2M flows from connected devices to 

the network and not otherwise. A big portion of traffic is expected to follow a fire-and-forget pattern avoiding 

limited devices to wait for confirmation which reduces device storage requirements and allows devices to sleep in 

order to save power. Reliability is in many cases provided by the M2M network. Thus, a huge number of sensors 

sending data asynchronously with no orchestration to several sinks may have an important impact on congestion 

leading to data loss. Management messages, flowing to connected devices, are expected to be less frequent and 

numerous than sensor data and may follow a send-and-receive pattern, so do not need to be proxied.  

AFGH has been chosen over BBS since it is designed in such a way that re-encryption with a given key can 

happen just in one direction such that the proxy is unable to derive the inverse direction key from the first. In the 

following paragraphs AFGH set up is described. 

A map e: 𝔾1x𝔾1 → 𝔾2 is a bilinear map if ∀a,b ∈ ℤq, x,y ∈ 𝔾1 then e(xa,yb) = e(x,y)ab is efficiently 

computable. AFGH chooses two parameters: g and Z, where g∈𝔾1and Z=e(g,g) ∈𝔾2. For endpoints, both data 

source and data sink have to generate a public (PKa) and private (SKa) key, for instance a node α1 will have 

SKα1=(α11,α12) and PKα1=(Zα11,gα12). The second part of the public key is only send to a partner if α1 accepts to 

receive proxied reencryptions of messages originally encrypted for the partner.  

B. Single Message Encryption 

Consider the data originated by a data source called α1 located in a trusted network should be stored by a proxy 

and later re-encrypted and delivered to α2. α1, as will be discussed later, can be either an end device powerful 

enough to perform the encryption on its own, or an M2M gateway in the middle mile acting as backhaul that 

aggregates data from several end devices. The proxy is located in an untrusted network. Both α1 and α2 have a 

key pairs. α1 protects the message M containing the data resulting in a tuple C1α1 as: 

 

C1α1 = [A1, B1] = [gr, M · Zα1·r]                                 (1) 

 

The length of parameter r varies according to the desired encryption strength. C1α1 is delivered to the network 

and stored in an intermediate entity called P. α2 is designated as the data sink. So α1 fetches the public key of α2 

(both parts) and computes the re-encryption key RKα1→α2 as: 

 

RKα1→α2 = gα11α22                                       (2) 

 

The proxy P is instructed to deliver the message to α2 after re-encrypting C1α1 with RKα1→α2, to do so, it 



 

should compute C2α1→α2 as: 

C2α1→α2 = [A2, B2] = [Zα22·α11·r, M · Zα11·r] 

     =  [Zα22·r´, M · Zr´]                                (3) 

 

Finally, α2 can acquire the original message M as:  

 

B2

A2

1
SKα2

⁄
=

M·Zr´

Zr´·α22/α22 =
M·Zr´

Zr´ = M                                 (4) 

 

The destination can be changed at any time (that would require a new RK to be computed.) 

C. Data Stream Encryption 

Using the aforementioned algorithm, a connected device (end device or gateway) can deliver a protected 

message allowing untrusted intermediate entities (proxies) to store and forward it later to a recipient. For that 

reason gateways located in the middle mile may perform this encryption over the data aggregated from several 

connected devices. 

As it has been shown, no previous trust relation is needed so the recipient can be chosen dynamically before or 

after the message has been encrypted and delivered to the proxy. Despite this provides a good granularity, the 

high volume of messages makes individual message encryption using asymmetric encryption very expensive in 

terms of processing power/throughput and battery life.  

End devices or gateways are expected to send data regularly to the network containing data related to, for 

instance, an area, an asset or a variable type. Despite the delivery is performed in an asynchronous way, during a 

period of time, the whole sequence of data messages can be considered a flow: a sequence of independent pieces 

of data with the same origin, destination(s) and interest. The proposed proxy re-encryption mechanism for M2M 

supports the efficient encryption of data streams by protecting individual messages with symmetric encryption.  

Every data stream has an associated key stream, a sequence of randomly generated keys. Every key from the 

key stream is used during a limited period of time so every message containing a piece of data of the stream is 

encrypted with a session key that changes regularly. Every time the key changes, it is signaled by a management 

message that is protected with asymmetric encryption as shown in the previous section. So once the data sinks are 

known, the data messages are forwarded to them, performing a re-encryption over the management messages 

only, see Fig. 2. 

The set of messages within the sequence protected with the same key is denoted as section. Defining sections 

allows for revoking authorization after a given time.  

D. Application Scenarios 

Consider the scenario of Fig. 3. Several connected devices are delivering data to the network through their 

M2M area network (labeled as M2M Prov. B). The gateway α1 protects data messages as shown in (1) (or uses 

stream protection). Protected messages are decrypted at the destination data sink labelled as Backend Cloud A 

since the data sink can derive the decryption key. Due to several problems the network connecting the M2M 

provider B and the Backend Cloud A becomes unavailable. 



 

α1, a limited intermediate node, which cannot store high volumes of data discovers an alternative route that 

uses a secure proxy located at M2M Area network from provider C. This network is untrusted since belongs to a 

competitor so no unencrypted but protected messages should be sent to the Secure Proxy. α1 sends the messages 

to the secure proxy to be stored until the network becomes available or a new data sink is designated. 

Later on, Backend Cloud B is designated as a new data sink (labeled as α2). α1 derives the re-encryption key 

RKα1→α2 appropriately and delivers it to the secure proxy. Once the key is received by the secure proxy, it re-

encrypts the messages C1α1 into C2α1→α2 as in (3), so they can be decrypted at α2, as shown in (4), avoiding 

secure proxy to access to unencrypted data. 

 Fig. 4 shows a scenario in with data sinks change dynamically. For clarity, two periods of time t1 and t2 are 

considered. During t1 connected devices are sending messages through the gateway α1 located at M2M network 

from provider B. Connected devices provide information about an area of interest so the M2M provider groups 

that data into a stream. α1 is in charge of aggregating data from different connected devices into the stream.  

The data aggregated by α1 is delivered to a secure proxy that interconnects α1 with the Internet. α1 generates a 

key stream and starts encrypting messages with symmetric encryption. Every message is labeled with a streamId 

and the key index, within the key stream, that is used for encrypting that concrete message. α1 generates 

management messages containing the streamId and the key from the key stream used at that time, protects it 

according to (2) and injects them periodically into the stream. During the period t1, α2 is designated as data sink 

so the secure proxy forwards the stream to α2 and re-encrypts management messages containing the keys from 

the key stream so α2 can decrypt the management messages containing the keys to decrypt the data. 

The M2M provider advertises the data it can aggregate to its partners or customers. The backend cloud B is 

interested in the data so, after t1, the M2M provider designates α3 as an additional data sink. Thus, during t2, data 

messages are delivered to both α2 and α3. α1 generates a re-encryption key for α3 and management messages are 

then re-encrypted also for α3 according to (3).  
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Fig. 2. Stream encryption. Data messages are encrypted with a session key using symmetric encryption and 

management messages containing the session key, that has been taken from a key stream, are protected 

according to the proxy re-encryption algorithm. 
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Fig. 3. The backend cannot be reached so data messages need to be stored in an intermediate proxy. Later 

on, data is re-encrypted and delivered to a new destination α2. 
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Fig. 4. α2 is the data sink to which data is delivered during a period of time (t1). A new data sink α3 is 

added dynamically later (t2). 

 

E. Protocol Mapping 

The design has considered CoAP and UDP as transports for the protected messages, which is consistent with 

several embodiments of M2M [46]. Both protocols allow for asynchronous delivered messages by constrained 

devices. CoAP provides additional reliability that is especially interesting for radio interfaces. Protected messages 

carried over UDP use a binary header, its meaning depends if messages are protected independently or part of a 

stream. For independently protected messages the binary header contains a 64 bit random number, a URL 

identifying the data source, a URL identifying the data sink or, if unknown before sending the message, a URL 

identifying within a namespace belonging to the provider. If messages are not handled individually at the proxy 

but are part of a stream, then they are flagged accordingly. Moreover, the 64 bit number is, in this case, divided in 

three parts: a 32 bit random number that identifies the message, a 16 bit number that corresponds to the streamID, 



 

and a 16 bit number (key index) that identifies the key within the key stream assigned to that data stream section. 

Management messages contain important information for re-encryption. Once the data sink is determined, 

either the data source or other trusted entities with access to the keys generate the re-encryption key and send it to 

the secure proxy for re-encrypting the messages. Management messages contain a header with a URL identifying 

the data source a streamID and a key index if applicable. 

If data is transported over CoAP instead, the header is directly mapped into several CoAP fields and options. 

The protocol uses the CoAP token, that correlates requests and responses to hold the 32 bit number used in either 

individual encryption or stream encryption as shown in Fig. 5. Data sink and source URL are placed into CoAP 

options for holding the Request URI [18] for the first and additional option (created for this protocol) to identify 

the source's callback URL. When delivered to a secure proxy, protected messages use the Proxy-Uri to identify 

the proxy as a forward proxy. 
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Fig. 5. Simplified secure proxy message format and mapping. 
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Fig. 6. Secure proxy architecture. 



 

IV. SECURE PROXY ARCHITECTURE AND OPERATION 

The proposed secure proxy is an intermediate entity that has available storage and cryptographic services. The 

secure proxy should be known to the network management applications so it can be used when needed. 

Nevertheless, it could respond to discovery protocols for opportunistic users. Discovery, service agreement and 

reimbursement calculations for using the proxy are out of the scope of this article.  

A. Architecture 

The architecture of the secure proxy is shown in Fig. 6. The M2M node acting as proxy has a RESTful API 

accessible either using HTTP or CoAP. The API allows obtaining information about the secure proxy, for 

instance, the available storage. This method returns the storage capacity and the available space at that time. The 

load method allows checking the load of the proxy during a time window. The average throughput allows 

determining the rate this secure proxy can forward data to the data sink.  

The API exports functionality to use the secure store and forward service. The store method instructs the secure 

proxy to reserve space for upcoming messages. Once invoked, this method creates a storage resource identifiable 

by an URL with a unique id. Messages will be delivered to the proxy for storage by sending CoAP POST 

containing the message to store to a sibling URL of the storage resource. Under the storage resource URL created 

by the proxy, a monitor resource that can be observed [47] provides statistics about the service. The monitor 

resource can be retrieved and updated by the server over a period of time.  

For plain UDP a datagram socket is created for receiving the messages after calling the store method (that 

should be called using CoAP). Once the messages have been stored by the proxy and the final destinations are 

known, the messages can be delivered to the destinations after re-encryption. To do so, the API provides the 

forward method. It consumes the re-encryption keys and the destination URLs (or UDP endpoints) and the 

storage resource unique identifier. The delivery rate can also be defined. Several other optimizations as 

compressing or grouping messages are considered. A unique id for the forward operation is also generated and a 

URL for the operation is created. Under the generated URL two sibling services are instantiated, one for 

monitoring that allows the resource to be observed and other for controlling the forward operation including 

pausing, resuming and changing the destination data sinks and re-encryption keys. 

B. Operation 

This section describes the message flow in a possible scenario using CoAP. α1 is the entity protecting 

messages. It can be either an end device or an M2M gateway aggregating others end devices' traffic. If α1 acts as 

a gateway, M2M applications behind it that are sending batch traffic should terminate the request/response in α1 

(first hop after the radio link) or clear transmission buffers after confirmation from α1 leaning on the M2M 

network reliability. Otherwise, limited devices will be forced to hold the request in the buffer until the message 

arrives to the final destination that can happen a long time later if messages are stored in a proxy. Consider α1 as 

a gateway delivering aggregated data as a stream to an endpoint until it fails.  

α1 can discover a gateway offering the secure store and forward service, or be instructed by other M2M entity 

with management attributions. Once the secure proxy is known to α1, it uses the proxy API to create a storage 

resource. After a successful response from the proxy, α1 generates a key stream to protect messages. Once α1 has 

data ready to be sent, it sends the data to the storage resource created previously at the proxy. α1 can monitor the 



 

entire proxy by subscribing to the store monitor [47]. α1 generates regularly a protected management message 

containing the session key in use. 

Once a new data sink and its public key is known to α1, α1 computes the re-encryption key and invokes the 

forward method of the secure proxy API passing the re-encryption key 𝑅𝐾𝛼1→𝛼2 as a parameter. This method can 

also be invoked by any other authorized M2M entity. A forward resource and a monitor are created as a result. 

Once α1 receives a positive response from the secure proxy, it can monitor the forward process and instruct the 

secure proxy to deliver the data to the final destination. To do so, the secure proxy forwards the messages and re-

encrypts the session keys from the key stream found in the management messages.  

Finally, once data and management messages arrive at the destination, the destination decrypts the 

management messages to access the session keys and decrypts the data messages with the session key. 

V. IMPLEMENTATION AND RESULTS 

A major concern of this research was to identify if typical constrained CE devices could deal with this strong 

encryption and if the throughput is reasonable for the intended application. To evaluate this, two candidate 

consumer electronics device profiles have been considered: end devices encrypting messages individually that 

can be easily found in any plausible scenario and small-medium gateways acting as backhaul receiving data from 

LRWPANs and forwarding them using long range radio interfaces or terrestrial networks. Both devices are 

usually implemented on commodity hardware and, thus, present in target scenarios. The devices would make 

either the initial encryption (end devices) or the re-encryption (gateways).  

For the evaluation, a half credit card size micro computer equipped with a RISC single core processor and 1GB 

of ram has been used. The device is connected in two ways to a traffic generator: 1) using 6LoWPAN over an 

802.15.4 and 2) 6LoWPAN over Ethernet (or 802.11.) The operating system is based on linux and uses open 

source drivers. In the first case, the effective Maximum Transfer Unit (MTU) is limited to 127 bytes and in the 

second case the MTU is 1280. Two key lengths have been used. For medium encryption r has been set to 512. 

For medium-strong encryption r has been set to 1536. In both cases CPU usage was stable and equal to 24.2% for 

asymmetric encryption with AFGH. The memory footprint was 18.5Mb of RAM for medium-strong encryption 

and 16Mb for medium encryption.  

According to Fig. 7 and Fig. 8, encryption is more computationally expensive than re-encryption. Considering 

the CPU consumption, a proxy would be able to re-encrypt and aggregate traffic from up to 4 streams 

simultaneously. This shows the solution is appropriate for the cases discussed previously in the article since the 

most computationally expensive tasks are performed at the proxy, that is expected to be more powerful than 

constrained end devices. Results show it is possible to manage up to 4 streams simultaneously giving up to 

800kbps of aggregated traffic for r=512 and MTU=1280 and 200kbps for r=512 and MTU=127, that is 

appropriate for asynchronous monitoring applications considering the constraints of the hardware used during the 

evaluation. The network MTU has an almost linear impact in the throughput of the encrypted streams, as 

expected. 

The 6LoWPAN setup over 802.15.4 shows a small throughput due to the reduced MTU value imposed by the 

physical layer. The throughput for 6LoWPAN over less constrained physical layers shows significantly improved 

behavior. 



 

 

 
Fig. 7. Throughput (total data delivered divided by total processing time) for stream encryption with 

r=512. It has been calculated for several combinations of data messages (encrypted with AES) per 

management message (encrypted with AFGH-containing the AES session key). 

 

 
Fig. 8. Throughput calculated for stream encryption for r=1536. 

 

 



 

 

VI. CONCLUSIONS 

This research describes the design, architecture and operation of a secure store and forward service for 

intermediate M2M proxies and its protocol bindings. The major purpose of this solution is to avoid M2M traffic 

collapsing the network while also maintaining confidentiality. It has been carefully designed to be useful for 

limited CE devices and constrained physical layers and protocols. The solution allows storing valuable data in 

untrusted intermediate entities in such a way they can be eventually delivered to the appropriate data sink without 

letting the untrusted entity to access the data. The data can be re-encrypted to the appropriate destination at the 

untrusted entity without revealing the content by using a re-encryption key. It allows also sending data to several 

destinations and changing the destination dynamically using different keys. A further advantage is that the re-

encryption throughput is 4-8 times more than that of the encryption process. A prototype has been developed and 

tested showing it can be deployed in target CE devices providing an adequate throughput.  
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