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ABSTRACT 20 

Saltmarsh-based reconstructions of relative sea-level (RSL) change play a central role in current 21 

efforts seeking to quantify the relationship between climate and sea-level rise. The development of an 22 

accurate chronology is pivotal, since errors in age-depth relationships will propagate to the final 23 

record as alterations in both the timing and magnitude of reconstructed change. A range of age-depth 24 

modelling packages are available but differences in their theoretical basis and practical operation 25 

mean contrasting accumulation histories can be produced from the same dataset. 26 

We compare the performance of five age-depth modelling programs (Bacon, Bchron, Bpeat, Clam 27 

and OxCal) when applied to the kinds of data used in high resolution, saltmarsh-based RSL 28 

reconstructions. We investigate their relative performance by comparing modelled accumulation 29 

curves against known age-depth relationships generated from simulated stratigraphic sequences. 30 

Bpeat is particularly sensitive to non-linearities which, whilst maximising the detection of small rate 31 

changes, has the potential to generate spurious variations, particularly in the last 400 years. Bacon 32 

generally replicates the pattern and magnitude of change but with notable offsets in timing. Bchron 33 

and OxCal successfully constrain the known accumulation history within their error envelopes 34 

although the best-fit solutions tend to underestimate the magnitude of change. The best-fit solutions 35 

of Clam generally replicate the timing and magnitude of changes well, but are sensitive to the 36 

underlying shape of the calibration curve, performing poorly where plateaus in atmospheric 14C 37 

concentration exist. 38 

We employ an ensemble of age-depth models to reconstruct a 1500 year accumulation history for a 39 

saltmarsh core recovered from Connecticut, USA based on a composite chronology comprising 26 40 

AMS radiocarbon dates, 210Pb, 137Cs radionuclides and an historical pollen chronohorizon. The 41 

resulting record reveals non-linear accumulation during the late Holocene with a marked increase in 42 

rate around AD1800. With the exception of the interval between AD1500 and AD1800, all models 43 

produce accumulation curves that agree to within ~10 cm at the century-scale. The accumulation rate 44 

increase around AD1800 is associated with the transition from a radiocarbon-based to a 210Pb-45 

dominated chronology. Whilst repeat analysis excluding the 210Pb data alters the precise timing and 46 

magnitude of this acceleration, a shift to faster accumulation compared to the long-term rate is a 47 

robust feature of the record and not simply an artefact of the switch in dating methods. Simulation 48 

indicates that a rise of similar magnitude to the post-AD1800 increase (detrended increase of ~16 cm) 49 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

is theoretically constrained and detectable within the radiocarbon-dated portion of the record. The 50 

absence of such a signal suggests that the recent rate of accumulation is unprecedented in the last 51 

1500 years. Our results indicate that reliable (sub)century-scale age-depth models can be developed 52 

from saltmarsh sequences, and that the vertical uncertainties associated with them translate to RSL 53 

reconstruction errors that are typically smaller than those associated with the most precise 54 

microfossil-based estimates of palaeomarsh-surface elevation.  55 
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1. Introduction 56 

Constructing an accurate accumulation history is a vital but non-trivial component of most sediment-57 

based palaeoenvironmental reconstructions (Telford et al., 2004; Blaauw and Heegaard, 2012).  This 58 

is exemplified by the current generation of ‘high resolution’ relative sea-level (RSL) studies seeking to 59 

employ saltmarsh sediments as late Holocene ‘tide gauges’ (see Barlow et al., 2013). In this approach 60 

the age and altitude of palaeomarsh-surfaces (PMS) (Figure 1a) are combined with estimations of the 61 

height above sea level at which they formed (Figure 1b) in order to reconstruct the RSL change 62 

experienced at a study site (Figure 1c). Microfossils such as foraminifera are used to infer PMS height 63 

whilst age control is provided by AMS radiocarbon dating of saltmarsh plant remains. Whilst some 64 

microfossil samples are directly dated, the age of others must be inferred by interpolation between 65 

dated horizons. Although this situation is not unique to RSL reconstruction, establishing an accurate 66 

age-depth relationship is particularly important for saltmarsh-based studies since it directly impacts 67 

the magnitude of the reconstructed change as well as determining its timing (see Figure 1c and 1d). 68 

As core collection typically targets high marsh environments, the resulting RSL reconstruction is 69 

primarily controlled by the sediment accumulation history (Edwards, 2007). 70 

In recent years, several software tools have been developed to assist in the process of chronology 71 

construction. Whilst some packages employ classical statistical methods to develop age-depth 72 

models (e.g. Clam: Blaauw, 2010), the use of Bayesian statistics has become increasingly common 73 

(Parnell et al., 2011; Parnell and Gehrels, 2015). Variations in underlying theory and its practical 74 

application mean that each model handles data differently and, in this way, a single dataset can 75 

produce a diversity of accumulation histories. In fact, Blaauw and Heegaard (2012) note that model 76 

choice is the greatest source of uncertainty in age-depth modelling. Previous work highlights that 77 

each modelling approach has particular strengths and weaknesses, with no single model out-78 

performing all others in every situation (Parnell et al., 2011). Consequently, comparative assessment 79 

of model performance using simulated and real data is an important step to ensure that informed 80 

choices are made during chronology construction (e.g. Telford et al., 2004; Blockley et al., 2007). 81 

Furthermore, since inaccurate accumulation histories can give rise to spurious RSL signals, it is 82 

important to ensure that any inferred rate changes are not simply artefacts of the calibration process 83 

or switches between dating method (Gehrels et al., 2005; Barlow et al., 2013). 84 
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In this paper we present a new, well-dated saltmarsh sediment core from Connecticut, USA, covering 85 

the last 1500 years which is typical of sequences targeted in ‘high resolution’ RSL studies (e.g. Kemp 86 

et al., 2011, 2013). We use a suite of simulations to evaluate the performance of five age-depth 87 

modelling packages (Bacon, Bchron, Bpeat, Clam and OxCal) in order to address the following 88 

questions: 1) Do age-depth models introduce spurious accumulation rate changes?; 2) Can we tell if 89 

recent accumulation rates are without precedent given down-core changes in dating approach and 90 

resolution? 91 

2. Saltmarsh core and age data 92 

A 1.82 m-thick sequence of high saltmarsh peat was recovered from Pattagansett River marsh in 93 

Connecticut, USA (Figure 2). Twenty-six samples for AMS radiocarbon dating were collected at 6 cm 94 

intervals below 29 cm depth to produce a 1500 year-long record with an average of one radiocarbon 95 

date every 60 calendar years (Figure 3, Table B.1). This radiocarbon-based chronology was 96 

supplemented by pollen and short-lived radionuclide data from the upper 64 cm of the sequence 97 

(Figure 4, Table 1, Table B.2). 98 

An initial manual wiggle-match of the radiocarbon data to the calibration curve (van de Plassche et al., 99 

2001) confirms the predominantly linear nature of the age-depth profile and the absence of significant 100 

hiatuses (Figure 3). This is supported by the lithostratigraphy (Figure 2c) which indicates consistent 101 

accumulation within a high marsh environment (abundant Spartina patens rhizomes with uniform δ13C 102 

signatures (Table B.1)). The resulting late Holocene accumulation rate of 1.1 mm/yr matches 103 

estimates of the underlying rate of glacio-isostatic adjustment (GIA) for the region (1.0 ± 0.2 mm/yr, 104 

Donnelly et al., (2004); 1.1 ± 0.1 mm/yr, Engelhart et al., (2009)), implying that the effects of sediment 105 

compaction in this shallow core are negligible. Forward extrapolation of this long-term rate fails to 106 

intersect with the modern surface by ~13 cm (Figure 3b, 4f), indicating that an increase in 107 

accumulation rate must have occurred in the most recent portion of the record. This inference is 108 

confirmed by both a simple linear interpolation from the core top to the Ambrosia chronohorizon 109 

(mean accumulation rate of 1.7 mm/yr since AD1650) or from the 210Pb and 137Cs data (mean 110 

accumulation rates of 2.1 mm/yr since AD1850 or 2.6 mm/yr since AD1963). The local rate of RSL 111 

rise recorded by the tide gauge at New London is 2.3 mm/yr since AD1938. 112 
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Whilst this simple approach of comparing linear trends is sufficient to identify the existence of a recent 113 

acceleration in saltmarsh accumulation rate, it cannot reliably quantify it given the range of possible 114 

rates (1.6 mm/yr – 2.8 mm/yr), or unequivocally date the timing of its onset. More importantly it is 115 

unable to address the question of whether a change of similar magnitude occurred in the earlier, 116 

radiocarbon-dated portion of the record, which is masked within the larger age error envelope. 117 

Age-depth modelling has been used to refine the timing and significance of recent changes identified 118 

in RSL records and to decrease the magnitude of age error envelopes by considering the stratigraphic 119 

ordering of dates within a sediment core (e.g. Kemp et al., 2011). However, given the differences in 120 

performance and underlying theory, it is unclear which approach will produce the most precise and 121 

accurate accumulation history for a particular sediment core. In the following section, we use 122 

simulations to produce a series of known accumulation histories against which we can evaluate the 123 

performance of the different age-depth modelling packages. Whilst numerous permutations of 124 

synthetic data are possible (e.g. uneven sampling intervals, varying age precision etc), the 125 

characteristics of the simulated dataset will influence relative model performance. Consequently, we 126 

develop a series of synthetic dates that emulate the sampling resolution and dating precision of the 127 

Pattagansett core chronology. 128 

3. Age-depth simulation and modelling 129 

3.1 Developing synthetic sedimentary sequences 130 

We develop hypothetical age-depth scenarios to serve as targets for the chronological modelling 131 

programs (Figure 5, Appendix A). We initially consider a linear age-depth profile (Simulation 1) 132 

reflecting constant accumulation at a rate of 1.1 mm/yr (the long-term linear rate of the Pattagansett 133 

core). We simulate the process of radiocarbon-based chronology construction by ‘sampling’ a 134 

hypothetical core at 6 cm depth intervals and then ‘decalibrating’ the known calendar age to a 135 

radiocarbon date. We follow the method of Michczyński (2007) which uses the calibration curve to 136 

convert a calendar age into a radiocarbon age which is then assigned an error term to emulate a 137 

radiocarbon date. We use an error term of ± 35 yrs thereby producing a synthetic dataset of 138 

comparable resolution and precision to the Pattagansett record (Figure 5a). Finally, we include two 139 

age markers (along with the core-top) to simulate the provision of the age constraints provided by 140 

pollen and short-lived radionuclide data. 141 
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We then explore the reconstruction of variable accumulation rates (Simulations 2-6) by superimposing 142 

an oscillating (sinusoidal) term upon the background linear rise (Figure 5b, Figure 5c, Appendix A). 143 

We vary the amplitude and the period of this oscillating term whilst ensuring sediment age increases 144 

consistently with depth in core. The magnitudes of the detrended oscillations range from 6 – 21 cm 145 

(Table A.1); the former being the smallest theoretically detectable signal based on our sampling 146 

resolution and the latter being the largest possible oscillation that does not violate the principle of 147 

superposition. A sinusoidally oscillating term is selected for operational simplicity and is not intended 148 

to imply that ‘real’ RSL oscillations are necessarily periodic. Instead, we use multiple simulations to 149 

gauge the capacity of different models to reliably capture non-linear changes of varying magnitude. 150 

We present these data as detrended signals since this is the format commonly used for comparison 151 

with models and between regions with differing background rates of RSL rise (e.g. Engelhart et al., 152 

2009; Gehrels, 2010; Kemp et al., 2011; Barlow et al., 2014; Kopp et al., 2016). 153 

3.2 Age-depth models 154 

The synthetic data are processed by five age-depth modelling packages that are freely available and 155 

can be run on a desktop computer. Four of these programs (Bacon: Blaauw & Christen, 2011; 156 

Bchron: Haslett & Parnell, 2008; Bpeat: Blaauw & Christen, 2005; Clam: Blaauw, 2010) are written for 157 

the free, open-source statistical environment R (R Development Core Team, 2010), whilst OxCal 158 

(Bronk Ramsey, 1995, 2001, 2009a) is a stand-alone package that can be run on-line or downloaded 159 

(c14.arch.ox.ac.uk). Clam (Blaauw, 2010) employs classical age-depth modelling, provides both 160 

numerical best-fit and confidence interval interpolations and was developed as a quick and 161 

transparent way to produce age-depth models. The remaining programs employ a Bayesian statistical 162 

approach which accommodates the introduction of additional ‘prior’ information to assist in refining the 163 

probability distributions of age data (see Parnell et al., 2011 for a review). For example, applying the 164 

principle of superposition means that models do not produce accumulation histories with age 165 

reversals and confidence intervals become narrower. 166 

Bpeat (Blaauw & Christen, 2005) provides numerical best-fit interpolations, graphical grey-scale 167 

summaries of uncertainty, and essentially functions as an advanced form of ‘wiggle match dating’. 168 

Bacon (Blaauw & Christen, 2011) provides numerical best-fit and confidence interval interpolations, 169 

graphical grey-scale summaries of uncertainty, and is superficially similar to Bpeat in terms of its 170 

tuneable parameters (see Appendix A). Bchron (Haslett & Parnell, 2008) provides numerical best-fit 171 
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and confidence interval interpolations and is fully automated so does not require extensive preliminary 172 

analysis to determine optimal parameters. Finally, OxCal (Bronk Ramsey, 1995, 2001, 2008, 2009a; 173 

Bronk Ramsay and Lee, 2013) provides numerical confidence interval interpolations but no best-fit 174 

solution. It also has additional functionality in the manner in which outliers are identified during age-175 

depth modelling (Bronk Ramsey, 2009b). 176 

Further details of the theoretical basis and operation of each of the models are provided in the 177 

publications that accompany them and useful comparative reviews of a subset of packages have 178 

been made by Blockley et al. (2007) and Parnell et al. (2011). Whilst the number of model 179 

development runs (>100) means the details cannot be presented here, we summarise the key 180 

outcomes of these analyses, and document the selection of parameters where they deviate from the 181 

default values (Appendix A). The nature of the models (e.g. use of Monte Carlo sampling) means that 182 

results may vary slightly between runs made with identical settings. Consequently, during model 183 

evaluation and development, we considered the output from multiple runs, and present results as the 184 

mean of three runs per reconstruction. The final selection of parameters (Table 2) was made to 185 

optimise the fit between model output and the suite of simulated curves, whilst ensuring choices were 186 

parsimonious and avoided over-fitting (Blaauw & Heegaard, 2012). 187 

We assess the performance of these models by comparing the accuracy and precision of the 188 

detrended profiles. We measure accuracy in terms of how closely a best-fit model solution 189 

approximates the target accumulation history, and the extent to which this known curve is contained 190 

within the error envelope of the reconstruction. The magnitude of the error envelope is used to 191 

indicate model precision, and hence increased model precision must be accompanied by better model 192 

fit if the reconstruction is still to be deemed accurate. Quantitative measures of overall goodness-of-fit 193 

are included in Table A.2. 194 

3.3 Modelling linear accumulation 195 

Figure 6 presents the detrended accumulation histories produced by each of the modelling programs 196 

for the linear age-depth scenario. Since accumulation is constant throughout, any deviation from a 197 

horizontal line indicates the potential for spurious rate changes to be introduced during the calibration 198 

and interpolation process. 199 
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In general, we consider all models to have accurately reconstructed the linear accumulation scenario 200 

in that the best-fit curves do not deviate substantially from a straight line (misfits < 5 cm), and the real 201 

profile is always contained within the confidence intervals (Figure 6a, Figure 6b). This is an important 202 

result as it demonstrates that reconstructions produced by any of these programs do not produce 203 

spurious oscillations linked to the underlying structure of the radiocarbon calibration curve (see 204 

Gehrels et al., 2005; Gehrels & Woodworth, 2013; Barlow et al., 2013), at least not when based on 205 

the kind of well-dated sequence considered here. 206 

Small differences in model reconstructions do arise indicating variations in their sensitivity to 207 

calibration curve shape. The best-fit curves of Bpeat and Clam are most susceptible to this effect 208 

during the last 400 years of the record and the wide Clam confidence intervals indicate reduced 209 

precision at certain points, equivalent to age uncertainties of up to ~150 years (Figure 6d). 210 

3.4 Modelling non-linear accumulation 211 

Non-linear scenarios reveal the potential for real rate changes to be distorted or masked within a 212 

predominantly radiocarbon-dated sequence. We begin by considering a signal of ~21 cm (Simulation 213 

6, Table A.1) which is of comparable magnitude to the recent (c. 100-200 yrs) detrended increase in 214 

RSL rise reported from the Atlantic coast of North America (e.g. Gehrels, 2010; Kemp et al. 2011). 215 

Figure 7 presents the simulated accumulation curve along with the reconstructed curves produced by 216 

the various programs. We initially compare model performance by asking three questions: 1) Does 217 

the model consistently detect accumulation rate change? 2) Does the model accurately represent the 218 

magnitude of change? 3) Does the model reliably reproduce the pattern of change? 219 

All models unambiguously detect the accumulation rate changes and this is clearly reflected in both 220 

the best-fit solutions and confidence intervals (Figure 7a, Figure 7b). The magnitude of change is 221 

excellently reproduced by the best-fit reconstructions of Bpeat. The best-fit curves for Clam and 222 

Bacon reliably capture the magnitude of some oscillations, but are not consistent throughout the 223 

sequence, encountering particular difficulties in the last few hundred years of the record. The best-fit 224 

solution of Bchron consistently underestimates the peak magnitude of change. 225 

The nature of the Bpeat program means that the oscillating curve is essentially represented by a 226 

series of linear segments. Whilst these do an excellent job of approximating the upward limb of each 227 

oscillation, the falling limbs appear as isolated or disjointed collections of points, effectively 228 
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resembling hiatuses that correlate with phases of extremely low or zero accumulation. These falling 229 

limbs are associated with significant age misfits (Figure 7e). Whilst the best-fit curve for Clam does a 230 

good job of replicating the pattern of change for the earlier oscillations, the narrow confidence 231 

intervals associated with its reconstructions do not always circumscribe the actual accumulation 232 

curve, and consequently may give the impression of false precision. The difficulties encountered in 233 

the last few hundred years, reflecting the underlying structure of the radiocarbon calibration curve, are 234 

also evident as larger confidence intervals that still do not always contain the real accumulation 235 

history (Figure 7b). 236 

Whilst Clam and Bacon indicate broadly similar magnitudes of change, there is a phase offset in the 237 

Bacon reconstruction which results in a tendency for both the best-fit curve and the confidence 238 

intervals to lead the real accumulation curve. This produces large misfits (particularly for age) and the 239 

appearance of poorer overall performance (Figure 7e), even though the general shape of the 240 

confidence intervals are a reasonable approximation of the underlying signal. This temporal offset 241 

may be linked to the use of a sinusoidal term (e.g. an aliasing effect), or may reflect our choice of 242 

‘section thickness’ in the Bacon setup (Appendix A). Irrespective of the precise cause, these between-243 

model differences are indicative of the kinds of temporal uncertainty associated with model choice 244 

and the reconstruction process, even where all models employ data with the same sampling 245 

frequency. In this instance, whilst inter—model differences are typically of the order of c. 50 years, 246 

they may rise to a century or more (Figure 7e). Overall, Bchron and Oxcal outperform the other 247 

programs in terms of their ability to reliably capture known accumulation variability within their 248 

confidence intervals (Figure 7b). 249 

To explore further the issue of signal detectability we repeat the process using a series of simulations 250 

with oscillations of differing magnitude (Table A.1, Appendix A). These results indicate that the ability 251 

to consistently detect rate changes begins to fail with oscillations ~10 cm in magnitude (i.e. Simulation 252 

3). For example whilst Bpeat identifies the existence of every oscillation, it fails to reliably capture the 253 

magnitude of every change (Figure A.10c). Although none of the other best-fit solutions accurately 254 

reflect this scale of oscillation, the confidence intervals of Bchron and OxCal continue to perform well 255 

by circumscribing the actual accumulation curve and providing indications of its non-linear form 256 

(Figure A.13c, Figure A.14c). 257 
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Figure 8 shows a simulated curve with oscillations of ~13 cm (Simulation 4) which are comparable in 258 

magnitude to the recent increase in accumulation recorded in the Pattaganssett record (Figures 3 & 259 

4). All models recognise the existence of the oscillations, with the best-fit curve for Bpeat most closely 260 

approximating their magnitude (Figure 8a). In this instance, the best-fit curve of Clam outperforms that 261 

of Bacon which has become somewhat unstable, perhaps linked to the greater significance of phase-262 

shifts in a scenario with shorter period oscillations (Figure 8c). Once again, whilst the best-fit solution 263 

for Bchron underestimates the magnitude of change, both its confidence intervals, and those of 264 

OxCal, do a good job of delimiting the target accumulation curve (Figure 8b). 265 

Collectively, these results demonstrate an accumulation signal of ~21 cm (Simulation 6), comparable 266 

to the increases in RSL rise reported from other sites along the Atlantic coast of USA, will be 267 

detectable within the radiocarbon-dated portion of the record irrespective of the age-depth modelling 268 

program employed (Figure 7). Conversely, signals with a magnitude of less than ~10 cm (Simulation 269 

3) will likely be circumscribed by the confidence intervals (Figure A.3c) but may not be accurately 270 

resolved by a best-fit solution (Figure A.2c) given the quality of the data, vertical sampling interval and 271 

the underlying background accumulation rate. 272 

Whilst the choice of modelling program influences the detail of the final best-fit accumulation curve, 273 

differences between models only translate to centimetre-scale vertical discrepancies in their 274 

reconstructions (Figure A.7). These offsets are generally small when compared to the size of the 275 

confidence intervals associated with each model. As the lower limits of signal detection are 276 

approached, inter-model differences tend to become more pronounced with different models ‘failing’ 277 

in contrasting ways. An important exception to this general pattern is the relatively poor performance 278 

of all models in the last 400 years of the record reflecting the underlying shape of the radiocarbon 279 

calibration curve. Whilst vertical offsets may be subtle, misfits in the reconstructed timing of changes 280 

can be of the order of a century or more. 281 

4. Developing an age-depth model for the saltmarsh core 282 

The simulations presented in Section 3 are tailored to exploring model performance when applied to a 283 

dataset with a radiocarbon-dating precision (±35 yrs) and effective sampling resolution (1 date every 284 

c. 60 yrs) comparable to our Connecticut saltmarsh core (Section 2). These provide information on 285 

the magnitude of the detrended signal that may be reliably detected within the radiocarbon-dated 286 
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portion of our record (~13 cm or more). Oscillations smaller than this may be constrained within the 287 

confidence intervals but will not be accurately discernible in envelope shape or associated best-fit 288 

curves. Subtle changes of ~5 cm are equivalent to the misfits associated with modelling linear 289 

accumulation and so can effectively be regarded as indistinguishable from ‘noise’. 290 

In light of the differences in performance outlined in Section 3, we employ an ensemble of age-depth 291 

models to utilise the relative strengths of the different approaches and infer additional information 292 

from the discrepancies between reconstructions. We exclude Bacon from this analysis due to the 293 

‘phase-shift’ effect noted in simulation (Section 3.4). 294 

Applying Occam’s razor (and in the absence of evidence to the contrary) the assumption of a linear 295 

accumulation rate is a reasonable starting place for chronological model development. More 296 

complicated accumulation histories only need be invoked when this linear assumption fails to 297 

adequately describe the data. The sensitivity of Bpeat to non-linearity (Section 3.3) makes it an 298 

excellent first-assessment tool. If Bpeat suggests limited divergence from a linear profile, we can be 299 

confident that we are not missing any significant rate changes. Where Bpeat does identify potential 300 

rate changes, we can use the best-fit solution to provide an indication of their likely location, and to 301 

get an approximate magnitude of the detrended signal involved. The cost of this sensitivity is that 302 

Bpeat has the greatest potential to produce spurious ‘jumps’ where none exist, notably around the c. 303 

AD1700 ‘threshold’ in the calibration curve (e.g. Figure 6a). 304 

Once this initial framework is in place, Bchron or OxCal can be used to provide confidence intervals 305 

on the basis that they consistently circumscribe the simulated accumulation curve (Section 3.4). 306 

Whilst the extremes of these confidence intervals will tend to overestimate the magnitude of an actual 307 

oscillation (Figure 8b), the best-fit solution of Bchron has a tendency to smooth or dampen the 308 

oscillation (Figure 8a), with this becoming more pronounced as dating precision reduces. Therefore 309 

as a final step, it may be instructive to consult the best-fit solution of Clam since this tends to provide 310 

a middle-ground reconstruction against which the extremes of Bpeat and Bchron/OxCal can be 311 

evaluated, particularly in the earlier (pre-AD1600) portion of the record (Figure 8e). 312 

4.1 Evaluating the model ensemble 313 

The initial screening run using Bpeat provides strong evidence for non-linear accumulation within the 314 

record (Figure 9a). Changes in the early portion of the sequence are small (~5 cm) and therefore 315 
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below the limit of reliable detection inferred from simulation. More marked variation is apparent after 316 

AD1500 with a reduction in rate, followed by a short interval of quasi-uniform accumulation before the 317 

most recent acceleration commenced around AD1800. Whilst this pronounced oscillation (detrended 318 

rise of 26 cm) is much larger than anything experienced during the preceding millennium, simulations 319 

indicate that Bpeat ‘failure’ may overestimate the magnitude of change during this time interval 320 

(Figure 8a, Figure 8c). 321 

Adding the Bchron / OxCal confidence intervals and best-fit solution refines the initial accumulation 322 

history outlined by Bpeat (Figure 9b), constraining the maximum size of any pre-AD1500 detrended 323 

change to ~13 cm or less and placing the c. AD1800 rise between ~9 and 18 cm.  Both the 324 

confidence intervals and the best fit solution (Bchron) indicate pre-AD1500 oscillations that are larger 325 

than any artefacts noted in the linear simulation (Figure 6), suggesting they are real features of the 326 

record. The post-AD1500 rate reduction is essentially absent from the Bchron / Oxcal reconstructions 327 

and so the subsequent detrended rise is correspondingly smaller. This more muted picture of change 328 

is consistent with the tendency for the Bchron best-fit curve to smooth variability evident in the 329 

simulations (Figure 8a). 330 

Finally, the best-fit curve of Clam reconstructs oscillations in the pre-AD1500 portion of the record 331 

which equate to a detrended signal of ~12 cm and are generally contained within the Bchron / Oxcal 332 

confidence intervals (Figure 9c). The only departure from this pattern is following the post-AD1500 333 

deceleration when the curve plots just below the confidence intervals between AD1600 and AD1800, 334 

giving a detrended recent rise of ~21 cm. 335 

4.2 Model sensitivity to age data selection 336 

To investigate the effect of a switch in dating method, we repeat the age-depth model runs for our 337 

saltmarsh core with the 210Pb data removed (Figure 10b). The impact of this change on the best-fit 338 

reconstructions is minimal for Bchron and Clam, whilst its effect on Bpeat is to shift the major 339 

inflection in accumulation rate from AD1800 to AD1700. In contrast a marked post-AD1700 impact is 340 

seen in the confidence intervals of OxCal and Bchron, the latter of which in particular expands 341 

significantly until constrained by the 137Cs marker. 342 

The difference in behaviour between Bpeat, Bchron and Clam can be attributed to the manner in 343 

which they incorporate the pollen chronohorizon data and use it to constrain which side of the 344 
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AD1650 horizon contemporaneous radiocarbon dates are placed (Figure 3b). To illustrate this effect, 345 

we repeat our analysis with the pollen chronohorizon also removed (Figure 10c). The best-fit solutions 346 

of Bchron and Clam are not significantly affected, and there is no substantial further expansion of the 347 

Oxcal and Bchron confidence intervals. In contrast, the best-fit solution of Bpeat alters dramatically, 348 

effectively smoothing out the large post-AD 1500 rate reduction and producing a reconstruction that 349 

approximates that of Bchron. It is interesting to note that removal of this age constraint produces a 350 

less ‘rigid’ reconstruction in the earlier portion of the record, with Bpeat now closely tracking the 351 

Bchron best-fit solution and adding further support for non-linear change prior to AD1500. 352 

As a final illustration of sensitivity, we remove the radiocarbon date at 65 cm depth (adjacent to the 353 

pollen chronohorizon) which plots as a potential outlier in the original linear ‘wiggle-match’ (Figure 3a). 354 

Whilst the best-fit curve of Bchron is not significantly impacted, the Clam and Bpeat reconstructions 355 

more closely align and the best-fit curves plot close to that of Bchron for the period AD1500-1600 356 

(Figure 10d). Collectively, these model runs indicate that Bchron and Oxcal produce the most ‘stable’ 357 

reconstructions and that as data are removed the best-fit solutions of Bpeat and Clam tend to 358 

converge toward that of Bchron. 359 

4.3 Towards a ‘consensus’ accumulation curve 360 

We combine these reconstructions to develop an informal ‘consensus’ accumulation curve (Figure 361 

10e). With the exception of the period between AD1500 and AD1800, all models show excellent 362 

agreement (within ~5 cm of each other). Our consensus curve is constrained within the Bchron and 363 

Oxcal confidence intervals, respects all points where the individual age-depth profiles overlap, and 364 

remains within ~10cm of all best-fit solutions. For the interval centred on AD800, our curve 365 

approximates the best-fit solution of Bchron on the basis that Bpeat does not register a large 366 

oscillation at this point. Between AD1000 and AD1300 our curve closely tracks the best-fit solution of 367 

Clam on the basis that a rate reduction is evident in all models whilst simulation results suggest the 368 

best-fit solution of Bchron is likely to smooth this signal. Between AD1300 and AD1400, the best-fit 369 

solutions of all models are essentially indistinguishable and show an accelerated rate of rise which is 370 

also mirrored in the confidence interval trends. Whilst the small magnitude of this signal (~ 5cm) is 371 

below the reliable limits of detection indicated by simulation, the agreement between models suggests 372 

that an accelerated rate of rise sometime during the 13th and 14th centuries is likely, although its 373 

magnitude cannot be accurately determined. 374 
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After AD1400, the best-fit solutions begin to diverge and our consensus curve initially tracks that of 375 

Clam and Bpeat on the basis of the smoothing-tendency associated with Bchron. The consensus 376 

curve then diverges from both that of Bpeat and Clam and instead tracks the lower limit of the Bchron 377 

and Oxcal confidence intervals. This solution is selected on the basis that simulations indicate Bpeat 378 

and Clam are prone to producing spurious signals in this time interval, whilst the combined confidence 379 

intervals of Bchron and Oxcal consistently circumscribe the target curves during simulation. In effect, 380 

it produces a best-fit solution that lies midway between the extremes of Bchron and Bpeat. From 381 

AD1800 onward the best fit solutions converge as they enter the more tightly constrained portion of 382 

the chronology, and are essentially indistinguishable during the 19th and 20th centuries. An inflection 383 

centred around AD1800 is clear in all chronologies, as is the stepped nature of the final portion of the 384 

curve with a brief slowdown centred on AD1900 interrupting the accelerated rate of the last 200 years. 385 

4.4 Are recent accumulation rates unprecedented? 386 

It is clear that the upper portion of our core from Pattagansett, which post-dates AD1800, 387 

accumulated faster than the background rate experienced over the last 1500 years. The detrended 388 

magnitude of this recent rise is between ~9 – 26 cm (equivalent to accumulation rates of 1.6 – 2.4 389 

mm/yr) although the results of simulation suggest that these extremes are likely under- and over-390 

estimates of the real signal. Instead, the consensus ‘best-fit’ curve places the rise at ~16 cm which, 391 

whilst equivalent to a century-scale accumulation rate of ~1.9 mm/yr, includes an interval of reduced 392 

rate centred around AD1900. This accords well with the accumulation rates inferred by simple linear 393 

interpolation of the pollen and short-lived radionuclide data (Table 1). 394 

The simulation results indicate that a signal of 16 cm would be accurately resolved in the radiocarbon-395 

dated portion of the record. Whilst it is possible that an oscillation of up to ~13 cm could be 396 

accommodated within the confidence intervals of the accumulation curve prior to AD1800, simulations 397 

indicate that these intervals tend to overestimate the magnitude of change. This fact, coupled with the 398 

limited response of Bpeat which simulations show to be sensitive to non-linearities, suggests that a 399 

pre-AD 1800 signal of the order of ~10 cm or less is the most plausible interpretation of the data. On 400 

this basis, we conclude that accumulation during the last two centuries occurred at a century-scale 401 

rate that is without precedent in the previous 1300 years of the record. 402 
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Similar accelerations in accumulation rate (translated into increases in the rate of RSL rise) have 403 

been documented in a number of saltmarshes around the globe (Kemp et al. 2009, 2011; Gehrels & 404 

Woodworth, 2013). Whilst simulations like those presented here would be needed to determine if the 405 

noted increases are larger than any signal that could be masked within the age-depth uncertainties 406 

particular to each record, our results provide support for the contention that recent rates of RSL rise 407 

along parts of the Atlantic coast of N. America are without precedent for much of the Common Era 408 

(e.g. Kemp et al., 2013, 2015; Kopp et al., 2016). In their synthesis sea-level reconstructions, Kopp et 409 

al. (2016) conclude that global sea level variability over the pre-20th century Common Era was smaller 410 

than the ±25 cm estimated in the IPCC fifth assessment report (Mason-Delmotte et al., 2013) and 411 

instead was very likely to be between ~±7 cm to ~±11 cm. Our simulations indicate that even the 412 

smaller of these signals (ie a 14 cm ‘oscillation’) would be detectable if expressed as an accumulation 413 

rate change in a well-dated saltmarsh core with similar properties to our material from Pattagansett. 414 

4.5 Implications for the use of saltmarshes as ‘geological tide gauges’ 415 

Geological data are required to extend the duration of instrumental records in order to address topical 416 

questions relating to the timing, magnitude, spatial pattern and significance of sea-level change 417 

(Gehrels 2010; Mason-Delmotte et al., 2013; Miller et al., 2013). Saltmarsh sediments have attracted 418 

particular interest due to the fact that they can furnish near-continuous, (sub)centennial- and 419 

decimetre-scale records that overlap with tide gauge data and extend back many centuries into the 420 

past. Proxy records that are precise enough to permit meaningful comparison with tide gauges are at 421 

the limits of resolution, both of the methodologies employed to develop them, and of the sedimentary 422 

archives from which they are extracted (Edwards, 2007). Consequently, whilst the use of saltmarshes 423 

as geological tide gauges is now an established technique, its application requires detailed knowledge 424 

of the sediments and the proxies employed, and careful consideration of the uncertainties associated 425 

with reconstructions of age and altitude (Gehrels & Shennan, 2015; Shennan, 2015). 426 

Barlow et al. (2013) highlight the need to evaluate age models and suggest that particular caution is 427 

required when interpreting RSL changes that may reflect the underlying structure of the radiocarbon 428 

calibration curve, or which coincide with the junction between chonological methods. The results of 429 

our simulations and the comparative application of multiple age-depth modelling approaches permit 430 

some more detailed comments to be made on these subjects with the important caveat that they 431 
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apply to well-dated sequences such as our Pattagansett core which is devoid of any significant 432 

hiatuses. 433 

Firstly, whilst simple interpolation of radiocarbon data does have the potential to introduce spurious 434 

rate changes that mirror the calibration curve (Gehrels et al., 2005), our linear simulations 435 

demonstrate that when dealing with a well-dated sequence, all of the age-depth modelling 436 

approaches we consider are not significantly influenced by this phenomenon. 437 

Secondly, by necessity, all chronologies that cover the intersection between instrumental and 438 

geological data will be derived from a composite of chronological methods. The fact that the junction 439 

between 210Pb and 14C records is coincident with the timing of a potentially significant rate change 440 

means that simply extrapolating and comparing two linear trends is prone to error. However, since the 441 

age-depth models take into consideration age uncertainties, there is no a priori reason that a switch in 442 

dating approach will result in a marked rate change in best-fit solutions. Instead, the shift in resolution 443 

and precision will be expressed as a change in the width of confidence intervals as is clearly 444 

illustrated by the reconstructions from Pattagansett (Figure 10). Hence, whilst the most significant rate 445 

change of our 1500 year record occurs close to the boundary between dating approaches, it is not an 446 

artefact of this switch in chronometers. 447 

Whilst the presence of an acceleration is a robust feature of our record, the exact magnitude and 448 

timing of the change, and the precision with which it can be established, are influenced by the 210Pb 449 

data, the supporting chronological information provided by the pollen chronohorizon and the choice of 450 

modelling program employed. In our example, the post-AD1800 detrended accumulation rate ranged 451 

from 1.6 – 2.4 mm/yr depending on which age-depth model was selected, and this uncertainty exists 452 

before accounting for additional error terms that ultimately influence a RSL reconstruction (e.g. 453 

underlying GIA rate, PMS height reconstruction etc). Similarly, age-misfits varied between models 454 

when applied to simulated data with a resolution / precision comparable to our saltmarsh core (Figure 455 

7e, Figure A.4, Figure A.5). Encouragingly errors were typically less than ~50 years for much of the 456 

record, but could rise to a century or more at certain points, with no modelling program being 457 

completely immune to this effect which reflects the underlying shape of the calibration curve. This is 458 

noteworthy since there is particular interest in trying to pin-point the timing of any recent acceleration 459 

in the rate of RSL rise with a view to better understanding the drivers and mechanisms responsible 460 

(e.g. Gehrels & Woodworth, 2013; Long et al., 2014; Kopp et al. 2016).  461 
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Gehrels & Woodworth (2013) attempt to distil this kind of detailed information from seven saltmarsh 462 

records but choose to exclude all data points that are not directly dated on the basis that age-depth 463 

modelling can introduce spurious signals. This conservative approach was justified given that only two 464 

of the sites possessed sequences with sufficiently well-constrained chronologies to produce the kinds 465 

of records described above. This limitation exists despite the records being a carefully selected sub-466 

set of the available data, chosen on the basis of their comparatively high quality. This reinforces the 467 

fact that the chronological requirements for the use of saltmarsh sequences as geological tide gauges 468 

are extremely exacting and have rarely been met for practical reasons such as cost of analysis and 469 

access to suitable sedimentary sequences. For example, irregularly spaced dates, changes in the 470 

type of dated material and sequences with varied lithology, all present additional challenges when 471 

age-depth modelling. Simulations such as those performed here, using synthetic data designed to 472 

emulate the characteristics of the sedimentary sequences of interest, are useful exploratory tools for 473 

assessing model performance and gauging record resolution. 474 

Whilst a comprehensive assessment of all these variables is beyond the scope of this paper, we 475 

briefly examine the influence of dating precision by repeating our simulations using synthetic 476 

radiocarbon dates with 14C age errors of ± 70 years, comparable to radiocarbon dates reported in 477 

some of the older saltmarsh literature (e.g. Nydick et al., 1995) and ± 10 years, similar to the pooled 478 

high precision AMS dates of some more recent work (e.g. Kemp et al., 2009). The results are 479 

illustrated in Figure 11 for an oscillation of ~13 cm (Simulation 4). The best-fit solutions based on 480 

lower precision dates fail to reliably resolve the oscillation (Figure 11c) and the confidence intervals 481 

for all models are expanded yet do not always circumscribe the simulated curve (Figure 11f). In 482 

contrast, the high precision dates reduce confidence interval width (increased precision) whilst still 483 

generally constraining the simulated accumulation curve (retained accuracy). However, the depth and 484 

age misfits of the best-fit solutions are not significantly altered by the use of high-precision dates since 485 

they remain ultimately tied to the shape of the calibration curve. Instead, the use of complementary 486 

forms of chronological information, such as stable lead isotope or other dated pollution markers, will 487 

be required to further refine these chronologies (e.g. Gehrels et al., 2006, 2008; Kemp et al., 2012; 488 

Marshall, 2015). 489 

Finally, it is important to acknowledge that record resolution is not simply a product of down-core 490 

sampling frequency and age precision, but is instead conditioned by the accumulation characteristics 491 
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of the individual sediment core. For example, in regions of rapid RSL rise (e.g. high GIA-related 492 

subsidence), the creation of accommodation space permits rapid sediment accumulation, resulting in 493 

a higher temporal sampling resolution for a given down-core sampling interval. When considering an 494 

oscillating RSL term, the background accumulation rate also determines the maximum size of 495 

oscillation that can be accommodated before sediment over-printing occurs. Hence, in locations with 496 

low background accumulation rates, the magnitude of the resolvable signal is reduced. Consequently, 497 

the comparison of RSL records from regions of contrasting GIA, even following detrending, is not 498 

always straightforward. Simulations using synthetic data tailored to the particular characteristics of 499 

each record may prove useful tools for evaluating the significance of apparent inter-record 500 

differences. 501 

5. Summary and conclusions 502 

The use of saltmarshes as geological ‘tide gauges’ requires the development of precise and accurate 503 

accumulation histories for the sediment cores used to furnish the proxy data. Advances in age-depth 504 

modelling coupled with detailed dating of sedimentary sequences using a combination of AMS 505 

radiocarbon, short-lived radionuclide and historical chronohorizon techniques, mean robust 506 

(sub)century-scale reconstructions are possible. Next generation RSL reconstruction methods will 507 

combine age-depth relationships and PMS estimates within a single numerical framework (e.g. Cahill 508 

et al., 2016), but the resulting reconstructions are still governed by the age-depth model choice. The 509 

importance of evaluating the performance of each module in the assembled hierarchical model 510 

increases with the complexity of data manipulation, as the direct connection between raw data and 511 

resulting reconstruction is obfuscated incrementally. 512 

We compare the performance of five age-depth modelling programs through the use of simulation and 513 

subsequent application to a real saltmarsh sediment core. On the basis of our results we conclude: 514 

• Simulations constructed to emulate the sampling resolution and data quality of a real 515 

sedimentary record provide valuable insights into the relative performance of age-depth 516 

models, whilst indicating the smallest change that can theoretically be resolved; 517 

• No single modelling package out-performs all others, but an ensemble approach can exploit 518 

different model strengths to produce a ‘consensus’ estimate of accumulation history; 519 
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• In a well-dated sequence, inter-model differences in reconstruction are generally smaller than 520 

the error terms associated with them, and translate to vertical errors that are typically less 521 

than the uncertainties associated with microfossil-based PMS reconstruction; 522 

• Age-depth modelling does not generate spurious oscillations related to the underlying 523 

structure of the radiocarbon calibration curve when applied to well-dated sequences such as 524 

our example core from Pattagansett River marsh, Connecticut, USA; 525 

• Whilst the interval between AD1500 and AD1800 is particularly challenging for age-depth 526 

models based on radiocarbon dating, an increase in accumulation relative to the background 527 

rate is noted at Pattagansett and this is not an artefact generated by a switch between dating 528 

methods; 529 

• Precisely delimiting the timing of the recent increase in accumulation rate is reliant on the 530 

provision of complementary (i.e. non-radiocarbon) age data, but the balance of evidence 531 

suggests marsh surface rose more during the last 200 years than at any other comparable 532 

period in this 1500 year-long record. 533 
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Table 1 Summary of chronological data 661 

Data Type 
Depth 

(cm) 

Age  

(yrs AD) 

Comment 

 

Core top / surface 1 ± 0.5 2001 ± 1 Date of core retrieval 

137Cs 10 ± 1 1963 ± 1 
63 samples, 29 depths with activity: AD1963 peak in 
thermonuclear fallout correlate with peak activity in 137Cs. 
Linear rate = 2.6 ± 0.2 mm/yr 

210Pb 1 – 42 1998 - 1799 

63 samples, 48 depths with activity: age model constrained 
by AD1963 marker using piecewise CRS approach 
(Constant Rate of Supply, Appleby in Last and Smol, 2001; 
Appleby, 2008). Linear rate ~ 2.1 mm/yr 

Pollen 61 ± 3 1650 ± 50 

Ragweed (Ambrosia) rise at 58 cm (after AD1640) 
correlated with historical timing of early European settlement 
in the region (Brugham, 1978; Clark et al., 1986): assigned a 
conservative ± 50 age uncertainty term. Linear rate = 1.6 – 
1.9 mm/yr 

New London tide gauge - 1938 – 2006 2.3 mm/yr 

14C dates (PMS depths, 
calibrated ages) 

26±3 - 176±3 1953 - 431 26 AMS dated samples 

14C wiggle match rate 26 - 176 1888 - 511 
1.1 mm/yr (also equivalent to rate of GIA): under-predicts 
position of present day marsh surface by 13.4 cm 

 662 

  663 
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Table 2  Summary of model specifications used in the simulations. See Appendix A for further details. 664 

Model  Parameters  

Bacon Mean accumulation rate (α) = 1.0mm/yr; Section thickness = variable 

Bchron Automated procedure; Includes depth uncertainty of ± 3 cm for dated samples 

Bpeat Mean accumulation rate (α) = 1.0mm/yr; No. of sections = 15; HiatusA= 0.5  

Clam Run length = 100,000 iterations (exclude age reversals); Span = 0.3; smoothed spline 

Oxcal P_Sequence; k=2; General outlier model 

  665 
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Figure Captions 666 

Figure 1. Illustration of how palaeomarsh-surface (PMS) accumulation dominates the reconstructed 667 

relative sea-level (RSL) record. (a) Radiocarbon-dated plant macrofossils fix PMS position at 668 

particular points in time, producing an age-depth plot. (b) PMS elevation above mean sea level is 669 

reconstructed from sample foraminiferal content, producing a depth-elevation plot. (c) Age-depth 670 

modelling assigns a date to each foraminiferal sample to produce a reconstruction of PMS elevation 671 

change over time. The modelled accumulation curve influences the timing and shape of the 672 

reconstructed RSL change. (d) The resulting RSL reconstructions, which are typically presented 673 

following removal of the long-term (linear) trend, are strongly influenced by the choice of age-depth 674 

model. 675 

Figure 2. Core site location and summary lithostratigraphy for Pattagansett River marsh, Connecticut, 676 

USA. NL = New London tide gauge. 677 

Figure 3. (a) Linear ‘wiggle match’ of AMS radiocarbon dates from Pattagansett River marsh (Core 678 

PY) showing the global fit on the IntCal09 calibration curve. (b) Calibrated radiocarbon dates (2σ) 679 

plotted alongside chronohorizons provided by an historical pollen marker (green) and the peak in 680 

137Cs (red). Forward projection of the long-term linear trend (1.1 mm/yr) underestimates the marsh 681 

surface by ~13cm. 682 

Figure 4. Composite chronological dataset spanning the post-AD1600 period. (a) Ambrosia pollen 683 

abundance levels increasing above 2% indicate land clearance and provide a chronohorizon dating to 684 

AD1650 ± 50 years. (b-e) Gamma spectrometry results including excess lead (total 210Pb – 226Ra), 685 

137Cs and 241Am. The peak in atmospheric thermonuclear weapons testing and subsequent partial 686 

nuclear test ban treaty (AD1963 ± 2 years) is correlated with the 137Cs maximum and subsequent 687 

rapid fall, and the lower peak in 241Am. (f) The composite chronology derived from excess 210Pb 688 

results (piecewise constant rate of supply model) is shown as horizontal black bars, alongside the 689 

calibrated radiocarbon dates (2σ) shown as grey crosses, and the pollen (green) and 137Cs (red) 690 

chronohorizons. 691 

Figure 5. Simulated accumulation curves emulating the sampling resolution and precision of the 692 

Pattagansett River saltmarsh core for: (a) linear; and (b-c) non-linear modelling scenarios (see Table 693 
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B.1 for details). Upper graphs show simulated age-depth curves (solid black lines) and synthetic 694 

radiocarbon sampling points (black boxes). The ‘decalibrated’ radiocarbon dates derived from these 695 

points of known age are plotted as grey crosses. Additional chronohorizons are shown as green 696 

(pollen) and red (137Cs) squares. Lower graphs show the simulated curves following detrending for a 697 

long-term (linear) accumulation rate of 1.1 mm / yr. 698 

Figure 6. Graphs of best-fit (a, c) and ±95% confidence interval (b, d) generated by the various age 699 

modelling programs for Simulation 1 (linear). Data are plotted as misfits in depth (a, b) and age (c, d) 700 

between the simulated accumulation curve and the reconstructed curves produced by the age-depth 701 

models. Line colours and envelope shading refer to the particular modelling programs indicated on 702 

the figure. 703 

Figure 7. Graphs of best-fit (a, c, e) and ±95% confidence interval (b, d, f) generated by the various 704 

age modelling programs for Simulation 6 (~21 cm oscillation). The detrended simulated (target) 705 

accumulation curve is plotted alongside the reconstructed curves produced by the age-depth models 706 

(a, b). Data are also plotted as misfits in depth (c, d) and age (e, f) between the simulated and 707 

reconstructed accumulation curves. Line colours and envelope shading refer to the particular 708 

modelling programs indicated on the figure. 709 

Figure 8. Graphs of best-fit (a, c, e) and ±95% confidence interval (b, d, f) generated by the various 710 

age modelling programmes for Simulation 4 (~13 cm oscillation). The detrended simulated (target) 711 

accumulation curve is plotted alongside the reconstructed curves produced by the age-depth models 712 

(a, b). Data are also plotted as misfits in depth (c, d) and age (e, f) between the simulated and 713 

reconstructed accumulation curves. Line colours and envelope shading refer to the particular 714 

modelling programs indicated on the figure. 715 

Figure 9. Detrended accumulation curves for the Pattagansett River marsh core produce by: (a) Bpeat 716 

best-fit; (b) Bchron best-fit with Bchron and Oxcal confidence intervals; (c) Clam best-fit. Symbols 717 

indicate location and type of age data used in age-depth modelling. Line colours and envelope 718 

shading refer to the particular modelling programs indicated on the figure. 719 

Figure 10. A comparison of detrended accumulation curves for the Pattagansett River marsh core 720 

illustrating the influence of dataset composition on age-depth modelling. Reconstructions are the best-721 
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fit curves (Bpeat, Bchron, Clam) and confidence intervals (Bchron, Oxcal) developed: (a) from all 722 

chronological data; (b) following exclusion of the 210Pb chronohorizon; (c) following exclusion of the 723 

both 210Pb and pollen chronohorizons; (d) following exclusion of both chronohorizons and possible 14C 724 

outlier. An informal ‘consensus’ accumulation curve based on the complete dataset is shown in (e). 725 

See text for discussion. 726 

Figure 11. An illustration of the influence that radiocarbon-date precision has on the capacity of age-727 

depth modelling programs to accurately resolve non-linear accumulation based on Simulation 4 (~13 728 

cm oscillation). Reconstructions are developed from synthetic data with a precision of ± 10 14C yr (a, 729 

d), ± 35 14C yr (b, e) and ± 70 14C yr (c, f). Graphs of best-fit (a, b, b) and ±95% confidence interval (d, 730 

e, f) generated by the various modelling programmes are plotted alongside the simulated (target) 731 

accumulation curve.  732 
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Appendices 733 

Appendix A: Supplementary information summarising age-depth modelling packages, model 734 

scenarios and model run outputs 735 

Appendix B: Details of age data for Pattagansett River saltmarsh core 736 

  737 
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(a-f) 2σ calibrated and detrended 14C palaeomarsh surface accumulation simulations 1 to 6 and associated calibrated 14C age-depth envelope limited to 
the period 200-2000 yrs AD in this illustration for (a) linear and (b-f) nonlinear sinusoid variability tailored to cores PX and PY: GIA subsidence (0.11 cm/yr), 
down-core sampling (6 cm), age markers (pollen, 137Cs, surface), –35 14C yrs (1σ) average 14C measurement precision.  Magnitude of trough-to-peak 
variability is close to the maximum allowed by the available accommodation space which is a combination of GIA subsidence (0.11 cm/yr) and peak-to-peak 
time interval for each simulation. (d) Simulation 4 nonlinear acceleration is equivalent to cores PXY modern acceleration

137Cssimulated age & accumulation pollencalibrated 14C & 2σ envelope  
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(a) Simulation 1

Figure A2

(a-f) Detrended curves (–35 14C yr precision) �best fit  model results grouped to compare the influence of calibration/model related artifacts (a Simulation 1) 
and success at predicting nonlinear palaeomarsh surface (PMS) accumulation (b-f Simulation 2 to 6).  Black line represents known  accumulation; age-depth 
envelope (grey shade, Y-axis not scaled to fit these due to excessive space requirements) encompasses individually calibrated 14C, Bpeat (black circles, 
mean of 3 runs using 15 sections), Bacon (blue line, mean of 3 runs), Clam (green line, 100,000 iterations using spline width 0.3), Bchron (orange line, mean 
of 3 standard runs).  Bpeat results are represented by individual maximum  a posteriori  (MAP), Bacon the average MAP with step size 10 cm for 14C preci-
sion 35 yrs (–1σ), Clam smoothing spline individual run weighted-mean, Bchron mean average of the mode (50%). 
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(a) Simulation 1

Figure A3

(a-f) Detrended curves (±35 14C yr precision) 95% confidence  interval (CI) model results grouped to compare model success at constraining linear (a Simu-
lation 1) and nonlinear (b-f Simulation 2 to 6) palaeomarsh surface (PMS) accumulation.  Black line represents known  accumulation; age-depth envelope 
(grey shade, Y-axis not scaled to fit these due to excessive space requirements) encompasses individually calibrated 14C only, Bacon (blue envelope, mean of 
3 runs), Clam (green envelope, 100,000 iterations using spline width 0.3), Bchron (orange lines, mean of 3 standard runs), OxCal (thin black lines, mean of 3 
runs, P_Sequence K=2 auto, General outlier model.  Bacon results are represented by the 95% probability intervals (PI) with step size 10 cm for 14C preci-
sion of 35 yrs (±1σ), Clam by the 95% confidence intervals (CI), Bchron by the 95% highest posterior density region (HDR defined between 2.5% and 
97.5%), OxCal by the 95% highest probability density range (HPD defined between from and to 95.4%).
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Figure A4

(a-f) Age misfit (model reconstructed age - known simulated age, –35 14C yr precision) for �best-fit  model results grouped to compare the influence of 
calibration/model related artifacts (a Simulation 1) and success at predicting nonlinear palaeomarsh surface (PMS) accumulation (b-f Simulation 2 to 6).  Black 
dashed line represents known  accumulation; age-depth envelope (grey shade, Y-axis not scaled to fit these due to excessive space requirements) encom-
passes individually calibrated 14C, Bpeat (black line, mean of 3 runs using 15 sections), Bacon (blue line, mean of 3 runs), Clam (green line, 100,000 itera-
tions using spline width 0.3), Bchron (orange line, mean of 3 standard runs).  Bpeat results are represented by individual maximum  a posteriori  (MAP), 
Bacon the average MAP with step size 10 cm for 14C precision 35 yrs (–1σ), Clam smoothing spline individual run weighted-mean, Bchron mean average of 
the mode (50%).
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Figure A5

(a-f) Age misfit (model reconstructed age - known simulated age, –35 14C yr precision) –95% confidence  interval (CI) model results grouped to compare 
model success at constraining linear (a Simulation 1) and nonlinear (b-f Simulation 2 to 6) palaeomarsh surface (PMS) accumulation.  NOTE - when any CI 
envelope crosses the zero  line (black dashed) it has no longer successfully constrained the simulated age-depth sequence.  Black line dashed line represents 
�known  accumulation; age-depth envelope (grey shade, Y-axis not scaled to fit these due to excessive space requirements) encompasses individually calibrat-
ed 14C only, Bacon (blue lines, mean of 3 runs), Clam (green lines, 100,000 iterations using spline width 0.3), Bchron (orange lines, mean of 3 standard runs), 
OxCal (black lines, mean of 3 runs, P_Sequence K=2 auto, General outlier model.  Bacon results are represented by the 95% probability intervals (PI) with 
step size of 10 cm for 14C precision of 35 yrs (–1σ), Clam by the 95% confidence intervals (CI), Bchron by the 95% highest posterior density region (HDR 
defined between 2.5% and 97.5%), OxCal by the 95% highest probability density range (HPD defined between from and to 95.4%).
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Figure A6

(a-f) Inter-model age range –35 14C yr precision (youngest - oldest, all models to capture maximum range) for Bpeat (mean of 3 runs using 15 sections), 
Bacon (mean of 3 runs), Clam (100,000 iterations using spline width 0.3), Bchron (mean of 3 standard runs).  Bpeat results are represented by individual ma-
ximum  a posteriori  (MAP), Bacon the average MAP with step size 10 cm for 14C precision 35 yrs (–1σ), Clam smoothing spline individual run weighted-
mean, Bchron mean average of the mode (50%). 

Inter-model age range - Old  Young (confidence intervals) Medium (best fit)
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Figure A7

(a-f) Depth misfit (model reconstructed depth - known simulated depth, ±35 14C yr precision) for ‘best-fit  model results grouped to compare the influence of 
calibration/model related artifacts (a Simulation 1) and success at predicting nonlinear palaeomarsh surface (PMS) accumulation (b-f Simulation 2 to 6).  Black 
dashed line represents known  accumulation; age-depth envelope (grey shade, Y-axis not scaled to fit these due to excessive space requirements) encom-
passes individually calibrated 14C, Bpeat (black line, mean of 3 runs using 15 sections), Bacon (blue line, mean of 3 runs), Clam (green line, 100,000 itera-
tions using spline width 0.3), Bchron (orange line, mean of 3 standard runs).  Bpeat results are represented by individual maximum  a posteriori  (MAP), 
Bacon the average MAP with step size 10 cm for 14C precision 35 yrs (±1σ), Clam smoothing spline individual run weighted-mean, Bchron mean average of 
the mode (50%).
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Figure A8

(a-f) Depth misfit (model reconstructed depth - known simulated depth, ±35 14C yr precision) for ±95% confidence  interval (CI) model results grouped to com-
pare model success at constraining linear (a Simulation 1) and nonlinear (b-f Simulation 2 to 6) palaeomarsh surface (PMS) accumulation.  NOTE - when any 
CI envelope crosses the zero  line (black dashed) it has no longer successfully constrained the simulated age-depth sequence.  Black line dashed line repre-
sents known  accumulation; age-depth envelope (grey shade, Y-axis not scaled to fit these due to excessive space requirements) encompasses individually 
calibrated 14C only, Bacon (blue lines, mean of 3 runs), Clam (green lines, 100,000 iterations using spline width 0.3), Bchron (orange lines, mean of 3 stan-
dard runs), OxCal (black lines, mean of 3 runs, P_Sequence K=2 auto, General outlier model.  Bacon results are represented by the 95% probability intervals 
(PI) with step size of 10 cm for 14C precision of 35 yrs (±1σ), Clam by the 95% confidence intervals (CI), Bchron by the 95% highest posterior density 
region (HDR defined between 2.5% and 97.5%), OxCal by the 95% highest probability density range (HPD defined between from and to 95.4%).
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Figure A9

(a-f) Inter-model depth range –35 14C yr precision (smallest - largest, all models to capture maximum range) for Bpeat (mean of 3 runs using 15 sections), 
Bacon (mean of 3 runs), Clam (100,000 iterations using spline width 0.3), Bchron (mean of 3 standard runs).  Bpeat results are represented by individual 
�maximum  a posteriori  (MAP), Bacon the average MAP with step size 10 cm for 14C precision 35 yrs (–1σ), Clam smoothing spline individual run weighted-
mean, Bchron mean average of the mode (50%).

Inter-model depth range - Old  Young (confidence intervals) Medium (best fit) 
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Figure A10

(a-f) Bpeat detrended curves (±35 14C yr precision) best fit  maximum a posteriori (MAP) results for 3 runs of 15 and 20 sections, illustrate the sensitivity for 
incorporating calibration artefacts (linear) and allow qualitative judgement of the success with which nonlinear (sinusoidal) palaeomarsh surface accumulation 
has been reconstructed.
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Figure A11

(a-f) Bacon detrended curves (–35 14C yr precision) best fit  maximum a posteriori (MAP) results with 95% probability intervals (PI) and mean summaries, 
illustrate the sensitivity for incorporating calibration artefacts (linear) and allow qualitative judgement of the success with which the MAP has reconstructed 
nonlinear (sinusoidal) palaeomarsh surface accumulation and whether probability intervals have fully contained it (black cube - clear excursion, black line - 
minor excursion).

Detrended curves - Bacon MAP –95%PI - 3 individual runs & mean     major failure   minor failure
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Figure A12

(a-f) Clam detrended curves (–35 14C yr precision) smooth spline 0.3 and 0.5 span best fit  weighted mean results with 95% confidence intervals (CI) and 
mean summaries, illustrate the sensitivity for incorporating calibration artefacts (linear) and allow qualitative judgement of the success with the 0.3 weighted 
mean has reconstructed nonlinear (sinusoidal) palaeomarsh surface accumulation and whether confidence intervals have fully contained it (black cube - clear 
excursion, black line - minor excursion).  Span of 0.3 is clearly more sensitive than 0.5, both vastly lower than the programme default 0.75 (not illustrated).

Detrended curves - Clam spline weighted mean –95%CI(100,000 iterations) - 0.5 span & 0.3 span     major failure    minor failure
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Figure A13

(a-f) Bchron detrended curves (–35 14C yr precision) best fit  mode results with 95% highest posterior density regions (HDR) and mean summaries, illustrate 
the sensitivity for incorporating calibration artefacts (linear) and allow qualitative judgement of the success with the mode has reconstructed nonlinear 
(sinusoidal) palaeomarsh surface accumulation and whether HDR have fully contained it (black cube - clear excursion, black line - minor excursion).

Detrended curves - Bchron mode –95%HDR - 3 individual runs & mean       major failure     minor failure
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(b) Simulation 2
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(a) Simulation 1

Figure A14

(a-f) OxCal detrended curves (±35 14C yr precision) 95% highest posterior density region (HDR defined between 2.5% and 97.5%) using P_Sequence K=2 
auto, Ssimple, Rscaled & General outlier models (grey lines), mean summary (black) and mean summary of having run with the General outlier model only 
(mean 3 runs), illustrate the sensitivity for incorporating calibration artefacts (linear) and allow qualitative judgement of the success with the HDR have fully 
contained the nonlinear (sinusoidal) palaeomarsh surface accumulation (black cube - clear excursion, black line - minor excursion).

Detrended curves - OxCal  ±95%HDR - 3 individual runs (different outlier models) & mean vs. General model (mean of 3 runs)   �� major failure    � minor failure
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(d) Simulation 4
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Wright et al. - Reconstructing the accumulation his tory of a saltmarsh sediment core:  Which 738 

age-depth model is best? 739 

Appendix A: Supplementary information summarising a ge-depth modelling packages, model 740 

scenarios and model run outputs 741 

Summary of model operation and setup parameters 742 

Age-depth modelling was performed using Bacon (Blaauw & Christen, 2011), Bchron (Haslett & 743 

Parnell, 2008), Bpeat (Blaauw & Christen, 2005) and Clam (Blaauw, 2010) in the free, open-source 744 

statistical environment R (R Development Core Team, 2010). OxCal (Bronk Ramsey, 1995, 2001, 745 

2009a) was executed via the online interface. 746 

Bpeat 747 

Bpeat provides numerical best-fit interpolations and grey-scale summaries. The former comprises the 748 

single iteration which best fits the model (Maximum a Posteriori - MAP), whilst the latter illustrates the 749 

full range of iterations for any given model run, but is not amenable to detrending or further analysis. 750 

We present ‘best-fit’ solutions based on the mean MAP results from three runs. 751 

The user can specify the number of rate changes and the program then identifies the depth(s) at 752 

which these rate changes occur (so called change-point linear regression). The program can also 753 

detect hiatuses by accommodating age gaps between the end of one linear segment and the 754 

beginning of another. The user can adjust how the program deals with hiatuses and the extent to 755 

which accumulation rate may change between individual segments of the core, as well as setting a 756 

prior probability threshold for the identification of outliers. 757 

Bpeat was run using a mean accumulation rate (α value) of 1.0 mm/yr (to match our simulated 758 

sequences). The number of user-defined sections was varied between 5 and 20, with 15 proving to be 759 

optimal. Fewer sections resulted in insensitivity to non-linearities, whilst more numerous sections 760 

commonly resulting in failure to produce a coherent age-depth profile. Following preliminary analysis 761 

of a range of values (0.005 – 2.0) a ‘HiatusA’ parameter of 0.5 was selected on the basis of good fit 762 

with simulated curves, and reflecting the low probability and duration of hiatuses associated with the 763 

Connecticut core. 764 

Prior parameter settings – altered within the R interface 765 
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name=.dat file “name” within similarly named folder 766 

nsecs=number of sections (2) (2, 5, 10, 15) 767 

mindepth=minimum core depth cm (0) 768 

maxdepth=maximum core depth cm (200) 769 

RemoveExtremes=remove 14C probabilities falling outside calibration curve (FALSE) 770 

OUT=outlier analysis 1=yes, 0=no  (1) 771 

OUTLPPROB= outlier probability 0 to 1.0      (0.05) 772 

 773 

Prior parameter settings - altered within the “constants_template.R” file 774 

ALPHAM=*G_PDF: mean core accumulation rate yrs/cm (10) (10) 775 

ALPHASTD=*G_PDF: standard deviation accumulation rate yrs/cm (5) (5) 776 

 777 

EPSILON=*G_PDF: larger values = greater section dependency (5) (5) 778 

 779 

HIATUSA=*G_PDF: ‘shape’ higher values = more ‘peaked’ PDF (0.005) (0.5) 780 

HIATUSB=*G_PDF: ‘rate’ duration 1/2=short, 1/2000=long (1/200) (1/200) 781 

 782 

Bacon 783 

Bacon provides numerical best-fit and confidence interval interpolations, grey scale summaries and is 784 

superficially similar to Bpeat in terms of its tuneable parameters, with section ‘thickness’ operating in a 785 

similar manner to number of sections. As before, the mean accumulation rate is set at 1.0 mm/yr and 786 

the influence of section thickness was explored in multiple runs. Whilst the selection of small section 787 

thicknesses tended to produce smoothed reconstructions, larger thicknesses had the effect of shifting 788 

accumulation rates out of phase with known variability. The precision of the radiocarbon dates also 789 

influenced the effect of section thickness with the result that different optimal values were determined 790 
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for the different precisions applied here. Bacon automatically handles outliers based on student-t 791 

distributions with wider tails than a normal distribution. 792 

Prior parameter settings – altered within the R interface 793 

core=.dat file “name” within similarly named folder  794 

res=section thickness cm (5) [nsecs] (20 to 2.5 in steps of 2.5) 795 

d.min=minimum core depth cm (0) 796 

d.max=maximum core depth cm (200) 797 

default.acc default accumulation rate shape (2) & mean (10) [ALPHA] 798 

acc.shape *G_PDF: higher values result in more ‘peaked’ distributions (4) 799 

acc.mean *G_PDF: controls the mean rate yrs/cm (10) 800 

 801 

default.mem section dependency strength (4) & mean (0.7) [EPSILON] 802 

mem.strength *G_PDF: larger values = more ‘peaked’ distributions  (4) 803 

mem.mean *G_PDF: controls the dependency PDF mean (0.7) 804 

 805 

default.hiatus default known/unknown hiatus shape (1) & mean (100) [HIATUS] 806 

hiatus.depths location of any known hiatus depths cm 807 

hiatus.shape *G_PDF: larger values = more ‘peaked’ distributions (1) 808 

hiatus.mean *G_PDF: controls the hiatus PDF mean (100) 809 

 810 

Bchron 811 

Bchron (v. 3.1.4) provides numerical best-fit and confidence interval interpolations which are 812 

performed between pairs of dated levels assuming ‘piecewise linear’ sediment accumulation in a 813 

manner referred to as ‘stochastic linear interpolation’ (Parnell et al., 2008 p. 1875). Whilst the program 814 

proved time consuming to install and run, it has the great advantage of being fully automated and 815 
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therefore does not require extensive preliminary analysis to determine optimal parameters. Bchron is 816 

the only program that allows for depth ranges to be included for a given sample, thereby accounting 817 

for the palaeomarsh-surface range applied to radiocarbon-dated plant macrofossils. Inclusion of this 818 

depth uncertainty (i.e. ±3 cm) has the effect of increasing the width of confidence intervals which 819 

subsequently do a better job of constraining known accumulation variability. 820 

Clam 821 

Clam (v. 2.0) employs classical age-depth modelling, provides both numerical best-fit and confidence 822 

interval interpolations and was developed as a quick and transparent way to produce age-depth 823 

models. It is a useful ‘first-step’ tool for exploring how choices made during the modelling process 824 

(e.g. interpolation method, inferred presence of hiatuses etc.) may influence the resulting chronology. 825 

Whilst less sophisticated than its Bayesian counterparts, Clam employs Monte Carlo algorithms to 826 

sample from, and thus reflect, the multi-modal probability distributions associated with calibrated 827 

radiocarbon dates. It will endeavour to fit all dated levels (i.e. there is no automatic outlier detection) 828 

and can produce models with age reversals, although there is an option to exclude these once 829 

generated. Clam will then interpolate between dated points either by applying a (global) linear solution 830 

or some form of curve (e.g. a smoothed polynomial or locally weighted spline). We used model runs 831 

employing 100,000 iterations and excluded all iterations with age-reversals. Preliminary runs using 832 

the default span (0.75) proved unsatisfactory as substantial smoothing of oscillations occurred. 833 

Further analysis revealed that a span of 0.3 coupled with a smoothed spline produced the optimal 834 

‘best-fit’ solution, capturing the amplitude of simulated change whilst generating confidence intervals 835 

that circumscribed most of the known variability. 836 

OxCal 837 

Oxcal (online v. 4.2) provides numerical confidence interval interpolations and includes several 838 

different types of age-depth model. We used P_Sequence which is the most appropriate for the kind 839 

of depositional context considered here (Bronk Ramsey, 2008). Similar to Bchron it employs an 840 

incremental sedimentation model but in this instance the size of the sedimentation ‘event’ is a 841 

tuneable parameter (k) which determines how many increments are required to complete the entire 842 

sequence. Varying k impacts rigidity of the entire age-depth model and we ran a series of model 843 

evaluations (k values ranging from 0.1 to 1000) before employing a nominal k value of 2, whilst 844 
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allowing the model to adjust this within a specified range. Oxcal has additional functionality in the 845 

manner in which outliers are identified during age-depth modelling. We compared the S_simple, 846 

R_scaled and General outlier models before opting for the latter. 847 

848 
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Table A.1 Attributes of nonlinear simulated accumulation 849 

Parameter SIM 2 SIM 3 SIM 4 SIM 5 SIM 6 

Period (yrs) 

peak-to-peak 
200 yrs 300 yrs 400 yrs 500 yrs 600 yrs 

Resolution (no.) 

peak-to-peak samples 
3.7 5.5 7.3 9.2 11.0 

Linear GIA (cm) 

peak-to-peak contribution  
22.0 cm 33.0 cm 44.0 cm 55.0 cm 66.0 cm 

Amplitude (± cm) applied  

& [max. possible] 

±3.2 cm 

[±3.5 cm] 

±5.0 cm 

[±5.3 cm] 

±6.7 cm 

[±7.1 cm] 

±8.5 cm 

[±8.8 cm] 

±10.3 cm 

[±10.6 cm] 

Total acceleration (cm yrs) 

trough-to-peak  

17.4 cm in 

100 yrs 

26.5 cm in 

150 yrs 

35.4 cm in 

200 yrs 

44.5 cm in 

250 yrs 

53.6 cm in 

300 yrs 

Linear GIA (cm) 

trough-to-peak contribution 
11.0 cm 16.5 cm 22.0 cm 27.5 cm 33.0 cm 

Detrended acceleration (cm yrs) 

trough-to-peak 

6.4 cm in 

100 yrs 

10.0 cm in 

100 yrs 

13.4 cm in 

200 yrs 

17.0 cm in 

250 yrs 

20.6 cm in 

300 yrs 

 850 

Summary of nonlinear sinusoidal simulation (SIM) attributes tailored to the Pattagansett PXY cores.  851 
Linear glacial isostatic adjustment (GIA) applied in all instances is equivalent to 0.11 cm/yr (i.e. SIM 852 
1). 853 
  854 
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Table A.2  Summary goodness-of-fit for each non-linear simulation and modelling approach. Figures 855 
indicate the percentage of predicted values outside the 95% confidence interval for age and depth 856 
(not available for Bpeat). Values greater than 5% indicate the extent to which confidence intervals 857 
were too narrow (over-estimate of precision). Further details of model misfits are represented 858 
graphically in Figures A2 – A14. 859 

 860 

Age Misfit SIM 2 SIM 3 SIM 4 SIM 5 SIM 6 

Oxcal 17.7% 2.5% 0.0% 0.0% 1.5% 

Bacon 17.7% 18.2% 26.8% 30.3% 18.2% 

Bchron 0.0% 3.0% 8.6% 1.5% 1.5% 

Clam 9.6% 12.2% 9.6% 16.8% 12.7% 

Depth Misfit SIM 2 SIM 3 SIM 4 SIM 5 SIM 6 

Oxcal 19.1% 5.0% 0.0% 0.0% 4.4% 

Bacon 17.3% 23.2% 29.8% 30.8% 30.1% 

Bchron 0.0% 5.4% 9.2% 0.0% 2.5% 

Clam 10.5% 19.0% 15.2% 20.7% 22.3% 

 861 
  862 
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Wright et al. - Reconstructing the accumulation his tory of a saltmarsh sediment core:  Which 863 

age-depth model is best? 864 

Appendix B: Details of age data for Pattagansett Ri ver salt-marsh core 865 

Table B.1 Accelerator mass spectrometry 14C results 866 

Lab no. 

(UtC-) 

Depth 
(cm) 

PMS 

(cm) 

δ
13C 

(p.mil) 

14C age 

±1σ 

12834 29-30 26±3 -13.4 145±29 

12835 35-36 32±3 -13.0 160±28 

12836 41-42 38±3 -12.9 157±29 

12837 47-48 44±3 -12.9 104±29 

12838 53-54 50±3 -13.0 173±28 

12839 59-60 56±3 -13.0 334±30 

12840 65-66 62±3 -13.4 222±35 

12841 71-72 68±3 -13.9 364±37 

12842 77-78 74±3 -13.5 468±34 

12843 83-84 80±3 -13.4 605±35 

12844 89-90 86±3 -13.4 571±36 

12845 95-96 92±3 -13.5 650±35 

12846 101-102 98±3 -13.6 760±35 

12847 107-108 104±3 -13.8 873±39 

12848 113-114 110±3 -13.8 1018±36 

12849 119-120 116±3 -14.3 991±43 

12850 125-126 122±3 -13.8 1043±38 

12851 131-132 128±3 -13.5 1186±35 

12852 137-138 134±3 -13.9 1113±37 

12853 143-144 140±3 -14.3 1188±35 

12854 149-150 146±3 -14.0 1169±37 

12855 155-156 152±3 -13.8 1213±38 

12856 161-162 158±3 -14.0 1309±38 

12857 167-168 164±3 -13.9 1471±36 

12858 173-174 170±3 -14.3 1544±37 

12859 179-180 176±3 -14.7 1532±35 

All dated material consists of Spartina patens rhizomes. (Depth) sample depth in core; (PMS) 867 

estimated depth of palaeo-marsh surface; (δ13C) abundance of 13C relative to 12C with respect to PDB 868 

reference; (14C age ±1σ) 14C age in years before present (BP) with associated 1σ error and 869 

normalised to δ13C = -25‰. Possible outlier based on linear wiggle-match shown in bold . 870 

871 
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Table B.2 Gamma spectrometry results 872 

Depth 

(cm) 

DM 

(g) 

CDD 

(g/cm3) 

xs 210Pb 

(Bq/kg) 

± 

(%) 

137Cs 

(Bq/kg) 

± 

(%) 

241Am 

(Bq/kg) 

± 

(%) 

pwCRS 

(yrs) 

± 

(yrs) 

1 12.085 0.19 321.23 6.88 5.86 10.42 - - 2.47 0.17 

2 13.243 0.40 201.54 8.88 2.34 11.31 - - 6.04 0.54 

3 10.508 0.56 119.68 10.75 3.02 13.32 - - 9.37 1.02 

4 9.997 0.72 83.86 12.86 4.32 12.21 0.07 54.27 12.69 1.65 

5 9.119 0.86 70.86 10.09 7.65 8.37 0.42 29.64 16.44 1.67 

6 11.639 1.04 56.50 10.86 5.43 10.56 0.09 44.42 20.54 2.25 

7 12.085 1.23 55.09 10.68 4.32 10.64 - - 26.01 2.81 

8 8.697 1.37 42.58 8.88 3.42 13.42 - - 31.59 2.84 

9 12.085 1.55 31.25 12.20 *34.42 7.53 - - 37.13 4.59 

10 12.764 1.75 27.81 13.05 12.31 6.53 - - 43.86 5.81 

11 13.352 1.96 17.60 13.07 *26.52 5.78 0.66 21.31 49.65 6.59 

12 11.315 2.14 2.60 9.76 11.21 9.75 - - 50.69 5.03 

13 12.085 2.33 2.38 9.52 8.65 8.49 - - 51.76 5.01 

14 35.102 2.88 3.37 8.56 7.54 10.52 - - 53.72 4.68 

15 12.085 3.07 5.77 9.35 5.43 11.15 - - 61.64 5.49 

16 10.346 3.23 6.42 11.42 4.67 12.31 - - 64.40 7.34 

17 12.259 3.42 16.03 15.76 2.65 10.53 - - 86.68 13.62 

18 12.413 3.61 5.55 10.66 2.43 12.35 - - 101.33 10.76 

19 12.085 3.80 2.14 13.33 1.31 12.61 - - 109.93 14.59 

20 21.075 4.13 1.44 10.88 1.86 13.67 - - 118.07 12.77 

21 10.56 4.30 0.14 14.42 1.62 14.57 - - 119.01 17.06 

22 10.034 4.45 0.08 13.24 1.88 14.67 - - 118.85 15.74 

23 12.273 4.64 0.08 18.34 1.25 15.15 - - 119.45 21.91 

24 9.233 4.79 0.45 17.87 1.10 13.63 - - 123.16 22.01 

25 8.601 4.92 0.13 16.21 1.07 10.68 - - 134.32 20.15 

26 9.197 5.07 0.01 15.41 0.97 11.78 - - 134.37 19.16 

27 10.017 5.22 0.01 16.28 1.44 12.47 - - 134.52 20.27 

28 13.763 5.44 0.02 15.17 1.11 10.68 - - 144.78 18.93 

29 12.352 5.63 0.22 15.06 2.17 12.31 - - 147.24 19.16 

30 11.035 5.80 0.08 15.31 - - - - 148.19 19.63 

31 31.165 6.29 0.05 17.00 - - - - 148.81 21.90 

32 31.036 6.78 0.04 18.16 - - - - 149.41 23.51 

33 31.165 7.26 0.19 17.85 - - - - 152.67 23.68 

34 30.807 7.74 0.03 15.31 - - - - 163.21 20.40 

35 13.724 7.96 0.00 19.05 - - - - 163.30 25.40 

36 20.628 8.28 0.06 17.93 - - - - 174.59 24.13 

37 13.492 8.49 0.06 16.94 - - - - 185.90 23.02 
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38 20.352 8.81 0.07 15.91 - - - - 187.67 21.90 

39 18.845 9.10 0.00 18.03 - - - - 187.68 24.82 

40 14.387 9.33 0.06 22.96 - - - - 189.28 31.98 

41 14.498 9.55 0.27 24.24 - - - - 198.14 35.91 

42 8.633 9.69 0.10 22.04 - - - - 202.25 33.56 

43 8.369 9.82 0.13 23.79 - - - - 208.54 67.73 

44 7.618 9.94 0.12 21.99 - - - - 215.66 76.44 

45 6.156 10.04 0.02 20.10 - - - - 216.85 83.54 

46 8.092 10.16 0.03 19.89 - - - - 219.13 93.65 

47 7.945 10.29 0.02 23.43 - - - - 220.65 99.98 

48 7.881 10.41 0.38 21.40 - - - - - - 

Results consist of (DM) sample dry mass, (CDD) cumulative dry density, (xs 210Pb) excess 210Pb 873 

provided by total 210Pb minus 226Ra, (pwCRS) ‘piecewise’ constant rate of supply age-depth model 874 

using a core top age of AD2002 and AD1963 137Cs spike at 9 cm core depth.  875 

 876 
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Wright et al. - Reconstructing the accumulation history of a saltmarsh sediment core: Which age-1 

depth model is best? 2 

Highlights 3 

• The performance of five age-depth modelling programs is evaluated using synthetic and real data 4 

• Reconstruction accuracy and precision varies but no single model is best 5 

• Simulation reveals the smallest resolvable accumulation change in a core 6 

• No models produce spurious oscillations that will distort sea-level reconstructions 7 

• Increased accumulation rate in our core since AD1800 is not an artefact of data type 8 
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