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Supercooled liquids and other soft glassy systems show characteristic spatial inhomo-

geneities in their local dynamical properties. Using detailed molecular simulations,

we find that for su�ciently low temperatures and su�ciently high shear rates super-

cooled liquids also show transient, inhomogeneous flow patterns (shear banding) in

start-up of steady shear flow, similar to what has already been observed for many

other soft glassy systems. We verify that the onset of transient shear banding co-

incides quite well with the appearance of a stress overshoot for temperatures in the

supercooled regime. We find that the slower bands adapt less well to the imposed de-

formation and therefore accumulate higher shear stresses compared to the fast bands

at comparable local shear rates. Our results also indicate that the shear rates of the

fast and slow bands are adjusted such that the local dissipation rate is approximately

the same in both bands.
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I. INTRODUCTION

A huge class of various di↵erent materials such as microgels, pastes, slurries, foams,

dense suspensions, supercooled liquids etc. are usually subsumed as soft glassy materials

sharing the hallmarks of glass physics, i.e. structural disorder and metastability. Recent

progress in the field has shown that not only slow relaxation processes are characteristic

of these systems but also strong spatial variations in local dynamical properties, so-called

dynamical heterogeneities1–4. There is evidence from extensive experimental and theoretical

investigations that glassy systems also show a common phenomenology when subjected to

external flow5–7. However, the existence and role of spatial inhomogeneities in driven glassy

systems is currently a matter of debate. Extended mode-coupling theory, e.g., successfully

predicts many rheological properties including stress overshoots of glassy systems assuming

spatially homogeneous systems8–12.

A range of glassy materials including amorphous solids show steady-state shear banding13,14,

i.e. the occurrence of a high and low shear rate band in the stationary velocity profile that

develops in response to an externally applied steady shear deformation with rate �̇15. Sta-

tionary shear banding is usually associated with a mechanical instability of the underlying

constitutive relation, but is not observed in other soft glassy materials that do not show

aging or thixotropy. Instead, experiments on so-called simple yield stress fluids including

foams, emulsions and gels observed transient shear bands that form during start-up of

steady shear but do not persist to steady state16–18. These findings are in agreement with

the observation that these soft glassy materials have a monotonic constitutive curve.

Supercooled liquids as an important model system for glassy physics show neither aging

nor a yield stress above a critical temperature. Notwithstanding these di↵erences, do super-

cooled liquids show transient shear banding similar to simple yield stress fluids? Presently,

most theories on transient shear banding o↵er one of the following three explanations of the

phenomenon: an instability of the dynamical equations, a time dependent flow curve being

non-monotonic on an intermediate time-scale and an mechanical instability associated with

a stress overshoot frequently occurring in the stress-strain curve.19,20

Extensive research has been carried out both numerically and theoretically on the time-

dependent formation of shear bands in the transient regime and their possible extension

to steady state within the framework of the so-called shear transformation zone model
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employing e↵ective-temperature thermodynamics21–24, within the fluidity model25, in an

alternative mesoscopic approach by Jagla26,27 and within the phenomenological soft-glassy

rheology model28–30. We note that a general criterion for the occurrence of transient shear

banding has been proposed by Moorcroft and Fielding31, where the authors predict that the

onset of shear banding occurs shortly before the stress overshoot, with a correction term

depending on the form of the stress-strain curve.

In previous studies molecular dynamics (MD) simulations have been proven to be useful to

investigate shear-band formation in polymer melts32 and solid glasses13,33,34 where simulation

conditions have been set up such that no bias on the velocity profile was imposed. In

this letter we present results from extensive MD simulations of a prototypical model of a

supercooled liquid in start-up of steady shear, clarifying the presumed connection between

the occurrence of transient shear banding in supercooled liquids with the presence of a stress

overshoot. We also show that the slow band is structurally di↵erent from the fast band,

carrying higher shear stresses at comparable local shear rates as it has less well adapted to

shear deformation.

II. MODEL AND METHODS

A. Model

As a model glass former, we choose the well-studied three-dimensional binary Lennard-

Jones fluid of Kob and Andersen35 with the interaction potential

�
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= 0.5 and �
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= 1, �
12

= 0.88, �
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= 0.8. All particles have the

same mass m = 1. Lennard-Jones units are used throughout the article such that length is

reported in units of �
11

, energy in units of ✏
11

and time in units of (�2

11

m/✏
11

)1/2. The ratio

of large to small particles is 80:20, a cuto↵ radius r
c

= 2.5 was used and the potential was

shifted such that it vanishes at r
c

. Simulations were carried out with N = 8000 particles,

which were confined to a cubic box with length L = 18.8. This corresponds to a density of

⇢ = 1.204. Periodic boundary conditions were used in x� and in z�direction. In y�direction

the system was confined by a frozen-in layer of particles of type 1 which formed a fcc lattice

with lattice constant a = 0.85, which is small enough such that particles cannot penetrate
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wall. Molecular dynamics simulations are performed in the NVT–ensemble and we tested

di↵erent methods of thermostatting by either employing a profile unbiased thermostat36 with

velocity rescaling every 10 time steps or by using a DPD thermostat37,38 where the cut-o↵

for the DPD interaction was chosen to be r
c

= 2.5. As a time step, we used �t = 0.001 for

temperatures T > 0.48 and �t = 0.005 for T  0.48. All simulations were performed using

the Large-scale Atomic/Molecular Massively Parallel Simulator39 package. For the ease of

presentation we here show data for the DPD results only. Statistically independent samples

are prepared at a high temperature then slowly cooled down into the supercooled regime

and carefully equilibrated by waiting several relaxation times of the ↵�relaxation process

of the self-intermediate scattering function (see subsequent section). After equilibration, a

constant shear rate �̇ = 2v
0

/L is externally applied by moving the upper and lower layer

with a constant velocity +v
0

and �v
0

, respectively. This procedure is suitable to study shear

banding since no velocity profile is imposed on the system as has been shown e.g. in the case

of entangled polymer melts32. A snapshot of the simulation box is depicted in figure 1.

B. Equilibration

Independent starting configurations were created by randomly distributing the particles

in the simulation box at density ⇢. The system was equilibrated at a high temperature

(T = 2.0) and slowly cooled down in the supercooled regime but above the mode coupling

critical temperature T
c

= 0.435.40 The systems were equilibrated by MD simulations run for

5� 10 ↵-relaxation times of the self-intermediate scattering function

F (q, t) =
1

N

D NX

i=1

exp
⇣
iq · (r

i

(t)� r
i

(0))
⌘E

(2)

evaluated at the q = |q| value which corresponds to the maximum of the static structure

factor. We verify that the results do not depend on the waiting time t
w

by comparing

the self-intermediate scattering function and the mean-square displacement of the particles

( 1

N

P
N

i=1

(r
i

(t)� r
i

(0))2), for di↵erent waiting times t
w

= 25000, t
w

= 100000, t
w

= 250000.

Here, t
w

is the time period during which the system has been simulated after equilibration

but before data were collected. The appearance of a plateau in the mean-square displacement

and F (q, t) followed by normal di↵usion and decay of correlations is a typical behaviour

found in supercooled liquids (see e.g. Ref.35). Moreover, contrary to the case of glasses and
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Figure 1. Snapshot of the simulation box. Particles of type one and two are shown in blue and

red, respectively. Frozen-in particles forming the boundary in y�direction are colored light blue.

Shearing is achieved by moving the frozen-in layers parallel to the black arrows with constant

velocity v

0

.

amorphous solids, the waiting time does not have a significant influence, neither on these

quantities (see figure 2) nor on the results presented below.

C. Start-up of steady shear

After careful equilibration of numerous independent sample configurations as described

in Sect. II B, steady shear is applied to the system at time t = 0 by moving the upper and

lower frozen-in layers of particles in x–direction with constant velocity ±v
0

, respectively. By

extrapolating the resulting bulk velocity profile to the wall, we computed the slip length of

the simulation to make sure that the results are not biased by wall-slip. No relevant slip was

found for the temperature/shear-rate regime used in this work. We use a profile–unbiased
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Figure 2. Left: Mean squared displacement of dominant particle type as a function of time for

di↵erent waiting times. Temperatures are T = 0.60, 0.50, 0.46 from top to bottom. Inset shows

a zoom into intermediate time scales. Right: The self-intermediate scattering function F (q, t),

Eq. (2), as a function of time for the same conditions and waiting times as in the left panel.

thermostat or a dissipative particle thermostat to ensure constant temperature simulations.

The instantaneous shear stress we evaluate during time evolution from the Irving-Kirkwood

formula41

�
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=
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m
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2V

NX

i=1

NX
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r
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, (3)

where m
i

is the particle mass, v
i,x

the peculiar velocity in x-direction, V the system volume,

r
ij,x

the x-component of the connector and F
ij,y

the y-component of the force vector between

particles i and j.

Typical stress-strain curves, i.e. shear stress �
xy

versus strain � = t�̇, obtained in a start–

up shear simulation are depicted in figure 3. We observe that the shear stress increases

with decreasing temperature, developing a stress overshoot at su�ciently low temperatures.

Similar stress-strain curves have been reported earlier12,40,42. As it is generic for viscoelastic

fluids, the shear stress �
xy

initially increases linearly with the strain but this rapid elastic

stress increase competes with viscous relaxation processes. As these stress relaxation events

become more frequent, they balance the elastic response accompanied by a decrease of the

accumulated stress to level o↵ to a stationary value. Similar stress strain curves are also

observed for polymer gels and hairy nanoparticles43,44 where the drop in the stress-strain

curve is associated with the breaking of bonds in the microstructure as a response to the

applied force. Likewise, many complex fluids exhibit a well-defined microstructure (e.g. hy-

drogels, block copolymers) and structural changes can be accounted for their macroscopic

deformation behaviour. Despite many e↵orts, the analogue of e↵ective bonds and the rel-

evant structural features in supercooled liquids are still unclear. Therefore, we note that

it is possible that the microscopic mechanisms underlying stress-relaxation in supercooled
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liquids di↵er in their nature from those of other soft materials and that similar rheological

properties may nevertheless appear on a macroscopic level, where details of the microscopic

mechanisms are less relevant compared to the common features of structural disorder and

metastability.

Figure 3. Stress-strain curve for di↵erent temperatures (T = 0.44, 0.48, 0.55, 0.69, 0.89 from top to

bottom) and applied shear rate �̇ = 0.052 averaged over 40 independent starting configurations.

The steady–state shear stress �
ss

that the system attains at very long times after inception

of steady shear has been investigated in detail in earlier studies where it was found that

�
ss

⇠ �̇1�↵ with ↵ ⇡ 2/3 for T > T
c

and not too low shear rates45. Moreover, the emergence

of a dynamic yield stress occurs in this system at lower temperatures (T < 0.4)46, beyond

the parameter range of the present study. Therefore, all results reported here correspond

to a temperature/shear rate regime where the system behaves as a shear-thinning fluid, at

least concerning its steady-state properties.
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Figure 4. Normalized velocity profile at steady state for T = 0.44 and �̇ = 0.052. Black line

indicates the linear profile u(y) = �̇(y�L/2) and errorbars correspond to three standard deviations

of the velocity in x�direction recorded during a period of t
v

= 0.5.

D. Measuring flow profiles

Contrary to several previous studies on sheared supercooled liquids45,46, our procedure

does not impose a particular velocity profile onto the system. In order to compute the flow

profile, we determine the average velocity in shear direction (v
x

) of layers of particles by

dividing the simulation box in di↵erent bins with a thickness �y = 2. The bins extend over

the entire box length in x- and z-direction. By averaging the x-component of the velocity

of all particles in i-th bin, we obtain the average flow velocity of the system in each layer

vi
x

. An example of the resulting flow profile is shown in figure 4.

III. TRANSIENT SHEAR BANDING

During the simulations of start-up of steady shear, we not only evaluate the instantaneous

shear stress (3) but also monitor the velocity profiles averaged over a short time interval.

Results for a representative simulation are shown in Fig. 5. We find that the system quickly

assumes a linear flow profile in the initial regime where the shear stress increases roughly

proportional to strain (Fig. 5B). However, the linear profile breaks down in the region of

the mechanical instability after the stress overshoot where d�
xy

/d� < 0. In this regime, an

inhomogeneous velocity profile known as shear band forms (Fig. 5C) before finally recovering

the linear profile at later stages towards the steady state (Fig. 5D).
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Figure 5. A. Typical stress-strain curve of shear start-up simulation in the deeply supercooled

regime and medium shear rate (T = 0.44, �̇ = 0.052) exhibiting a characteristic stress overshoot

before leveling o↵ to a steady state value. B-D. Normalized velocity profiles (averaged over short

time period t

v

⇡ 0.1) corresponding to small, intermediate, and large strains as indicated by solid

circles in panel A.

We systematically investigate the transient flow profiles for di↵erent temperatures and

shear rates. Some representative results are shown in Fig. 6. In the vast majority of cases,

we find that transient shear bands occur in the center region between the walls.

A. Measuring transient shear banding

As a measure of shear banding for the system, we compute the goodness of a linear fit47

for the linear velocity profile, i.e.

r2 = 1� s
r

/s
t

, (4)

where

s
r

=
X

i

(vi
x

� ui)2 , s
t

=
X

i

(vi
x

� v̄
x

)2 . (5)

Here, ui = u(yi) is the model value of the linear fit for the i-th layer and v̄
x

the average

velocity in x–direction of the entire system. For the present setup v̄
x

⇡ 0. Note, that r2 is

closely related to the mean-squared deviation from a linear profile via Eq. (5).

In fact, r2 = 1 corresponds to a perfect linear profile, whereas deviation from a linear

profile lead to r2 < 1. Since the observed shear bands are not persistent to steady state,

we record the coe�cient of determination r2 of the velocity profile as a function of strain in

order to distinguish between banding and fluctuations around the linear profile. The results
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Figure 6. Normalized velocity profiles at T = 0.44 for di↵erent shear rates �̇ = 0.032, 0.042, 0.052,

(top to bottom). The velocities were divided by the absolute value of the wall velocity. Left to right

panels demonstrate the evolution of the flow pattern at di↵erent stages of the transient regime.

Velocity profiles have been averaged over a short time interval t
v

= 0.1.

shown in figure 7 confirm that the system initially strongly deviates from a linear profile as

the walls start to move but arrives at a linear profile comparable to the steady-state profile

at the same time as the maximum of the stress-strain curve is approached. Afterwards, the

linear profile breaks down as shear bands form in the system mirrored by a local minimum

in the r2 versus t curve. The depth of the minimum is significantly larger than fluctuations

in the linear profile naturally occurring at steady-state. Visual inspection of the flow-profile

shows a piecewise linear profile is formed during this period i.e. shear banding occurs. We

identify the slow/fast band right after the stress overshoot, sample the local shear rates in

both regions and record a histogram of the data during the full relaxation process starting

from the stress-overshoot and ending at steady-state. The time interval of transient shear

banding over which we perform this analysis corresponds to half of the width of the drop of

r2 as a function of time.
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Figure 7. Goodness of a linear fit of the velocity profile during shear start-up simulations for a

higher (�̇ = 0.064, black curves) and a lower (�̇ = 0.032, red curves, inset) shear rate. Dashed lines

T = 0.52, full lines T = 0.46.

Figure 8. Histograms of local shear rates during the whole lifetime of the shear bands (slow: black,

fast: red) for T = 0.44 and �̇ = 0.045.

The result is depicted in figure 8 showing two separate distributions of the frequency

f(�̇) around di↵erent mean values corresponding to a slow and fast band. We note that

both curves coincide before and after the decrease in r2 occurs (not shown here). Due to the

transient nature of the system, the two histograms overlap over a certain region. We perform

a t-test47 of the null-hypothesis that the mean values of the fast (µ
fast

) and slow band (µ
slow

)

are the same (H
0

: µ
fast

� µ
slow

= 0) against the alternative hypothesis the both regions

remain statistically di↵erent over the entire relaxation process (H
1

: µ
fast

� µ
slow

6= 0). For
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all investigated samples at which the r2-value has a pronounced local minimum in temporal

vicinity of the stress overshoot, we find that for both distributions the null-hypothesis has to

be rejected within the 95% confidence interval. Therefore, both distributions are significantly

di↵erent i.e. the region in which the slower band is formed remains slower during the entire

stress-relaxation process and vice versa for the fast region. This supports the conclusion,

that stress relaxation throughout the system does not occur randomly but via a breakdown

in a locally confined slow and fast band which persist until steady-state.

B. Transient shear banding and stress overshoot

Although it might not seem surprising at first that glassy systems with spatially inho-

mogeneous dynamics in the absence of flow also show transient shear banding, it should be

noted that these bands form only at su�ciently high shear rates where flow-induced e↵ects

are appreciable. We now investigate the relation between the occurrence of transient shear

banding and the appearance of a stress overshoot in the stress-strain curve. To that end,

first we systematically simulate stress-strain curves for statistically independent samples in

the temperature and shear rate (T � �̇) plane. We quantify a stress overshoot by the dif-

ference of the maximum stress value �
max

and the steady state value �
ss

, normalized by

the maximum deviation � of �
ss

which we encounter due to stress fluctuations of a single

configuration in the steady state regime. This means that values (�
max

��
ss

)/�  1 indicate

a region in which the overshoot is comparable to the maximum amplitude of the fluctuation

in the steady state whereas (�
max

� �
ss

)/� � 1 implies a strongly pronounced overshoot.

We chose this normalization such that � does not depend on the sampling time or sample

size but enables us to perform single sample evaluations of overshoot and shear-banding.

We use this criterion to compute the minimal values �̇
min

(T ) for which shear banding can

be observed. Figure 9 shows the nonequilibrium diagram of normalized stress overshoot

and onset of transient shear banding in the T � �̇ plane where the latter was set to be at

values at which the majority of 40 independent configurations showed a deviation from a

linear profile which was stable in the transient regime and significantly larger than thermal

fluctuations. A comparison of both quantities shows that the formation of transient shear

bands coincides very well with the onset of a stress overshoot. Furthermore, we note that

this criterion of (�
max

� �
ss

)/� � 1 is a relatively restrictive criterion for the detection of
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an overshoot meaning that in a larger ensemble averaged stress-strain relation the onset of

overshoot formation would be shifted to somewhat higher temperatures whereas the contour

lines of Fig. 9 would keep their qualitative form.

Figure 9. Normalized stress overshoot color-coded as function of temperature and shear rate.

While the blue in the bottom right corner (high temperature and low shear rate region) indicates

that there is no significant maximum of the stress-strain curve, green to red in the top left corner

(low temperature and high shear rate region) indicate the formation of an increasingly pronounced

overshoot. Black line marks the minimum T and �̇ values at which transient shear bands occur.

Our findings are in qualitative agreement with a recently proposed general criterion for

viscoelastic fluids31 which states that in the high shear rate limit a mechanical instability

emerges whenever a stress overshoot occurs. More, precisely the onset of shear banding

is predicted to occur shortly before the overshoot, depending the form of the stress–strain

relation during startup. Concerning the underlying mechanism for glassy systems, one

plausible explanation refers to spatial heterogeneities that are present in these systems and

that manifest themselves in the transient regime.

Some parts of the system adapt more easily to the external perturbation, giving rise to

fast shear bands, while other parts with slow dynamics o↵er more resistance to the applied

deformation. They carry an inherent frozen-in rigidity which counteracts the applied defor-

mation and has to be overcome first before reaching steady state. Therefore, regions which

form slower bands are subjected to higher tension carrying the majority of stress responsible
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for the overshoot in the transient regime. A distribution of local strain rates around the

externally applied rate can be observed with the amplitude being larger for higher applied

rates. A large stress accumulated in the system accompanied with a fast relaxation process

gives rise to a particularly fast moving shear band which has to be compensated by a slow

band to maintain the global shear rate whereas a small accumulated stress value triggers

less and “weaker” relaxation events resulting in a smaller di↵erence between the local shear

rates in the system. Within the fluidity model25, it has similarly been argued that in the

shear-thinning regime, regions with higher local shear rate correspond to lower local vis-

cosity and therefore faster relaxation, leading to a positive feedback between local viscosity

and local shear rate. Since the initial stress response can be thought to be mainly of elastic

nature, one might also refer to phenomenological theories (e.g. Refs.48–52) that postulate

the existence of mesoscopic elements in glassy materials which support elastic stress locally

but yield as the stress increases leading to local, cooperative rearrangements of particles

that trigger the formation of an inhomogeneous flow profile. As the “weakest” of these

elements (e.g. those which can support the least stress) break down, they initiate a local

mobilization in the material triggering the formation of an inhomogeneous flow profile. This

is in accordance with results for amorphous solids discussed in53, where the formation of

percolating regions of high mobility at a critical strain was reported.

C. Local constitutive relation and structure

Such relaxation processes might be di↵erent from those occurring in the nonequilibrium

steady state. Therefore, we proceed by investigating whether the global constitutive relation

between steady state shear stress and applied shear rate also holds within the shear bands.

To answer this question, we compute the local shear rates of all occurring bands by measuring

the slope of the velocity profile in each band. Furthermore, we calculate the corresponding

local shear stress values by applying the Irving-Kirkwood formula (3) to particles within

each shear band. Figure 10 shows that the local shear stresses assumed by the transient

shear bands are elevated compared to the corresponding values of the constitutive relation of

the system. Despite significant sample-to-sample fluctuations, we consistently observe that

slower bands carry higher shear stresses than the fast band for the same local shear rates.
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Figure 10. Constitutive curve (steady state shear stress versus applied shear rate) for temperature

T = 0.44 shown as solid black line. Symbols: local shear stress/shear rate values for di↵erent

configurations measured at time point at which shear banding is most pronounced. Dot-dashed

and dashed lines show averages of local shear stress–shear rate values obtained in the fast and

slow band, respectively. A careful analysis shows that while the faster bands coincide on average

well with the constitutive cure, the slower bands are shifted to significantly higher stress values

indicating that the slower bands have not been adapted to the externally applied strain.

We turn to an investigation of the structural origin of the shear bands observed in the

transient regime. A simple but e�cient tool to investigate the liquid structure is the pair

correlation function g(r), its shear-induced angular dependence provides an understanding of

the distortion of the local fluid structure54. Hence, the pair correlation function is expanded

into the spherical harmonics Y ⇤
lm

(r̂)

g(r) = g
s

(r) +
1X

l=1

lX

m=�l

g
lm

(r)Y ⇤
lm

(r̂) , (6)

where r̂ is the normalized position vector and g
s

(r) = 1/(4⇡)
R
g(r)dr̂ being the isotropic

contribution to the pair correlation function. It has been shown that the dominant contri-

bution (to first order in the shear rate) is given by55

g
22

(r) =
15

4⇡

Z
r̂
x

r̂
y

g(r)dr̂ . (7)

The peaks of g
22

increase with increasing shear rate due to enhanced structural distortions55.

In previous studies g
22

has been used to monitor the structural changes during shear in su-

percooled liquid both in simulations and experimental work.42,56. We follow a similar route
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and investigate g
22

as a simple structural indicator in the slow and fast band separately.

The steady state form of g
22

coincides rather well with the signal from the fast shear bands

Figure 11. The pair correlation function g

22

, Eq. (7), at temperature T = 0.44 and �̇ = 0.052

in steady state (black), fast shear band (red) and slow shear band (blue). Inset shows the same

data but zoomed into the first two peaks. While the fast band structure coincides rather well with

steady state data, the signal from the slow shear band shows significantly larger amplitudes i.e. the

elevated stresses in the slower bands as seen in fig. 10 have structural origin mirrored by a more

pronounced distortion of the nearest neighbour shells of particles.

in the transient regime, whereas we observe more pronounced peaks in the slower band (see

fig. 11). Our findings imply that the fast band is well adapted to the applied shear even

in the transient regime. However, the local structure in the slow bands is distorted more

strongly than in the steady state. The function g
22

also determines the (configurational)

shear stress in the system via

h�
xy

i = 2⇡⇢2

3

X

i,j

N
i

N
j

N2

Z d�
ij

(r)

dr
r3gij

22

(r)dr , (8)

where N
i

denotes the number of particles of type i and the superscript of g
22

indicates that

the ij�interactions are taken into account separately. Therefore, fig. 11 shows the structural

origin of the larger shear stresses carried by the slow band.

Finally, we investigate the local viscous dissipation rate d = �l

xy

�̇l in both shear bands

separately, where the superscript emphasizes the local nature of the quantities under con-

sideration. Surprisingly, we find that the local dissipation in each band is approximately the

same in the slow and fast band (see figure 12). Interestingly, minimal dissipation arguments
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seem rather successful in predicting shear bands in granular material57 and the present ob-

servation on equal dissipation rises the question whether a similar minimal dissipation-like

argument could be derived for transient banding.

Figure 12. Local dissipation rate �

l

xy

�̇

l in the slow and fast band for T = 0.44. Di↵erent symbols

correspond to di↵erent applied shear rates (same as in figure 4). The line corresponds to d

fast

=

d

slow

.

IV. CONCLUSIONS

To summarize, we have reported the first observation of transient shear banding in a

molecular model of supercooled liquids. We found that the occurrence of these shear bands

coincides well with the appearance of a stress overshoot over the entire temperature range

in the supercooled regime. These observations are in qualitative agreement with predictions

for general viscoelastic liquids31. We suggest that parts of the system with predominant

fast dynamics adapt more quickly to the imposed deformation and form the fast shear

band. The other part of the system with slower dynamics is less able to adapt its structure

and forms the slow band that presents more resistance to the flow and thus accumulates

higher stresses. In principle, it is possible that also more complex flow patterns form during

this process. While we found some initial indications pointing in this direction, further

studies of larger systems are needed to explore this issue thoroughly. There is currently

little understanding about the selection of shear rates but our results indicate that local

17



dissipation is very similar in both bands, o↵ering a possible route for future theoretical de-

velopment. It is worth to note that mode coupling theory10,11 provides detailed quantitative

predictions also for the transient regime but assumes a homogeneous velocity profile. In

the light of the present results, it would be interesting to understand whether extensions

of this theory allowing for shear banding will lead to more accurate predictions. As this is

the first molecular-based discussion linking transient shear band formation, stress overshoot

and local structure in the start-up of steady shear in supercooled liquids, several questions

remain open. For instance, it is unclear whether the relaxation events in the slower bands

di↵er qualitatively from those occurring in the fast band. While the latter seem to be rather

similar to those in the steady state of the driven system, relaxation in the slow band could

show more similarities to elastic deformations in amorphous solids. In this context we note

that recent studies indicate the presence of long-ranged Eshelby-like patterns in the local

strain correlations of the system (see e.g. Refs.58,59). These Eshelby fields are assumed to

originate from localized strain changes which give rise to localized forces influencing the

underlying inherent structure, persist even well above the glass transition temperature in

the supercooled regime and seem to play a crucial role in the Newtonian to shear thinning

cross-over.58 The presence of these Eshelby fields and a possible di↵erence in the slow and

fast band in transient flow would be of high interest but is beyond the scope of this paper.

These questions are left for future research.
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