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Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a 

spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected 

dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different 

physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the colli-

sion forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. 

Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting 

motion of the asymmetrically shaped nanoparticle. 

 

1  Introduction 

The motion of molecules caused by thermal fluctuations, as one of the most fundamental forms of mass, momentum and 

energy transport in nature, plays an essential role in many physical processes [1–4], chemical reactions [5–7] and biological 

functions [8–14]. In conventional theories, molecules/particles have been treated as perfect spheres with their trajectories 

described as random walks, following the original work of Einstein [15–18]. However, it has been realized by Einstein 

himself that this picture will break down if we can inspect the motion of the particles at sufficiently small time and length 

scales [9]. Significant progress has been made in investigating the motion of particles at the micrometer scale and timescales 

from microseconds to seconds, revealing that particles show unconventional behavior over relatively short time intervals 

[19–21]. Han et al. [19] experimentally observed a crossover from short-time anisotropic to long-time isotropic diffusion 

behavior of ellipsoidal particles along different axial directions. Huang and colleagues experimentally measured the 

mean-square displacement of a silica sphere with a diameter of 1 µm in water using an optical trapping technique and found 

that the particle motion could not be described by conventional theory until after a sufficiently long time [21]. We note that, a 

majority of kinetic and dynamic processes related to molecules take place in nanoscale space [8–11,22–25] and are 

accomplished in just several picoseconds [26,27], such as self-assembly [3,4,28–30], chemical reaction initiation [5–7,31], 

intercellular signal transduction [32–34], and neurotransmission [34,35]. Unfortunately, there is rare report on the 

unconventional behavior of the free motion of molecules/nanoparticles solely under thermal fluctuations within short time at 

the nanoscale. 

 

On the other hand, molecular dynamics (MD) simulation has been widely accepted as a powerful tool for studying the 

dynamics of molecules at nanoscales [36–45]. Our recent atomistic MD simulations showed interesting anisotropic motion of 

small asymmetric solute molecules, such as methanol and glycine, in water solely caused by thermal fluctuations [46,47], 

which indicates the existence of rich dynamic behavior of asymmetric molecules in nano-space at finite timescales. 

 

In this work, we report the emergence of unexpected spontaneous curvature in the trajectory of an asymmetrically shaped 

nanoparticle in dilute solution, rather than a random walk. This curvature results from a non-zero resultant force, which 

originates from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped 

nanoparticle. The spontaneously curved trajectory of the asymmetrically shaped particle, together with the non-zero 



 

orientation-dependent force from the surrounding solvent, is similar to the behavior of active matters, like swimming bacteria, 

cells, or even fish. However, different from the self-propelled active matter that consumes energy to generate driving force, 

the non-zero resultant force experienced by the asymmetrically shaped particle solely results from collisions with the 

surrounding solvent during its orientation regulation under thermal fluctuations. Further, we derive theoretical formulae based 

on the observed microscopic picture that can well describe the non-zero force and resulting motion of the nanoparticle.  

 

 

 
Figure 1 (a) Typical trajectories of a pyramid-shaped nanoparticle with height of 0.37 nm and a spherical nanoparticle with a diameter of 0.21 nm over 1 ns. 

(b) Three-dimensional Cartesian coordinate frames defined for the pyramid-shaped nanoparticle where the z-axis is along its initial orientation (from the 

center of the bottom face to the top atom) and the origin at its center of mass and for the spherical nanoparticle where the z-axis is along the initial vector 

pointing from its center of mass to one atom on the surface. The left and right images on each row show the side and bottom views of each nanoparticle, 

respectively. Both frames are defined at initial time and fixed thereafter for data analysis. (c) Ensemble-averaged trajectories (solid curves) of the 

pyramid-shaped nanoparticle in the x-z plane for different directions of the initial velocity as displayed in different colors. The dashed circles and lines are 

included as visual guides. (d) Sampled 50-ps trajectories of the nanoparticle starting from different initial orientations (z-axes). (e) Ensemble-averaged 

trajectories and (f) mean velocities of the two nanoparticles in the cases where their initial velocities are in the direction along the x-axis that is perpendicular 

to the initial orientations (z-axis), together with the simulation results for the self-propelled spherical nanoparticle as an active nanoparticle for comparison. 

The open circles in (e) indicate the points where the mean center of mass positions of the nanoparticles cease to move after about 10 ps.

 

2  Results from MD simulations 

The simulation system consisted of a single model nanoparticle shaped as a triangular pyramid immersed in a solvent of 

small Lennard–Jones (LJ) particles with periodic boundary conditions applied in all three directions, as described in the 

Simulation Method. Each MD simulation was first run for 20 ns to equilibrate the system and then for another 200 ns for data 

analysis. From five independent simulation runs, we collect abundant samples of the nanoparticle trajectories with the same 

time interval of 50 ps. As illustrated in Fig. 1(b) and (d), a three-dimensional (3D) Cartesian coordinate frame was defined for 

every sampled trajectory of the particle with the z-axis along its initial orientation (from the center of the bottom face to the 

top atom) and the origin at its center of mass (CoM). For comparison, we also simulated another system where the 



 

asymmetrically shaped nanoparticle was replaced by a spherical nanoparticle with the same mass, atom number, and volume, 

whose orientation was defined by the vector pointing from its CoM to an atom on the surface. 

 

Fig. 1(a) shows the typical trajectories of the pyramid-shaped and spherical nanoparticles over 1 ns, demonstrating the 

homologous random feature of particle movement under thermal fluctuations. It is clear that the ensemble-averaged trajectory 

better reflects the intrinsic feature of the motion from noise. As presented in Fig. 1(e), just as one would generally expect 

without taking into account the shapes of molecules/particles, the averaged trajectory of the spherical nanoparticle follows a 

straight line along the direction of its initial velocity because of inertia. As its inertia decays owing to the collisions with the 

surrounding solvent, the averaged trajectory of the spherical nanoparticle finally ends at a point. We note that the end point of 

the trajectory does not mean that the nanoparticle is motionless; instead, it corresponds to an almost-zero ensemble-averaged 

velocity caused by the isotropic probability of the motion. The pyramid-shaped nanoparticle initially shows similar inertial 

motion. Surprisingly, as time passes, the ensemble-averaged trajectory of the asymmetric nanoparticle spontaneously curves 

toward the direction of its original orientation (positive z-direction), even though the initial velocity was in a perpendicular 

direction (positive x-direction). It is also interesting to note that in contrast to the monotonic decrease of the mean velocity 

<vx(t)> of the asymmetrically shaped nanoparticle along its initial velocity direction (x-direction), its mean velocity along the 

z-direction <vz(t)> increases from zero to a peak value at t = 1.08 ps and then gradually decreases to zero [Fig. 1(f)]. 

Accordingly, the mean CoM position of this nanoparticle drifts away from the origin and finally settles at a point with 

coordinates x = 0.10 nm and z = 0.04 nm after about 10 ps. Thus, the motion of the asymmetrically shaped nanoparticle 

consists of two parts; i.e., the expected inertial motion along the initial velocity direction (the x-direction here) and the 

unexpected directional motion towards the initial orientation direction (the z-direction here). To provide a complete picture, 

Fig. 1(c) shows the ensemble-averaged trajectories of the asymmetrically shaped nanoparticle starting with initial velocities 

in all different directions (not only the x-direction as discussed above) with respect to the initial orientation (positive 

z-direction). Clearly, all of these trajectories display the bending curvature towards the z-direction.  

 

Now we focus on understanding the physical origin of this spontaneously curved trajectory of the asymmetrically shaped 

nanoparticle by analyzing the ensemble-averaged force <Fz
i
(t)> acting on every individual constituent atom, where i is the 

serial number of the atom under investigation. Apparently, <Fz
i
(t)> results from the fluctuating forces caused by collisions 

with surrounding solvent molecules and the internal force originating from the bonds with the other constituent atoms. 

Following the Stokes law, this force is considered to be linearly proportional to the mean velocity of the ith atom along the 

z-direction <vz
i
(t)>, 

    i i i

z zF t v t  , (1) 

where λ
i
 is the frictional coefficient of atom i. We note that the value of λ

i
 varies for atoms located at different sites in the 

particle structure, depending on how they are in contact with the solvent. In practice, the frictional coefficient of each atom 

can be estimated from the linear relation between <Fz
i
(t)> and <vz

i
(t)> (details are provided in Appendix A1).  

 

In addition, <vz
i
(t)> can be written as 

       i i

z z ov t v t r t Q t  ,where    
d

Q t C t
dt

  , (2) 

because the motion of each constituent atom could be separated into the CoM motion of the nanoparticle, denoted by <vz(t)> 

in Eq. (2), plus the rotation around the CoM denoted by the second term on the right-hand side (rhs) of Eq. (2). ro
i
 is the 

projection of the atom position vector r
i
 pointing from the particle CoM to the ith atom on the particle orientation axis (unit 

vector denoted by i), i.e., ro
i
 = r

i
i, and can be obtained directly from the nanoparticle structure (details are provided in 

Appendix A2). The differential Q(t) of the particle orientation autocorrelation function Cφ(t) = <i(0)i(t)> = <cos[φ(t)]> 

characterizes the particle rotational relaxation, where φ(t) is the particle orientation angle with respect to its original 

orientation. Suppose that the asymmetrically shaped particle rotates around its CoM with an angular velocity ω. As sketched 

in Fig. 2(a) for two typical constituent atoms, the velocity of atom i has a rotation-related component of the form ω×r
i
. When 

moving with this velocity, the atom experiences an effective frictional force arising from collisions with surrounding 

molecules −λ
i
(ω×r

i
). Fig. 2(a) demonstrates that these effective forces differ for atoms located at different sites, which results 

in a non-zero net force at the CoM of the nanoparticle and consequently affects its movement. After taking the ensemble 

average, the mean projection of the velocity of atom i on the initial orientation i(0) is <[ω(t)×r
i
(t)]i(0)> = −<[i(0)×r

i
(t)]ω(t)> 

= −ro
i
<[i(0)×i(t)]ω(t)> = −ro

i
Q(t) and the mean effective frictional force is λ

i
ro

i
Q(t). We substituted Eq. (2) into Eq. (1) and 

added up all the effective frictional forces acting on the constituent atoms of the asymmetrically shaped nanoparticle to get 
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where m is the total mass of the nanoparticle. The first term on the rhs of Eq. (3) always resists the translational motion of the 

particle. It is the second term that could potentially provide an effective force to generate the mean displacement of the 

particle CoM along the z-direction. We calculated C1 and C2 directly based on Eq. (4) and obtained values of 2.79 and 0.11 

nm ps
−1

, respectively (calculation details are in Appendix A1). By solving Newton’s second law, which is a differential 

equation of velocity, we obtained <vz(t)>, 

    2zv t C R t  with    1 1

0

t
C t C

R t e Q e d
 

  . (5)  

We also computed Cφ(t) of the nanoparticle orientation from the MD trajectories. In classical rotational Brownian motion, 

Cφ(t) is predicted to decay exponentially over time [18]. However, our simulation data in Fig. 2(b) show that in the very first 

picosecond where the inertial effect dominates, Cφ(t) does not follow an exponential form. A standard biexponential function 

of the form 

   1 21 2

1 2 1 2

t t
C t e e

 



 

   

 
 

 
, (6) 

with the characteristic times 1 = 1.82 ps and 2 = 0.25 ps was found to describe the data very well.  

 

 
Figure 2 (a) Sketch of the rotation-related velocities of one top and one bottom atom of the pyramid-shaped nanoparticle and the effective frictional forces 

acting on them by surrounding solvent molecules. The contributions of these forces to the translational motion of the particle via its center of mass are shown 

in the lower part of this panel. (b) Autocorrelation function of the particle orientation Cφ(t) (black circles), its rate of variation Q(t) (blue circles), and the 

mean force experienced by the center of mass of the nanoparticle along the z-axis (black squares). The inset is an enlarged image of Cφ(t) in the first 0.5 ps. 

The red curves are theoretical predictions of Eq. (6) (upper), its derivative (middle), and Eq. (7) (lower). 

 

The mean force acting on the CoM of the nanoparticle was thus obtained by substituting Eq. (5) and (6) into Eq. (3) 

      2 1zF t mC Q t C R t    , (7) 

which provided a good description of the simulation results, as shown in Fig. 2(b). It is clear that <Fz(t)> does have a positive 

value towards the initial orientation i(0) of the particle after a short time. More specifically, this force first increases from zero, 

reaches its maximal value at about 0.2 ps, and then decreases. <Fz(t)> becomes negative at 1 ps, reaches its minimal value at 

about 2 ps, and then gradually approaches zero. Eq. (7) further clarifies that the mean force on the nanoparticle can be 

non-zero only when C2 ≠ 0 and [Q(t) − C1R(t)] ≠ 0. The contribution of the asymmetric architecture of the nanoparticle is 

carried by C2 because it possesses the position vector of every atom. The terms in the square brackets are all related to 

rotational motion. This indicates that the key reason for the non-zero net force <Fz(t)> lies in the imbalance of the effective 

frictional forces or hydrodynamic resistance (C2 ≠ 0) acting on the constituent atoms during the regulation of particle 

orientation. This can only happen for particles with asymmetric structures. If the geometric shape of the particle is symmetric, 

the effective frictional forces acting on all atoms are well balanced (C2 = 0) and no directional motion can be observed (see 

the example in Appendix A3). Meanwhile, the rotational motion of the nanoparticle also plays an important role in its 

behavior. If we fix the orientation of the particle [Cφ(t) = 1], Q(t) and R(t) in Eq. (7) both equal zero. Then, even for an 



 

asymmetrically shaped nanoparticle with C2 ≠ 0, the mean force is zero. Therefore, the key of nonzero mean force is 

asymmetry, meanwhile, the rotation is also required. 

 

Based on the theoretical analyses above, we imposed an additional force of Fadd (t) = 340[i(t)×L(t)] pN on the CoM of a 

spherical nanoparticle, where i(t) is the unit vector pointing from the particle CoM to a certain atom on the surface and L(t) is 

the angular momentum of the rotation. This self-propelled active nanoparticle is found to possess a very similar curved mean 

trajectory to that of the pyramid-shaped nanoparticle. As illustrated in Fig. 1(e), the mean particle trajectory also bends 

towards the direction of its original orientation i (positive z-direction), even though the initial velocity was in a perpendicular 

direction (positive x-direction). The particle settles at a final position with coordinates x = 0.10 nm and z = 0.05 nm. The 

average velocity of the self-propelled particle along the z-direction rises from zero to the peak at t = 0.71 ps and then 

decreases to zero. There is a small bulge in the velocity at t = 2.33 ps, which causes a small wave near the tail of the trajectory. 

This might be caused by some hidden influence of the additional force during the rotational relaxation. The similarity of the 

curved trajectories of the self-propelled spherical nanoparticle and freely moving pyramid-shaped nanoparticle suggests that 

the asymmetrically shaped nanoparticle bears a certain amount of activity analogous to that of self-propelled active matter. 

 

3  Conclusion and Discussion 

To summarize, we have shown by molecular dynamics simulations that the motion of an asymmetrically shaped nanoparticle 

with broken central symmetry in dilute solution possesses a spontaneously curved trajectory within a finite time interval, 

instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters 

[48–51]. However, different from self-propelled active matter, which consumes energy to provide a driving force [51–54], 

here the non-zero resultant force solely results from thermal fluctuations. We have also derived theoretical formulae that can 

well describe the physical origin of this non-zero resultant force.  

 

We note that the hydrodynamic theory of Brownian motion in fluids at small Reynolds number has been extended to particles 

with irregular shapes in the series of classic papers by Brenner [55-57]. And the translation-rotation coupled tensor 

successfully describes the anisotropic diffusion of asymmetric colloidal particles observed in experiments [19,58]. However, 

at the molecular scale, the translation-rotation coupled motion arises within the relaxation of momentum, which may carry 

out in very finite time before the diffusion regime. Therefore, we demonstrate our data from the simulations by using force 

analysis rather than the hydrodynamic theory. 

 

A further remark we would like to make is that the observed curvature in the trajectory of the particle will not lead to a 

perpetuum mobile that violates the second law of thermodynamics. As shown above, the trajectory spontaneously bends 

towards the direction along the initial orientation of the shaped particle. In equilibrium systems with sufficiently long time or 

a sufficiently large number of particles for averaging, the orientations of the nanoparticles will have equal probability in all 

directions. After averaging over all possible initial orientations of the particles, the mean displacement is zero, so there is no 

directional flow in the system. This is consistent with statistical mechanics principles. In Appendix A4, we have demonstrated 

that one cannot extract mechanical energy from a thermal bath by restraining the orientations of the particles. However, for 

the case where we only focus on the motion of a single molecule within a finite time, we will observe a directional curved 

trajectory and spontaneous active motion. 

 

Considering that a majority of physical, chemical and biological processes happen on the nanoscale within finite timescales 

and most of the involved molecules possess asymmetric structures, we expect that a directional curved trajectory may have 

significant influence on various processes such as nucleation of clusters, self-assembly, chemical reaction initiation, 

intercellular signal transduction, and neurotransmission. For example, intracellular signaling is usually carried out by small 

signal molecules over a distance of several nanometers to their receptors on a finite timescale [32–34]. However, how to 

evaluate the role of the directional curved trajectory in the dynamics of these processes remains to be an open and challenging 

research subject. 

4  Simulation method 

The model nanoparticle we simulated was shaped as a triangular pyramid with height h = 0.37 nm, as shown in Fig. 1(a). The 



 

three side surfaces of the particle are identical isosceles triangles with an angle of 36° and the bottom surface is regular 

triangles. The asymmetrically shaped nanoparticle was constructed by bonding ten LJ particles. We put the model 

nanoparticle in a cubic box with dimensions of 4 nm × 4 nm × 4 nm with periodic boundary conditions filled with 1086 LJ 

particles as solvent. As detailed in Appendix A5, the size of the simulation box is large enough and then the finite size effect 

is negligible. All LJ particles had the same mass of mLJ=12.011 u and the same force-field parameters (σ = 0.375 nm, ε = 

0.439 kJ mol
−1

). For comparison, a spherical nanoparticle in an individual system was constructed with the same atom 

number, mass, and volume, approximating a sphere with a diameter of about 0.20 nm. In another system, a self-propelled 

spherical nanoparticle had an additional force of 340(i×L) pN imposed on its CoM, where i is the unit vector pointing from 

the particle CoM to a certain atom on the surface and L is the angular momentum of the rotation in unit of u nm
2
 ps

−1
. The 

cut-off distance for van de Waals interactions was set to 1.3 nm. There was no Coulomb interaction in this system. The 

temperature was maintained at 300 K by a velocity-rescale thermostat [59]. A time step of 2 fs was used, and the neighbor list 

was updated every ten steps. Using Gromacs 4.6 software [60], we performed five independent simulation runs for each 

system containing a single model particle immersed in solvent, starting from different initial configurations. Each system was 

first equilibrated for 20 ns and then run for another 200 ns for analysis. The statistical calculations were carried out by taking 

time origins separated by 1 ps along the MD trajectory. Thus, we had about one million samples of each model nanoparticle 

for statistical analysis. 
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Appendix A1  Frictional coefficients of constituent atoms of the model particles 

Fig. A1.1(a) shows the structure of the pyramid-shaped nanoparticle we studied in the main text with h = 0.37 nm composed 

of ten atoms. The atoms are divided into four types according to the trigonal symmetry of the particle. Fig. A1.1(b) presents 

the ensemble-averaged velocity <vz
i
(t)> and ensemble-averaged force <Fz

i
(t)> for each type of atom. <Fz

i
(t)> acting on each 

individual constituent atom of the particle results from the fluctuating forces arising from collisions with surrounding solvent 

molecules and the internal force originating from the bonds with the other constituent atoms. The data suggest that there is a 

linear relation between the mean force and mean velocity of each atom, <Fz
i
(t)> = −λ

i
<vz

i
(t)>, which consequently gives the 

frictional coefficient λ
i
 of each atom (Table A1.1). 

 

 
Figure A1.1 (a) Structure of the asymmetric particle. The atoms are divided into four types according to their geometric locations in the particle. (b) Mean 

force and mean velocity of each type of atom in the asymmetric particle with respect to time. 

 
Table A1.1 Frictional coefficient and the projection of the position vector, which points from the center of mass of the particle to an atom of each type, on 

the particle orientation axis. 
Type Type A Type B Type C Type D 

λi (kJ mol-1 nm-2 ps) 85.05 23.14 51.72 8.64 

ro
i (nm) 0.28 0.09 -0.09 -0.09 

 

When we sum up all the mean forces on each constituent atom, it is notable that there exists a non-zero net force <Fz(t)> on 

the particle along the z-axis within a finite timescale. Accordingly, this non-zero net force along the z-axis causes non-zero 

mean velocity of the nanoparticle along the z-axis [Fig. 1(d) in the main text] and a directional drift of the mean position 

<z(t)> of the asymmetrically shaped nanoparticle, which is obtained by integrating the mean velocity, 

        2
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1

1
t

z

C
z t v d C t R t

C
        . (A1.1) 



 

The simulation results in Fig. A1.2 are well described by Eq. (7) in the main text and Eq. (A1.1) using the values of C1 = 2.79 

ps
−1

 and C2 = 0.11 nm ps
−1

 as directly calculated from Table A1.1.  

 

 
Figure A1.2 (a) Net force on the nanoparticle (black open squares) with respect to time obtained directly from MD simulations. The solid red curve is the 

theoretical prediction based on Eq. (5) using C1 and C2 values calculated from Table A1.1. (b) Mean displacement of the nanoparticle (black open squares) 

with respect to time obtained directly from MD simulations. The solid red curve is the theoretical prediction based on Eq. (A1.1) using C1 and C2 values 

calculated from Table A1.1. 

 

Appendix A2  Projection of an atom position vector on the particle orientation direction 

Because the particle can rotate around its orientation axis, the position vector pointing from the CoM of the particle to that of 

a constituent atom may change in different samples even though the orientation of the particle in these samples remains the 

same. We should perform an ensemble average for the cases with the same φ in which the particle rotates around its 

orientation axis in a three-dimensional system. Fig. A2.1(a) is a sketch of the system where O is the CoM of the particle and 

A is the position of the atom in a randomly selected sample. OA  is the position vector from the particle CoM to the atom in 

this sample. OC  is the projection of OA  on the orientation of the particle. Because the atom can rotate around the 

orientation axis, there must exist samples in which the position of the atom is at another point B, which is located on the 

circle and is to the other end of the diameter vector ACB , where C is the center of the circle. Then, we projected the position 

vectors on the z-axis and obtained OA  and OB  (Fig. A3.1(b)). We note that OA ≠ OB . We also projected OC  on the 

z-axis to obtain OC .  

 

 
Figure A2.1 Sketches of the projection of atom position vectors on the orientation axis of a particle and on the original orientation direction (z-axis) for 

averaging over samples in which the particle rotates around its orientation axis. O is the center of mass of the particle. The black arrow is the z-axis. OA  is 

the vector in a randomly selected sample. OC  is the projection of OA  on the orientation axis (green arrow). OB  is the position vector of the same atom 

in another sample and ACB  is the diameter of the rotation circle. A’, B’ and C’ are the projections of A, B and C, on the z-axis, respectively. A’’ and B’’ are 

the translational locations of points A and B along the vector CC . 

 

If we translate A and B to A’’ and B’’ along the vector CC , then the surface S (AA’A’’) is vertical to the z-axis, which implies 

A A   z . Similarly, we obtain B B   z . Because the lengths of CA  and CB  are equal, the length of C A   equals that 

of C B  . Then, the triangles ΔAA’’C’ and ΔBB’’C’ are congruent triangles, which implies C A  = C B   and C’ is the 

midpoint of A B  . Thus, 
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OA OB
OC

 
  . (A2.1) 

The above geometric discussion suggests that the sample average of the projection of the position vector r
i
 onto the z-axis can 

be obtained by dividing the calculation into two steps. We first project the position vector r
i
 to the orientation axis for 

averaging over samples where the particle rotates around the orientation axis to obtain ro
i
 ( OC  in the above notation). Then, 

we project the vector ro
i
i(t) onto the z-axis by multiplying ro

i
 with the autocorrelation function of the particle orientation Cφ(t), 

      0 cosi i i

o o or t r r C t  i i . (A2.2) 

Because the velocity is the first-order derivative of the atom position, the rotation-related component of the atom velocity is 

associated with Cφ(t) as 

    i i
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d d
r C t r C t

dt dt
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Appendix A3  Analysis of a symmetric nanoparticle 

We also investigated the motion of a symmetric nanoparticle for comparison. The structure of a rod-like symmetric 

nanoparticle with h = 0.3 nm is shown in Fig. A3.1(a), where the four constituent atoms of the nanoparticle are named 

individually. We note that the ensemble-averaged velocities and ensemble-averaged forces of the four atoms show symmetric 

behavior [Fig. A3.1(b, c)]. The positive and negative mean forces are well balanced with each other, and the net force acting 

on the symmetric particle along the original particle orientation direction is almost zero with some fluctuations [Fig. A3.1(d)]. 

 

 
Figure A3.1 (a) Structure of the rod-like symmetric particle. The four atoms are named individually. (b) Mean velocity and (c) mean force of each atom 

along the z-direction. (d) Net force acing on the rod-like symmetric nanoparticle along the z-direction. 

 
Table A3.1 Frictional coefficient and the projection on the particle orientation axis of the position vector pointing from the center of mass of the particle to 

an atom of each type. 

Type Top Upper middle Lower middle Bottom 

λi (kJ mol-1 nm-2 ps) 89.43 64.57 64.57 89.43 

ro
i (nm) 0.2 0.1 -0.1 -0.2 

Appendix A4  Can directional drift lead to a perpetuum mobile? 

As discussed in the main text, the directional drift behavior of asymmetric model particles only takes place along their initial 

orientation. In equilibrium systems, the orientations of the particles have equal probability in all directions. After averaging 

over all possible initial orientations of the particles, the mean displacement of the particles is zero at any time and so there is 



 

no directional drift, which is consistent with the equilibrium statistical mechanics. Thus, we will not obtain a perpetuum 

mobile.  

 

The drift behavior of asymmetric particles is a physical result of the translation–rotation coupling. To further elucidate this, 

we refer to Eq. (A1.1) above (repeated here), 

        2

0
1

1
t

z

C
z t v d C t R t

C
        . (A1.1) 

This equation implies that if we fix the orientation of the particle [C(t) = 1, R(t) = 0], the drift will vanish [<z(t)> = 0]. We 

carried out further MD simulations to verify this coupling effect. In these additional simulations, we applied a pair of forces 

on the top and bottom atoms of the model particle, respectively, to restrain its orientation. The forces have the same 

magnitude but opposite directions. Such restriction of the particle rotation can also be understood as mimicking the action of 

an external field on a dipole moment embedded in the model particle. Figure A4.1 shows the results for different magnitudes 

for this orientation restraint. The strength of the applied restraint forces was 0.3 kJ mol
−1

 nm
−1

 to represent weak restraint, and 

0.6 kJ mol
−1

 nm
−1

 in the case of strong restraint. Fig. A4.1(a) reveals that the orientation correlation function C(t) is 

obviously affected by orientation restraint as the strength of the restraint force increases. As predicted by Eq. (A1.1), the 

magnitude drift decreases strongly as the orientation restraint becomes stronger. Therefore, one cannot achieve directional 

drift by simply fixing the orientation of the particle. Furthermore, considering that the directional drift only takes place over a 

timescale comparable to the characteristic rotational relaxation time of the particle and saturates at a magnitude that is only a 

fraction of the particle size, there is no way to extract mechanical energy from a thermal bath without violating the 

thermodynamics laws. 

 

 
Figure A4.1 (a) Autocorrelation functions of orientation Cφ(t) and (b) mean displacements <z(t)> along the z-axis of the model particles under 

orientation-restraint forces of different strength.  

 

As we stated in the conclusions section in the main text, to make use of this drift behavior, one either needs to control the 

initial orientations of the particles, which requires energy input, or to be able to track the instantaneous orientation of the 

particle by advanced experimental techniques.  

Appendix A5  Examining possible finite size effects 

To examine the influence of possible finite size effects on our simulation results, we performed three extra MD simulation 

runs to study the Brownian motion of a pyramid-shaped nanoparticle with h = 0.37 nm in dilute solutions. The side length of 

the cubic simulation box is consecutively increased by a factor of two from LBox = 4 nm to 8 nm and then to 16 nm. As shown 

in Fig A5.1(a), the simulation results for the time-dependent mean displacement <z(t)> of the model nanoparticle obtained 

from the three different systems agree with each other very well. This indicates that the size of our simulation box (see 

Simulation Method in the main text) is large enough to make the influence of finite size effects on the directional motion 

behavior of the model particles nearly negligible.  

 

In contrast, the simulation results for the velocity autocorrelation function (VACF) do show a sign of system size-dependent 

behavior. Fig. A5.1(b) reveals that the three VACF curves initially agree with each other very well. They decay quickly over 

time to values less than 1% at t  4 ps, and then start to show large timescale fluctuations and also deviate from each other. 

These fluctuation tails could be attributed to the hydrodynamic correlations between neighboring boxes. In simulations, it is 

difficult to extract the periodicity of these fluctuations from the VACFs of the single model particle. Instead, we look at the 

time when the VACF first decays below zero, which represents a negative correlation of velocity. The inset in Fig. A5.1(b) 



 

reveals that this time is about 9 ps for the smallest box (LBox = 4 nm) and about 17 ps when the box size is doubled (LBox = 8 

nm). The VACF for the system with LBox = 16 nm remains positive for at least 20 ps. Of course, these time values are subject 

to large uncertainties because of the statistical noise. Nevertheless, we could compare these values by estimating the 

hydrodynamic correlation time tH = LBox/vT, where vT is the velocity of thermal motion (sound velocity) based on the 

equipartition theorem, kBT = m<vT
2
>. For the simulation box with LBox = 4 nm, tH is about 8.7 ps, while it is around 17.5 ps 

for LBox = 8 nm and 35.1 ps for LBox = 16 nm. The estimated tH values are fairly similar to the times for the VACFs to first 

reach negative values. This again reflects the existence of hydrodynamic correlations in our simulations using periodic 

boundary conditions.  

 

Because the diffusion coefficient is the time integral of the VACF, the results in Fig. A5.1(b) are consistent with the 

simulation work of Yeh and Hummer [61], where the diffusion coefficients increase with system size. However, our data for 

directional motion are not affected by this effect. The characteristic hydrodynamic correlation times are all longer than the 

time required for the drift to reach the saturation value. We thus believe that the finite size effect originating from the 

hydrodynamic correlations between particles in neighboring boxes does not have a strong effect on the directional motion 

behavior we are interested in, as least not qualitatively as shown in Fig. A5.1(a). This could be understood by considering the 

physical origin of the drift behavior, for which the effective driving force results from the imbalanced collision forces with 

solvent molecules during the rotation of the particle. As illustrated in Fig. A5.1(c), the positive driving force only lasts for 

about 1 ps and the remaining part of the drift process is caused by inertia along the initial driving direction. The 

hydrodynamic correlations therefore have no effect on the origin of the drift, as evidenced in Fig. A5.1(c). They may 

potentially affect the magnitude of the drift, but this is not the case in Fig. A5.1(a).  

 

 
Figure A5.1 (a) Time-dependent directional drift, (b) velocity autocorrelation function, and (c) mean force projected on the z-axis of a model particle with 

height h = 0.37 nm solvated in simulation boxes of side lengths LBox of 4, 8, and 16 nm. The inset in (b) is an enlarged view around zero.  

 


