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Abstract. Climate data records (CDRs) derived from Earth observation (EO) should include rigorous uncertainty 

information, to support application of the data in policy, climate modelling and numerical weather prediction reanalysis. 30 

Uncertainty, error and quality are distinct concepts, and CDR products should follow international norms for presenting 

quantified uncertainty. Ideally, uncertainty should be quantified per datum in a CDR, and the uncertainty estimates should be 

able to discriminate more and less certain data with confidence. In this case, flags for data quality should not duplicate 

uncertainty information, but instead describe complementary information (such as the confidence held in the uncertainty 

estimate provided, or indicators of conditions violating retrieval assumptions). Errors have many sources and some are 35 

correlated across a wide range of time and space scales. Error effects that contribute negligibly to the total uncertainty in a 

single satellite measurement can be the dominant sources of uncertainty in a CDR on large space and long time scales that 

are highly relevant for some climate applications. For this reason, identifying and characterizing the relevant sources of 

uncertainty for CDRs is particularly challenging. Characterisation of uncertainty caused by a given error effect involves 
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assessing the magnitude of the effect, the shape of the error distribution, and the propagation of the uncertainty to the 

geophysical variable in the CDR accounting for its error correlation properties. Uncertainty estimates can and should be 

validated as part of CDR validation, where possible. These principles are quite general, but the form of uncertainty 

information appropriate to different essential climate variables (ECVs) is highly variable, as confirmed by a quick review of 

the different approaches to uncertainty taken across different ECVs in the European Space Agency’s Climate Change 5 

Initiative. User requirements for uncertainty information can conflict with each other, and again a variety of solutions and 

compromises are possible. The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty 

information to users is discussed. Our review concludes by providing eight recommendations for good practice in providing 

and communicating uncertainty in EO-based climate data records. 

1. Introduction 10 

Few scientists would dispute the principle that an estimate of uncertainty should be given with every measured value. 

However, meaningful adherence to this simple principle can be challenging, and in practice researchers commonly encounter 

datasets where uncertainty information is generic, misleading or absent. Climate data records (CDRs) are not immune from 

this problem, despite the fact that climatic signals usually are subtle (e.g., Kennedy, 2014;  Mahlstein et al., 2012; 

Flannaghan et al., 2014; Barnett et al., 2005), adding to the importance of rigorous uncertainty characterization of CDRs 15 

(e.g., Immler et al., 2010). 

 

The question of how to derive and present uncertainty information in CDRs has received sustained attention within the 

European Space Agency (ESA) Climate Change Initiative (CCI; Hollman et al., 2013). Like the National Oceanic and 

Atmospheric Administration CDR program (Bates et al., 2016), the CCI program generates CDRs addressing a range of 20 

essential climate variables (ECVs: Global Climate Observing System, 2010; Bojinski et al., 2014). Here, we review the 

nature, mathematics, practicalities and communication of uncertainty information in CDRs from Earth observations, we 

highlight some of the challenges that developing good uncertainty information presents, and we give examples of recent 

progress drawn from the experience of several CCI projects.  

2. The requirement for uncertainty information 25 

The environment and climate of Earth are changing (e.g., Intergovernmental Panel on Climate Change, 2013), and these 

changes reflect both profound human influences on the Earth system and natural variability. Scientific progress in 

understanding contemporary changes has great importance in constraining future changes that may have far-reaching 

consequences for society. For public understanding, policy development and climate assessments, climatic changes and 

trends in recent decades need to be calculated. In this context, quantified observational uncertainties are required which 30 

reflect the degree to which the observing system is stable. The “system”, here, includes all components that can affect the 
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values in the CDR, from platform and sensor to software parameters and (where relevant) human judgements. Stability is the 

time-rate at which systematic errors in the CDR may accumulate, and needs to be understood so that artifacts arising from 

the limitations of observing systems are not mis-interpreted as real climatic changes or trends. 

 

There is major international investment of scientific effort in modeling the climate and its many component systems, and this 5 

is a major application that needs CDRs with quantified uncertainties. CDRs underpin climate model evaluation and 

improvement by providing references that can be used to identify model deficiencies. Model-data comparisons require 

appropriate skepticism about both model and data, since errors in both can mislead (e.g., Notz, 2015; Bellprat, 2016). 

Modelers need confidence in discriminating model-data discrepancies that unambiguously indicate model deficiencies from 

those where observational errors are significant. Feedback gathered by CDR producers (e.g., Rayner et al., 2015) shows that 10 

modelers find it too time consuming to develop a level of appreciation of observational datasets that allows them to make 

confident judgements about such matters. For this reason, CDRs need to include validated uncertainty information that 

modelers trust for contextualizing model-data discrepancies. Until this is achieved, modelers will continue to rely on 

heuristics such as interpreting differences between observational datasets as being representative of observational 

uncertainty, a strategy that may or may not be valid depending on the case in point. 15 

   

A third example of why uncertainty in CDRs matters is the case of data assimilation. Re-analysis runs of atmospheric 

forecasting models (e.g. Dee et al., 2011; Kobayashi et al., 2015) provide useful, dynamically consistent information about 

the climate system over recent decades. The analyses include inferred fields of variables that are practically unobservable 

and/or were not historically observed, on a global scale. Re-analyses are among the most widely used datasets in 20 

geosciences, because of their information content and spatio-temporal completeness. Re-analyses are created by data 

assimilation, which brings observations and model together, using the observations to constrain the evolution of the model 

towards reality. The combination involves weighting the impact of different observations together and weighting the 

influence of observations relative to the internal evolution of the model. Ideally, uncertainty estimates should be available for 

each observation, so that more certain observations have more influence on the analysis. Densely sampled, numerous data 25 

(such as from satellites) can inappropriately overwhelm other observations, if these data are subject to errors that correlate 

across space and time and therefore do not “average out”. Ideally, spatio-temporal correlation should be understood and 

represented in the observational covariance matrices that weight satellite observations, to avoid undue influence on the 

analysis. The requirement for uncertainty information goes beyond generic estimates at dataset level: information is needed 

on which data are more or less certain, and how their errors are structured in space and time. Where information provided in 30 

CDRs about observational uncertainties is limited, generic assumptions are generally made, leading to sub-optimal 

outcomes; an example is shown in Figure 1.  
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3. Error, uncertainty and quality 

The terms ‘error’ and ‘uncertainty’ are often unhelpfully conflated. Usage should follow international standards from 

metrology (the science of measurement), which bring clarity to thinking about and communicating uncertainty information. 

Formal definitions are found in the International Vocabulary of Metrology (VIM, 2008). Adopting the “Error Approach” 

therein to describe the process of measurement, we have: 5 

 

• measurand – a quantity to be measured 

• measurement – process of experimentally obtaining one or more measured values that can reasonably be attributed 

to a quantity 

• measured value – result of a measurement, obtained to quantify the measurand 10 

• error – measured value minus the true value of the measurand; in practice the error is unknowable, except where 

the measured value can be compared with a reference value of negligible uncertainty 

• uncertainty – non-negative parameter characterizing the dispersion (spread) of the quantity values attributed to a 

measurand, given the measured value and understanding of the measurement 

 15 

Thus, a measured value results from measurement of a target quantity, called the measurand. It is only an estimate of the 

measurand, because various effects introduce errors into the process of measurement. These errors are unknown. Uncertainty 

information characterizes the distribution of values that it is reasonable to attribute to the measurand, given both the 

measured value and our characterization of effects causing error. Error is thus the ‘wrongness’ of the measured value (and is 

unknown). Uncertainty describes the ‘doubt’ we have about the measurand’s value, given the result of a measurement and 20 

our estimate of the error distribution. A classic question at a scientific meeting is “What is the error in your measurement?”, 

perhaps after someone has shown a plot without “error” bars. The questioner is asking for information about uncertainty, but 

the technically correct answer to this question would be “I don’t know the error, and if I did, I would correct for it.”  

 

Note that these technical definitions correspond well to the plain meaning of the words ‘error’ (mistake) and ‘uncertainty’ 25 

(doubt) as used by non-scientists. As well as improving communication between scientists, careful usage will help scientists 

communicate beyond their community.  

 

It is common for satellite datasets to include quality flags, as a simple means to guide users about the usability and validity 

of data. This raises the question of the relationship between quality and uncertainty.  30 

 

Where a quantitative uncertainty estimate is provided for each pixel or datum, as advocated here, quality and uncertainty can 

be cleanly decoupled, giving different information to the user. The quality indicator should indicate whether both the 
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measured value and its uncertainty estimate have been obtained under conditions such that they are expected to be 

quantitatively valid. With this approach, a highly uncertain measured value is not of lower quality provided that the high 

uncertainty is validly estimated. Data are flagged as lower quality data in circumstances that violate the assumptions behind 

the measured value and its uncertainty estimate.  

 5 

For example, consider a case where the uncertainty estimates are known to be unrealistically small under certain conditions 

of illumination by the Sun. There may be contamination of the signal by stray radiance, for example, and no means to 

quantify the contamination. For these situations, a quality indicator can be used to indicate that an assumption or condition 

underlying the retrieval or the uncertainty estimate provided is not valid – i.e., that stray radiance may have biased the 

measured values by a non-negligible amount not accounted for in the uncertainty estimate. 10 

 

4. Lessons from metrology 

In addition to precise language for describing measurement uncertainty, metrology has developed rigorous understanding of 

issues around measurement uncertainty in the context of developing and promulgating international measurement standards, 

not least the Système International d'Unités (SI; Bureau International des Poids et Mesures, 2006). A key metrological 15 

concept is traceability through the chain of processes from the primary standard to an end-point measurement.  

 

More generally, any measurement can be thought of as a series of transformations from the event observed to some final 

value. These include physical processes (such as the emission of light by a gas), measurement techniques (such as the 

observation of light by a detector), classifications (e.g. cloudy or clear sky) and mathematical analyses (e.g., inversion 20 

algorithms). Each transformation may be influenced by multiple effects that accumulate and propagate error. To develop a 

full uncertainty budget, every effect that may introduce error at any point in the chain needs to be considered, quantified (by 

one of various defined approaches), documented, and (if not negligible) appropriately propagated through the remainder of 

the chain.  

 25 

Developing a more rigorous metrology of Earth observation (EO; Mittaz et al., 2017) is particularly important for CDR 

generation, compared to EO applications in general. The applications of CDRs involve the analysis of data on a wide range 

of space and time scales—from process studies that are highly resolved in time and space, to decadal and/or continental scale 

assessments of subtle climate changes.  To provide valid quantitative uncertainty information across this range of scales, all 

sources of error need to be assessed and uncertainty propagation across scales needs to be rigorous.  At larger scales of 30 

analysis, systematic effects that are small contributors to uncertainty in individual measured values may become the 

dominant sources of uncertainty (see Figure 2). 
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Classic metrological concerns are, firstly, to assess and quantify all known sources of error and, secondly, to propagate 

uncertainty rigorously through all steps to the end result. The analogy between problems of EO-based climatology and 

metrology has prompted a developing dialogue and joint projects between these communities in recent years (e.g., World 

Meteorological Organisation and Bureau Internationale de Poids et Mesures, 2010; Woolliams et al., 2016). 5 

 

5. Origin and characterization of errors 

A datum in a CDR is the end result of a sequence of transformations. Consider a simplified scenario for the transformations 

involved in passive remote sensing using an infra-red radiometer to create a multi-mission CDR. (1) Infra-red radiation 

emitted from a particular field of view (originating from the Earth’s surface and the atmosphere path above it) is collected by 10 

the aperture of a sensor and filtered during its passage through sensor optics. (2) The filtered radiance falls on a solid-state 

detector, causing a voltage signal. (3) The voltage is amplified electronically. (4) The amplified signal is quantized to 

“counts” and recorded. (5) The scene counts are compared with counts obtained when viewing two reference targets whose 

temperatures are measured; via this on-board calibration process, channel-integrated brightness temperature is determined 

using various parameters and assumptions. (6) This brightness temperature is input to processing software that retrieves a 15 

geophysical variable to generate a CDR. This sixth step can itself be decomposed into many transformations and 

dependencies. (6.a) Auxiliary information is also accessed by the processor, which may include a wide range of information. 

Some information is intrinsic to the observation and is highly certain (e.g., satellite view zenith angle, time). External 

geophysical datasets may be used, such as numerical weather prediction fields or surface classification, and these may or 

may not be provided with quantified uncertainties. All auxiliary information influences the CDR, and gives rise to 20 

uncertainty (6.b) The processor typically involves a step to determine that the pixel properties are valid for the intended 

retrieval (screening cloudy pixels, for example). This influences the CDR through the sampling distribution of the 

observations. (6.c) The set of observations is inverted to obtain an estimate of a geophysical quantity, such as an ECV. This 

inversion may be sensitive to the auxiliary information, and may vary in its complexity and degree of non-linearity. (6.d) 

Many ECV estimates may be aggregated to a coarser space-time grid for the purpose of (say) evaluating the results of a 25 

climate model run, resulting in a particular datum in a gridded dataset for each particular sensor. (6.e) A multi-mission CDR 

is created from datasets for several similar sensors by harmonising discrepancies between sensors (using sensor overlap 

periods, or other means), which modifies the datum to its final value. 

 

Every step in the above sequence is a transformation that is subject to effects that introduce errors. Characterising these 30 

effects is the significant core of work required to develop good uncertainty information in a CDR. The errors from each 
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effect have certain properties which can be estimated to the degree that the effect is understood. There are several aspects to 

characterizing the errors from a given effect, which are discussed in turn with reference to the above scenario. 

 

5.1  Magnitude of uncertainty  

The magnitude of uncertainty characterizes the dispersion (width) of the estimated distribution of errors. Standard 5 

uncertainty is the standard deviation of the distribution, although other coverage factors can also be used. The value of the 

standard uncertainty can be estimated from basic principles in some cases. An example is the uncertainty introduced by 

quantization of the signal, which in older sensors using relatively few bits could be a significant source of noise. In other 

cases, the estimate of uncertainty may rely on empirical information. For example, the noise of an amplifier circuit may have 

been measured during pre-launch testing. Using pre-launch noise levels in an uncertainty estimate involves the assumption 10 

of stable behaviour of the amplifier during and after launch; that assumption itself can be tested for consistency with other 

instrument data or the noisiness apparent when observing relatively uniform targets. 

 

In generating CDRs, we often have to deal with the multi-variate case because several channels are combined to estimate a 

geophysical quantity. Errors in these channels are not necessarily independent, and in this case the generalization of the 15 

standard uncertainty is the error covariance matrix, which has as many rows and columns as there are channels (or other 

variates). The square root of an element on the diagonal of this matrix corresponds to the standard uncertainty for a particular 

variate. 

 

5.2  Shape of the error distribution 20 

If the error distribution is zero-mean Gaussian, then the standard uncertainty fully describes the error distribution arising 

from the effect. Not all effects cause Gaussian-distributed errors. One example is the logarithmic distribution of radar 

backscatter errors associated with speckle. Another example is quantization, as illustrated by Figure 3, which shows a 

simulation of the distributions of brightness temperature for an Advanced Very High Resolution Radiometer (AVHRR) 

viewing a pixel with a true scene temperature of 230 K and of 300 K. This distribution was obtained by simulating detector 25 

noise, amplifier noise, quantization and ideal (unbiased) on-board calibration. The separated peaks are the effect of the 

AVHRR’s 10-bit digitization of the detector and amplifier noise. Each separated spike has a nearly Gaussian distribution 

whose spread arises from errors in the calibration process: the calibration applied for a given observation arises from a finite 

sample of views of the calibration targets (an internal black body and a space view), which therefore implies some statistical 

uncertainty. Where quantization is negligible, which is often the case for contemporary sensors, the Gaussian distribution 30 

may realistically describe the signal noise. 
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5.3  Propagation of uncertainty 

Uncertainty from effects associated with a particular transformation ultimately propagate to the contents of the CDR. 

Gaussian errors can be propagated through linear and nearly-linear transformations by standard analytic means (Joint 

Committee for Guides in Metrology, 2008). Let 𝒀 = 𝑓(𝑿)  represent any of the transformations between the admitting 

Earth-leaving radiance into the aperture of a sensor and writing a datum in a climate data record. The function f describes 5 

how the one-or-more inputs in vector X give rise to the output(s) of the transformation in vector Y. The uncertainty in the 

output(s) is characterized by an error covariance matrix  

𝑼𝒚 = 𝑪𝒚𝑼𝒙𝑪𝒚
T,            (1) 

where 𝑼𝒙 is the error covariance matrix of the inputs, and 𝑪𝒚 is the matrix of sensitivity coefficients, in which  
𝜕𝑓𝑖

𝜕𝑥𝑗
 quantifies 

the influence that the ith input in X has on the jth output in Y. If there are several effects, indexed by e, then 10 

𝑼𝒙 = ∑ 𝑼𝒙,𝒆𝒆 .            (2) 

These analytic propagation equations are a first order approximation, and are strictly valid for Gaussian distributed errors 

that are sufficiently small that f is linear over the range of likely errors.  

 

For non-Gaussian distributions and/or transformations that are not linear, Monte Carlo approaches are necessary to propagate 15 

uncertainty. A common non-linear transformation in generating some CDRs is threshold-based categorization of a set of 

observations, either because the CDR comprises a classification (such as land cover), or because the retrieval of the 

geophysical variable is valid only for certain classes (such as cloud-free scenes). When observations are near a threshold, 

errors can cause a change in classification. Simulating the retrieval process many times can characterise the propagation of 

uncertainty in observations into the classification results. 20 

5.4 Correlation structure 

The importance of understanding the correlation of errors is that failing to account for correlation generally leads to 

underestimation of uncertainty, and unfounded confidence in the interpretation of the CDR.  

 

A common example of error correlation arises when a geophysical variable is retrieved from satellite imagery. Estimation of 25 

geophysical quantities from radiance measurements is usually an inverse problem in which there is some ambiguity and 

dependence on auxiliary parameters (whether explicit or hidden). Both ambiguity and parameter dependence tend to cause 

retrieval errors that are shared to some degree between nearby image pixels. The correlation length scale for such retrieval 

errors depends on the effect.  

 30 
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For example, aerosol optical depth may be estimated across a particular scene in reflectance imagery assuming a size 

distribution and refractive index that systematically differs from the reality; errors are therefore expected to be correlated 

between pixels on the scales of variation in true aerosol properties.  

 

More generally, retrieval errors are correlated on the space and time scales of atmospheric variability whenever retrieval 5 

ambiguity is related to atmosphere conditions (e.g., Merchant and Embury, 2014; Buchwitz et al., 2013). The errors may be 

decorrelated between different overpasses (because atmospheric conditions change, e.g., Reuter et al, 2014), but are strongly 

related for adjacent pixels from a single orbit overpass. Figure 4 illustrates this for the case of sea surface temperature 

retrieval (SST) simulated retrieval errors that are correlated geographically, and decorrelated in time. 

 10 

Systematic effects are those causing errors with structure across a whole data set, or at least across large space and long time 

scales within a data set. The term “systematic error” is sometimes loosely equated to “bias”, but the concept of a systematic 

effect is in truth more subtle since a systematic effect can produce zero-mean errors, which means there is no bias overall. 

Systematic effects can be defined as those that cause errors which one could in principle correct, if one had the 

understanding required. For example, a CDR may be derived from a series of sensors whose calibrations differ. Even if the 15 

series is adjusted to compensate for inconsistency between the calibration of different sensors, there is uncertainty in doing 

this; errors in the adjustment parameters affect, potentially, the entire data record from a particular sensor. These systematic 

errors may correspond to an overall bias, but more commonly they have some geographical and/or temporal structure. 

However, in principle, given better information, corrections for these errors could be devised.  

6. Which types of uncertainty information are used? 20 

 

The previous section introduced four considerations useful in thinking about uncertainty from a given effect: ‘what is the 

typical magnitude of error?’, ‘what is the shape of the distribution of error?’, ‘how does this error propagate?’ and ‘what is 

the correlation structure of the error across many observations?’. These considerations apply quite generally. However, the 

nature of the answers depends on the particularities of the CDR being considered. There is a range of forms which 25 

uncertainty information can take. This range is illustrated in the CCI programme by the varied contents of ‘Uncertainty 

Characterisation Reports’ prepared for each CDR. (For these reports and other documentation, refer to www.esa-cci.org.) 

 

Quantitative measures of uncertainty describe the doubt we have about the measurand, given the measured value, in 

numerical terms. Conceptually, the provided numbers quantify the dispersion (i.e., spread) of the estimated error probability 30 

distribution function (PDF). Options for characterization are varied, including percentiles, confidence intervals, maximum 

range of error, multiples of the standard deviation, covariance matrices, distribution histograms, misclassification rates, etc. 

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2017-16, 2017

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 28 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



10 

 

 

Standard uncertainty is a highly informative measure when the error distribution is close to Gaussian. For example, in the 

case of sea surface temperature (SST), errors are reasonably well described by a Gaussian distribution whose standard 

deviation can be modeled by uncertainty propagation (Merchant and Le Borgne, 2004; Embury et al. 2012). Even in this 

relatively simple case, there are subtleties. Sea-water freezes around –1.8C. Even though the measurement error distribution 5 

remains Gaussian when the retrieved temperature approaches the freezing point, the distribution of credible SST errors 

becomes asymmetric given the additional knowledge that SST below –1.8C is precluded.  

 

The dispersion of errors is sometimes better described using fractional uncertainty. This approach is typically more 

appropriate for data such as ocean chlorophyll concentration or atmospheric aerosol optical depth (AOD). In both these cases 10 

there is a strict lower limit to valid data of zero, and both the measured values and standard uncertainty can vary in value 

over orders of magnitude, with larger uncertainty in absolute terms when the measured values are large. Quoting a fractional 

uncertainty is thus more appropriate, and is equivalent to stating a standard uncertainty on logarithm-transformed data. 

However, for values near zero, standard uncertainty may be more representative. For example, effects associated with 

surface brightness introduce an uncertainty in AOD that is the dominant uncertainty for low-aerosol scenes. Thus, GCOS 15 

(2011) recommends the combination of absolute and fractional uncertainty models for CDRs of aerosol optical depth. 

 

Some CDRs refer to categorical ECVs, such as the status of the land cover at a given place, whether the land at a given 

location has recently burned, or whether the land is covered by a glacier. Here an appropriate statement of uncertainty can be 

probabilistic: how probable is the status to be other than indicated? When the classification uses a Bayesian approach like the 20 

maximum likelihood estimation, the probability to belong to the output class is naturally available. For non-probabilistic 

classifiers (‘random forest’ for instance), a proxy to class membership probability can be defined as the number of trees in 

the ensemble voting for the final class (Loosvelt et al., 2012).  Similarly, the distance to the optimal separating hyperplane in 

the feature space can be used in support vector machine classifications (Giacco et al., 2010). Table 1 shows the variety of 

ECVs and corresponding uncertainty information in the CCI program. The maturity of uncertainty information presently 25 

provided varies, and for some cases, uncertainty estimation is not yet achieved. Given the limited uncertainty information 

available in the “level 1” radiance products from which the CDRs are derived, it is clear that in every case the uncertainty 

information could in principle be improved further. Despite this, the comments describing the basis of the uncertainty 

information in different products illustrate application of the principles of uncertainty estimation discussed above. 

 30 
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7. Validation of uncertainty  

Quantified uncertainty information provided in CDRs needs to be validated – i.e., evaluated by independent means to 

establish quantitative realism and credibility of the uncertainty estimates. Many validation studies in the literature consider 

the validation of measured values, but validation of attached uncertainty information is less common. Indeed, where specific 

uncertainty estimates are not provided with measured values, measured-value validation is often seen as a method for 5 

deriving generic uncertainty information (based on the validation discrepancies).  

 

Validating uncertainty information in a CDR is challenging because it requires quantification of three contributions to the 

observed differences between the values measured from space and on the ground (e.g., Wimmer et al., 2012; Dils et al., 

2014):  10 

• the uncertainty for each CDR data value;  

• the uncertainty for each reference measured value being used as a validation point; and 

• the magnitude of real geophysical variability caused by the different nature of the satellite and validation 

measurements.  

 15 

Real geophysical variability between measurements of nominally the same measurand arises for many reasons, depending on 

the ECV considered. The spatial location of the measurements can differ (including the tolerance for spatial mismatch and 

the effect of point measurement vs. area-average over a satellite pixel). The measurements are likely not perfectly 

synchronized, and the geophysical state may have evolved in the intervening time. Definitional differences are common 

between measurands, even though nominally equivalent, such as the remotely sensed measurement being sensitive to a 20 

weighted average of some vertical profile of a variable, whereas the reference measurement is made at discrete 

heights/depths. In some cases, validation must be performed using reference data for a measurand that is closely related, but 

not exactly the same (a definitional discrepancy). 

 

In the case of satellite CDR data, , containing standard uncertainty estimates, , validation of the CDR uncertainty 25 

information can be based on the distribution of the ratio: 

,          (3) 

where is the value of the reference (validation) data, is the uncertainty in the reference data, and is the 

geophysical variability arising from temporal, spatial and definitional mis-match between the satellite and reference data. If 

the uncertainties and variability are correctly quantified, this ratio will be normally distributed with standard deviation equal 30 
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to unity. The better the quality of the reference data (the smaller ) and the better the match of satellite to validation data 

(the smaller ), the more sensitive is the validation of .  

 

An example validation of uncertainty based on this principle is shown in Figure 5. In this case, the data are cloud-top height 

(CTH) from Cloud CCI retrievals, driven by interpretation of the cloud-top temperature in thermal imagery, matched to 5 

independent CTH measurements made by CALIPSO, using laser ranging. The CALIPSO validation data have, in this case, 

negligible uncertainty, and mismatch uncertainty is also neglected. The plots therefore show the histogram of discrepancy in 

CTH between the two observations, divided by the uncertainty estimated in the Cloud CCI retrieval process. The Gaussian 

that best fits the main peak is also shown, with its calculated width. In the case of ice clouds, the product uncertainty seems 

to be well estimated for the majority of data. For liquid clouds, the analysis reveals a systematic effect that is not accounted 10 

for in the product uncertainty estimates, since a significant fraction of data are found to disagree with the validation data by 

around six times the standard uncertainty. Such disagreement would be very rare if the standard uncertainty were appropriate 

to these matches. 

 

Triple collocation techniques (McColl et al., 2014) have been used for assessing uncertainty estimates in near-surface wind 15 

speed (Stoffelen et al., 1998), soil moisture (Gruber et al., 2016) and other remotely sensed variables. For valid quantitative 

estimation or validation of uncertainty, the technique requires three sources of collocatable data that have errors that are 

independent and random (both between the data sources, and within each data source), and assumes that sampling mis-

matches and differences of definition of the measurands between the three types of data are negligible. Other methods of 

uncertainty validation methods are briefly reviewed in Sofieva et al. (2014). 20 

 

The uncertainty arising from instrument noise can also be validated using an Earth target that is assumed not to vary – e.g. 

white sands in New Mexico for reflectance validation.  In this case, validation is not against independent measurements, but 

using repeated observations by the same instrument. Such analyses would be more robust if the geophysical standard could 

be traced to a more controlled reference, which would require more support for repeated, accurate measurement of the Earth 25 

target from the ground (Schaepman-Strub et al., 2016). For categorical ECVs such as land cover type, a degree of validation 

of uncertainty information can be obtained by verifying that estimated mis-classification rates in the product are stable with 

respect to reasonable ranges of classification parameters.  For instance, if classification is based on training a classifier using 

a dataset split into calibration and validation (“train” and “test”) subsets, the process can be repeated many times with a 

different random division into train and test subsets, which allows the dispersion in the mis-classification rates to be 30 

characterized. 
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8. Presenting uncertainty information in climate datasets 

When determining how uncertainty information is to be included in the CDR, various requirements can conflict (Table 2). 

The core conflict is between providing for applications requiring only summary information that discriminates more and less 

uncertain data, and providing for applications that demand detail about uncertainties sufficient to calculate uncertainty in 

quantities derived from the CDR (averages in space and time, temporal differences, integrals, trends, fluxes, etc). Data 5 

producers themselves are a user of their low-level (e.g., full resolution, orbital) products when they create higher-level 

products (e.g., gridded datasets and gap-filled analyses). In order to provide realistic uncertainty information at the higher 

level, they may require fine-grained uncertainty information for the low-level CDR, such as separate quantification of 

uncertainty at pixel level from effects with distinct spatio-temporal correlation properties. Such detailed information is 

complex for non-expert users, and an unnecessary data volume for those whose application requires, for example, only the 10 

total uncertainty.  

 

The increase in volume of data involved in providing uncertainty information is far from being a minor point. The volume of 

data required for a comprehensive description of uncertainty, including the degree of error correlation, can be many times the 

volume of the measured values. For example, a full error covariance matrix for N measured values is N  N. Data volume 15 

and processing limits are thus significant obstacles to comprehensive brute-force calculations of uncertainty. Insight and 

imagination are required to develop treatments of uncertainty that meet the requirements for rigor in CDR applications and 

are computationally tractable. Data producers can develop different versions of products that are light and heavy with respect 

to uncertainty information. Data delivery systems can be developed that allow users to select on download consistent 

uncertainty information to the degree of detail they require. There is likely no single strategy that is optimal for every ECV. 20 

 

A user consultation meeting on uncertainty information in SST CDRs (Rayner et al., 2015) explored these issues with a 

range of users, including “power users” in applications such as data assimilation for re-analyses and centennial-scale climate 

modeling. An interesting conclusion from the workshop is that many users are interested in ensemble versions of EO-based 

CDRs, despite the multiplied data volume this implies. The purpose of the ensemble CDR is to represent the effect of all 25 

sources of error on all spatio-temporal scales. The motivation of the ensemble approach is two-fold (e.g., Morice et al., 

2012). First, the user doesn’t need to engage deeply with the origins and correlation structure of errors in the CDR and their 

implications for their application, since these are captured in the differences between ensemble members. Second, for some 

applications it is simpler to re-run a process several times with different ensemble members than to propagate uncertainties 

through the process, particularly when error structures exist across a wide range of scales.  These motivations don’t apply for 30 

every application, and the ensemble approach is less attractive to users facing constraints of data volume or processing 

power. The ensemble approach raises issues and opportunities for the data provider. Uncertain auxiliary parameters to the 

processing can be sampled across their plausible range rather than relying on a single best estimate. However, the strategy 
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for creating an ensemble requires careful design, and there are subtleties to be addressed, such as whether a “best” member is 

supplied, how large an ensemble is appropriate, and what the ensemble spread represents. Within the CCI program, the 

ensemble approach has been adopted only experimentally thus far (e.g., Reuter, 2013). 

9. Good practice for uncertainty quantification 

One perspective on what constitutes good practice in uncertainty quantification has been embedded in metrics of CDR 5 

maturity recently proposed. Building on the work of Bates and Privette (2012) for the NOAA Climate Data Records 

Program, Schulz et al. (2015) have proposed a system maturity matrix (SMM) for assessing CDR generating capacity. The 

SMM includes criteria for assessing the maturity of uncertainty characterisation, including linkage to standards, degree of 

validation, the approach to uncertainty quantification and the degree of automation of quality monitoring. The originators are 

clear that the purpose of assessing a CDR system against the SMM is to identify priorities for investment in developing a 10 

CDR in support of routine climate information and assessments. The overall maturity score is not an indicator of the 

scientific value of a dataset, which could be very high for a new variable obtained by a system whose maturity is low.  

 

For multiple factors in CDR generation, the SMM maps the status of a CDR system onto a scale from 1 (low maturity) to 6 

(high maturity).  The content of the SSM relevant to uncertainty, validation and quality is reproduced as Table 3. A score of 15 

2 on the uncertainty quantification criterion corresponds to provision of limited information, such as estimates of uncertainty 

that are generic (i.e., describe the typical uncertainty for the dataset as a whole). At the next maturity score, the provided 

information is still at the level of the dataset, but is comprehensively described and quantified, which suggests that the nature 

of the effects causing error is determined. To move to a score of 4, this understanding is applied to develop uncertainty 

information in the product that is specific to each datum, and capable of discriminating between more and less certain data. 20 

A score of 5 corresponds to providing quantification of the correlation structures in errors, via covariance information or 

other means. For practical purposes, since covariance matrices can be large, this provision is not necessarily required to be 

within the product per datum. However, feasible approaches may be found that satisfy this maturity criterion at a per-datum 

level, such as decomposition of total uncertainty into dominant components arising from effects with distinct, quantified 

correlation structures (e.g., Bulgin et al., 2016). The highest maturity score of 6 is obtained when the estimated uncertainty 25 

magnitudes and error correlation structures are thoroughly validated. 

 

It is not the purpose of this paper to discuss the general merits of the maturity matrix approach to evaluating CDR systems. 

However, it is clear that if a CDR producer address uncertainty using the perspectives in this paper, they will achieve a high 

maturity score in this aspect of the SMM. 30 
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This paper has demonstrated the complexity of developing good uncertainty information for users of climate datasets. The 

aspiration to provide per-datum uncertainty estimates at all product levels and for all versions of products at all spatio-

temporal scales is very challenging and not fully solved. It is clear that developing and validating uncertainty estimates 

involves effort comparable to developing the retrieval itself. There is a lot of diversity in the nature of CDRs and of the 

errors present in them. The details of good practice for describing uncertainty in CDRs vary accordingly. Nonetheless, it is 5 

useful to state some general principles that emerge from the previous sections: 

 

1. Make quantitative uncertainty information available within the dataset. (Don’t expect users to find uncertainty 

information from reading related papers.)  

2. Use well-defined metrological concepts, such as “standard uncertainty”, to quantify uncertainty. 10 

3. Provide uncertainty information that discriminates which data are more and less certain. Per-datum uncertainties 

should be given, if possible, in CDRs where uncertainty varies significantly. 

4. Assuming per-datum uncertainty information is provided, avoid redundancy of this information with quality flags: 

do not flag high-uncertainty data as “bad” if a valid estimate of that high uncertainty is provided; instead, use 

quality flags to indicate the level of confidence in the validity of the provided uncertainty and retrieval assumptions. 15 

5. Define what uncertainty information is given in the CDR in the product documentation.  

6. Describe in the product documentation the main effects causing errors, how uncertainty varies within the dataset, 

how errors may be correlated in time and space, and under what circumstances estimated uncertainty may be invalid 

(and flagged as such). 

7. Use validation to evaluate both retrieved quantities and uncertainty estimates. 20 

8. Propagate uncertainty appropriately (accounting for error correlation) and consistently when creating aggregated 

products. 

10. Conclusion 

Quantifying and validating uncertainty information is challenging. The challenge is particularly great when using complex 

observational systems (satellite sensors and their processing chains) to meet the requirements of data for climate applications 25 

(understanding of uncertainty across a wide range of space and time scales, provided with a high level of rigour and 

transparency).  The form of uncertainty information must differ according to the nature of the target essential climate 

variable. In general, however, the aim is to provide justified (validated) quantification of uncertainty that allows users to 

know which data are more or less certain within the product. 

 30 

There are many sources of error (effects) that influence the values that end up populating a climate data record. Uncertainty 

in fundamental climate data records (level 1 products) are not presently provided in a form sufficient to support per-datum 
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propagation to estimate uncertainty in derived climate data records, so there are constraints on what is practical. The efforts 

of CDR producers must focus on identifying dominant sources of error, bearing in mind that effects of relatively small 

magnitude in a single datum may be the dominant effect on a large space-time scale, and therefore may be relevant for 

climate applications. There is therefore unavoidably a need to develop a good understanding of many error sources, and not 

just “instrument noise”. At the same time, one cannot wait for the perfect uncertainty budget: producers must provide CDR 5 

using the best available knowledge meanwhile. Where some error sources are as yet unquantifiable, users benefit from 

simple, accessible descriptions of the potential uncertainty not estimated in the product.  

 

The means of quantifying uncertainty vary across ECVs, depending on factors such as the nature of the geophysical retrieval 

(ranging across physics-based inversion methods, empirical relationships and manual interpretation) and the availability of 10 

validation data. Uncertainty contributions may be modelled using a detailed uncertainty budget, or estimated from the spread 

of outcomes across Monte Carlo simulations. Again, pragmatism is often required to obtain a timely estimate. 

 

The idea of validation should encompass validation of data and of uncertainty information associated with data. Validation 

of uncertainties (as well as the measured values themselves) can be limited by the availability of reference data.  15 

 

Uncertainty concepts can be confusing, and users’ needs vary. CDR producers can help by providing versions of products 

with “simple” (but inevitably partial and approximate) uncertainty information. Documentation must make clear what the 

provided information is (and is not) telling users. We have noted that ensemble methods may be able to provide users with 

conceptual simplicity and quantitative rigour, although at the expense of practical issues around data volumes. 20 

 

Use in CDRs of well-defined, internationally agreed standards for naming and calculating uncertainty information is highly 

desirable wherever possible, and will clarify interaction with and feedback from user communities. These standards come 

from the field of metrology, and cover most situations encountered in developing CDRs. Engagement between Earth 

observers and metrologists is increasing. These interactions will make progress on the aspects of EO that go beyond 25 

definitions developed for laboratory-based metrology. In particular, quantifying the uncertainty over large scales of space 

and time (the low time and spatial frequencies in CDRs) remains a major research challenge, and involves understanding of 

complex error correlation structures (effects that cause neither independent random or fixed systematic errors). This area of 

research cannot be neglected, because users apply climate data to the full range of space-time scales spanned by Earth 

observation. Significant progress needs to be made in order to be able to provide users of climate data records with the 30 

certainty they need regarding uncertainty. 
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Figure 1. Benefit of pixel-level uncertainties in assimilating aerosol optical depth (AOD) estimated at 550 nm into the Monitoring 

Atmospheric Composition and Climate (MACC) atmospheric model.  Each panel shows a distribution of AOD in the MACC 

model (in red) matched to 29528 AERONET ground-based AOD values (in blue): (left) no data assimilation; (centre) assimilation 5 
of MODIS retrievals; (right) assimilation of AATSR retrievals. The AERONET measured values have negligible uncertainty 

compared to satellite data. The MODIS data were the Dark Target AOD dataset (collection 5.1), which was operational in MACC, 

using fixed (generic) uncertainty estimates of 0.1 over land and of 0.05 over ocean. These values were chosen after bias correction 

and thorough testing of alternative uncertainty assumptions (Benedetti et al., 2008). The AATSR dataset was from Aerosol CCI, 

and its pixel-level uncertainty estimates were used (and no bias correction). The improved agreement in aerosol distribution 10 
suggests use of pixel-level uncertainties is beneficial. 

 

Figure 2. Contribution to the overall uncertainty from different error sources, for different spatio-temporal scales of analysis of a 

Climate Data Record (CDR). Conceptually, this figure is generally applicable to many climate CDRs. The particular case here is of 

a sea surface temperature (SST) CDR derived from a series of typical meteorological sensors. The effects causing errors are 15 
characterized by their correlation properties: noise causes random errors in SST that average out rapidly when analyzing change 

on larger/longer scales; retrieval errors for SST have a locally systematic aspect, and average out more gradually with scale; 

systematic errors, particularly in calibration, for a single sensor become more significant over time as the sensor ages and the 

calibration tends to drift; and a long CDR comprises data from a series of sensors which are, inevitably, imperfectly harmonized, 

so that systematic series effects become important for the longest time scales of analysis. Reproduced with permission from 20 
http://dx.doi.org/10.6084/m9.figshare.1483408, where full details of the scenario underlying the figure are available. 
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Figure 3. Distributions of single-pixel brightness temperature (BT) errors from a simulation of the detection and calibration 

system of an Advanced Very High Resolution Radiometer (AVHRR), for channels of different wavelength (columns) and two 

scene temperatures (rows: upper, 200 K scene; lower, 300 K scene). The unit of frequency of occurrence is per thousand.   
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Figure 4. Simulation of locally correlated errors in retrieval of sea surface temperature (SST), overlaid with surface pressure 

contours to indicate length scales of atmospheric variability. The simulated retrieval errors are for a situation of a noise-free 

sensor whose calibration is perfectly known. The errors therefore arise solely from intrinsic ambiguity in inverting the observed 

radiances to SST. Note that there is no simple relationship between the SST errors and the atmospheric features associated with 5 
synoptic weather systems. White areas indicate 100% cloud cover. Reprinted from Experimental Methods in the Physical Sciences, 

47, C J Merchant and O Embury, “Uncertainty information in climate data records from Earth observation”, Pages 489-526, 

Copyright (2014), with permission from Elsevier. 
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 5 

 

Figure 5. Example of validation of uncertainty using the distribution of differences between matched cloud top heights measured 

by Cloud CCI (data) and CALIPSO (CALIPSO values minus those from MODIS AQUA Cloud CCI) for a single day 2008/06/20 

(solid black). Left: for ice clouds. Right: for liquid clouds. The plots show the histograms of the CTH error (the difference of 

retrieval compared to validation data, that is assumed to have negligible uncertainty) divided by the stated retrieval uncertainty. 10 
For ideal uncertainty estimates the full width at half maximum (FWHM) of the fitted Gaussian distribution (dashed blue) would 

be 2.  
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Table 1. Essential climate variables addressed in the ESA Climate Change Initiative program 

Essential 

Climate 

Variable 

Comments on nature of 

variable 

Product 

characteristics 

Uncertainty 

information 

provided 

Basis on which 

uncertainty is estimated 

Aerosol optical 

Depth 

(AOD) 

AOD is a continuous, non-

negative, log-normally 

distributed 

variable  

Satellite swath (10x10 

km2 super-pixels) and 

gridded (1° grid daily 

and monthly) 

Standard uncertainty 

given for each pixel level 

in swath product. 

Averaged uncertainty 

given for each cell in 

gridded products. 

Propagation of sensor noise 

through retrieval process; 

context-specific (surface, 

aerosol type) estimate of 

retrieval uncertainty. 

Cloud properties Cloud properties are composed 

of several sub-variables 

(temperature, height, fraction) 

which are continuous non-

negative variables 

Satellite swath ( 5 km), 

gridded (0.05 grid) and 

averaged (0.5, daily, 

monthly) estimates 

Standard uncertainty 

given at pixel level in 

gridded swath product, 

and averaged for each 

cell in gridded products. 

Propagation of sensor noise 

through retrieval process; 

(Optimal Estimation) context-

specific (surface) estimate of 

retrieval uncertainty; 

Propagation  of uncertainty to 

grid boxes accounting for 

correlation. 

Glaciers Glacier outlines derived from 

optical satellite data with manual 

intervention. 

Outlines are provided in 

a vector format, scene-

by-scene. A geo-spatial 

database addresses 

200000 glaciers globally.  

Not regularly 

determined; some tests 

have been published.  

Various methods, including 

multiple digitizing by 

analysts. Appropriate 

validation data are generally 

missing. 

Greenhouse 

Gases (XCO2, 

XCH4) 

XCO2 and XCH4 are defined as 

atmospheric dry-air column-

average mole fraction of CO2 and 

CH4. 

One file per day 

including XCO2 and 

XCH4 plus additional 

information for surface 

flux inversions. 

Soundings have surface 

footprints of ~10 to ~60 

km depending on sensor. 

Standard uncertainty of  

XCO2 and XCH4 (per 

sounding) plus averaging 

kernels (AK) and a priori 

concentration profiles. 

Propagation of sensor noise 

(and a priori uncertainty) 

through retrieval process and 

error scaling to match 

validation statistics. 

Land Cover A categorical variable describes 

the terrestrial surface annually in 

22 discrete classes (from UN 

Land Cover Classification 

System) 

Annual land cover maps 

at 300 m depicting land 

cover change from 1992 

to 2015 

Class uncertainty is 

available at the map and 

the class level.  

Composite surface 

reflectance uncertainty is 

Class uncertainty is computed 

from confusion matrix built 

on independent statistical 

validation process. 
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provided at pixel level. 

Ocean Colour Variables of bio-optical 

relevance, with high dynamic 

range (4 decades).  

Chlorophyll-a 

concentration, spectrally-

resolved inherent optical 

properties, diffuse 

attenuation coefficient at 

490 nm, membership of 

optical classes. 

Estimated standard 

uncertainty and bias, for 

all products except back-

scattering coefficient.  

Uncertainty assignment based 

on product comparison with 

match-up in situ data for each 

optical class, applied per pixel 

according to class 

membership. 

Ozone Fields of averaged mole fraction 

of ozone, including vertically 

resolved profiles and total 

column" into "ozone total column 

and vertical profiles. 

Ozone profiles from limb 

sounders with ~3 km 

vertical and ~300 km 

horizontal resolution. 

Ozone profiles from 

nadir sounders with ~4 

km vertical resolution. 

Analysed/gridded 

versions of profiles and 

total column. 

 

Uncertainty estimates are 

given for each ozone 

value in each record 

Measurement noise 

propagated through the 

retrieval process and to the 

higher levels of data products, 

randomly varying parameter 

errors; sampling uncertainties.  

Sea ice  Sea ice concentration (SIC), 

thickness (SIT).  

SIC: daily, gridded data 

at between ~12 and ~50 

km grid spacing. SIT: 

presently Arctic winter 

only, monthly 100 km-

gridded freeboard and 

thickness. 

SIC: Estimated standard 

uncertainty from 

retrieval and gridding. 

SIT: Presently no 

uncertainty provided. 

SIC: The retrieval uncertainty 

is based on statistical spread 

of retrieval at tie points of 

known SIC. Parameterization 

for gridding uncertainty. 

Sea level Sea level is continuously variable 

in space and time; global 

variations should be consistent 

with the conservation of water 

mass in the climate system  

Active remote sensing 

along ground tracks. 

Analysed to monthly 

0.25 grid. 

Uncertainty for each sea 

level determination 

along ground tracks. 

Uncertainty in inter-

annual global mean sea 

level (Ablain et al. 

2015). 

Uncertainty is inferred by 

generalized least squares, 

where the error covariance 

matrix is built from altimeter 

correction uncertainties. 

Sea surface 

temperature 

Temperature is continuously 

variable in space and time, with a 

Satellite swath (1 km), 

gridded (0.05 grid) and 

Standard uncertainty 

given at pixel level in 

Propagation of sensor noise 

through retrieval process; 
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(SST) lower bound at the freezing 

temperature of sea water 

gap-filled (0.05, daily) 

SST estimates 

swath product, and for 

each cell in gridded/gap-

filled products. 

Component uncertainty 

contributions also 

available. 

context-specific estimate of 

retrieval uncertainty; 

sampling uncertainty estimate 

in cell means. 

Soil Moisture Microwave retrievals represent 

moisture content in a thin surface 

layer (1-5 cm). No data when soil 

is frozen, snow-covered or 

overlain by very dense 

vegetation. 

Daily (0:00 UTC) 

gridded (0.25°) global 

data. Three data records: 

(i) merged active, (ii) 

merged passive, (iii) 

merged active passive 

microwave data 

Uncertainty given for 

each soil moisture value 

in each of the three data 

records. Additionally, 

quality flags are 

provided. 

Propagation of sensor noise 

through retrieval process 

including context-specific 

estimate of retrieval 

uncertainty. Uncertainties 

introduced by sampling not 

yet characterized. 

 

 

Table 2. Generic requirements for uncertainty information in climate data records, illustrating potential contradictions between 

the requirements for different applications of the data. 

Requirement Implications Conflicts & solutions 

1. Minimize data volume for 

users to download. 

Provide only key summary information 

on uncertainty, such as the total 

uncertainty for each measured value. 

Conflicts with need for detailed uncertainty information 

for some purposes (cf. 3, 4 and 5). More complete 

uncertainty information can be made available separately 

to core data products. 

2. Data should be easy to read 

and understand. 

Use standard metrological vocabulary to 

express uncertainty. Uncertainty data 

should be easy to associate to measured 

values. 

Some established community standards/conventions 

include uncertainty vocabulary that is inconsistent with 

best practice. Work with community standards to 

converge practices. 

3. Provide sufficient uncertainty 

information to allow correct 

propagation of uncertainty to 

spatial and temporal averages of 

data. 

Uncertainty components from errors 

with different spatial correlations need 

to be separately quantified, with 

correlation information (e.g., length 

scales, covariance matrix). 

Increases data volume (cf. 1). Increases complexity of 

dataset (cf. 2). Could provide two versions of data, one 

with summary and the other with comprehensive 

uncertainty information, with guidance as to which is 

needed for different purposes. 

4. Provide information about 

temporal stability of observations 

and/or evolution of trend 

uncertainty over time (up to 

decades). 

Information is provided on temporal 

correlation of errors, particularly arising 

from long-term systematic effects.  

Full spatio-temporal covariance matrix for CDR is 

challenging to calculate or parameterize, and is likely 

infeasible to distribute. More general estimates of overall 

stability can be made. Ensemble approaches have been 

proposed. 

 5 
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Table 3. Criteria for scoring the maturity of aspects of a CDR generation system, including criteria for uncertainty 

characterization, taken from the system maturity matrix of Schulz et al. (in review). 

CLIMATE DATA RECORD (CDR) MATURITY EVALUATION GUIDELINES

Maturity Standards
1 Validation Uncertainty quantification

1 None None None

2
Standard uncertainty nomenclature is 

identified or defined

Validation using external 

reference data done for limited 

locations and times

Limited information on uncertainty 

arising from systematic and random 

effects in the measurement

3
Score 2 + Standard uncertainty 

nomenclature is applied

Validation using external 

reference data done for global 

and temporal representative 

locations and times

Comprehensive information on 

uncertainty arising from systematic 

and random effects in the 

measurement

4
Score 3 + Procedures to establish SI 

traceability are defined

Score 3 + (Inter)comparison 

against corresponding CDRs 

(other methods, models, etc)

Score 3 + quantitative estimates of 

uncertainty provided within the 

product characterising more or less 

uncertain data points

5
Score 4 + SI traceability partly 

established

Score 4 + data provider 

participated in one inter-national 

data assessment

Score 4 + temporal and spatial error 

covariance quantified

6 Score 5 + SI traceability established

Score 4 + data provider 

participated in multiple inter-

national data assessment and 

incorporating feedbacks into the 

product development cycle

Score 5 + comprehensive validation 

of the quantitative uncertainty 

estimates and error covariance
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