Case-based reasoning for product style construction and fuzzy analytic hierarchy process evaluation modeling using consumers linguistic variables

Article
Published Version

Open access

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1109/ACCESS.2017.2677950

Publisher: IEEE

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.
Case-Based Reasoning for Product Style Construction and Fuzzy Analytic Hierarchy Process Evaluation Modeling Using Consumers Linguistic Variables

DAN WANG1,2, ZAIRAN LI1,2, NILANJAN DEY3, AMIRA S. ASHOUR4, R. SIMON SHERRATT5, (Fellow, IEEE), AND FUQIAN SHI6, (Senior Member, IEEE)

1Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
2Wenzhou Vocational and Technical College, Wenzhou 325035, China
3Department of IT, Techno India College of Technology, West Bengal 740000, India
4Faculty of Engineering, Department of Electronics and Electrical Communications Engineering, Tanta University, Tanta 31527, Egypt
5Department of Biomedical Engineering, University of Reading, Reading RG6 6AY, U.K.
6College of Information and Engineering, Wenzhou Medical University, Wenzhou 325035, China

Corresponding author: F. Shi (sfq@wmu.edu.cn)

This work was supported by the Zhejiang Provincial Natural Science Foundation under Grant LY17F030014.

ABSTRACT

Key form features are relative to the style of product, and the expression on style features depicts the product description and is a measurement of attribute knowledge. The uncertainty definition leads to an improved and effective product style retrieval when combined with fuzzy sets. First, a style knowledge and features database are constructed using fuzzy case-based reasoning technology; a similarity measurement method based on case-based reasoning and fuzzy model of the fuzzy proximity method may be defined by the fuzzy nearest-neighbor algorithm for obtaining the style knowledge extraction. Second, the linguistic variables (LV) are used to assess the product characteristics to establish the product style evaluation database for simplifying the style presentation and decreasing the computational complexity. Third, the model of product style feature set, extracted by fuzzy analytic hierarchy process (FAHP), and the final style related form features set are acquired using LV. This research involves a case study for extracting the key form features of the style of high heel shoes. The proposed algorithms are generated by calculating the weights of each component of high heel shoes using FAHP with LV. The case study and results established that the proposed method is feasible and effective for extracting the style of the product.

INDEX TERMS

Artificial intelligence, knowledge based systems, machine learning algorithms, fuzzy logic, design methodology.

I. INTRODUCTION

The first task of creative product design is to consider creating an attractive style to meet the users needs. The product style is an important feature of creative design, a tangible material carrier of corporate brand value. It contains a wealth of social and cultural connotations. Many enterprises are committed to the pursuit of a unique and orderly style of creativity to shape the image of differentiated products, to significantly enhance the brand value of an enterprise, and to remove the vicious cycle of competition. Designers tend to form factors by using a design pattern to handle the same, or similar, shapes and colors of products in the creative design process. Therefore, through the study of the morphological parameters of a product itself, the style knowledge of the product can be obtained. In fact, the design process is a procedure of knowledge external transformation generated by the design knowledge through the designer’s behavior. Knowledge acquisition of product style is a key dispute in modern industrial design. Design knowledge is a combination of the design experience, value and the background knowledge of production and users. According to the access methods variety, knowledge can be divided into “explicit knowledge” and “tacit knowledge”. Scholars have focused on knowledge engineering, Artificial Intelligence (AI) and KANSEI engineering theory [1]–[3] for product design, such as mobile phones and auto design that inducted specialized knowledge acquisition research. These studies emphasize the subjectivity of the user and the use of statistical methods to achieve nearly subjective sensibility.
In addition, the design feature mapping can be performed to affective words using a reasoning model [4].

Product knowledge is a result of similar knowledge mapping and strategies to solve the design problem with similar background for specific design objects exist [5]. Design is a qualitative and quantitative process [6], [7], thus the product style design is based on knowledge/experience. In addition, the product design has the function of learning and self-strengthening. The design knowledge formed a representative style prototype in the process of long-term accumulation, expansion and evolution. As a kind of special type of design knowledge, the affective style knowledge acquisition attracts the focus of efficient design for several aspects including product, fashion and graphics [8], [9]. Typically, the traditional KANSEI engineering technique was used to map the relationship between the characterization of subjective image and feature modeling. Recently, AI has been used to solve style computation and knowledge acquisition research has made great progress [10]. Murai et al. [11] used association rules and Dempster-Shafer (D-S) evidence to extract knowledge from affective response. Wang and Nien [12] combined multiple correspondence analyses with association rule mining to discover the product design features. Kuroda and Hagiwara [13] introduced an image retrieval system which was the basis of product image generating research.

The coarse granularity knowledge itself and the style of the nonlinear calculations make the traditional treatment methods, such as obtaining quantitative and linear regression, unsuitable for the style of knowledge. Therefore, in the process of design knowledge expression, reasoning and acquisition, many scholars introduced AI, including: Neural Networks (NN) [14], [15], Case-Based Reasoning (CBR) [16], Fuzzy Logic [17], [18] as well as Expert Systems [19], [20]. Especially in the field of KANSEI Engineering AI has made significant progress. For example, Nagamachi [21], [22] used the attribute reduction theory of rough sets to extract the feature of the product of the corresponding KANSEI image. It also used the rough set and association rule [23], evidence theory [24], interactive genetic algorithm [25] and other techniques to obtain the specific shape of the perceptual image from the evaluation database. Based on the feature matching, the cognitive model of product style [26] was proposed, which made it possible to establish the style reasoning model through shape, color and other factors. Consequently, product form design is a relative of AI techniques and inference systems such as conditional evidence theory [27], decision making [28], CBR and data mining [29].

Typically, the complex problem of the analytic hierarchy process is a certain level of evaluation indicators. The consistency of the users thinking is difficult to guarantee. Thus, the Fuzzy Analytic Hierarchy Process (FAHP) combined with the advantages of the fuzzy method and the Analytic Hierarchy process (AHP) can be applied to extract the qualitative and quantitative characteristics of various evaluation factors. The fuzzy set is an extension of classical set theory, where the relationship between the element and the set is two kinds of relations, such as “belong to” and “not belong to”. The relationship of elements in the fuzzy set theory has arranged a degree of membership. The new interval of any real use measures elements and a collection of relations; namely: each element represents a membership to describe the distance between the elements and sets.

In the traditional quantitative techniques, the variables are represented by data. A high degree of accuracy in the implementation is unnecessary in many of the basic operations performed by the people. The ability to deal with fuzzy sets technique and the resulting concentration information is one of the basic features of human intelligence. The ability to summarize information is often in the form of natural language. Linguistic variables are important aspects of natural language research. Also, the study of language variation will be an effective communication between people who can deal with fuzzy information.

The description of product style is generally based on the linguistic variable method. First, a variety of styles of the products with different degrees and high dimensional space of the product description are studied. Therefore, there is a need to study the style of semantic quantization with coarse granularity of knowledge description mechanism and to establish the expression system of linguistic variables based on the knowledge of style. Secondly, the product style classification reasoning model (classification of product style) is usually done by strict manual analysis and by experts on products shape, color, material and geometric connection features such as description and identification. Due to the product style information, fuzzy and the complicated structure, the artificial product style classification, the style prototype retrieval, huge workload and low accuracy are greatly influenced by subjective opinions of experts. This cannot effectively reflect the cognitive status of the users. Therefore, it is necessary to use the artificial evaluation method and machine reasoning. Third, an interactive evaluation and extraction system are proposed. The process of solving manual design (Fig. 1) including the “black box” process for product positioning style is not operable.

![FIGURE 1. The process of design solutions.](image-url)
Therefore, the establishment of automatic reasoning of product oriented style can overcome the black box. This creative designer provides a convenient and reliable fusion of subjective and objective evaluation technique. The formation mechanism of the automatic style extraction, knowledge assists designers to quickly determine the target customer group on the style of creative solutions the judge. The specific research framework is shown in Fig. 2.

FIGURE 2. Framework for style extraction.

Linguistic Variables (LV) corresponding to numerical variables; however, the values of language variables are not numbers, but rather words or sentences. In general, words do not refund accurately, therefore the LV concept can provide an approximate characterization method to approximate the complex problems to define the phenomenon in a systematic means. The LV is employed to indicate the significance of one attribute relative to another one and LVs membership function. Consequently, in the current study, FAHP with fuzzy LV is proposed. The proposed approach applied the FAHP using linguistic variable in form design of high-heel shoe. The key form features are more helpful for design decision making and getting a quick response from the market.

In the current article, the style knowledge and features database are constructed by using fuzzy case based reasoning technology. The similarity definition is conducted by Fuzzy Nearest-Neighbor algorithm and style knowledge extraction was finished. In order to simplify the style presentation and decrease the computational complexity, linguistics variable scale is applied in both cases based reasoning and fuzzy analytic hierarchy process for product evaluation after constructing the style knowledge database. The final style related form features set is acquired using the linguistic variables and the case study showed the effectiveness of the proposed methods. The framework of the research is illustrated in Fig. 3.

The organization of the remaining sections is as follows. Section II introduces fuzzy case based reasoning that applied in product style extraction; Section III introduces the fuzzy analytic hierarchy process using linguistic variables for extracting product style. Section IV represents the case study on shoes style extraction of style knowledge database construction and form features extraction using the proposed methodology. Finally, Section V concludes the proposed work.

II. FUZZY CASE BASED REASONING

Fuzzy set [17] is an extension of classical set theory. In classical set theory, there are only two relations between the element and the set. The fuzzy relationship between the elements and the collection reflects a kind of membership degree. A relationship (any number of [0,1] interval) is used to measure the elements and set a definition of the membership degree of each element (Membership) to characterize the elements and set the distance. Due to the imprecision and uncertainty of the style knowledge expression, the introduction of fuzzy sets has played an important role. At the same time, some aspects of the product style formation (shape, material, color, craft), which are accumulated at the time of the results are closely linked with the previous products.

A. CASE-BASED REASONING

Case-based reasoning refers to the use of experience in decision-making of new cases and the use of an appropriate similarity definition in order to find a solution to the problem. In many situations, the previous case can be used to make further amendments to achieve the purpose of new problem decision. In 1980s, Roger Schank from Yale University was the first to propose the concept of case-based reasoning (CBR) [29]. Janet Kolodner and Michael Lebowitz developed the CBR as CYRUS [30] and IPP [31] respectively. In CBR research, case-retrieval is an important research direction. Eyke Hüllermeier et al. [32] used the generalization of the similarity measure to improve case-based reasoning in the efficiency of case retrieval. The introduction of fuzzy sets makes the case-based reasoning even more powerful. Wu et al. [33] analyzed the problems arising from the application of fuzzy set theory to case-based reasoning and gave a solution. There are some scholars committed to the fuzzy clustering technology into the CBR that improved the performance of fuzzy.

The case-based reasoning is suitable for the formation of product style process due to the link between the case-oriented. In Conceptual Design (CD), T.Y. Slonima et al. [34] constructed a case database with 100 product attribute sets and constructed similarity measurement system based on
FCBR product creative design system. Case-based reasoning method has its unique advantages in industrial design field. It mainly uses a case to replace a rule; this makes the design knowledge representation and application, a method to accord with the mode of human thinking. In order to overcome the rule system, a single logical presentation to adapt to the well-defined issues such as clear weaknesses. In the process of CBR reasoning, the system only needs to adjust the relevant content according to the situation; the operation efficiency is high and the knowledge base is easy to set up which is more suitable for the extraction of the product style characteristic [35].

B. PROCESS OF CASE-BASED REASONING

In the current work, four actions, namely data retrieval, reuse, revise and retain are used in describing and using case-based reasoning. Data extraction refers to the extraction of the past, most similar cases from the database using the similarity definition, which is divided into neighborhood and induction algorithms. The neighboring method evaluates the similarity of a new case with the close degree in the previous case to judge. The inductive algorithm builds decision trees from the past cases and uses case rules to divide case clusters; each cluster contains a similar case. The method requires an identified target feature (i.e., the feature that the algorithm will summarize). Basically, the induction algorithm is used in a valid cluster-cluster-like case. Reuse is the use of similar case solutions to deal with the current problem. Furthermore, amendment means that if the past similar cases do not fully meet the current problems, the previous case can be amended based on the method. A reservation is a case in which a revised case is kept in the repository and becomes a new case. The CBR reasoning process is shown in Fig. 4.

![FIGURE 4. The process of CBR.](image)

C. STYLE KNOWLEDGE EXTRACTION BY FUZZY NEAREST-NEIGHBOR TECHNOLOGY

Fuzzy logic has superior results in the expression of fuzzy language conditions, such as: very good, good, bad, very bad and so on. In fuzzy case-based reasoning, fuzzy similarity function (or preference) can be used to calculate the same attribute similarity to the target. The result of Fuzzy Preference Function is the Fuzzy Preference Vector (FPV) which contains the fuzzy preference value of each attribute and the vector values can be added by the concentration on the weight. The fuzzy preference function allows a comparison between certain properties and can be based on completely different scales.

The Nearest-Neighbor technology is a case-by-case comparison case. It compares the input case with the case attribute in the case base; it gives weight to the case attribute. Most case-based reasoning systems use this approach and the degree of similarity is usually normalized to a number between 0 and 1 (0 for completely different, 1 for the same), or as a percentage (100% represents exactly the same). However, the nearest neighbor method suffers from weak search efficiency when the case base grows to a certain scale or the case attribute is more.

In the current work, the fuzzy set theory is applied to describe the product style knowledge and to define the style membership degree of the product by the similarity of the product. However, in the acquisition of survey data, the description of product style attribute characteristics needs to be closer to the natural language approach. Therefore, the use of language variables (i.e. Linguistic Variables) is a viable method. Language variables are close to the natural language that can reflect the membership relationship between elements and collections. Table 1 shows the typical linguistic variables and their scales.

TABLE 1. Linguistic variables and scales.

<table>
<thead>
<tr>
<th>Scale</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of variables</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>N (None)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>VL (Very Low)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>L-VL (Low-Very Low)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>L (Low)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>PLL (Very Low)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ML (Mol Low)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>M (Medium)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>MH (Mol High)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>PH (Pary High)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>H (High)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>VH (Very High)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>LE (Excellent)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

The membership function of linguistic variables is not linear, it is typically a non-linear curve. The specific value comes from the prior analysis of domain experts. Linguistic Variable [36]–[41] has been widely used in product evaluation domains especially in KANSEI engineering with FAHP techniques. Wang and Chen [42] applied fuzzy linguistic preference relations to the improvement of consistency of FAHP. Cables et al. [43] introduced an alternative to TOPSIS (a technique for order performance by similarity to ideal solution) decision-making approach for linguistic variables. Mezei et al. [44] aggregated linguistic expert knowledge in type-2 fuzzy ontologies. Liu and Jin [45] developed methods...
for aggregating intuitionistic uncertain linguistic variables and their application to group decision making. Combining with FAHP, linguistic variable proved its strong presentation ability [46], [47].

LV is defined as a quintuple \((K, T(K), U, G, M)\), where \(K\) is the name of a variable, \(T(k)\) is term set of \(K\) identified as a collection of the language of \(k\) values name; \(U\) is relative to the base variable \(u\), \(G\) is syntactic rule for generating the names of values of \(k\); \(M\) is a semantic rule for relating its meaning for each \(k\). In the current work, a specific term is considered referring to the name of a specific language value, denoted as \(K1\). If \(K1, K2, \cdots\) belongs to \(T\), it can be formalized as \(T = K1+K2+\cdots\). The linguistic variables are assigned to show the importance of one attribute relative to another attribute. Linguistic variables and their membership function are shown in Table 1. Fig. 5 illustrates the linguistic variables and their membership function.

Definition 1: Cases can be formalized as a triple set: \(Q = (P, w, V)\), where \(P\) denotes the name of cases, \(f\) denotes the cases weight in system, in FCBR, it is a defined membership, \(V\) is the value of the case.

Definition 2: For any case set \(C\), \(Style(C)\) denotes the style form features set of products.

Definition 3: For any case set \(C\) and a given case \(D\), \(Unstyle(C, D)\) denotes features in \(C\) but not in \(D\), i.e., \(Unstyle(C, Q) = Style(C) \setminus Style(Q)\).

Definition 4: Let the attribute combination set \(Q^*\) is the extend set of \(Q\), i.e., \(\bar{Q} \subseteq Q^*\).

Fuzzy evaluation is necessary in this research for presentation formalization of attributes indispensable, and continuously.

Definition 5: The attribute description of \(C\) can be presented as:

\[
f(style(C)) = \frac{c_1}{f_1} \cdot w_1 + \frac{c_2}{f_2} \cdot w_2 + \cdots + \frac{c_n}{f_n} \cdot w_n\]

\(1\)

where, \(c_i\) is attribute feature of \(C\), \(f_i\) \(\in [0, 1]\) is fuzzy membership, and \(w_i\) is weight of attribute.

Definition 6: Let \(Sim(C, D)\) be the similarity defined as

\[
Sim(C, D) = \sum_{i=1}^{n} ||c_i - d_i|| \cdot w_i
\]

\(2\)

where, \(C = \{c_i|i = 1, 2, \cdots, n\}\), \(c_i\) is attribute feature of \(C\). \(D = \{d_i|i = 1, 2, \cdots, n\}\), \(d_i\) is attribute feature of \(D\), \(||c_i - d_i||\) is the distance between \(C\) and \(D\) defined by Definition 7.

Definition 7: The fuzzy presentation formalized distance between two case set is supposed \(D = \{c_i|i = 1, 2, \cdots, n\}\) and \(D = \{d_i|i = 1, 2, \cdots, n\}\) are the product set which have \(n\) form features, where \(C\) is known case and \(D\) is a new case, then we define a special distance.

\[
fsim(C, D) = \left[\sum_{i=1}^{n} \left(f_i w_i - g_i u_i \right)^2 \right]^{1/2}
\]

\(3\)

i.e. weighted fuzzy membership based Mincowsky distance.

Definition 8: For the average case computing of style database, let case database be \(\Omega = \{c_i|i = 1, 2, \cdots\}\), \(\sum f\) be the sum of membership, \(Card(\Omega)\) be the number of case record; \(Max\{c_i\}\) be the high frequency cases \(i\)-th features, \(w_{ij}\) be the weight of the \(j\)-th feature in the \(i\)-th class, then the average case computing is,

\[
Aver(\Omega) = \frac{\sum f_i \cdot Card(\Omega) \cdot \sum_{i=1}^{Card(\Omega)} \cdot w_{1i}}{\sum f_i \cdot Card(\Omega)} + \frac{\sum f_i \cdot Card(\Omega) \cdot \sum_{i=1}^{Card(\Omega)} \cdot w_{2i}}{\sum f_i \cdot Card(\Omega)} + \cdots + \frac{\sum f_i \cdot Card(\Omega) \cdot \sum_{i=1}^{Card(\Omega)} \cdot w_{ni}}{\sum f_i \cdot Card(\Omega)}
\]

\(4\)

Definition 9: Similarity computing of new case and case database:

(1) if the system uses new case and average case, then the equation (4) can be adopted.

(2) if the system used new case and each previous case first and averages hereafter, then:

\[
sim = \frac{1}{Card(\Omega)} \sum_{i=1}^{Card(\Omega)} f \cdot sim(C, D), \forall C \in \Omega
\]

\(5\)

Definition 10: For new case \(D\) and using the definition (9), if the similarity is less than a given threshold \(\delta\), then \(\Omega^* = \Omega \cup D\), \(\Omega^*\) is an extended set of \(\Omega\) that is new case database, i.e., new case \(D\) is reserved.

The pseudo-code of FCBR is presented in Algorithm 1.

Algorithm 1 Fuzzy Case Based Reasoning in Style Knowledge Retrieval

Require: \(m \): degree of distance to membership
Require: \(c \): number of class
Ensure: \(u_i(x) = \frac{1}{\sqrt{\sum_{j=1}^{c-1} (1/\|x-z_j\|^2})} \cdot \frac{1}{\|x-z_i\|^2} \)

\[\|x-z_j\|: x's \text{ membership to class } Z_j \]
\[W = [Z_1, Z_2, \ldots, Z_c] \] // the number of features
INPUT \(X \) vector of style

1. \(i \)
 while \(1 \) do
 // calculate the distance of \(X \) and each class
 Compute \(\text{sim}(Z_i, X) \)
 \(i \leftarrow i + 1 \)
 if \(i = c \) then
 Break
 end if
 end while

2. \(j = 1 \)
 while \(1 \) do
 // calculate membership of \(X \) and each class
 Compute \(u_i(Z_i, X) \)
 \(i \leftarrow i + 1 \)
 if \(i = c \) then
 Break
 end if
 end while

In the new case set \(\{D_k, k = 1, 2, \ldots\} \), if there exists a corresponding feature distance and the average case is greater than a given threshold value, the system can modify the membership of the average case corresponding to the property, in order to achieve a reasonable evaluation of the subsequent case. The case reasoning system is then constructed. Through this kind of case library, a reasonable evaluation can be performed of the subsequent cases in order to achieve the final formation of style.

III. FUZZY ANALYTIC HIERARCHY PROCESS USING LINGUISTIC VARIABLES

A. PRODUCT STYLE MODEL BASED ON KANSEI ENGINEERING

It is concluded that the product style information is based on the form features and the mental image [48]. Form feature information is the materialized form that can be seen, including the form, texture and color. The image feature information is peoples psychological feeling of products, such as strong or frivolous, balanced or upset and smooth or rough [49]-[51]. People always use a series of abstract image semantics to describe all sorts of subjective feeling. Furthermore, the cognitive psychology research shows that image semantics are an effective means of description and measurement of some tacit knowledge.

1) ANALYSIS ON STYLE OF PRODUCT FORM

Product design is the process of coding all relative elements of the product through the designer’s emotional integration and practical functions. The combination of technologies has obvious characteristics, so that it can be well recognized by people [52], [53]. Style is consisting of similar form, color, material and other elements of the design. Several design techniques that involve the style features can use the cognitive mechanism as the basis through morphological analysis. It may be the form of the same product style that is divided into several independent attribute form unit and different form attribute units belonging to different form attribute class. Express the style features set by:

\[X = \{X_1, X_2, \ldots, X_n\} \] (6)

The \(i \)-th matrix of form features is given by:

\[X_i = \{X_{i1}, X_{i2}, \ldots, X_{im}\} \] (7)

2) EXTRACTING IMAGE OF PRODUCT

Identification and classification of similar products are the main process for style cognition; the process of the individual experience and psychological structure comparison. People usually use natural language expressions, such as the common “concise”, “fashion” and other linguistic expressions in terms of modeling features of the products to make subjective evaluation. Different styles of products belonging to a certain style system of image semantic space. KANSEI engineering based image semantics extraction methods can be employed to obtain recessive stylistic knowledge. It is one of the effective means that includes two steps: i) collect the image semantic through the system using an open questionnaire survey. Semantic selection requires the products covered adjectives of semantic cognitive space. ii) Select the image semantic under preliminary screening, and then the selected image semantics and some style sample image evaluation are tested by using a Likert scale. Finally, the factor analysis results are taken to select several representative image semantic factors from the axis of the evaluation test. A style description of space image semantic set can be given by:

\[D = \{d_1, d_2, \ldots, d_m\} \] (8)

3) WEB-BASED EVALUATION SYSTEM FOR THE PRODUCTS STYLE

The web-based product style information evaluation system was carried out to obtain the style of cognitive information. This system includes an online questionnaire investigation using XML (Extensible Markup Language) data storage and a variety of methods for data analysis, mining and finally collected the product style information. The main functions of product style information collection system are consistent of three steps as follows.

Step 1: Use the Likert scale method to carry out the assessment method for the cognitive style image semantic through scaling responses of the survey through the importing sample images of the style and KANSEI image semantics.
Step 2: Perform cluster analysis, principal component analysis and other data analysis techniques for the various stages of the survey and providing the corresponding data processing.

Step 3: Generate the formation of style information, decision table based on the analysis of the results of the data.

B. FUZZY ANALYTIC HIERARCHY PROCESS FOR PRODUCT DESIGN EVALUATION

Analytic Hierarchy Process (AHP) is a method to extract qualitative and quantitative phase of processing characteristics of various evaluation factors. Since people’s subjective judgment process is mathematical, the decision basis is easy to be accepted and this is more suitable for the complex social science domain. The AHP theory is complete, rigorous in structure and concise in the problem solution. It has obvious advantages in solving non-structured decision problem. The fuzzy set [54] plays an imperative role in several industrial applications due to the non-precision and uncertainty of the knowledge expression [55]–[58]. It also generates some technical innovation issues combining with controller design [59]and modeling [60], especially in product style extraction and evaluation [61]. The basic ideas and steps of the fuzzy analytic hierarchy process are basically consistent with the steps of AHP with the following differences:

- The establishment of the judgment matrix is different: in the AHP, it makes comparison of two elements to establish a consistent matrix [62]; while in the FAHP, it performs the comparison of the elements to establish a fuzzy consistent judgment matrix.
- The weight of the relative significance of each element in the matrix is different.

The FAHP improved the problems existing in the traditional analytic hierarchy process and improved the reliability of the decision. It has two forms of fuzzy number-based and fuzzy consistency matrix-based [63]. de Graan [64] proposed a triangular fuzzy number to express views among the two elements, and then calculate the fuzzy weights of all criteria for decision-making. Laarhoven and Pedrycz [65] developed a Triangular Fuzzy Number (TFN) algorithm instead of the fuzzy consistent judgment matrix, iv) establish the triangular fuzzy number, iv) establish the fuzzy positive reciprocal matrix, v) establish the fuzzy weight of fuzzy positive matrix, vi) check the consistency of fuzzy matrix, vii) calculate the A-cut value, viii) establish a solution model, regularization and level series and ix) sort the factors in consistent with the calculated weights. The two basic steps in the process are to model the problem as a hierarchy, then to establish priorities for its elements. These are more fully described below.

Let the universe set U denoted by $U = \{u_1, u_2, \ldots, u_p\}$ and the evaluation level be $v = \{v_1, v_2, \ldots, v_p\}$, each level relative to a fuzzy subset. Consequently, in the current work the steps are as follows:

Step 1: Establish the fuzzy relation matrix to calculate the fuzzy membership of each index for the evaluation object $(S|u_i)$ and to continue in order to obtain the fuzzy relationship matrix as:

$$
S|_U = \begin{bmatrix}
| & u_1 & \\
| & u_2 & \\
| & \cdots & \\
| & u_p & \\
\end{bmatrix}
= \begin{bmatrix}
| & r_{11} & r_{12} & \cdots & r_{1m} & \\
| & r_{21} & r_{22} & \cdots & r_{2m} & \\
| & \cdots & \cdots & \cdots & \cdots & \\
| & r_{p1} & r_{p2} & \cdots & r_{pm} & \\
\end{bmatrix}
$$

Instead of using one factor for the evaluation, the fuzzy factors evaluation requires more information from the matrix [50].

Step 2: Calculate the factors weights, where $A = (a_1, a_2, \ldots, a_p)$ is the weight vector having the element a_i in A to represent the membership of factor u_i. In a multi-level evaluation process, analytic hierarchy was used in order to sort the significance of factors and to decide the weights. The normal weights are given by:

$$
\sum_{i=1}^{p} a_i = 1, a_i \geq 0, i = 1, 2, \cdots, n
$$

Step 3: Result vector calculation In order to obtain the fuzzy evaluation matrix B, the multiple A and R using given
operator are to be used as follows:

\[A \cdot R = (a_1, a_2, \ldots, a_p) \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ r_{21} & r_{22} & \cdots & r_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & r_{pm} \end{bmatrix} = (b_1, b_2, \ldots, b_m) \]

\[= B \]

\[(11) \]

Step 4: Determining the weights using the following steps:

- Determine the objectives and evaluate the factors. Let objects evaluation index be: \(u = \{ u_1, u_2, \cdots, u_p \} \).
- Structure the judgment matrix. The matrix elements value reflects the understanding of the relative importance of each element. The scale ranges of 1—9 and its reciprocal are generally used. However, when the mutual comparison factors importance can be explained with the actual meaning of the ratio, the value of the corresponding matrix elements is to use this ratio in order to obtain the judgment matrix.
- Calculate the judgment matrix. Mathematical software is used to calculate the maximum eigenvalue of the matrix and its corresponding feature vector. The feature vector is the importance of the evaluation factors, which is the distribution of weight coefficient. Afterward, the maximal eigenvalue \(\lambda_{\text{max}} \) of \(S \) and the eigenvector \(A \) are calculated. The eigenvector \(A \) is the weight distribution.
- Set the consistency index \(CI = \frac{\lambda_{\text{max}} - n}{n-1} \), and the average consistency random index to perform the consistency test. In order to check the consistency of the judgment matrix, the consistency index and the average random consistency index are calculated. The construction method is random with the standard and their reciprocal fill sample matrix of the upper triangular various, the main diagonal of the value is always 1, corresponding to transpose position is used the reciprocal of the corresponding position of the random number. Then, the consistency index values of each random sample matrix are calculated. In addition, the average of these values is obtained using the average random consistency index value. When the random consistency rates \(CR = CI/RI < 0.10 \), i.e. sorting results are satisfactory consistency and the weight coefficient distribution is reasonable. Otherwise, it is necessary to adjust the judgment matrix element values to redistribute weight coefficient values. Though, the random consistency ratio is to adjust the value judgment matrix elements of redistribution of weight coefficient values. The algorithm of weight matrix computing and consistent judgment is illustrated bellow.

IV. CASE STUDIES

A. CASES CONSTRUCTION

In linguistics, an adjective is a describing word and the main syntactic role that qualifies a noun or noun phrase, giving more information about the object signified. A given occurrence of an adjective can generally be classified into one of three kinds of use for attributive, predicative and nominal adjectives. Design is a process of accumulation; the designer should set up a huge Gallery for various styles. Some of the product style adjectives can be retrieved using the style image survey system. Adjectives for style evaluation were shown in Table 2, marked by X if there has a style description of a given product.

B. FUZZY CASE BASED REASONING

In CBR experiments, the most important work is to find examples in case-based reasoning, the input cases are to be classified correctly with appropriate weight values. The relatively simple method is given directly by the

Algorithm 2 Get Weight Matrix

Require: \(A \leftarrow \text{input} \)

Ensure: \(W \)

\[
\text{// Normalize the preference matrix}
\]

\[
\text{for} \quad i\text{Preference} = 1 \quad \text{to} \quad \text{length}(A) \quad \text{do}
\]

\[
B(:, i\text{Preference}) \leftarrow A(:, i\text{Preference})/\text{sum}(A(:, i\text{Preference}))
\]

end for

\[
\text{//Compute the weight matrix}
\]

\[
\text{for} \quad i\text{Preference} = 1 \quad \text{to} \quad \text{length}(B) \quad \text{do}
\]

\[
W(i\text{Preference}) = \text{mean}(B(i\text{Preference}, :))
\]

end for

\[
W \leftarrow W'
\]

output \(\leftarrow W \)

Algorithm 3 Consistent Check

Require: \(A \leftarrow \text{input} \)

Ensure: \(W \leftarrow \text{getWeightMatrix(input)} \)

\[
\text{//Get Weight Matrix}
\]

\[
AW \leftarrow A \times W;
\]

\[
\text{//Find the value of } \alpha \quad \alpha \leftarrow 0;
\]

\[
\text{for} \quad i\text{Preference} = 1 \quad \text{to} \quad \text{length}(B) \quad \text{do}
\]

\[
\alpha \leftarrow \alpha + (AW(i\text{Preference})/W(i\text{Preference}))
\]

end for

\[
\alpha \leftarrow \alpha /\text{length}(A)
\]

//COMPUTE CONSISTENCY INDEX

\[
n \leftarrow \text{length}(A)
\]

\[
CI \leftarrow \frac{(\text{alpha} - n)/(n - 1)}
\]

\[
RI \leftarrow [r_{11}, r_{12}, \cdots]
\]

\[
\text{//Populate the RI matrix}
\]

\[
\text{CHECK FOR RATIO}
\]

\[
\text{if} \quad ((CI/RI(n)) < 0.1) \quad \text{then}
\]

\[
\text{returnValue} \leftarrow 1
\]

else

\[
\text{returnValue} \leftarrow 0
\]

end if

output \(\leftarrow \text{returnValue} \)
domain experts according to the professional knowledge. However, the weight distribution is not accurate due to the subjective deviation. Therefore, this case is constructed and to be reallocated by two parts, one was experts evaluation and the second part is to carry out a survey, the statistical analysis to get the weight value, and then by experts and the questionnaire combined with the two. 328 questionnaires were completed, combined with expert evaluation, and 20 typical cases relative to style database as shown in Fig. 6 were acquired.

In the current work, the cases database is constructed using product form features and let $F = [\text{FORM}_{ij}]_{4 \times 5}$ be the form matrix. By using FCBR, the key form features shown in Fig. 7 were constructed. The style product (high heel shoes) was coded in 9 features and 12 typical cases were added to the database by using FCBR. So, there are 108 features in feature database.

Table 3 illustrates the style description as well as the presented product and features code by FCBR process.

An applied application for the proposed approach using the FAHP and the LV variable for form design of the high heel shoe to extract key form features relative the style is involved. The style extraction of high heel shoes will be more helpful for design decision making and getting quick response of the market. Some scholars focused on the support system of shoe design. Shieh and Yeh [68] developed a design support system for the exterior form of running shoes using partial least squares and neural networks. Butdee [69] introduced a hybrid feature modeling for sport shoe sole design. Furthermore, some researches focused on designing a comfortable high heel shoes system [70], [71]. In the current work, in order to obtain the main components of the high heel shoe, a randomly distributed questionnaire system was carried out independently. From the 100 dispersed surveys, 89 were returned, resulting in a return rate of 89%; 83 forms were validated; the validation rate was 93.2%.

Finally, nine main components are obtained as shown in Fig. 8 (marked with numbers from 1 to 9). In addition, the high heel shoes are divided into 12 categories for each component. Figure 7 listed totally 108 form features.
FIGURE 7. The 108 form features of high heel shoe relative to style knowledge record.

FIGURE 8. The nine main components of high heel shoes.

TABLE 4. Quantitative evaluation of grading standards.

<table>
<thead>
<tr>
<th>Score</th>
<th>Evaluation by LV</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_i > 9.5$</td>
<td>Very Good</td>
<td>E1</td>
</tr>
<tr>
<td>$8.5 < x_i < 9.5$</td>
<td>Good</td>
<td>E2</td>
</tr>
<tr>
<td>$7.5 < x_i < 8.5$</td>
<td>Median</td>
<td>E3</td>
</tr>
<tr>
<td>$6.5 < x_i < 7.5$</td>
<td>Normal</td>
<td>E4</td>
</tr>
<tr>
<td>$5.5 < x_i < 6.5$</td>
<td>Bad</td>
<td>E5</td>
</tr>
<tr>
<td>$x_i < 5.5$</td>
<td>Very Bad</td>
<td>E6</td>
</tr>
</tbody>
</table>

C. RESULTS AND DISCUSSION

The evaluation and the score interval for the levels are assigned using the survey data obtained by the scoring system as shown in Table 4.

Using the survey data, the fuzzy comprehensive evaluation was applied to calculate weights of 2 levels using as depicted in Table 5.

The results obtained in Table 5 established that the weights of the first and second hierarchy are used to calculate the overall weighted features of the product and the following steps are used to attain each factors weight:

Step 1: Determine the evaluation object set: $C = \text{high heel shoes}$.

Step 2: Structural evaluation factors set: $u = \{u_1, u_2, \ldots, u_9\} = \{C_1 \ldots, C_9\}$.

Step 3: Determine the domain level reviews: $v = \{v_1, v_2, \ldots, v_6\} = \{\text{Very Good, Good, Median, Normal, Bad, Very Bad}\}$.

Step 4: Calculating the weight for the first level index and constructing judgment matrix of six factors ($S = U_i$) as are as follows:

\[
\begin{bmatrix}
1 & 4/3 & 5/4 & 1 & 9/5 & 6/5 \\
3/4 & 1 & 9/10 & 8/9 & 7/5 & 8/9 \\
4/5 & 10/9 & 1 & 4/5 & 3/2 & 1 \\
1 & 9/8 & 5/4 & 1 & 2 & 5/4 \\
5/9 & 5/7 & 2/3 & 1/2 & 1 & 4/6 \\
5/6 & 9/8 & 1 & 4/5 & 6/4 & 1
\end{bmatrix}
\]

(12)

The form features and their weights, which describe the style of shoe, can be presented as a fuzzy set
The preceding results established the attained key form features and composed them as a product using the proposed method. Thus, as a future work, the entire features must be collected widely and each fuzzy linguistic variable interval has to be improved. In addition, a large-scale case database can be designed to study more reasonable definition of similarity measure, to improve the weight assignment scheme as well as the reasoning mechanism and to carry out deep excavation and further research from modeling, color and material. Furthermore, in the case study, this model proved to be effective, however there some issues, namely i) the size of the case base is not large and the morphological feature weight in the style similarity measure also depends on the expert’s subjective consciousness and ii) in addition to styling and color, materials and connection relations described in this paper, there are other factors in the attributes describing the style characteristics, such as the use of function, brand recognition and emotional experience. Therefore, the extraction of style knowledge can be applied to further development.

V. CONCLUSIONS

In this paper, the formation of style knowledge, reasoning and expression were introduced due to the uncertainty of style knowledge. Based on design thinking process, fuzzy case-based reasoning methods were used to overcome the shortcomings of single and linear. The linguistic variables are used to describe the style of knowledge to make it more conform to the cognitive style of knowledge. The key form features were extracted by using a fuzzy analytic hierarchy process with fuzzy linguistic variables. The current work developed the algorithm for extracting the style of product. Applying fuzzy evaluation provided more effective results than the traditional KANSEI method. However, in this work, the linguistic variables were used to evaluate the key product form. The experimental results established the case study showed a feasible research direction for product style research using a fuzzy analytic hierarchy process with fuzzy linguistic variables.

REFERENCES

DAN WANG received the master’s degree in computer science and technology. She is currently pursuing the Ph.D. degree with the Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, China. She is also a Joint Assistant Professor with the Wenzhou Vocational College. Her research interests include multi-sensor data fusion, medical sensor imaging, and data mining.
ZAIRAN LI received the master's degree in control system and application from the Huazhong University of Science and Technology, China. He is currently pursuing the Ph.D. degree with the Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, China. He was an Associate Professor in artificial design with the Wenzhou Vocational College. His research interest includes fuzzy inference system, artificial intelligence, control system, and multi-sensor data fusion.

NILANJAN DEY received the Ph.D. degree. He is currently an Assistant Professor with the Department of Information Technology, Techno India College of Technology, Rajarhat, India. He holds an honorary position of Visiting Scientist with Global Biomedical Technologies Inc., CA, USA, and a Research Scientist with the Laboratory of Applied Mathematical Modeling, Human Physiology, Territorial Organization of Scientific and Engineering Unions, Bulgaria, and also an Associate Researcher with the Laboratoire RIADI, University of Manouba, Tunisia. He has authored or co-authored ten books and 180 international conferences and journal papers. His research interests include medical imaging, soft computing, data mining, machine learning, rough set, mathematical modeling and computer simulation, modeling of biomedical systems, robotics and systems, information hiding, security, computer aided diagnosis, and atherosclerosis. He is a Life Member of IE, UACEE, and ISOC. He is the Editor-in-Chief of the International Journal of Ambient Computing and Intelligence, IGI Global, USA, the International Journal of Rough Sets and Data Analysis, IGI Global, USA, and the International Journal of Synthetic Emotions, IGI Global, USA. He is a Series Editor Advances in Geospatial Technologies of the USA, an Executive Editor of the International Journal of Image Mining, Inderscience, a Regional Editor-Asia of the International Journal of Intelligent Engineering Informatics, Inderscience, and an Associated Editor of the International Journal of Service Science, Management, Engineering, and Technology, IGI Global.

AMIRA S. ASHOUR received the Ph.D. degree in the smart antenna from the Electronics and Electrical Communications Engineering, Tanta University, Egypt, in 2005. She has been the Vice Chair of the Computer Engineering Department, Computers and Information Technology College, Taif University, KSA, since 2015. She has been the Vice Chair of the CS Department, CIT College, Taif University, KSA, for five years. She is currently an Assistant Professor and the Head of the Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University. She has authored or co-authored four books and about 60 published journal papers. Her research interests include image processing, medical imaging, machine learning, biomedical systems, pattern recognition, signal/image/video processing, image analysis, computer vision, and optimization. She is the Editor-in-Chief of the International Journal of Synthetic Emotions, IGI Global, USA. She is an Associate Editor of the IJRSDA, IGI Global, USA, and the IJACI, IGI Global, USA. She is an Editorial Board member of the International Journal of Image Mining, Inderscience.

R. SIMON SHERRATT (M’97–SM’02–F’12) received the B.Eng. degree in electronic systems and control engineering from the Sheffield City Polytechnic, U.K., in 1992, and the M.Sc. degree in data telecommunications and the Ph.D. degree in video signal processing from the University of Salford, U.K., in 1994 and 1996, respectively. In 1996, he has appointed as a Lecturer in electronic engineering from the University of Reading, where he is currently a Professor of Biosensors. His research topic is signal processing and personal communications in consumer devices focusing on wearable devices and healthcare. He received the first place IEEE Chester Sall Memorial Award in 2006, the 2nd place in 2016, and the 3rd place in 2017. He is a Reviewer of the IEEE Sensors Journal and is currently a Senior Editor and the Emittitus Editor-in-Chief of the IEEE Transactions on Consumer Electronic.

FUQIAN SHI (M’08–SM’10) received the degree from the College of Computer Science and Technology, Zhejiang University, and the Ph.D. degree in engineering. He was a Visiting Associate Professor with the Department of Industrial Engineering and Management System, University of Central Florida, USA, from 2012 to 2014. He is currently an Associate Professor with the College of Information and Engineering, Wenzhou Medical University. He has authored over 40 journal papers and conference proceedings. His research interests include fuzzy inference system, artificial neural networks, and biomechanical engineering. He is a Member of ACM. He served over 20 committee board membership of international conferences. He also serves as an Associate Editor of the International Journal of Ambient Computing and Intelligence, the International Journal of Rough Sets and Data Analysis, and a Special Issue Editor of Fuzzy Engineering and Intelligent Transportation in Information, an international interdisciplinary journal.
