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Abstract 

Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. 

Although previous studies largely agree that there is an age-related decline in the “default mode network,” 

how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here 

we used a dual regression approach to investigate age-related alterations in resting-state networks. The 

results revealed age-related disruptions in functional connectivity in all five identified cognitive networks, 

namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related 

somatosensory) and right and left fronto-parietal networks, whereas such age effects were not observed in 

the three identified emotion networks. In addition, we observed age-related decline in functional 

connectivity in three visual and three motor/visuospatial networks. Older adults showed greater functional 

connectivity in regions outside four out of the five identified cognitive networks, consistent with the 

dedifferentiation effect previously observed in task-based fMRI studies. Both reduced within-network 

connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, 

providing potential biomarkers for cognitive aging. 

 

Keywords: aging, resting-state network, functional connectivity, fMRI, dedifferentiation, emotion 
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Highlights 

• Age-related decline was observed in cognitive, visual, and motor/visuospatial resting state 

networks. 

• Age-related decline in functional connectivity was not found in emotion networks. 

• Relative to younger adults, older adults showed increased functional connectivity in regions 

outside networks. 

• Reduced within-network connectivity and increased out-of-network connectivity were associated 

with lower cognitive performance. 
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1. Introduction (max length of the main text = 30 double-spaced pages)	

In recent years, resting-state functional magnetic resonance imaging (fMRI) has emerged as a 

powerful method for investigating age-related changes in large-scale brain networks (Allen et al., 2011; 

Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Mevel et al., 2013; Tomasi & Volkow, 2012). 

Unlike traditional fMRI studies wherein subjects perform cognitive tasks, resting-state fMRI requires no 

specific task. This eliminates variability from individual differences in task compliance and performance, 

making the data more reproducible and reliable. Critically, resting-state networks closely match task-

related functional networks (Laird et al., 2011; Smith et al., 2009), indicating that functional networks 

utilized during tasks are continuously active at rest. Thus, age-related disruption in resting-state networks 

should reflect age-related decline in task-related activity, allowing inferences about age-related changes in 

cognitive function. 

Normal aging is typically associated with cognitive decline even in the absence of disease. 

Although previous research identified multiple resting-state networks in healthy younger and older 

subjects (Biswal et al., 1995; Fox et al., 2006; Raichle et al., 2001; Smith et al., 2009; Vincent et al., 

2008), previous studies on age-related changes in resting-state networks focused on the default mode 

network (DMN) - the most commonly observed resting-state network. The DMN is associated with 

internally directed mental states, such as remembering, planning, and social cognition (Buckner & 

Carroll, 2007; Fransson, 2005; Greicius et al., 2003; Raichle et al., 2001; Vincent et al., 2006). Previous 

evidence suggests that the DMN-coordinated activity diminishes with age (Allen et al., 2011; Andrews-

Hanna et al., 2007; Chan, Park, Savalia, Petersen, & Wig, 2014; Damoiseaux et al., 2008; Esposito et al., 

2008; Koch et al., 2010; Mevel et al., 2013), and that the age-related disruption of this network is 

associated with poor cognitive performance (Damoiseaux et al., 2008; Dong et al., 2012; Mevel et al., 

2013).  

More recently, researchers began to examine age-related changes in resting-state networks other 

than the DMN. One study of 603 people aged between 12 and 71 found that the degree of coactivation 

within networks decreased with age for every component assessed, with no obvious differences between 
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networks in how strongly they were affected by age (Allen et al., 2011). Similarly, another study (Huang 

et al., 2015) examined people over 50 years old and found age-related decline in several networks 

including cognitive, auditory, sensorimotor and visual medial networks. In contrast to these findings 

however, some evidence suggested that not all networks show age-related decline at the same rate (e.g., 

Meier et al., 2012). One study (Damoiseaux et al., 2008) found that older participants had significantly 

lower coordinated activity within the DMN but that other networks identified did not show age 

differences. A more recent study (Chan et al., 2014) using a lifespan sample aged between 20-89 

demonstrated that age-related disruption in within-network connectivity was not necessarily 

homogeneous across multiple networks. Furthermore, another study (Douaud et al., 2014) of 484 

participants from age 8 to 85 years revealed that a network of brain regions that develop during late 

adolescence showed rapid decline in old age, suggesting that some networks are more vulnerable to aging 

than others. 

Unlike the networks associated with cognition, age-related changes in emotion-related networks 

have received much less focus. Previous research (Onoda, Ishihara, & Yamaguchi, 2012) found that the 

salience network, which is involved in both cognitive and emotion processing, showed age-related decline, 

and the disruption of this network was associated with poor cognitive performance. However, another 

study (Chan et al., 2014) did not find a significant age-related decline within the same network. In 

addition to these mixed findings, the integrative nature of the salience network (Menon & Uddin, 2010; 

Onoda et al., 2012; Seeley et al., 2007) makes it hard to determine whether reduced connectivity within 

this system reflects cognitive impairment, emotional dysfunction or both. Thus, it is important to examine 

cognitive and emotion networks separately to understand how aging affects the two types of systems. 

Previous studies showing age differences in resting state network connectivity (Biswal et al., 

2010; Chan et al., 2014; Mowinckel, Espeseth, & Westlye, 2012; Spreng et al., 2016) found age-related 

reductions in within-network functional connectivity, as well as age-related increases in connectivity 

between a network and other regions not associated with that network. These results suggest that older 

adults, compared with younger adults, show dedifferentiation in resting-state brain activity, in addition to 
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reduction in connectivity within networks. Furthermore, these two effects of age might have an opposite 

relationship with cognitive function; stronger within-network connectivity is typically associated with 

better cognitive function (Damoiseaux et al., 2008; Dong et al., 2012; Mevel et al., 2013), while increased 

connectivity outside resting-state networks might be associated with poor cognitive function as it reflects 

reduced neural specificity. Thus, it is important to separately examine the effects of age on connectivity 

within vs. outside each resting-state network and their associations with cognitive function. 

In the current study, we used a dual-regression analysis approach to examine whether there are 

age differences associated with multiple resting-state networks. We first analyzed the resting-state data of 

80 younger (age range = 18-33) and 80 older individuals (age range = 58-85) using independent 

component analysis (ICA). The ICA method allowed us to identify functionally discrete networks without 

a priori regions of interest. The networks identified were matched to previously characterized networks 

involved in emotion, motor/visuospatial processes, vision and cognition based on large-scale metadata 

(Laird et al., 2011). Their networks were defined using 8637 functional brain imaging experiments, which 

contained 69,481 brain activation locations across 31,724 participants whose ages ranged from 1 to 90 

years old with the mean of 31.5 years. We then used dual regression analyses to compare individual 

participant spatial maps associated with each component and examined whether there were age 

differences (Biswal et al., 2010; Filippini et al., 2009).  

We predicted that brain networks involved in cognitive processes would show more age-related 

decline than networks involved in emotional processes. Previous behavioral research suggests age-related 

decline in multiple cognitive domains (Park, 2000; Salthouse, 2010) but preserved emotional processing 

in normal aging (Mather, 2012, 2016). A neuroimaging study on participants aged between 18 and 65 also 

showed age-related increases in functional connectivity for subcortical and paralimbic structures but 

decreased functional connectivity for cortical structures (Hampson et al., 2012), suggesting a shift with 

aging that could favor emotional processes that rely heavily on subcortical and paralimbic brain regions 

(Kober et al., 2008) over cognitive processes that rely more on dorsal cortical regions. In addition, 

previous studies examining age-related differences in functional connectivity during emotion-related tasks 
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revealed that younger and older adults showed a similar pattern of functional connectivity involving the 

amygdala (Nashiro et al., 2013), and that older adults engaged emotional networks more effectively than 

younger adults (St Jacques et al., 2010), possibly reflecting improved emotion regulation with increasing 

age. Thus, we hypothesized that the cognitive networks including the DMN (see Table 1 for network 

categorization) would show robust age-related decline in functional connectivity, whereas other networks, 

especially those more involved in emotional processes, would be better preserved with age. 

Along with age-related decline in functional connectivity within the standard regions associated 

with each cognitive network, we examined whether there were age-related increases in functional 

connectivity with regions not associated with that network. In task-related neuroimaging studies, older 

adults show dedifferentiation of brain activity. That is, they tend to activate a more distributed set of 

regions that are less specialized for the task they are doing than do younger adults. For instance, when 

processing faces, places or words, category-specific brain regions that respond selectively to one type of 

item (e.g., the fusiform face area for faces) become less selective for their preferred category and more 

likely to activate in response to items from other categories among older adults compared with younger 

adults (Grady et al., 1992; Park et al., 2004; Park et al., 2012; Voss et al., 2008). Thus, age-related decline 

in the functional integrity of cognitive networks may also take the form of a less selective set of regions 

involved in each network. 

 

2. Methods  

2.1. Sample	

We obtained structural and resting-state data from the Enhanced Nathan Kline Institute 

(NKI)/Rockland Sample database (http://coins.mrn.org/), which is a collection of neuroimaging data from 

individuals across the lifespan. The NKI protocol also includes a battery of cognitive, behavioral, and 

psychiatric assessment. We obtained the data of 80 younger adults over the age of 18 (Mage = 23.13 years; 

age range: 18-33; 41 males and 39 females) and 80 older individuals (Mage = 67.79; age range: 58-85; 18 
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males and 62 females), as our primary goal was to examine age-related differences in resting-state 

functional connectivity, particularly focusing on the comparison between early and late adulthood. 

The resting scans were performed on a 3.0-T Siemens MAGNETOM Trio Tim scanner. The 

imaging parameters were TR=2500 ms, TE=30 ms, slice thickness = 3.0 mm, flip angle = 80°, field of 

view = 216 mm, slices = 38, voxel size = 3.0 x 3.0 x 3.0 mm, and acquisition time = 5 min. High 

resolution MPRAGE anatomical images were acquired with the scanning parameters of TR=1900 ms, 

TE=2.52 ms, slice thickness = 1.0 mm, flip angle = 9°, field of view = 256 mm, and voxel size = 1.0 x 1.0 

x 1.0 mm. 

 

2.2. Data Analyses 

Data analyses were carried out using FSL tools (FMRIB Software Library, 

www.fmrib.ox.ac.uk/fsl; Smith et al., 2004). The methods described below were adapted and modified 

from Biswal et al. (2010). 

 

2.2.1 Image preprocessing 

We used FMRIB Software Library (FSL) version 5.0.8. to perform all fMRI pre-processing 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). First, standard image preprocessing was performed on individual 

data (i.e., motion correction, brain extraction, spatial filtering with full width at half maximum (FWHM) 

= 6 mm, a high-pass temporal filtering). Noise components were identified and removed using the 

FMRIB ICA-based Xnoiseifier (FIX v1.06, Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). In 

addition, we included nine nuisance covariates in each participant’s analysis: six motion parameters, and 

signal from white matter, cerebrospinal fluid, and whole brain (Biswal et al., 2010). The six motion 

parameters were generated in the motion-correction step during preprocessing using FSL’s MCFLIRT. 

The white matter and cerebrospinal fluid were first segmented from each participant’s structural image 

using FAST in FSL. The resulting segmented images were thresholded at 80% and applied to each 

participant’s time series. Then, a mean time series was calculated by averaging across time series of all 
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voxels within each mask. The global signal covariate was generated by averaging across the time series of 

all voxels in the brain. The nine nuisance signals were removed from individual data using fslglm. The 

denoised functional image of each subject was linearly aligned to their high-resolution brain-extracted 

structural image and the standard Montreal Neurological Institute (MNI) 2-mm brain using FSL FLIRT. 

Each structural image was also non-linearly registered to the MNI 2-mm space using FSL FNIRT. The 

functional images were then warped to the MNI space, using APPLYWARP with the non-linear 

coefficients obtained by FNIRT. The data were temporally filtered using a high-pass filter (Gaussian-

weighted least squares straight-line fitting, with σ = 100.0 s).  

 

2.2.2 Independent component analysis 

The preprocessed individual data from all 160 individuals were entered into temporal-

concatenation group ICA (TC-GICA) to generate group-level components using MELODIC (FSL). 

Following the methods used by Biswal et al. (2010), the number of components was fixed at 20, and TC-

GICA was performed 8 times in order to identify reliable components across multiple ICA runs. A meta-

ICA was conducted across the 8 runs to extract the 20 spatially independent components that were 

consistently identified across the 8 runs. The resulting 20 maps were used as group templates in a dual 

regression analysis. In parallel with the dual regression analysis, the 20 maps were matched with the 20 

task-based networks reported by Laird et al. (2011) through a spatial cross-correlation analysis of the ICA 

maps between the two datasets. We used thresholded z-statistic images for this analysis.  

 

2.2.3 Dual regression analysis 

The preprocessed individual data and the 20 maps from the meta-ICA were used in a dual 

regression analysis using the FSL dual-regression function, which created subject-specific time series and 

spatial maps for each of the 20 templates. The individual spatial maps were merged across subjects into 

single 4D files and between-group differences were tested for statistical significance using voxel-wise 

nonparametric permutation testing (5000 permutations). All statistical maps were family-wise error 
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(FWE) corrected using p < 0.01, based on the threshold-free cluster enhancement (TFCE) statistic image 

(Smith & Nichols, 2009).  

 

2.2.4 ROI analysis  

Since this study focused on age differences in functional connectivity between cognitive 

compared to emotion networks, we conducted a 2 (group: younger, older) x 2 (network type: cognition, 

emotion) mixed ANCOVA on functional connectivity strengths, including sex and intracranial volume 

(ICV) as covariates. For each network, we extracted mean functional connectivity values for each subject 

from the subject-specific z-transformed spatial maps of the second stage of the dual regression, and 

calculated average values across the five identified cognitive networks and across the three identified 

emotion networks (Table 1). 

 

2.2.5 Behavioral data analysis 

Cognitive measures included tests from the Delis-Kaplan Executive Function System (D-KEFS; 

Delis et al., 2001) and Wechsler Abbreviated Scale of Intelligence (WASI). Participants completed verbal 

fluency, design fluency, sorting, color-word interference, trail making, word context, tower, proverb and 

twenty questions (20Q) tests of the D-KEFS, which assess higher-level executive control abilities, as well 

as verbal and perceptual reasoning tests of the WASI, which measures global cognitive functioning (a 

total of 11 subtests). Each score was standardized across all participants and averaged to obtain the 

composite score for each D-KEFS and WASI subtest. For example, there are four scores for verbal 

fluency of the D-KEFS. For each participant, we standardized each of the four scores and averaged them 

to calculate a composite score.  

 

2.2.5 Correlations analysis 

The brain regions showing age group differences (see 3.2 and 3.3 in the Results section) were 

thresholded at FWE-corrected p < 0.01 and binarized. For each ROI, we extracted mean functional 
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connectivity values for each participant from the subject-specific z-transformed spatial maps. For each 

ROI, the functional connectivity values were correlated with the 11 cognitive composite scores using 

partial correlation analysis including age, sex and ICV as covariates. The final results were corrected for 

multiple comparisons using the false discovery rate (FDR) approach to control the expected rate of false 

positives to less than 5% (Benjamini & Hochberg, 1995).	

 

3. Results 

3.1. Fourteen resting state networks were identified 

Using a data-driven ICA approach, we identified 20 resting state networks from the entire sample. 

In order to determine which of the 20 components matched previously-identified task-based networks, we 

compared components between the NKI resting-state and Laird et al. (2011) datasets through spatial 

cross-correlation of the ICA maps using fslmaths. Of the 20 components generated separately from the 

two databases, fourteen maps were matched with a mean correlation of r = 0.59 (0.45-0.84). As shown in 

Table 1 and Figure 1, the fourteen maps were categorized into A) five cognitive, B) three 

motor/visuospatial, C) three visual and D) three emotion networks, using the behavioral domain 

categorization from Laird et al. (2011).	The remaining maps were either judged to be artifactual, or 

matched with an NKI component that had already been matched to another Laird et al. network with a 

higher correlation value (Supplementary Figure 1).  

 

3.2. Older adults showed less functional connectivity than younger adults in all networks except for the 

emotional networks  

A dual regression analysis was carried out to investigate age group differences in the resting-state 

networks. Below we describe each of the five components using the behavioral domain categorization 

developed by Laird et al. (Laird et al., 2011). In their study, 18 networks were grouped into four 
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categories based on a large-scale meta analysis on behavioral domains and paradigms associated with 

each network: a) divergent cognitive, b) motor/visuospatial, c) visual and d) emotion networks (Table 1). 

All five networks that were categorized as divergent cognitive networks in Laird et al. (2011) had 

regions in which older adults showed significantly less functional connectivity than did younger adults 

(Figure 2).  NKI 18 (corresponding with Laird 13; Figure 2A) is the DMN, which is strongly associated 

with remembering, planning, theory of mind and social cognition (Buckner & Carroll, 2007; Fransson, 

2005; Greicius et al., 2003; Raichle et al., 2001; Vincent et al., 2006). Consistent with previous findings 

(Allen et al., 2011; Andrews-Hanna et al., 2007; Esposito et al., 2008; Koch et al., 2010; Mevel et al., 

2013), older adults showed significantly less functional connectivity in the anterior part of DMN (i.e., 

frontal pole). NKI 4 (corresponding with Laird 15; Figure 2A) includes right-lateralized fronto-parietal 

regions and is involved in multiple cognitive processes including reasoning, attention, inhibition and 

memory. Within this network, older adults showed significantly less functional connectivity in the right 

frontal pole, middle and superior frontal gyri than did younger adults. NKI 16 (corresponding with Laird 

16; Figure 2A) covers the primary auditory cortices and is associated with audition, music, speech, 

phonological and oddball discriminations. Although this network is involved in a wide range of tasks 

(Laird et al., 2011), for the sake of conciseness we call it ‘the cognitive-auditory network’ throughout this 

paper based on Laired et al.’s findings. Relative to younger adults, older adults showed less functional 

connectivity in the bilateral inferior frontal and superior temporal gyri and the right supramarginal gyrus 

within this network. NKI 9 (corresponding with Laird 17; Figure 2A) includes primary sensorimotor 

cortices and is associated with action and somesthesis involving speech. Within this cognitive-speech 

network, older adults showed less functional connectivity in the right precentral gyrus, bilateral 

postcentral gyri and insula. NKI 19 (corresponding with Laird 18; Figure 2A) comprises left-lateralized 

fronto-parietal regions and is involved in semantic, phonologic and orthographic language tasks as well as 

working and explicit memory tasks. Older adults had less functional connectivity in bilateral inferior, 

middle and superior frontal gyri than did younger adults.  
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In addition to the five cognitive networks, older adults also showed lower functional connectivity 

in three motor/visuospatial networks. NKI 10 (corresponding with Laird 7; Figure 2B) includes the 

posterior parietal and dorsolateral prefrontal cortices and is associated with visuospatial processing and 

reasoning. In this network, older adults showed significantly less functional connectivity in the posterior 

cingulate gyrus and precuneus than did younger adults. NKI 8 (corresponding with Laird 8; Figure 2B) is 

another motor/visuospatial network that includes the primary sensorimotor cortices and plays a role in 

action and somesthesis. Older adults showed less functional connectivity in the bilateral precentral and 

postcentral gyri compared with younger adults. NKI 2 (corresponding with Laird 9; Figure 2B) is 

comprised of the medial superior parietal cortex and is involved in motor execution and learning. Older 

adults showed less signal in the bilateral precentral and postcentral gyri within this network.  

A significant age group difference was also found in three visual networks. NKI 12 

(corresponding with Laird 10; Figure 2C) includes the middle temporal visual association area and plays 

an important role in viewing complex stimuli, action observation, overt picture naming, and visual 

tracking of moving objects. Older adults showed less functional connectivity in the bilateral lateral 

occipital and temporal occipital fusiform cortices compared with younger adults. NKI 1 and NKI 0 

(corresponding with Laird 11 and 12; Figure 2C) comprise the primary, secondary and tertiary visual 

cortices. NKI 0 is involved in simple visual processing while NKI 1 is associated with higher level visual 

processing. Within NKI 0, older adults showed less activity in the bilateral occipital pole and lingual gyri. 

Within NKI 1, less activity was observed in older adults in the bilateral occipital pole. 

Unlike the cognitive, motor/visuospatial and visual networks, none of the networks in the 

emotion category exhibited age-related decline in functional connectivity in any part of the components.  

 

3.3. Older adults showed greater out-of-network functional connectivity compared with younger adults 

 Older adults showed greater functional connectivity outside four cognitive networks identified in 

this study (Figure 3A). These regions included the bilateral superior frontal and precentral gyri and the 

right occipital pole in connection with DMN, the right lateral occipital cortex in connection with the right 
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fronto-parietal network, the left middle and superior frontal gyri, left superior parietal lobe and posterior 

cingulate cortex in connection with the cognitive-auditory network, and the right middle frontal gyrus in 

connection with the left fronto-parietal network.  

In addition, older adults showed greater functional connectivity in the bilateral frontal pole, left 

superior frontal and precentral gyri, and right superior parietal lobe with a motor/visuospatial network 

(i.e., NKI 10; Figure 3B) as well as in the left postcentral gyrus with a visual network (i.e., NKI 12; 

Figure 3C). Older adults also showed greater out-of-network connectivity in the bilateral superior frontal 

gyrus in connection with an emotion network (i.e., NKI 15; Figure 3D) and in the right inferior frontal 

gyrus in connection with another emotion network (i.e., NKI 7; Figure 3D).  

 

 3.4. Age-related difference in cognitive networks were larger than that in emotion networks 

Next, we examined the effects of age on functional connectivity across all cognitive networks 

compared with all emotion networks. The 2 (age group: younger vs. older) X 2 (network type: cognitive 

vs. emotion) ANCOVA including sex and ICV as covariates revealed that there was a significant 

interaction, F(1, 156) = 5.51, MSE = 0.08, p = .02, ηp
2 = .03 (Figure 4). Post-hoc t-tests indicated that 

there was a significant age group difference in the mean functional connectivity values across the 

cognitive networks, t(158) = 6.12, p < .001, but not in those across the emotion networks, t(158) = 1.25, p 

= .213. As an exploratory post-hoc analysis, we performed the same 2 X 2 ANCOVA including sex and 

ICV as covariates for the regions showing age group differences outside the cognitive vs. emotion 

networks (i.e., the mean activation across the red regions in Figure 3A vs. Figure 3D). As expected, there 

was a main effect of age group, F(1, 156) = 194.94, MSE = 0.45, p < .001, ηp
2 = .55; however, there were 

no other significant findings. 

  

3.5. Greater functional connectivity within cognitive networks was associated with better performance 

whereas greater out-of-network connectivity was associated with poorer performance 
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For each network, we conducted partial correlation analyses between each cognitive composite 

score and functional connectivity in the brain regions showing age-related decline (YA>OA; the blue 

regions in Figure 2) while controlling for age, sex and ICV. There was a significantly positive correlation 

between the 20Q score and functional connectivity in the YA>OA regions within DMN (r = 0.27, P < 

0.005, q[FDR] = .05; Figure 5A). No other results reached significance after FDR correction. When we 

repeated the analysis without the ICV covariate, the DMN-20Q correlation remained significant (r = 0.25, 

P < 0.005, q[FDR] = 0.05).  

We also performed partial correlation analyses between each cognitive composite score and the 

functional connectivity in the regions showing age-related increase (OA>YA; the red regions in Figure 3). 

After controlling for age, sex and ICV, we found a significantly negative correlation between the verbal 

fluency score and functional connectivity in the OA>YA regions with the cognitive-auditory network (r = 

-0.21, P < 0.005, q[FDR] = .05; Figure 5B). In addition, there was a negative correlation between the 

WASI-verbal score and functional connectivity in the OA>YA regions with the cognitive-auditory 

network (r = -0.24, P < 0.005, q[FDR] = .05; Figure 5C). No other correlations reached significance after 

FDR correction. When we analyzed the data without the ICV covariate, the results remained significant 

except that the negative correlation between the verbal fluency score and functional connectivity in the 

OA>YA regions with the cognitive-auditory network was only significant with FDR = 0.10 (r = -0.20, P 

< 0.05, q[FDR] = .10). Overall, our findings suggest that greater out-of-network connectivity was 

associated with poorer cognitive performance or no performance benefits. 

Lastly, we conducted an exploratory post-hoc analysis to examine whether the within-DMN 

connectivity and outside-cognitive-auditory connectivity contributed to the relationship between age and 

cognition. We used multiple regression analyses including a cognitive score as the main DV, age as the 

main IV, and functional connectivity within DMN, sex and ICV as other IVs. The results showed that 

functional connectivity within DMN did not explain the relationship between age and any of the cognitive 

scores. We also ran multiple regression analyses for the cognitive-auditory network and found that the 

positive relationship between age and verbal fluency scores (β=0.279, p=0.009) was partially explained 
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by functional connectivity outside the cognitive-auditory network (β=-0.264, p=0.009). Similarly, the 

positive relationship between age and WASI vocabulary scores (β =0.497, p<0.001) was partially 

explained by functional connectivity outside the cognitive-auditory network (β =-0.296, p=0.002). Both 

results suggest that age-related improvement in verbal skills is in part explained by less functional 

connectivity outside the cognitive-auditory network.         

 

4. Discussion 

This study examined the effects of age on various resting-state networks. Consistent with our 

hypothesis, older adults showed less functional connectivity in all identified cognitive networks, namely 

the DMN, cognitive-auditory, cognitive-speech, right and left fronto-parietal networks. In addition, age-

related decline was observed in three visual and three motor/visuospatial networks. However, age-related 

decline was not found in any of the identified emotion networks. Lower functional connectivity within the 

DMN was correlated with lower cognitive performance. In addition, older adults showed greater 

functional connectivity in regions outside several networks, and such out-of-network connectivity was 

associated with poorer cognitive performance or no performance benefits across groups.  

Our findings are consistent with previous evidence suggesting age-related disruption in the DMN 

(Allen et al., 2011; Andrews-Hanna et al., 2007; Chan et al., 2014; Damoiseaux et al., 2008; Esposito et 

al., 2008; Koch et al., 2010; Mevel et al., 2013). In addition, our observation of age-related decline in 

most networks associated with cognitive function but not in those associated with emotional function 

supports the idea that normal aging is less associated with declines in emotional functioning than with 

declines in cognitive functioning (Mather, 2012, 2016; D. C. Park, 2000; Salthouse, 2010). No age-related 

decline was observed in any of the identified emotional networks, one of which (NKI 15) includes the 

anterior cingulate cortex (ACC), the orbitofrontal cortex (OFC) and the ventromedial prefrontal cortex, 

consistent with previous evidence for structural and functional preservation of these regions with age 

(Fjell et al., 2009; Nashiro et al., 2013; Salat et al., 2001). The ACC, ventromedial prefrontal cortex and 

OFC have been implicated in emotion regulation; thus, preserved functional connectivity at rest may be 
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part of the explanation for intact emotion regulation in older adults (together with the preservation of the 

limbic system, including the amygdala; Mather & Carstensen, 2005; Mather, 2012, 2016; Nashiro et al., 

2012; Sakaki et al., 2013; St Jacques et al., 2010). Our findings may provide important implications for 

cognitive enhancement in older adults. For example, preserved emotional function may be able to 

facilitate older adults’ cognitive performance, as found in our previous study (Nashiro & Mather, 2011). 

Previous research also suggest that mindfulness training, which focuses on improving emotional well-

being, can enhance executive function (Tang, Yang, Leve, & Harold, 2012). Thus, mindfulness training 

may be effective for older adults’ cognitive improvement. 

Our results were consistent with previous findings on age-related increase on functional 

connectivity outside networks (Chan et al., 2014; Geerligs, Maurits, Renken, & Lorist, 2014; Song et al., 

2014). Our study further demonstrated that this age-related increase was associated with poorer cognitive 

performance or no performance benefits. We observed that less functional connectivity outside the 

cognitive-auditory network was associated with better verbal fluency and WASI vocabulary. Although we 

called it ‘the cognitive-auditory network’ for the sake of conciseness in this paper, Laird et al. (2011) 

found that this network was involved in a wide range of tasks including those associated with audition 

and speech. Speech-related tasks may involve verbal skills; thus, our results may suggest that increased 

functional connectivity outside this network is particularly disadvantageous for cognitive tasks involved 

in speech or verbal skills. Overall, our findings were in line with previous findings on dedifferentiation in 

the aging brain, which suggests that as we get older, cortical response becomes less specific to some 

stimulus categories or tasks (Grady et al., 1992; Park et al., 2004; Park et al., 2012; Voss et al., 2008). 

Previous studies showed this dedifferentiation effect in the ventral visual cortex during passive viewing of 

faces and places (Park et al., 2004) and the occipitotemporal cortex and superior parietal cortex during 

object and spatial tasks (Grady et al., 1992). Here, we observed a similar phenomenon during resting state 

across different types of networks, consistent with previous findings on reduced segregation of resting 

state brain networks in aging (Chan et al., 2014).  
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There are several limitations of this study. Although we found nominally significant correlations 

between resting-state connectivity strength and cognitive scores, many of them did not reach significance 

after FDR correction. One possible reason is that functional connectivity strength may represent broader 

cognitive function than that was measured in the standard cognitive tests in this study. We also need to be 

cautious about interpreting the absence of age-related decline in the emotion networks. Due to the lack of 

behavioral measures related to emotion, we were unable to directly test whether functional connectivity 

strength in the emotion networks is associated with better emotional function. However, an exploratory 

analysis using the geriatric depression scale (GDS), which was only available in a subset of the older 

participants (n = 50), suggested that greater functional connectivity in one emotion network (NKI 6) was 

associated with lower depression (Supplementary material Figure 2). Another limitation was that we 

failed to find a reliable match for the salience network in our dataset and were unable to examine age-

related changes in this network. Future studies should use a larger sample to test the brain-behavior link 

associated with emotion more thoroughly. In addition, the acquisition time in this study was relatively 

short (5 min); future studies can be improved by using data with longer acquisition time. Although we 

had the same number of younger and older adults, it is possible that group-level ICA components were 

driven more by the younger adults. Future studies with more older adults could improve the selection of 

networks. 

In summary, the key findings of the present study were 1) that older adults showed less functional 

connectivity than younger adults within all identified resting-state networks except for the emotion 

networks, and 2) that age-related decline within networks as well as age-related increases in outside-

network connectivity were associated with poorer cognitive performance or no performance benefits. The 

latter finding was consistent with the dedifferentiation hypothesis of aging, suggesting that less specificity 

in resting state functional connectivity may be an important biomarker for age-related cognitive decline. 

Future research on resting state as well as task-based brain activity using a lifespan sample may provide 

critical information about the aging brain and help advance theories of cognitive aging.    
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Table 1. Network categorizations. 
 
Type of Network Laird NKI 
Emotion/interoception ICN 1 6 
Emotion/interoception ICN 2 15 
Emotion/interoception ICN 3 - 
Emotion/interoception ICN 4 - 
Emotion/interoception ICN 5 7 
Motor/visuospatial ICN 6 - 
Motor/visuospatial ICN 7 10 
Motor/visuospatial ICN 8 8 
Motor/visuospatial ICN 9 2 
Visual ICN 10 12 
Visual ICN 11 1 
Visual ICN 12 0 
Cognitive (DMN) ICN 13 18 
Cognitive (Cerebellum) ICN 14 - 
Cognitive (Right fronto-parietal) ICN 15 4 
Cognitive (Cognitive-auditory) ICN 16 16 
Cognitive (Cognitive-speech) ICN 17 9 
Cognitive (Left fronto-parietal) ICN 18 19 

 
Intrinsic connectivity networks (ICNs) were categorized based on BrainMap behavioral taxonomy (see 
Laird et al., 2011 for more details). Fourteen NKI components were spatially matched with Laird et al.’s 
ICNs with a mean correlation of r = 0.59 (0.45-0.84). (-) indicates that there were no matches. 
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A) Cognition 

B) Motor/Visuospatial 

C) Vision 

D) Emotion 

NKI 18 L 13 

(XYZ: -4, -58, 24) 

NKI 4 L 15 NKI 16 L 16 

(XYZ: 38, -42, 26) (XYZ: -58, -20, -2) 

NKI 9 L 17 NKI 19 L 18 

(XYZ: -58, -8, 22) (XYZ: -40, 26, -2) 

NKI 10 L 7 NKI 8 L 8 NKI 2 L 9 

(XYZ: -18, -66, 48) (XYZ: -30, -22, 54) (XYZ: 10, -32, 64) 

NKI 1 L 11 NKI 0 L 12 L 10 NKI 12 

(XYZ: -40, -58, -6) (XYZ: -40, -90, -8) (XYZ: 4, -76, 14) 

NKI 6 L 1 NKI 15 L 2 NKI 7 L 5 

(XYZ: 40, 14, -20) (XYZ: 16, 24, 2) (XYZ: 14, -52, -34)  
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Figure 1. Fourteen well-matched pairs between the 20 NKI maps and the 20 Laird et al.’s (2011) 
templates. The left side of each pair is Laird et al.’s template with the component number used in their 
original study (Laird 13, 15, 16, 17, 18 = Divergent Cognitive Networks; Laird 7, 8, 9 = 
Motor/Visuospatial; Laird 10, 11, 12 = Visual; Laird 1, 2, 5 = Emotion/Interoception). On the right side 
of each pair is a corresponding network from the NKI database superimposed on the MNI152 standard 
space template image. Fourteen maps were matched with a mean correlation of r = 0.52 (0.45-0.84). NKI 
maps were converted to Z statistic images and thresholded at z = 2.3.   
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A) Cognition 

Cognitive-auditory (NKI 16/L 16) 

Left fronto-parietal (NKI 19/L 18) 

Right fronto-parietal (NKI 4/L 15) DMN (NKI 18/L 13) 

B) Motor/Visuospatial 

Motor (NKI 2/L 9) Motor (NKI 8/L 8) Motor (NKI 10/L 7) 
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Older < Younger 



AGE-RELATED CHANGES IN RESTING-STATE NETWORKS	28	

 
 
Figure 2. Age-related decline in functional connectivity in eleven resting-state networks. Compared with 
younger adults, older adults showed reduced functional connectivity in five cognitive, three 
motor/visuospatial and three visual networks but not in the emotional networks, with p < 0.01, FWE 
corrected using TFCE technique. The regions highlighted in green represent spatial maps obtained from 
all participants, and the blue highlights indicate the regions that older adults showed less functional 
connectivity than did younger adults. 
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Figure 3. Age-related increase in out-of-network functional connectivity. Four cognitive, one motor, one 
visual and two emotion networks (shown in green) had regions outside the networks that showed 
increased functional connectivity in older compared with younger adults (shown in red), with p < 0.01, 
FWE corrected using TFCE technique.
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Figure 4. Larger age-group differences in cognitive networks compared to emotion networks. Cognitive 
network connectivity was calculated by taking an average of functional connectivity values across all five 
cognitive networks (as shown in green in Figure 1). Similarly, we computed the average functional 
connectivity values across all three emotion networks. After controlling for sex and ICV, we found a 
significant age group x network type interaction. This was due to greater cognitive-network connectivity 
in younger adults compared with older adults with the absence of significant group difference in the 
emotion networks. The error bars indicate standard errors. 
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Figure 5. The relationship between cognitive performance and within-network vs. out-of-network 
functional connectivity. The mean functional connectivity values were obtained for each participant from 
the regions showing significant age-related decline within DMN (shown in blue in Figure 2) and the 
regions showing significant age-related increase outside the cognitive-auditory network (shown in red in 
Figure 2). After controlling for age, sex and ICV, the functional connectivity strengths within DMN were 
positively correlated with the 20Q composite scores (Pearson r = 0.27, P < 0.005, q[FDR] = .05). The 
effects of age, sex and ICV were as follows, respectively: β = - 0.27, p = 0.035; β = - 0.08, p = 0.351; β = 
- 0.22, p = 0.012. In contrast, the functional connectivity strengths outside the cognitive-auditory network 
were negatively correlated with the verbal fluency and WASI vocabulary scores (r = - 0.21, P < 0.009, 
q[FDR] = 05; r = - 0.24, P < 0.005, q[FDR] = .05, respectively). The effects of age, sex and ICV were as 
follows, respectively: β = 0.74, p < 0.001; β = - 0.04, p = 0.612; β = 0.07, p = 0.373.  
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Supplementary Figure 1. Excluded components. The top image in A-D is an NKI component that was 
matched with two NKI networks shown at the bottom. The correlation values between NKI and Laird et 
al.’s networks were shown above the two bottom images. In our analyses, we used the images with red 
frames as a match, as they had higher correlation values. The networks with grey frames were disregarded 
in our analyses due to a lower correlation value. Laird 19 and 20 shown in E and F were noise 
components and were not used in our analyses. 
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Supplementary Figure 2. The relationship between the geriatric depression scale (GDS) and functional 
connectivity within an emotion network. An exploratory analysis using a subset of the older participants’ 
data (n=50) was performed. We ran a multiple regression analysis including GDS as a dependent variable, 
functional connectivity within an emotion network as a main independent variable (IV), and sex and ICV 
as other IVs. The results suggested that greater functional connectivity in one emotion network (NKI 6) 
was associated with lower depression scores (R2[full model]=0.11; p[full model]=0.153; p[partial 
contribution of functional connectivity]=0.039; p[partial contribution of sex]=0.678; p[partial contribution 
of ICV]=0.492). When age was included as another independent variable, the result remained significant 
(R2[full model]=0.11; p[full model]=0.261; p[partial contribution of functional connectivity]=0.049; 
p[partial contribution of sex]=0.747; p[partial contribution of ICV]=0.501). However, age did not explain 
this relationship (p[partial contribution of age]=0.808).  
 

Supplementary Figure 2 

Functional connectivity values within Emotion network 
(NKI 6/Laird 1: see Figure 1D) after controlling for sex and ICV 

G
er

ia
tr

ic
 d

ep
re

ss
io

n 
sc

al
e 

(G
D

S)
 

r = - 0. 
30 
p  = 
0.039 


