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This paper examines whether or not the mode-mixing investigates frequency mixing

effect of Empirical Mode Decomposition (EMD) and whether it can be explained by
simple phase coupling between components of the source signal. The source is assumed

to be a linear combination of harmonic oscillators. The hypothesis was tested assuming
that phases of source signals’ components would couple according to Kuramoto’s model.

Using a Kuramoto’s model with as many oscillators as the number of intrinsic mode

functions (result of EMD), the model’s parameters were adjusted by a particle swarm
optimisation (PSO) method. The results show that our hypothesis is plausible, however,

a different coupling mechanism than the simple sine-coupling Kuramoto’s model are
likely to give better results.

Keywords: Empirical mode decomposition; instantaneous frequency; mode-mixing fre-

quency mixing ; particle swarm optimisation; Kuramoto model; phase coupling

1. Introduction

In recent years, many data-driven decomposition methods have been proposed. One

such method is empirical mode decomposition (EMD) [4], which extracts oscillatory

components in a general forms a general form . These components are supposed

to have significant modes, thus being called intrinsic mode functions (IMFs). In the

1
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original article, have argued that functions which fulfil IMF properties (discussed

in section 2) have well-behaved instantaneous frequencies obtained via the Hilbert

transform. The authors call these components physically meaningful, as typically

their instantaneous frequencies do not reach negative values and they have modu-

lations in amplitude and frequency.

Due to the absence of a mathematical framework for EMD, it can only be

analysed empirically. As it has been observed by many [5; 2; 14] the decomposition

process suffers from the mode-mixing phenomena . , which describes process, when

a mode contains more then scale. Another imperfection of EMD is its separation

problem. This means, that when acting on a single IMF (I(t)) EMD returns the

same function, i.e.

I(t)
EMD−−−−→ I(t), (1)

however, when decomposing a signal composed of two or more IMFs (S(t) =∑n
i Ii(t)) the obtained components do not have to be the same IMFs, i.e.

S(t)
EMD−−−−→ {C1(t), C2(t), . . . Cm(t)}, (2)

where there is not necessarily any correspondence between any Ii(t) and Cj(t).

A thorough study of the mode-mixing frequency mixing for two components was

presented in [11]. The authors compared IMFs obtained from signals each composed

of two cosines, i.e. S(t) = cos(t)+a cos(ft+φ), generated with different amplitudes

a ∈ R and frequencies f ∈ (0, 1) values. They found that for some a < 0.5 the

goodness of the decomposition, i.e. similarities of IMFs and source components,

depends only on the frequency. Moreover, they found, the smaller the value (f ≈
0), the better reconstruction of initial modes. They also noted that the transition

from almost perfect reconstructions to near impossible is an increasing monotonic

function of f . This, however, poses a question: what is responsible for mixing when

frequencies of input components have similar values? Since only the frequency varies

this means that the mixing process depends only on that parameter. As the system

is closed, i.e. there are only two components, any added modulation to the first IMF

is the same as removing that modulation from the second IMF. Given the results

obtained by [11] we hypothesise that the mode-mixing phenomena is due to the

mutual dependency of instantaneous frequencies of the sources. In order to test this

hypothesis, we use harmonic components and see whether coupling between them

can reconstruct obtained IMFs. As an interaction model, Kuramoto type phase

coupling [8] has been chosen. It assumes that coupling between the oscillators is

modulated by the difference of their instantaneous phases.

In this paper, we seek to answer whether mode-mixing frequency mixing ob-

served in EMD can be explained by the Kuramoto assumption of coupling between

oscillators. The paper is structured as follows: section 2 describes a method for ex-

tracting EMD phase, section 3 presents a short introduction to Kuramoto’s model

and section 4 introduces an optimisation method used to fit parameters in Ku-
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ramoto’s model and the results of the experiments are discussed in 5. The conclusion

is in section 6.

2. Huang-Hilbert transform

There are many methods for phase extraction. The one presented in this paper is

based on Huang-Hilbert transform (HHT) [5]. It consists of two steps: first, a signal

is decomposed into components with EMD and secondly, the Hilbert transform is

performed on each component.

Empirical mode decomposition (EMD) is a data-driven method which extracts

oscillatory components [4]. It assumes that a signal is a superposition of amplitude-

and frequency-modulated functions, which are referred to as intrinsic mode func-

tions (IMFs). Extraction proceeds iteratively; in each iteration, a slow wave (aver-

age of interpolated top and bottom envelopes) is removed, leaving components with

slower varying trend. Once the number of zero-crossings and the number of extrema

differs by at most one and the trend is close to zero, the function is considered as an

IMF. Each IMF is thought to be generated by a different source, which is why only

one-to-one correspondences between the IMFs and the reconstructed oscillators is

later considered.

EMD lacks a mathematical framework, which makes its results difficult to anal-

yse. This has led many authors to suggest modifications to the original EMD algo-

rithm, such as by using different stopping criterion [5] or by decomposing a modified

signal instead, as in Ensemble EMD (EEMD) [15]. Nevertheless, EMD has been suc-

cessfully applied in many scientific and engineering fields, e.g. [3; 10; 6], producing

insightful results.

3. System based on Kuramoto model

In nature, it is impossible to create an isolated system. Although in most cases

the interference has negligible effect, in some closed systems these interferences

cannot be avoided. A model which describes interactions between oscillators has

been proposed by 8. He observed that the change in oscillators’ periods can be

explained by assuming coupling in the phase domain. Each oscillator has an intrinsic

frequency and its observed frequency modulated by the difference between each pair

of phases [13]. Mathematical form of the model for ith oscillator is given as

θ̇i = ωi +

N∑
j=1

ki,j sin (θj − θi) , (3)

where �̇ denotes the time derivative, ωi is the intrinsic frequency and ki,j are

coupling strength parameters. If there is no coupling, i.e. when all ki,j = 0, then

the oscillators behave as simple, harmonic oscillators.

Solving these coupled differential equations requires N initial phase values, N

intrinsic frequencies and N(N − 1) values for coupling strengths parameters. In
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total, N(N + 1) parameters describe a system and these parameters have to be

estimated from data.

4. Parameter estimation

Our main assumption is that the measured signal is a linear combination of a

few interacting oscillators. These components are unique in the frequency domain,

that is, their intrinsic frequencies are not similar. With EMD one should be able

to extract these components and with the use of the Hilbert transform one can

estimate phases.

Particle swarm optimisation (PSO) [7] is an optimisation method where many

agents search through a parameter space in an iterative manner. They interact with

each other by announcing their fitness and their position. Movement of ith particle

is dictated by the formula

~Vi(t) = φV ~Vi(t− 1) +φL

(
~Bi(t)− ~Xi(t)

)
+φG

(
~G(t)− ~Xi(t)

)
,

(4)

where Xi, Vi and Bi are the particle’s current position, its velocity and its best

position until time t respectively. G is the best global position discovered by any

particle until time t. Communication is performed after each iteration, when all

particles update their positions based on the velocity, i.e. X(t+ 1) = X(t) + V (t).

At t = 0 all particles have a randomly chosen position and velocity.

In the experiments described below, swarms consisted of 400 particles. Their

sizes were chosen arbitrary big to insure greater search region. Each particle

describes a system mentioned in previous section. Each particle is a 6 dimensional

vector consisting of all initial values, i.e. Xi(0) = [θ01, θ02, ω1, ω2, k1,2, k2,1], which

fully describe a system mentioned in previous section. The intrinsic frequencies for

the oscillators were drawn from Gaussian distributions, where the expected values

and standard deviations were equal to those of the IMFs’ instantaneous frequencies.

Phases and values of k couplings were also drawn from Gaussian distributions, how-

ever their absolute values were used. The expected values and standard deviations

were π and π/4 for phases, and 0 and 5 for k values.

The optimising fitness function is given as

M =

√√√√ 1

N

1

T

N∑
n=1

(
T∑
t=1

(Θ̇n(t)− θ̇n(t))2

)
, (5)

where Θn and θn are phases of nth IMF and reconstructed oscillator respectively.

Summation goes through all t timestamps and there are N oscillators of length T

time points. The optimisation procedure terminates when, after 100 initial itera-

tions, the cost value is the same for 20 consecutive iterations.
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5. Experiments

In order to show phase coupling between components of source signal, a set of

experiments was conducted. They all were based on synthetic data constructed

according to the formula

Sf (t) = cos(13 · 2πt) + 2 cos(f · 2πt+ φ), (6)

i.e. where frequency (f ∈ [1, 7] with step 0.5) and initial phase (φ ∈ [0, 2π] with step
2π
15 ) of the second component were varied. For each f and φ combination EMD was

performed many times with multiple spline techniques (natural cubic or Akima [1]

spline) and parameters related to stopping criteria [12]. Out of these options a set

was chosen that minimises the metric M =
√
M2

1 +M2
2 [? ], where M1 quantifies

the pairwise crossing overs of instantaneous frequencies between IMFs, and M2,

which penalises based on the overlap between IMF’s amplitude and phase spectraa.

After the decomposition was performed, the Hilbert transform of each IMF was used

in order to obtain its instantaneous phase and amplitude. Due to the error created

by boundary effects, each component’s first and last 0.5 s had to be removed leaving

2 s of signal.

Exemplary decomposition obtained for f = 4 is presented in Figure 1. The top

graph contains input signal, whereas the second and the third rows are respectively

first and second IMFs. Each component (solid line) was scaled (scale in top left

corner) so that its maximum value was one. On the same figure, dashed lines were

used to display cosine function of instantaneous phased (cos(Φ(t))) obtained via

the Hilbert’s transformation for corresponding IMF. Almost complete overlap

suggests, that there is very little modulation in the amplitude. For this reason in

further analysis only phase modulations are considered.

In order to better understand what modulations are present in instantaneous

frequencies of the IMF, the Fourier transform was computed for each f . The results

were scaled such that the largest value is one. If there were no modulations in

instantaneous frequency, one would expect zero-valued spectrum everywhere except

for frequency 0. Contrary, a predominant periodic modulation would manifest itself

as a single spike in the Fourier spectrum. Figure 2 displays the spectra for the

first IMF for all f . In the figure, the values of the Fourier frequencies were shifted

by value ∆f = 13− f . This step was performed in order to align the peaks, which

can be seen on the top and back projections. In the figure, one can observe that

peaks are aligned. This is additionally emphasised by overlapping results with a line

(F = 13− f). Similar results are visible for the second IMF, presented in Figure

3. However, in this case peaks are aligned along a different line, thus frequencies

were shifted with function ∆f = 2(13− f). However, in this case peaks are aligned

along a different line, i.e. F = 2 · (13− f)

The highlighted peaks presented in both figures (Fig. 2 and Fig. 3) can also be

observed on cross-correlation between all pairs of IMFs. The highlighted dependency

aSource code used in this analysis is available to download from one of the author’s webpage [9]
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Fig. 1. Synthetic signal (top row) generated for f = 4 and its EMD decomposition. IMFs (solid

line) are scaled (scale in top left corner) so that their maximum value is 1. For comparison dashed

lines present cosine functions of IMF’s instantaneous phases.

Fig. 2. Fourier spectra obtained for the first IMF for different values of frequency f (Eq. (6)). For

each f , all values were scaled to the maximum being one. Dashed line highlights trend dictated
by function F = 13 − f .

between peaks of Fourier spectra and initial frequency f can also be observed when

analysing cross-correlations between all pairs of IMFs’ instantaneous frequencies.
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Fig. 3. Fourier spectra obtained for the second IMF for different values of frequency f (Eq. (6)).

For each f , all values were scaled to the maximum being one. Dashed line highlights trend dictated

by function F = 2 · (13 − f).

Such analysis emphasise modulations common for both components. Since there are

only two IMFs, those modulations must be a product of their interaction, most likely

a mixing of frequencies. A singular example is shown in Fig. 4, where the top plots

represent the instantaneous frequencies centred at zero by mean subtraction. On the

same figure, the middle graph presents cross-correlation between the instantaneous

frequencies of both IMFs, whereas the bottom graph shows the Fourier spectrum of

the correlation signal. The vertical line indicates the value equal to the difference

of the IMFs’ mean frequencies, which for this example it is ∆f = 13Hz − 4Hz =

9Hz. Cumulative result for all pairs of IMFs is shown in Figure 5, where for each

f the Fourier spectrum of the IMFs’ correlations is plotted. Each spectrum was

normalised, so that the biggest value is one. This step allows for visual comparison

of the results, as the maximum amplitude of cross-correlation depends on the f

value and varies by a factor of 105 when comparing results for f = 1 Hz and f = 7

Hz. Again it can be observed that there exist two channels of peaks along lines

F1 = 13 − f and its harmonic F2 = 2 · (13 − f). This suggests strong coupling

between the instantaneous frequencies of the IMFs at some f .

A quantitative attempt to explain visible effects was performed by fitting Ku-

ramoto coupling model to the obtained instantaneous frequencies. An example of

the reconstruction is presented in Figure 6. On this graph, the left column contains

the instantaneous frequency of the IMF (solid line) and the reconstructed one via

Kuramoto model (dashed line). The right column shows the difference between the

two instantaneous frequencies for each IMF, which are first and second for top and

bottom rows respectively. The values of obtained parameters and measure of fitness

(Eq. (5)) are presented in Table 1. Parameters f1 and f2 relate to the intrinsic

frequencies of Kuramoto model for the first and the second IMF respectively and it

can be seen that they match relatively close to the input signal’s modes. For small

values of f , i.e. when there is a big difference in frequencies between input com-

ponents, there is little coupling, i.e. k1 and k2 are small and they increase with f .
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Fig. 4. Correlation between IMFs’ instantaneous frequencies centered at zero (case when f = 4).
Top plots represent the instantaneous frequencies, middle plot displays their cross-correlation and

the bottom graph shows its Fourier spectrum. Vertical line marks value equal to the difference of

IMFs’ mean frequencies.

Fig. 5. Fourier transform F of correlation function between each pair of IMFs for different values

of frequency f . All values were normalised, such that for given f the maximum is equal to one.
Additionally, on the top projection of the figure two lines have been drawn — F1 = 13−f (dashed

line) and F2 = 2 · (13 − f) (dash-dotted line).
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Table 1. Parameters obtained for Kuramoto’s model to fit the data for different input modes.

Frequencies f1 and f2 refer to the mean instantaneous frequencies, k1 and k2 are the coupling
values, and Mr and Mw refer to fitness (see Eq. 5) with and without couplings. Indices 1 and 2

refer to the first and the second IMFs respectively.

f f1 f2 |k1| |k2| Mr Mw (Mw −Mr)/Mw [%]

1 13.000 1.000 0.001 0.000 0.020 0.020 0.01

1.5 13.013 1.501 0.031 0.000 0.069 0.069 0.07

2 13.013 2.002 0.696 0.004 0.250 0.337 25.88

2.5 13.013 2.502 0.003 0.000 0.081 0.081 0.10

3 13.013 3.003 0.046 0.009 0.082 0.084 2.81

3.5 13.013 3.504 0.180 0.020 0.076 0.097 21.48

4 13.001 4.000 0.273 0.031 0.087 0.133 34.96

4.5 13.013 4.504 0.509 0.027 0.150 0.227 33.96

5 13.005 5.011 2.225 0.023 0.300 0.950 68.41

5.5 13.027 5.511 2.162 0.178 0.364 0.878 58.50

6 13.030 5.989 5.687 0.036 0.700 2.203 68.24

6.5 13.006 6.492 2.411 0.014 0.442 0.962 54.07

7 13.044 7.021 4.930 0.164 2.285 3.280 30.35

However, increasing k does not necessarily decrease the fit. Mr and Mw refer to the

mean square error (Eq. (5)) of the fit of Kuramoto model of IMFs’ instantaneous

frequencies with coupling (Mr) and without coupling (Mw). The last column repre-

sents how much percentage-wise the reconstruction explains the variation. It can be

seen that for the small values of f2, i.e. where f2 ≤ 3, the mean square error has not

decreased significantly. The reason is that IMFs almost perfectly match the source

components and there is no need to include coupling k factors. Special case is f = 2

for which coupling k1 is relatively large and the error is decreased by 25%. In can

be observed that for all examples, the coupling k1 is bigger than k2. This means

that instantaneous frequency of the first IMF has more modulation proportional

to the difference of the source’s frequencies. This is in accordance with Figures 2

and 3, where it can be seen that predominant modes frequencies in instantaneous

frequencies are ∆f1 = 13 − f and ∆f2 = 2 · (13 − f) for the first and the second

IMFs respectively.

6. Conclusion

As observed in all the experiments in section 5, the instantaneous frequency of

each IMF has some modulations. These modulations, both their amplitudes and

frequencies, seem to depend on the difference between the input’s modes. This

means that there is some interaction between the components, which depends on

their frequencies and phases. An attempt to explain this mode-mixing frequency

mixing was performed by assuming Kuramoto type phase coupling between the

modes that is proportional to sine of their differences. In many cases the fit was
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Fig. 6. Comparison of instantaneous frequencies for f = 4. Left column contains IMF’s instan-

taneous frequency (solid line) and the reconstructed one (dashed line), whereas the right column
shows their differences. Top and bottom rows correspond to first and second IMFs respectively.

good (see Table 1). However, in some cases including the coupling only reduced

the error of fit by 20%. This implies that there is more complex behaviour between

the modes than a simple sine coupling. A possible solution would be to allow for

additional components in Kuramoto’s coupling function, e.g. including harmonic

modulations in Eq. (3). Our future work will focus on modifying the mechanism of

coupling functions seeking for a better fit to experimental data.
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