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Abstract. Seasonal streamflow prediction skill can derive from catchment initial hydrological 33 

conditions (IHCs) and from the future seasonal climate forecasts (SCFs) used to produce the 34 

hydrological forecasts. Although much effort has gone into producing state-of-the-art 35 

seasonal streamflow forecasts from improving IHCs and SCFs, these developments are 36 

expensive and time consuming and the forecasting skill is still limited in most parts of the 37 

world. Hence, sensitivity analyses are crucial to funnel the resources into useful modelling 38 

and forecasting developments. It is in this context that a sensitivity analysis technique, the 39 

variational ensemble streamflow prediction assessment (VESPA) approach, was recently 40 

introduced. VESPA can be used to quantify the expected improvements in seasonal 41 

streamflow forecast skill as a result of realistic improvements in its predictability sources (i.e., 42 

the IHCs and the SCFs) - termed ‘skill elasticity’ - and to indicate where efforts should be 43 

targeted. The VESPA approach is however computationally expensive, relying on multiple 44 

hindcasts having varying levels of skill in IHCs and SCFs. This paper presents two 45 

approximations of the approach that are computationally inexpensive alternatives. These 46 

new methods were tested against the original VESPA results using 30 years of ensemble 47 

hindcasts for 18 catchments of the contiguous United States. The results suggest that one of 48 

the methods, End Point Blending, is an effective alternative for estimating the forecast skill 49 

elasticities yielded by the VESPA approach. The results also highlight the importance of the 50 

choice of verification score for a goal-oriented sensitivity analysis. 51 
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1. Introduction 52 

Unprecedented increases in computer capabilities have shaped the last several decades’ 53 

advances in Numerical Weather Prediction (NWP), and with them, the development of 54 

environmental forecasting and modelling systems. This has led to a shift in the strategy of 55 

operational forecasting centres towards more integrated modelling and forecasting 56 

approaches, such as coupled systems and Earth System Models (ESMs), with the final aim to 57 

extend the limits of predictability (i.e., sub-seasonal to seasonal forecasting). These 58 

developments are supported by the assimilation of more and better quality observation data 59 

as well as the increase in model resolutions and complexity. However, such advances can be 60 

very expensive and data hungry and may not yield proportional improvements. 61 

Seasonal hydrological forecasts are predictions of the future states of the land surface 62 

hydrology (e.g., streamflow), up to a few months ahead. They are valuable for applications 63 

such as reservoir management for hydropower, agriculture and urban water supply, spring 64 

flood and drought prediction and navigation, among others (Clark et al. 2001; Hamlet et al. 65 

2002; Chiew et al. 2003; Wood and Lettenmaier 2006; Regonda et al. 2006; Luo and Wood 66 

2007; Kwon et al. 2009; Cherry et al. 2016; Viel et al. 2016). They have the potential to provide 67 

early warning for increased preparedness (Yuan et al. 2015). Traditionally, seasonal 68 

streamflow forecasts have relied upon land surface memory, the persistence in the land 69 

surface (e.g., catchment) initial hydrological conditions (IHCs; of soil moisture, groundwater, 70 
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snowpack and the current streamflow). IHCs are one of the most important predictability 71 

sources of seasonal streamflow forecasts and were thus the starting point for the 72 

development of the Ensemble Streamflow Predictions (ESP) approach in the 1970s (Wood et 73 

al. 2016b). The ESP was first developed and used for reservoir management purposes. It is 74 

produced by running a hydrological model with observed meteorological inputs to produce 75 

current observed IHCs, from which the forecast is started, and the forcing over the forecast 76 

period is done with an ensemble of historical meteorological observations (Day 1985). The 77 

ESP method assumes that the model states to initialise a forecast are perfectly estimated, 78 

while the future climate is completely unknown. However, the skill of the ESP decreases 79 

significantly after one to a few months of lead time over most parts of the world due to a 80 

decrease in the land surface memory with time. The achievable predictability from the ESP 81 

thus depends on the persistence of the IHCs, which can vary as a function of the season (i.e., 82 

the transition between dry and wet seasons will for example be hard to forecast) and the 83 

location and size of the catchment (i.e., the streamflow in a large catchment with a slow 84 

response time and/or situated in a region with negligible precipitation inputs during the 85 

forecast period will for example be easier to forecast; Wood and Lettenmaier 2008; Shukla et 86 

al. 2013; van Dijk et al. 2013; Yuan et al. 2015). 87 

More recently seasonal climate predictability derived from large scale climate precursors 88 

(e.g., the El Niño Southern Oscillation [ENSO] and the North Atlantic Oscillation [NAO]) has 89 
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been used to enhance seasonal streamflow forecasting (e.g., Wood et al. 2002; Yuan et al. 90 

2013; Demargne et al. 2014; Mendoza et al. 2017). Such systems produce streamflow 91 

forecasts, by initialising a hydrological model to estimate IHCs and forcing the model with 92 

inputs based on seasonal climate forecasts (SCF; of temperature and precipitation) instead of 93 

historical observations. Their skill is also still limited, due to the rapid decrease in precipitation 94 

forecasting skill beyond two weeks of lead time, and the skill is variable in both space and 95 

time (Yuan et al. 2011; van Dijk et al. 2013; Slater et al. 2017). In Europe, for instance, the skill 96 

is higher in winter in regions where the winter precipitation is highly correlated with the NAO. 97 

Regions with high skill include the Iberian Peninsula, Scandinavia and regions around the Black 98 

Sea (Bierkens and van Beek 2009). In the contiguous United States (CONUS), the skill is on 99 

average higher over (semi)arid western catchments, due to the persistence of the IHCs 100 

influence up to three months of lead time. The skill can be higher in some regions of the 101 

western CONUS (i.e., California, the Pacific Northwest and Great Basin) in the winter and fall 102 

due to higher precipitation forecasting skill in strong ENSO phases (Wood et al. 2005).  103 

Increasing the seasonal streamflow forecast skill remains a challenge that is being tackled 104 

by improving IHCs and the SCFs using a variety of techniques. Techniques include model 105 

developments and data assimilation and can be more or less expensive. However, over the 106 

past several decades, it has been shown that operational streamflow forecast quality has not 107 

significantly improved (Pagano et al. 2004; Welles et al. 2007). This is the motivation for the 108 



7 
 

use of sensitivity analysis techniques to guide future forecasting developments for seasonal 109 

streamflow forecasting, and is the basis for this paper. 110 

It is in this context that the attribution of seasonal streamflow forecast uncertainty to the 111 

IHCs and SCFs errors has been researched extensively. Wood and Lettenmaier (2008) 112 

introduced a method based on two hindcasting end points: the ESP and the reverse-ESP. In 113 

contrast to the ESP, which only represents the uncertainty in the future climate, the reverse-114 

ESP only represents the uncertainty in IHCs by using an ensemble of initial model states taken 115 

from historical simulations to initialise a prediction forced by a single set of observed 116 

meteorological inputs. Typically, the input uncertainty damps out over a period of months as 117 

the influence of the perfect future climate input increasingly determines model states.  118 

Comparing the skill of the ESP versus reverse-ESP seasonal streamflow forecasts allows 119 

one to identify the dominant predictability source (and conversely uncertainty source) of 120 

seasonal streamflow forecasting (i.e., the IHCs or the SCFs), and its evolution in both space 121 

and time. It was successfully used to disentangle the relative importance of initial conditions 122 

and boundary forcing errors on seasonal streamflow forecast uncertainties by several 123 

authors: for example, for catchments in the United States (Wood and Lettenmaier 2008; Li et 124 

al. 2009; Shukla and Lettenmaier 2011), in France (Singla et al. 2012), in Switzerland 125 

(Staudinger and Seibert 2014), in China (Yuan et al. 2016; Yuan 2016), in the Amazon (Paiva 126 

et al. 2012) as well as for the entire globe (Shukla et al. 2013; Yossef et al. 2013; MacLeod et 127 
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al. 2016). This work is instructive as it enables the dominant predictability source to be 128 

identified (i.e., where efforts and resources should be targeted) to focus improvement, which 129 

could potentially lead to more skilful seasonal streamflow predictions. 130 

This method was extended by Wood et al. (2016a; hereafter ‘W16’) via a method called 131 

variational ensemble streamflow prediction assessment (VESPA), which involves assessing 132 

intermediate IHCs and SCFs uncertainty points between the perfect and climatological points 133 

applied in ESP and reverse-ESP. The approach allows the calculation of a metric called ‘skill 134 

elasticity’, i.e., the sensitivity of streamflow forecast skill to IHC and SCF skill changes. A key 135 

drawback of the VESPA approach, however, is that it is computationally intensive. For each 136 

catchment and initialisation month of a forecast, the response surface was defined through 137 

the use of dozens of multi-decadal variable-skill ensemble hindcasts, ultimately amounting to 138 

millions of simulations.  In contrast, the ESP and reverse-ESP skill can be estimated from a 139 

single set of ensemble hindcasts spanning a historical period. The IHC and SCF skill variation 140 

method also was highly specific to the particular model state configuration, and involved a 141 

relatively simplistic linear blending procedure. The elasticity calculations were furthermore 142 

based only on a single verification score of forecast skill (i.e., R2) for the analysis. An ensemble 143 

forecast has many attributes: e.g., the skill, the reliability, the resolution and the uncertainty 144 

of the forecast, among others. In order to obtain a complete picture of the forecast quality, 145 
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the scores should encompass many of these attributes as each verification score will give us 146 

different information about the forecast quality. 147 

The drawbacks of VESPA motivate us to assess two computationally inexpensive methods 148 

of estimating the forecast skill elasticities, using only the original ESP and reverse-ESP results 149 

that depend on the single hindcast series as mentioned above. The two methods are termed 150 

End Point Interpolation (EPI) and End Point Blending (EPB). In the first part of this paper, we 151 

compare results from the two methods tested on 18 catchments of the CONUS to the original 152 

results from the VESPA, using a single verification score. The objective of this part is to 153 

investigate whether the new methods can discriminate the influence of IHCs and SCFs errors 154 

on seasonal streamflow forecasting uncertainties and to assess the ability of those new 155 

methods to correctly estimate the forecast skill elasticities. In the second part, additional 156 

verification scores are applied for streamflow forecast verification, supporting the second 157 

objective of the paper, which is to explore the sensitivity of the results obtained from the two 158 

new methods and the VESPA approach to the choice of the verification score. 159 

2. Methods, data and evaluation strategy 160 

a. The VESPA approach 161 

In this work, as in W16, the term ‘perfect’ refers to current observed meteorological 162 

data and the term climatological refers to the whole distribution of historical observed data.  163 

Figure 1 presents the ESP (Figure 1a), the reverse-ESP (Figure 1b), the climatology (Figure 1c) 164 
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and the VESPA forecast (Figure 1d), as generated in W16. The ESP, the reverse-ESP, the 165 

‘perfect’ forecast and the climatology are all end points of the uncertainty in the sense that 166 

the uncertainty in those forecasts is either ‘perfect’ or climatological. They are the end points 167 

of the VESPA approach. 168 

The VESPA aims to produce streamflow forecasts from IHCs and SCFs with an 169 

uncertainty situated between the ‘perfect’ and the climatological uncertainty (Figure 1d). 170 

Forecasts were generated by linearly blending the climatological and ‘perfect’ IHCs (i.e., 171 

model moisture states) and the climatological and ‘perfect’ SCFs (i.e., meteorological forcings 172 

of precipitation, evapotranspiration and temperature), subsequently used to run the 173 

hydrological model. The weights used for blending the data were (w = 0, 0.05, 0.10, 0.25, 0.50, 174 

0.75, 0.90, 0.95, 1.0), applied so that a weight of zero is the ‘perfect’ knowledge and unity is 175 

the climatological knowledge; with wIHC and wSCF denoting the weights used to blend the IHCs 176 

and the SCFs, respectively (W16). An ESP forecast results from the weights wIHC = 0 and wSCF 177 

= 1; the reverse-ESP from wIHC = 1 and wSCF = 0; the ‘perfect’ forecast from wIHC = 0 and wSCF = 178 

0; and the climatology from wIHC = 1 and wSCF = 1. 179 

To plot the skill of the VESPA forecasts as a function of the IHC and SCF skill, W16 used 180 

skill surface plots (Figure 2), interpolating forecast skill results from different IHCs and SCFs 181 

weighting combinations. The axes represent the SCF and IHC skill, derived respectively from 182 

the blending weights wSCF and wIHC using the following equations (W16):  183 
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  2  100 1 SCFSCF skill w     (1) 184 

  2  100 1 IHCIHC skill w     (2) 185 

The SCF and the IHC skill values obtained from these equations are the percentage of 186 

climatological variance explained in the respective predictability source (i.e., SCF and IHC; 187 

W16). Each SCF skill-IHC skill combination corresponds to a specific VESPA forecast, which skill 188 

can be plotted on the skill surface plot (black crosses in Figure 2). The blue circles are the end 189 

points of the VESPA forecasts: the reverse-ESP (revESP in Figure 2), the ‘perfect’ forecasts, the 190 

ESP and the climatology (climo in Figure 2). The skill surface plots are hence a graphical 191 

representation of the response surface obtained from the VESPA sensitivity analysis. 192 

The VESPA seasonal streamflow forecasts were generated by W16 using lumped 193 

Sacramento Soil Moisture Accounting (SAC-SMA) and SNOW-17 catchment models for 194 

unimpaired catchments. The models were forced with daily inputs in precipitation, 195 

temperature and potential evapotranspiration, and calibrated and validated against observed 196 

daily streamflow from the US Geological Survey (USGS).  Eighty-one skill variations of a 30 197 

year hindcast (from 1981 to 2010) were produced for 424 catchments in the CONUS, starting 198 

at the beginning of each month (i.e., forecast initialisation dates), with lead times up to six 199 

months. 200 
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b. Alternative methods to the VESPA approach 201 

In this paper we present two alternative methods of the VESPA approach, called the 202 

End Point Interpolation (EPI) and the End Point Blending (EPB). These methods aim to 203 

reproduce the response surface obtained from the VESPA approach, by using the same 30 204 

year hindcast ensembles produced by W16, aggregated over the first three months with zero 205 

lead time for each initialisation date (referred to as 3-month streamflow forecast hereafter), 206 

and corresponding exclusively to the end points (i.e., the ESP, the reverse-ESP, the ‘perfect’ 207 

forecast and the climatology). 208 

The two new methods were tested for a subset of the CONUS-wide catchment dataset 209 

presented in W16 (Figure 3) – comprising 18 catchments from the large USGS Hydro-Climatic 210 

Data Network (HCDN; Lins 2012). The 18 selected catchments cover a large range of hydro-211 

meteorological conditions, including the maritime climate regime of the U.S. West Coast 212 

catchments, the humid regime of the eastern U.S. (South of the Great Lakes) with rainfall-213 

driven runoff and variable winter snow in the most northern catchments and the 214 

Intermountain West and northern Great Plains regions where streamflow is greatly 215 

influenced by the snow cycle. 216 

1) End Point Interpolation (EPI) 217 

The EPI produces a response surface by interpolating the forecast skill of the end 218 

points throughout the skill surface plot. Both linear (i.e., linear barycentric interpolation) and 219 



13 
 

cubic interpolation techniques were tested. However, results will be shown for the linear 220 

interpolation only as the cubic interpolation did not provide noticeable improvements to the 221 

linear interpolation given that the interpolation is based on only four points situated at the 222 

corners of the response surface. The linear EPI was performed for each forecast initialisation 223 

date and for each catchment. 224 

2) End point Blending (EPB) 225 

The EPB generates hindcasts for each wSCF - wIHC combination (i.e., each cross in Figure 226 

2; wSCF and wIHC are selected to be the same blending weights used by W16, for the purpose 227 

of comparison). For each combination point, a new ensemble of 100 members was generated 228 

by blending the four end points, given a specific weighted average. The percentage of each 229 

end point used, EP [%] (i.e., the number of members randomly selected from each end point), 230 

was calculated for each combination point using the following equation:  231 

       % 1 1EP IHC EP SCFEP x w y w        (3) 232 

Where 𝑥𝐸𝑃 and 𝑦𝐸𝑃 are the wIHC and wSCF values of the end point for which the percentage is 233 

calculated, respectively. For example, if the wIHC and wSCF match the end point values, 100 234 

percent of the EPB hindcast members are resampled from that end point (i.e., the end point 235 

skill is reproduced). This was done for each forecast initialisation date and for each catchment.   236 
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In order to produce the skill surface plots for the EPB method, the SCF and IHC skill was 237 

calculated using the same equations as in W16 (i.e., Eq. (1) and (2), respectively). 238 

c. The evaluation strategy 239 

The aim of this paper is to compare two computationally inexpensive alternative 240 

methods to the VESPA approach, the EPI and the EPB. To this end, the paper unfolds into two 241 

distinct objectives. First, we want to investigate whether the EPI and/or the EPB can 242 

discriminate the influence of IHCs and SCFs errors on seasonal streamflow forecasting 243 

uncertainties and reproduce VESPA skill elasticity estimates. This will validate the use of one 244 

or both methods as alternative to the VESPA approach. Second, we want to explore the 245 

sensitivity of the results obtained from the EPI, the EPB and the VESPA methods to the choice 246 

of the verification score. This will be an attempt to demonstrate the importance of the choice 247 

of the verification score for forecast verification and communication.  248 

1) Can EPI and EPB discriminate the influence of IHCs and SCFs errors on 249 

seasonal streamflow forecast uncertainties? 250 

To explore the first objective of this paper, skill surface plots were produced for the 251 

EPI, the EPB and the VESPA methods. As in W16, the seasonal streamflow forecast skill 252 

depicted in the skill surface plots was calculated from the Pearson product moment 253 

correlation coefficient (R2) of forecast ensemble means with the observations, where ‘perfect’ 254 

forecasts (model simulations driven by the observed meteorology) were treated as 255 
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observations to calculate the R2.  As discussed at length in W16, this choice deliberately 256 

excludes the model errors as a source of forecast uncertainty.  257 

The skill surface plots obtained from the EPI and the EPB methods were subsequently 258 

compared qualitatively and quantitatively to the skill surface plots obtained for the VESPA 259 

approach. The qualitative analysis consisted in visually inspecting the patterns contained in 260 

the skill surface plots, giving an indication of the dominant predictability source on the 261 

streamflow forecast skill. The quantitative analysis of the results was based on the calculation 262 

of the skill elasticities for the IHCs and the SCFs (EIHC and ESCF respectively), for the EPI, the EPB 263 

and the VESPA methods, averaged across three transects of a quadrant situated in the centre 264 

of the response surface, according to the following equations: 265 

 266 

                 75,19 19,19 75,44 19,44 75,75 19,75
100

75% 19% 75% 19% 75% 19%

3

IHC

S F S F S F S F S F S F
E

    
    

       (4) 267 

 268 

                 19,75 19,19 44,75 44,19 75,75 75,19
100 

75% 19% 75% 19% 75% 19%

3

SCF

S F S F S F S F S F S F
E

    
    

       (5) 269 

The numerators, expressed as S(F[-])-S(F[-]), contain the gradients in the streamflow forecast 270 

skill between IHC skill (or SCF skill) values of 75% and 19% (the denominator). The values in 271 
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between the square brackets of the numerator are the IHC skill followed by the SCF skill 272 

values, which indicates a certain wSCF - wIHC combination point in the example skill surface plot 273 

in Figure 2. In the denominator, the IHC and SCF skill gradients are gradients in the percentage 274 

of the climatological variance explained in the respective predictability source. The skill 275 

elasticities (EIHC and ESCF) are positively oriented; where a skill elasticity of zero is obtained 276 

when the predictability source has no influence on the skill of the streamflow forecast, while 277 

positive [negative] elasticities mean that an improvement in the predictability source will lead 278 

to higher [lower] streamflow forecast skill. The skill elasticities were calculated for all three 279 

methods and for the 3-month streamflow forecasts produced for each catchment and 280 

forecast initialisation date. 281 

The only difference between Eq. (4) and (5) and the skill elasticities calculated in W16 282 

is that they chose to calculate skill elasticities around the ESP point in the skill surface plots. 283 

Here, we choose to calculate skill elasticities across a quadrant within the skill surface plot 284 

(between 75% and 19% of the climatological variance explained in the IHC and the SCF) in 285 

order for the skill elasticity values calculated in this paper to reflect the forecast skill gradients 286 

within the response surface. This is done differently than in W16, as the aim of this paper is 287 

to compare (qualitatively and quantitatively) the skill surface plots obtained from the EPI and 288 

the EPB methods to the VESPA approach. 289 
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2) What is the sensitivity of the response surface to the choice of the 290 

verification score? 291 

In order to investigate the second objective of this paper, several verification scores were 292 

calculated for each method (i.e., the EPI, the EPB and the VESPA approach). These scores were 293 

selected in order to cover key attributes of the forecasts verified, they include: 294 

 the Mean Absolute Error (MAE) of forecast ensemble means, relative to the ‘perfect’ 295 

forecasts,  296 

 the Continuous Rank Probability Score (CRPS) and its decomposition: 297 

o the potential CRPS (CRPSpot): where CRPSpot = resolution - uncertainty, 298 

o the reliability part of the CRPS (CRPSreli). 299 

The potential CRPS is the CRPS value that a forecast with perfect reliability would have. The 300 

uncertainty is the variability of the observations and the resolution is the ability of the forecast 301 

to distinguish situations with distinctly different frequencies of occurrence. The CRPS 302 

reliability is a measure of the bias and the spread of the system. 303 

 The CRPS was chosen as it is a widely used score to assess the overall quality of an 304 

ensemble hydrometeorological forecast. The CRPS moreover has the advantage that it can be 305 

decomposed in different scores to look at many attributes of an ensemble forecast. The CRPS 306 

score for a single forecast is equivalent to the MAE, which is why the latter was chosen.  307 
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For all of the above verification scores, the corresponding skill scores were calculated 308 

for each point of the skill surface plots from: 309 

   1
forecast

forecast

reference

score
Skill score

score
    (6) 310 

Where the scorereference is the score of the climatology point, for each method, each 311 

initialisation date and each catchment. A perfect forecast results in a forecast skill score of 312 

one and a forecast with equal quality as the reference forecast corresponds to a skill score of 313 

zero. Any forecasts with less quality than the reference forecast produces negative skill score 314 

values. Skill scores were calculated in order to have a similar score range as the R2 (i.e., a 315 

climatological score of zero and a perfect score of one), for comparative purposes. 316 

Skill elasticities were subsequently calculated for all the skill scores, using Eq. (4) and (5), 317 

for all three methods and for the 3-month streamflow forecasts produced for each catchment 318 

and forecast initialisation date. From these skill elasticity values, the influence of 319 

improvements in the IHCs and SCFs on the seasonal streamflow forecast skill can be assessed, 320 

in terms of the forecasts’ overall performance (considering the mean of the ensemble or the 321 

full ensemble spread, from the MAE and the CRPS respectively), their resolution and 322 

uncertainty (CRPSpot) and their reliability (CRPSreli). 323 
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2. Results 324 

a. Can EPI and EPB discriminate the influence of IHCs and SCFs errors on 325 

seasonal streamflow forecast uncertainties? 326 

For the first part of this study, the Crystal River (CO; USGS gauge 009081600), a 327 

snowmelt driven catchment, will be used as a test case to illustrate the skill surface plots 328 

obtained from the EPI and the EPB methods, compared to the VESPA approach. Precipitation 329 

is the highest in winter and spring in this catchment, and falls as snow between November 330 

and April. In April, the snow starts melting and consequently the soil moisture and streamflow 331 

both increase. 332 

Figure 4 displays the skill surface plots obtained for the VESPA (Figure 4a), the linear 333 

EPI (Figure 4b) and the EPB methods (Figure 4c), from R2 for the 3-month streamflow forecast 334 

for the Crystal River, for initialisations on the first of each month (each row on Figure 4). 335 

Figures 4d and 4e show the differences between the skill surface plots obtained for the VESPA 336 

and the EPI methods, and the VESPA and the EPB methods, respectively. A first visual 337 

comparison of the skill surface plots obtained from the linear EPI method (Figure 4b) and the 338 

EPB method (Figure 4c) with those obtained from the VESPA approach (Figure 4a) for the 339 

Crystal River tells us that the skill surface plots obtained from all three methods are very 340 

similar. For each initialisation date, the orientation of the gradients in streamflow forecast 341 

skill appears identical. The EPI and the EPB methods seem to correctly indicate the dominant 342 
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predictability source on the 3-month streamflow forecast skill, for each initialisation date for 343 

this catchment. Similar results were obtained for the other 17 catchments (see 344 

Supplementary Figures 1 to 17). Forecasts made on the 1st of February, March and September 345 

show a sensitivity to the SCF skill (i.e., horizontal or near to horizontal orientation of the 346 

streamflow forecast skill gradients), while all other forecasts are dominantly sensitive to the 347 

IHC skill (i.e., vertical or near to vertical orientation of the streamflow forecast skill gradients). 348 

The gradients in streamflow forecast skill contained in the EPI skill surface plots (Figure 349 

4b) differ moderately from the gradients obtained from the VESPA approach (Figure 4a). This 350 

can be observed in Figure 4d, showing the differences between the skill surface plots obtained 351 

for both methods. The VESPA approach gives very strong gradients causing a rapid decrease 352 

in streamflow forecast skill with a decrease in one of the predictability sources’ skill, 353 

depending on the initialisation date. In comparison, the EPI method indicates a gradual 354 

decrease in streamflow forecast skill with a decrease in one of the two predictability sources, 355 

depending on the initialisation date. The streamflow forecast skill gradients produced by the 356 

EPI method are a reflection of the interpolation method used (i.e., here linear), and because 357 

the corner points lack information about describing curvature of the surface at interior points, 358 

they cannot fully capture non-linearities in the skill gradients across the skill surface. For some 359 

interior points, this limitation of the EPI method could estimate very different skill elasticities 360 

than those obtained from the VESPA approach. 361 
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The skill surface plots produced by the EPB method (Figure 4c) show minor differences 362 

in the streamflow forecast skill gradients when compared to the skill surface plots generated 363 

by the VESPA approach (Figure 4a). This can be seen in Figure 4e, which shows the differences 364 

between the skill surface plots obtained for both methods. To further inspect those 365 

differences, they will be explored quantitatively (i.e., by comparing the skill elasticities) below. 366 

To quantify the accuracy of the patterns contained in the EPI and the EPB skill surface 367 

plots compared to the patterns of the VESPA skill surface plots, SCF and IHC skill elasticities 368 

(i.e., ESCF and EIHC, respectively) were calculated across a quadrant situated within the 369 

response surface for all three methods, for the 18 catchments and each forecast initialisation 370 

date, from Eq. (4) and (5) respectively. Figure 5 presents the skill elasticities for nine of the 18 371 

catchments (the plots for the other nine catchments are shown in Supplementary Figure 18). 372 

Each plot corresponds to a catchment and shows the skill elasticities obtained from the 373 

VESPA, the EPI and the EPB methods, as a function of the forecast initialisation date. From 374 

the nine different plots, the skill elasticities given by the EPB method appear almost identical 375 

to the VESPA approach, whereas the skill elasticities obtained from the EPI method differ in 376 

some places. This confirms that the patterns of the EPB method are very similar to the 377 

patterns of the VESPA approach, with it being the closest out of the two tested methods. 378 

The value of the SCF skill elasticity (i.e., ESCF) in relation to the value of the IHC skill 379 

elasticity (i.e., EIHC), for a given method, indicates the dominant predictability source on the 380 
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3-month streamflow forecast skill (here calculated from the R2). For a selected method, equal 381 

SCF and IHC skill elasticity values signifies that equal improvements in both the SCFs and the 382 

IHCs will lead to equal improvements in the streamflow forecast skill. If ESCF is superior 383 

[inferior] to EIHC, it reflects a larger potential increase in streamflow forecast skill by improving 384 

the SCFs [IHCs]. Although the EPI method almost always indicates the same dominant 385 

predictability source as the two other methods, the degree of influence of changes in IHC and 386 

SCF skill on the streamflow forecast skill (i.e., the exact values of the skill elasticities) often 387 

differs. For many catchments and forecast initialisation dates, the EPI appears to 388 

underestimate the skill elasticities produced by the VESPA method.  389 

The nine different catchments for which the skill elasticities are presented in Figure 5 390 

display three different types of behaviours, best captured by the VESPA approach and the EPB 391 

method. For the three catchments on the leftmost column of Figure 5, improvements in the 392 

IHCs would yield the highest improvements in the 3-month streamflow forecast skill for spring 393 

to summer initialisations (April-August for the Crystal River, March-July for the Fish River and 394 

March-June for the Middle Branch Escanaba River) and in the winter (October-January for the 395 

Crystal River, November-December for the Fish River and in December for the Middle Branch 396 

Escanaba River). SCF improvements would lead to better 3-month streamflow forecast skill 397 

for forecasts initialised in the late winter and summer to fall (February-March and September 398 

for the Crystal River, February and August-October for the Fish River and January-February 399 
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and July-September for the Middle Branch Escanaba River). For the three catchments in the 400 

middle column of Figure 5, a notable feature is that the 3-month streamflow forecast skill 401 

would benefit from SCF improvements for summer initialisations (June-September for the 402 

Chattooga and the Nantahala Rivers and July-September for the New River). Finally, for the 403 

three catchments of the rightmost column of Figure 5, the 3-month streamflow forecast skill 404 

would benefit from improvements in the SCFs for all initialisation dates. This is true with the 405 

exception of forecasts initialised in December for East Fork Shoal Creek. It is important to note 406 

that there is uncertainty around these estimates. However, this is a good first indication of 407 

the sensitivity of 3-month streamflow forecast skill (measured from the R2) to IHCs and SCFs 408 

errors, for each forecast initialisation date and each catchment. 409 

The skill elasticities produced by the EPB method appear to be almost identical to the 410 

skill elasticities obtained from the VESPA approach, with occasional marginal differences. This 411 

suggests that the EPB method captures nearly exactly the degree of influence of changes in 412 

IHC and SCF skill on the streamflow forecast skill, obtained from the VESPA approach. Both 413 

methods additionally indicate the same dominant predictability source: the predictability 414 

source which, once improved, could lead to the largest increase in 3-month streamflow 415 

forecast skill. The EPB method will therefore be used as an alternative to the VESPA approach 416 

to investigate the second objective of this paper. 417 
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b. What is the sensitivity of the response surface to the choice of the 418 

verification score? 419 

In order to investigate the sensitivity of the response surface to the choice of the 420 

verification score, and therefore to the attribute of the forecast, several scores were 421 

computed to evaluate the streamflow forecast quality. The R2, the MAE skill score (MAESS) 422 

and the CRPSS were calculated to evaluate the forecasts’ overall performance in terms of the 423 

ensemble mean and the entire ensemble. The potential CRPSS (CRPSSpot) was computed to 424 

look at the forecasts’ resolution and uncertainty, and the CRPSS reliability (CRPSSreli) to look 425 

at the forecasts’ reliability. Crystal River (CO; USGS gauge 009081600) will here again be used 426 

as a test case to illustrate this part of the results. 427 

Figure 6 presents the IHC and SCF skill elasticities (i.e., EIHC and ESCF; in the top two 428 

plots and the bottom two plots of Figure 6, respectively) as a function of forecast initialisation 429 

date, for the Crystal River catchment. These are calculated from Eq. (4) and (5), for all the 430 

mentioned verification scores, for the VESPA approach (Figure 6a, the two leftmost plots) and 431 

the EPB method (Figure 6b, the two rightmost plots). If we compare the skill elasticities 432 

obtained from the VESPA approach with the skill elasticities obtained from the EPB method, 433 

it appears that both methods produce very similar elasticities for the R2, the MAESS and the 434 

CRPSS. This further confirms the results of the first part of the analysis, which highlighted the 435 

similarity of the EPB results to the VESPA results, and extends it to multiple attributes of the 436 
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seasonal streamflow forecasts. However, slight differences between the skill elasticities 437 

produced by the two methods can be observed for the CRPSSpot and significant differences 438 

exist for the CRPSSreli. These dissimilarities are discussed further below. 439 

If we now compare the skill elasticities obtained for the various verification scores for 440 

both methods, it is clear that the R2, the MAESS, the CRPSS and the CRPSSpot give very similar 441 

skill elasticities. This hints that those verification scores overall agree on the degree of 442 

influence of changes in IHC and SCF skill on the streamflow forecast skill. However, a few 443 

dissimilarities can be observed for some of the forecast initialisation dates. This is for example 444 

the case for forecasts made in the spring and in summer, where the EIHC appears lower for the 445 

MAESS and the CRPSS (and the CRPSSpot for the VESPA approach) compared to the EIHC 446 

obtained for the R2, for both methods. It is also apparent for forecasts made on the 1st of 447 

February, March and September, where the ESCF calculated for the MAESS and the CRPSS (and 448 

the CRPSSpot for the VESPA approach) is lower than the ESCF obtained for the R2, for both 449 

methods. For both examples, it infers that improvements in the IHC and the SCF skill could 450 

lead to larger improvements in the streamflow forecast skill in terms of the R2 than in terms 451 

of the MAESS and the CRPSS (and the CRPSSpot for the VESPA approach). This overall 452 

indicates that the degree of influence of changes in IHC and SCF skill on the streamflow 453 

forecast skill differs relative to the choice of the verification score. 454 
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While the R2, the MAESS, the CRPSS and the CRPSSpot give a very similar picture, the 455 

skill elasticities obtained for the CRPSSreli appear very different, occasionally reaching 456 

negative values. These negative values indicate a loss in streamflow forecast skill (in terms of 457 

the forecast reliability) as a result of improvements in one of the two predictability sources, 458 

while all the other verification scores suggest a gain in streamflow forecast skill (in terms of 459 

the forecast ensemble mean and the ensemble overall performance, its resolution and 460 

uncertainty) with improvements in one of the two predictability sources. 461 

The substantial differences in skill elasticities obtained for the CRPSSreli from the 462 

VESPA versus EPB method suggest that there are limitations to the ability of EPB to 463 

reconstruct the full ensemble information present in VESPA, and of VESPA (applied with 464 

relatively small ensembles at the end points) to estimate sensitivities for complex verification 465 

scores such as reliability. The reliability verification score is influenced by the combination of 466 

bias, spread and other ensemble properties, and exhibits more noisy outcomes here than 467 

were obtained for other verification scores.  A negative elasticity may occur because the 468 

ensemble spread has narrowed without sufficient improvements in bias, for instance. The 469 

behaviour of the elasticity of reliabilities is even more difficult to diagnose, but we suspect 470 

that the presence of noise (erroneous local minima or maxima) or curvature in the associated 471 

VESPA skill surface greatly undermines the linear blending techniques. 472 
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Overall, these results suggest that improvements in the skill of either of the two 473 

predictability sources will impact streamflow forecast skill differently depending on the 474 

attribute (i.e., verification score) of the forecast skill that is considered and whether the 475 

ensemble mean or the full ensemble is used. 476 

3. Discussion 477 

a. Implications and limitations of the results 478 

W16 introduced the variational ensemble streamflow prediction assessment (VESPA) 479 

approach, a sensitivity analysis technique used to pinpoint the dominant predictability source 480 

of seasonal streamflow forecasting (i.e., the IHCs and the SCFs), as well as quantifying 481 

improvements that can be expected in seasonal streamflow forecast skill as a result of realistic 482 

improvements in those key predictability sources. Despite being a powerful sensitivity 483 

analysis approach, VESPA presents two key limitations. 484 

1) It is computationally intensive, requiring multiple ensemble hindcasts to define the 485 

skill response surface (81 were used in the VESPA paper versus one for the EPB and 486 

the EPI techniques).  487 

2) It requires a complex state and forcing blending procedure that may introduce 488 

additional uncertainties, biases or interactions between the predictability sources 489 

(Saltelli et al. 2004; Baroni and Tarantola 2014) that are not accounted for or difficult 490 

to quantify. This is not necessary in any of the end points required in the two 491 
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approaches presented here, which rely instead on analysing a single conventional 492 

hindcast dataset that is more likely to be feasible for forecasting centres. 493 

The central aim of this paper was to address the first limitation of the VESPA approach by 494 

presenting two computationally inexpensive alternative methods: the End Point Interpolation 495 

(EPI) and the End Point Blending (EPB) methods. Both methods successfully identified the 496 

dominant predictability source of 3-month streamflow forecasts for a given catchment and 497 

forecast initialisation date (i.e., given by the orientation of the streamflow forecast skill 498 

gradients in the skill surface plots). However, the EPB was more successful in reproducing the 499 

VESPA skill elasticities - the exact streamflow forecast skill gradients situated within the skill 500 

surface plots (for skill and accuracy verification scores including the R2, the MAESS, the CRPSS 501 

and the potential CRPSS to a certain extent). These skill elasticities indicate the influence of 502 

changes in IHC and SCF skill on streamflow forecast skill. 503 

The new methods, by differing in their setup from the VESPA approach, do not inherit the 504 

drawbacks specific to this approach and mentioned above. The EPI and the EPB methods 505 

nevertheless have their own limitations.  506 

The EPI (both for the linear and cubic interpolation methods; the latter was not shown) 507 

did not fully capture the VESPA skill elasticities, due to the nature of the method which 508 

produces predefined gradients within the skill surface plots (i.e. defined by the interpolation 509 

method used). Additionally, curvature or local minima or maxima (if any) of the response 510 
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surface cannot be represented by the EPI method. The EPB, on the other hand, performs 511 

better at reflecting curvature in the skill response surface, hence local elasticities between 512 

the end points. The EPB method aimed at reproducing VESPA elasticities only by manipulating 513 

the output of a single hindcast dataset (interpreted as ESP, reverse-ESP, the ‘perfect’ forecast 514 

and climatology). The EPB method cannot match exactly the forecasts created by the VESPA 515 

approach, as it does not account for the idiosyncrasies in model forecast behaviour, such as 516 

interactions between the predictability sources. Furthermore, it is likely that the more the 517 

model investigated is non-linear or exhibits skill response thresholds, the more the results 518 

obtained from the EPB method will differ from the ones obtained from the VESPA approach. 519 

These results overall allow that the EPB method can be used as an inexpensive alternative 520 

method to the VESPA approach, yet with the potential limitations of the method stated 521 

above. 522 

For the first part of the analysis, the streamflow forecast quality was evaluated in terms 523 

of the forecasts’ skill from the R2. The use of multiple verification scores is however essential 524 

to obtain a more complete perspective of forecast quality. Thus, we explored the 525 

performance of the two new methods and the VESPA approach for a range of additional 526 

verification scores. The results, presented for the EPB method and the VESPA approach, 527 

showed differences in the response surfaces obtained for the various verification scores (i.e., 528 

the R2, the MAESS, the CRPSS and its decomposition). This suggests distinct sensitivities of the 529 
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seasonal streamflow forecast attributes (i.e., overall performance of the forecast ensemble 530 

mean and its full ensemble, forecast resolution, uncertainty and reliability) to changes in the 531 

IHC and SCF skill. Ideally, a sensitivity analysis should be goal-oriented – i.e., it should be 532 

performed with prior knowledge of the intended use of the results (Saltelli et al. 2004; 533 

Pappenberger et al. 2010; Baroni and Tarantola 2014), which may favour using one 534 

verification score over another. 535 

This paper covered selected limitations of the work presented by W16. Many areas were 536 

however left unexplored and could be interesting topics to focus future research. Firstly, a 537 

major area inherent to model-based sensitivity analyses is that their results are model 538 

dependent (Saltelli et al. 2000), thus the extent to which they can be transferred to reality 539 

depends on the model fidelity. The results presented in this paper are specific to the 540 

forecasting system, and similar systems, on which this analysis was based and should be used 541 

as an indicator of catchment sensitivities. As noted in W16, an extension of the elasticity 542 

analysis to include observations and a model error component would provide valuable 543 

insights. Another possible approach could be to use the results from various forecasting 544 

systems as input to the sensitivity analysis, in order to achieve a multi model consensus view 545 

of the skill. As shown in Cloke et al. (2017), a multi model forcing framework can be highly 546 

beneficial for streamflow forecasting compared to a single model forecasting approach, 547 

provided the models are chosen judiciously so as to provide a rational characterisation of 548 
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forecasting uncertainty. Secondly, the dependence of blending technique performance versus 549 

VESPA on the characteristics of the skill surface (e.g., linear or non-linear) bears further 550 

investigation. Finally, this sensitivity analysis leaves generic the concept of improvements in 551 

either of the predictability sources, although the space-time nature of improvements may be 552 

consequential. This work could therefore be extended by studying the effect of degradations 553 

in the temporal and spatial accuracy of the input data, thereby indicating the relative value 554 

of improvements in the spatial or temporal predictability for a specific catchment and a 555 

specific time of the year.  556 

b. The wider context 557 

The new strategy of operational forecasting centres is to move towards more 558 

integrated operational modelling and forecasting approaches, such as land surface-559 

atmosphere coupled systems, and beyond that, Earth System Models. These advances are 560 

enabled by the continuous growth of computing capabilities, a better understanding of 561 

physical processes and their interactions throughout all compartments of the Earth, and the 562 

availability and use of more and better observation data (i.e., satellite data). Despite all these 563 

advances, most forecasts still reflect substantial uncertainty that grows with time and limits 564 

the predictability of observed events beyond a few weeks of lead time. The rapid progress 565 

has led our systems to be ever more data hungry as increases in model complexity and 566 

resolution are sought. These computationally expensive developments are not always 567 
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feasible, hence, model developers must be creative and constantly weigh the costs and 568 

benefits of improving one aspect over another, such as increasing the resolution or 569 

complexity of the models (Flato 2011). 570 

In this context, sensitivity analyses appear more than ever as a natural tool to establish 571 

priorities in improving predictions based on Earth System Modelling. Such analyses are a 572 

powerful and valuable tool to support the examination of uncertainty and predictability 573 

across spatial and temporal scales and for various applications. They can be used for a large 574 

range of activities, including: examining model structure, identifying minimum data 575 

standards, establishing priorities for updating forecasting systems, designing field campaigns 576 

and providing realistic insights into the potential benefits of efforts to improve a forecasting 577 

system to managers with prior knowledge of their costs (Cloke et al. 2008; Lilburne and 578 

Tarantola 2009; W16). 579 

However, sensitivity analyses must be easily reproducible to be effective in supporting 580 

each new model or forecast system update, and the results should easily be applied in order 581 

to constitute a “continuous learning process” (Baroni and Tarantola 2014). In other words, a 582 

sensitivity analysis should be a simple, tractable tool for addressing a multi-faceted challenge. 583 
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4. Conclusions 584 

This paper presents two computationally inexpensive alternative methods to the VESPA 585 

approach for estimating forecast skill sensitivities and elasticities. Of these, the End Point 586 

Blending (EPB) method provides a useful substitute to the VESPA approach. Despite the 587 

existence of some differences between the EPB and the VESPA outcomes, the EPB successfully 588 

identifies the dominant predictability source (i.e., the initial hydrological conditions [IHCs] and 589 

the seasonal climate forecasts [SCFs]) of seasonal streamflow forecast skill, for a given 590 

catchment and forecast initialisation date. The EPB method can additionally reproduce the 591 

VESPA forecast skill elasticities, indicating the degree of influence of changes in IHC and SCF 592 

skill on the streamflow forecast skill. The paper also draws attention to how the choice of 593 

verification score impacts the forecast’s sensitivity to improvements made to the 594 

predictability sources. With a good understanding of the limitations of the methods, such a 595 

sensitivity analysis approach can represent a valuable tool to guide future forecasting and 596 

modelling developments. 597 

 598 

 599 

 600 

 601 
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Figure 1 Schematic of a. the ESP, b. the reverse-ESP, c. the climatology and d. the VESPA (this 756 

figure is adapted from Figure 3 from W16). 757 

Figure 2 Schematic of a skill surface plot. The y and the x axes display the SCF and the IHC skill, 758 

respectively. They are expressed as a percentage of the climatological variance explained in 759 

the respective predictability source. The blending weights, wSCF and wIHC, from which the skill 760 

values are derived are shown in square brackets in the figure. 761 

Figure 3 Map of the 18 catchments of the CONUS selected for the analysis, and the HCDN 762 

regions (dark blue outlines). 763 

Figure 4 Skill surface plots obtained for a. the VESPA, b. the linear EPI and c. the EPB methods. 764 

The skill is calculated from the R2 of the 3-month streamflow forecast ensemble means against 765 

the ‘perfect’ forecasts, for hindcasts produced from 1981-2010 for the Crystal River (CO; USGS 766 

gauge 009081600), with forecast initialisations on the first day of each month. Differences 767 

between the skill surface plots obtained for the d. VESPA and linear EPI methods and the e. 768 

VESPA and EPB methods are also shown. 769 

Figure 5 Streamflow forecast skill elasticities for the IHCs (i.e., EIHC, solid line) and the SCFs (i.e., 770 

ESCF, dashed line), calculated across a quadrant situated within the 3-month streamflow 771 

forecast skill surface plots for the VESPA (in red), the linear EPI method (in grey) and the EPB 772 

method (in blue; using Eq. (4) and (5)). Each plot shows the evolution of the IHC and SCF skill 773 
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elasticities with the initialisation date for a given catchment. The climatological regions of the 774 

catchments are indicated in the plots’ headings. The skill surface plots from which these skill 775 

elasticities were calculated are presented in Figure 4 and Supplementary Figures 1 to 17. 776 

Figure 6 Streamflow forecast skill elasticities for the IHCs (i.e., EIHC, top two plots) and the SCFs 777 

(i.e., ESCF, bottom two plots)  as a function of forecast initialisation dates, for hindcasts 778 

produced from 1981-2010 for the Crystal River (CO; USGS gauge 009081600). These skill 779 

elasticities were calculated across a quadrant situated within the 3-month streamflow 780 

forecast skill surface plots (from Eq. (4) and (5)) for several verification scores (the R2 in red, 781 

the MAE skill score [MAESS] in blue, the CRPSS in grey solid line, the potential CRPSS 782 

[CRPSSpot] in grey dashed line and the CRPSS reliability [CRPSSreli] in grey dotted line). The 783 

results are shown for a. the VESPA approach (two leftmost plots) and b. the EPB method (two 784 

rightmost plots). 785 
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Figure 1 Schematic of a. the ESP, b. the reverse-ESP, c. the climatology and d. the VESPA (this 787 

figure is adapted from Figure 3 from W16). 788 
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 789 

Figure 2 Schematic of a skill surface plot. The y and the x axes display the SCF and the IHC skill, 790 

respectively. They are expressed as a percentage of the climatological variance explained in 791 

the respective predictability source. The blending weights, wSCF and wIHC, from which the skill 792 

values are derived are shown in square brackets in the figure. 793 
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Figure 3 Map of the 18 catchments of the CONUS selected for the analysis, and the HCDN 795 

regions (dark blue outlines). 796 
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Figure 4 Skill surface plots obtained for a. the VESPA, b. the linear EPI and c. the EPB methods. 798 

The skill is calculated from the R2 of the 3-month streamflow forecast ensemble means against 799 

the ‘perfect’ forecasts, for hindcasts produced from 1981-2010 for the Crystal River (CO; USGS 800 

gauge 009081600), with forecast initialisations on the first day of each month. Differences 801 

between the skill surface plots obtained for the d. VESPA and linear EPI methods and the e. 802 

VESPA and EPB methods are also shown. 803 
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 813 

Figure 5 Streamflow forecast skill elasticities for the IHCs (i.e., EIHC, solid line) and the SCFs (i.e., 814 

ESCF, dashed line), calculated across a quadrant situated within the 3-month streamflow 815 

forecast skill surface plots for the VESPA (in red), the linear EPI method (in grey) and the EPB 816 

method (in blue; using Eq. (4) and (5)). Each plot shows the evolution of the IHC and SCF skill 817 

elasticities with the initialisation date for a given catchment. The climatological regions of the 818 

catchments are indicated in the plots’ headings. The skill surface plots from which these skill 819 

elasticities were calculated are presented in Figure 4 and Supplementary Figures 1 to 17. 820 
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 821 

Figure 6 Streamflow forecast skill elasticities for the IHCs (i.e., EIHC, top two plots) and the SCFs 822 

(i.e., ESCF, bottom two plots)  as a function of forecast initialisation dates, for hindcasts 823 

produced from 1981-2010 for the Crystal River (CO; USGS gauge 009081600). These skill 824 

elasticities were calculated across a quadrant situated within the 3-month streamflow 825 

forecast skill surface plots (from Eq. (4) and (5)) for several verification scores (the R2 in red, 826 

the MAE skill score [MAESS] in blue, the CRPSS in grey solid line, the potential CRPSS 827 

[CRPSSpot] in grey dashed line and the CRPSS reliability [CRPSSreli] in grey dotted line). The 828 

results are shown for a. the VESPA approach (two leftmost plots) and b. the EPB method (two 829 

rightmost plots). 830 


