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Abstract. Seasonal streamflow predion skillcanderivefrom catchmentinitial hydrological

conditions (IH€) andfrom the future seasonatlimate forecast§SCBE) used to produce the

hydrological forecasts Although much effort has gone into quiucing stateof-the-art

seasonal streamflow forasts from improng IHG and SC§; these developments are

expensive and time consuming and tfeecastingskill is still limitedn most parts 6 the

world. Hence,sensitivity analyses are crucial to funnel the resources into useful modelling

and forecasting developments. It is in this context thasensitivity analysis techniquhe

variational ensemble streamflow prediction assessment (VE&Pgpach was recently

introduced. VESPAcan be used to quantify the expected improvements in seasonal

streamflow forecast skils a result of realigtimprovements in its predictability sourcgé=.,

the IHG and the SG¥f - termed Zkill elasticity- and to indicate where efforts should be

targeted. The VESPA approade however computationallgxpensive relying on multiple

hindcasts having varying levels of skill in IHCs and.SI#s paper preseattwo

approximations ofthe approachthat are computationallyinexpensivealternatives. These

new methods were testedagainst the original VESPA results us3gyears ofensemble

hindcasts for 18 catchments of tle®ntiguousUnited StatesThe results suggest that one of

the methods, End Pointl&ding,is an effectivealternativefor estimating the forecast skill

elasticities yielded byhe VESPA approachihe results also highlight the importance of the

choice of verification scortor a goaloriented sensitivity analysis.
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1. Introduction

Unpreceeentedincreasain computer capabilitiebave shaped the lasteveral o[

advances inNumerical Weather PredictiofNWP) and with them, the development of

environmental foecasting and modelling systembhis has led to a shift in the strategy of

operational forecasting centres towards more integrated modelling and forecasting

approaches, such a®upled systems and Earth System ModBISMs)with the final aim to

extend the limits of predictability i(e., subseasonal to seasonal forecastingfhese

developments are supported liie assimilation of rare and better quality observation data

as well aghe increase irmodelresolutions and complexityHowever suchadvancesan be

very expensivenddata hurgryand may not yield proportional improvements.

Seasonal hydrological forecastee predictions of the future states of the land surface

hydrology(e.g.,streamflow) up to a few months ahead. They araluablefor applications

such as reservomanagementfor hydropower, agriculture and urban water supply, spring

flood and drought prediction and navigation, among oth@$arket al. 2001, Hamletet al.

2002; Chiewet al. 2003;Wood and Lettenmaie2006; Regondeet al. 2006;Luo and Wood

2007;Kwonet al.2009;Cherryet al.2016;Vielet al.2016). Theyhave the potential tgrovide

early warning for increasegreparedness(Yuan et al.2015) Traditionally, sasonal

streamflow forecastshave relied upn land surface memorythe persistence inthe land

surface €.g.,catchment)initial hydrological conditions (IlHCof soil moisture, groundwater
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snowpack and the current streamflQWMHG are one of the most important predictability

sources of seasonalstreamflow forecass and were thus the starting point for the

development of the Ensemble Streamflow Predictions (BBpoachin the 1970gWood et

al. 2016). The ESP wdsst developedand usedfor reservoir management pugses It is

produced byrunninga hydrological model wittobseved meteorological inputs to produce

current observediHG, from which the forecast is startedndthe forcingover the forecast

period is donewith an ensemble of historicaheteorological observation©ay1985) The

ESP method assumes that the modtdtes to initialse a forecast are perfectly estimated,

while the future climate is completely unknowhlowever, the skill of the ESP decreases

significantly after ongo a fewmonths of lead time over most parts of the worldue toa

decrease in théand surface memory with time. The achievable predictability from the ESP

thusdepends orthe persistence of the IHCwhich can vary as a function of the sea¢oa,

the transition between dry and wet seasons will for example be hard to foreaast)the

location and sizeof the catchment(i.e., the streamflow in a large catchment with a slow

response time antbr situated in a region with negligible precipitation inpudsring the

forecast periodwill for example be easier to forecasood and Lettenmaie2008;Shuklaet

al. 2013 van Dijket al.2013;Yuanet al.2015.

More recently seasonal climate predictabilirivedfrom large scale climate precursors

(e.g.,the El Nifio Southern OscillatioEINSPand theNorth Atlantic OscillationNAQ) has
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beenusedto enhanceseasonaktreamflowforecasting(e.g.,Wood et al.2002; Yuanet al.

2013; Demargne et ak014 Mendoza et al2017). Such system$roduce streamflow

forecasts, by initialising ahydrological modeto estimate|HG and forcingthe modelwith

inputs based oseasonal climate forecasts (S6GRemperature and precipitationnstead of

historical observationstheir skillisalsostill limited, due to the rapid decrease in precipitation

forecasting skill beyond two weeks of lead tinagd theskill is variablen both space and

time (Yuanret al.2011; van Dijket al.2013 Slater et al. 201)7In Europefor instancethe skill

is higher in winter imegionswhere the winter precipitation is highlyorrelated with the NAO.

Regionswith high skilincludethe Iberian Peninsula, Scandinavia and regions around the Black

Sea(Bierkensand van BeeRR009. In the cotiguousUnited States (CONUS), the skilbris

averagehigher over(semi)aridwestern catchments due to the persistence of théeHG

influenceup to three months of lead time. The skithn be higheiin some region®f the

western CONUS.€., California, the Pacific Northwest and Great Basin) in the winter and fall

due to higher precipitation forecasting skill in strong ENSO &geod et al.2005).

Increasing the seasonsireamflow forecast skilemains achalleng thatis being tackled

by improving IHE and the SCusing a variety of techniques. Techniques include model

developments and data assimilation and can be moré&ess expensiveddowever,over the

pastseveraldecadss, it has been shown thatperational streamflow forecast quality has not

significantlyimproved(Pagano et al. 2004)/elleset al.2007). Thsis the motivationfor the



109 use ofsensitivity analysisechniquesto guide future forecasting developmentsr seasonal

110 streamflow forecasting, ani the basis fothis paper

111 It is in this context thathe attribution of seasonal stamflowforecastuncertainty to the

112 IHG and SCEB errors has been researcheextensively. Wood and LettenmaieR008

113 introduced a nethod based on two hindcasting end pointee ESP and the reverseéSPIn

114 contrastto the ESP, whicbnly represents theincertainty inthe future climate,the reverse

115 ESPnlyrepresens theuncertanty in IHCs by using an ensemblénitial model states taken

116 from historical simulations to initiae a prediction forced by a single set of observed

117 meteorological inputsTypicallythe input uncertainty dampout over a period of months as

118 the influence of the perfect future climate input increasingly deternsimedel states.

119 Comparingthe skill of the ESRersusreverseESPseasonaktreamflow forecastsllows

120 one toidentify the dominant predictability soge (and conversely uncertainty sourcej

121 seasonal streamflow forecastinge(, the IHG or the SC§), and its evolution in both space

122 and time. ltwas successfully used to disentde the relative importance of initial conditions

123 and boundary forcing ears on seasonal stamflow forecast uncertainties bgeveral

124 authors: for example, fotatchmentdan the Unied States (Wood and Lettenmai2®08;Li et

125 al. 2009; Shukla and Lettenmaier 2Q1in France (Singlat al. 2012), in Switzerland

126 (Staudnger andSeibert2014), in China (Yuaet al. 2016; Yuar2016), in the Amazon (Paiva

127 et al.2012) as well as fdhe entire globe (Shuklat al.2013 Yosseét al.2013 MacLeodet
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al. 2016). This work isinstructive as it enablesthe dominant predictability soureto be

identified (i.e.,where effortsand resourceshould be targetedjo focusimprovement which

could potentially lead to more skilfskasonal streamfloyredictions.

This methodwas extended byWood et al. (2018V Z & (S YEiaatmethodcalled

variational ensemble streamflow prediction assessment (VESEAQh involvesassessing

intermediatelHG and SCBuncertainty points between the perfect and climatological points

applied in ESP and reverE&P. fie approach allowshe calculation of u $E] 00

o <S],18.@He sensitivity ofstreamflowforecast skill tdHCand SCF skithanges. A key

drawback of thevVESPA approachowever,is that it is computationally intensivé&or each

catchmentand initialsation month of a forecast, theesponsesurface was defined through

the use of dozens of multiecadal variableskill ensemble hindcasts, ultimately amounting to

millions of simulations. In contraghe ESP and reverdeSP skill can be estimated from a

single set of ensemble hindcasts spanning a historical pefibdIHCand SCF skiilariation

Zel]oo

method also was highly specific to the particular model state configuration, and involved a

relatively simplistic linear blending procedure. The elasticity caficuis were furthermore

based only on aingleverificationscoreof forecast skil(i.e., ) for the analysisAn ensemble

forecast has many attributeg.g.,the skill, the reliability, the reslution and the uncertainty

of the forecast among othersln order to obtain acomplete pictureof the forecast quality,
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the scores should encompass many of these attribategachverificationscorewill giveus

different information aboutthe forecast quality.

The drawbacks of VESPA motivate us to agssssomputationallyinexpensivanethods

of estimating the forecast skill elasticities, using only the original ESP and r&&Pseesults

that depend on the single hindcast series as mentioned above. The two methods are termed

End Point Interpolation (EPand End Point Blending (EPB). Inftrst part of this paperwe

compareresultsfrom the two methods tested on 18 catchments of the CONU&eariginal

results from the VESRAIsing a single verification scor€he objective of this part is to

investigate whether thenew methods can discriminate the influence I6fG and SCEerrors

on seasonal streamflow forecasting uncertaint&sd to assess the ability of dse new

methods tocorrectly estimate the forecast skill elasticitida the secondpart, additional

verification scoresare appliedfor streamflow forecast verificatignsupporting he second

objective of the paper, which is &xplore thesensitivity of the results obtained from the two

new methodsand theVESPA approacthb the choice of theverification €ore.

2. Methods, dataand evaluation strategy

a. TheVESPA approach

In this work, as in W6, the term Z % &éfers{o current observedmeteorological

data and tle term climatologicatefersto the wholedistribution of historicalobserved data

Figure 1 presents the EGHgure 1a)the reverseESRFigure 1b)the climatology(Figure 1c)



165 andthe VESPA forecagFigure 1d) as generated in \b6. The ESP, the reverseSP, the
166 Z% E( S[ (}E& 5 v sa2all endupdirite pPtle uncertainty in the sense that
167 S$Z pv ES JvSC Jv §Z}e (}E <S¢ ]* ]5Z TheylethEdndPditsE o]Ju S}

168 of the VESPA approach

169 The VESPA aims fwoduce streamflow forecastsfrom IHG and SCBE with an

170 wuncertaivSC *]Spu $ SA v 3Z Z% E( 8[ v 3Z (@Ghures}ld}P] o pv
171 Forecasts wereP v E § C olJv EGoC o v ]JvP §Z ojJu ss@éP] o v
172 model moisture states)v. §Z o]Ju S}o}P] o0 vs Z&4meéefrolddical ®rcings

173 of precipitation, evapotranspiration and temperatyresubsequently used to run the

174 hydrological model. The weights used for blending the data &0, 0.05, 0.10, 02 0.50,

175 0.75, 0.90, 0.95, 1)Papplied so thal weight ofzero |« $Z Z %kn@veddd andinity is

176 the climatological knowledgevith wincandwscglenotingthe weights used to blend thitCs

177 and theSCB, respectively(W16). An ESHorecast results fronthe weightswinc= 0 andwscr

178 = 1 the reverseESAromwinc=1 andwsce=Q SZ Z% E( Sffofdzc= O &ndwsce=

179 0; and the climatologyrom winc= 1 andwsce= 1

180 To plot the skill of the VESPA forecasts as a function diH@and SCFEkill, W16 used
181 skill surface plotgFigure 2)interpolating forecast skill results from differetiG and SCB
182 weighting combinationsThe axesepresentthe SCrRand IHCskKill, derivedrespectivelyfrom

183 the blending weightsvscrandwincusing thefollowing equations(W16)

10
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SCFskill 100u 1w~
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100u 1 w, >
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The SCF and the IHC skill values obtained from these equations are the percentage of

climatological variance explained in the respective predictability souree SCF and IHC;

W16).EachSCEkilHIHCskillcombination corresponds to a specific VESPA forecast, which skill

can be plotted on the skill surface plot (black crosses in Figure 2). Theilclegare the end

points of the VESPA forecasts: the reverseW ~@E& A "W Jv &]PuE

feU §Z Z% CE(

ESP and thelimatology (climo in Figure 2The skill surface plotare hencea graphical

represenation ofthe response surface obtained frorhd VESPA sensitivity analysis.

The VESPAeasonalstreamflow forecastswere generatedby W16 using lumped

Sacramento Soil Moisture Accounting (S2MA) and SNOWY7 catchment models for

unimpaired catchments The models wereforced with daily inputs in pregitation,

temperature and potential evapotranspiratipand calibrated and validated against observed

daily streamflow from the US Geological Survey (USGS). -Bighiskill variations of &0

year hindcas{from 198l to 2010)were produced for 424 catchments in the CON&i&ting

at the beginning of each month.€., forecast initialisation dates), with lead times up to six

months.

11
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b. Alternative methods tothe VESPA approach

In this papemwe present twoalternative methods of the VESPA approacballed the

End Point Interpolation (EPI) and the End Point Blending (HPRB3$e methodsaim to

reproduce the response surface obtained from thRéESPA approachy using thesame30

yearhindcastensemble produced byV16, aggregatedver thefirst three monthswith zero

lead time for each initialisation datgeferred to as anonth streamflow forecast hereafter)

and correspondingexclusivelyto the end pointg(i.e.,the ESP, the reverse®WU SZ Z %o & (

forecast and theclimatology).

The twonewmethods were tested for aubsetof the CONUSvide catchmentdataset

presented in VL6 (Figure 3)t comprisingl8 catchmentgrom the largeUSGS Hiro-Climatic

Data Network (HCDNLins2012) The 18 selected catchmentsver alarge range of hydro

meteorological conditionsincludingthe maritime climate regime of the U.S. West Coast

catchments the humid regime of the eastern.8 (Suth of the Great Lakes) with rainfall

driven runoff and variable winter snow n the most northen catchments andthe

Intermountain West and northern Great Plains regions where streamflovgreatly

influenced by the snow cycle.

1) End Point hterpolation (EPI)

The EPI produces a response surface by interpolatingarexastskill of the end

pointsthroughout the skill surface plot. Both linefre., Inear barycentric interpolationand

12
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cubic interpolation techniques were testetlowever, results will be shown for the linear
interpolation only as the cubic interpolation did not provide noticeabipriovements to the
linear interpolation given that the interpolation is based on only four points situated at the
corners of theresponse surfacerhe linear ERVasperformedfor each forecast initialisation

date and for each catchment.

2) End point BlendindEPB)
The EPB generates hindcastsdachwscr winccombination (i.e., each cross in Figure
2; wscrand wHcare selected to beéhe same blending weighissed byw16, for thepurpose
of comparisoil For eacltombination point a new ensemble of 100 members was generated
by blendingthe four end points, given a specific weighted average. The percentage of each
end point usedEP [%]i.e.,the number of members randomly selected from each end pgint)

was calculated for eaatombination pointusing the followingequation

EPY@ 1 [%r Wl UL [¥p Wi 3)

Where Ty, @and U, @are the wincandwscivalues of theend point for which the percentage is
calculated respectively For example, if the wcand wscematch the end point values, 100
percent of the EPB hindcast members are resampled from that end p@nti{e end point

skill is reproduced)lhis was done feeach forecast initialisation date and for each catchment

13
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In order to produce the skill surface plots for the EPB method,3@&and IHCskill was

calculatedusing the same equations as in W16 (ikeq,(1) and(2), respectively.

c. The evaluation strategy

The aim of this paper is toomparetwo computatianally inexpensivealternative

methods to theVESPA approagcthe EPI and the EPB. To this end, the pap&ldsinto two

distinct objectives. First, we want to investigate whether the EPI and/or the EPB can

discriminate the influence ofHG and SCE errors on seasonal streamflow forecasting

uncertaintiesand reproduce VESPKill elasticity estimatesThis will validate the use of one

or both methods as alternative to th#ESPA approaclsecond we want to explore the

sensitivity of the results obtained from the EPI, the EPB an¥HEf&PMethodsto the choice

of the verificationscore. This wilbe an attempt to demonstrate the importance of the choice

of the verificationscore for forecast véfication and communication.

1) Can EPI and EPB discriminate the influencéHi& and SCEerrors on

seasonal streamflow faecastuncertainties?

To explore the first objective of this paper, skill surface plots were produced for the

EPI, the EPB and théESPAnethods As in W16, e seasonal streamflow forecast skill
depicted in the skill surface plots was calculated from tRearson product moment
correlation coefficien{R?) of forecast ensemble means with the observationkere Z % E (

forecasts (model simulations driven bythe observed meteorology)were treated as

14
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264
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266
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271

observations to calculate the?R As discussed at length in W16, this chailediberately

excludesthe model errors as a source of forecast uncertainty.

The skill surface plots obtained from the EPI and the EPB methods were subsequently
compared qualitatively and quantitatively to the skill surface plots obtained foBSPA
approach The qualitative analysis consisted in visually inspecting the patmyn&ined in
the skill surface plots, giving an indication oftdominant predictability source on the
streamflow forecast skillThe quantitative analysis of the results was based on the calculation
of the skill elasticitiefor the IHG and theSCBE (Bncand Escrrespectively), for the EPI, the EPB
and theVESPMethods averagedacrosghree transects oh quadrant situatedn the cente

of the response surface, according to the followeguations

- S F¥519Q S F49,1900 S P7548 S P1940 S P 75® S 5 19,
HC u B

75% 19% 75% 19% 75% 19% -
L@

S F29,75Q S F49,190 S P44,7§) S P 4410 SB 758 S B 75,@%9

75% 19% 75% 19% 75% 19% ke
L 6

Esr 100u

The numeratorsexpressed as SEBES(F]), contain the gradients in thetreamflowforecast

skill betweenlHCskill (or SCFskill) values of 75%nd 19%(the denominator) The values in

15
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between the square brackets of the numerator are the IHC skill followed by the SCF skill

values, which indicates a certaiycr Winrccombinationpoint in the example skill surface plot

in Figure 2In the denominator, the IHC and SCF gkdtlients are gradients in th@ercentage

of the climatological variance explained in the respective predictability soudrse skill

elasticities Bncand Escg are positively oriented; where a skill elasticity of zero is obtained

when the predictability source has no influence on the skill of the streamflow forecast, while

positive[negativg elasticities mean that an improvement in the predictability sourdélead

to higher[lower] streamflow forecast skillThe skill elasticities were calculated for all three

methods and for the 3nonth streamflow forecasts produced for each catchment and

forecast initialisation date.

The ony difference between Ed4) and (5) and the skill elasticities calculated in W16

is thatthey chose to calculate skill elasticities around the ESP pnittte skill surface plots

Here, we chose to calculate skill elasticitiesross a quadrant within thskill surface plot

(between 75% and 19% te climatological variance explainéd the IHC and the SCiR)

order for the skill elasticity valueslculated in this papdp reflect theforecast skilgradients

within the regponse surfaceThis is done differently than in Wl&sthe aim of this paper is

to compae (qualitatively andquantitatively)the skill surface plots obtained from the ERHd

the EPBnethodsto the VESPA approach

16
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2) What is the sensitivity of the response surface to the choice of the

verification score?

In order to investigate the second objective of this pageneral verification scores were

calculated for each methodl€.,the EPI, the EPB and ti&SPA approaghrhese scores were

selected in order to coveteyattributes of the forecasts verified, they include:

x the Mean Absolute Error (MAE) of forecast ensemble means, relative td the E ( S|

forecasts

x the Continuous Rank Probability Score (CRPS) and its decomposition:

o0 the potential CRPS (CRPSpot): whereSpRP= resolution uncertainty,

0 the reliability partof the CRPS (CRPSreli).

The potential CRPS is the CRPS value that a forecast with perfect relability have. e

uncertainty is the variability of the observations and the resolution is the ability of the forecast

to distinguish situations with distatly different frequencies of occurrencélhe CRPS

reliability is a measure of thigias and the spreadf the system.

The CRPS was chosen as it is a widely used score to assess the overall quality of an

ensemble hydrometeorological forecast. The CRPS aweréhas the advantage that it can be

decomposed in different scores to look at many attributes of an ensemble forecast. The CRPS

score for a single forecast is equivalent to the MAE, which is why the latter was chosen.
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For all of the above verificatiortsres,the corresponding skill scasevere calculated

for each point of the skill surface p&from:

SCO rQOrecast
SCo reeference

Skill scorg,, ...« 1 6)

Where the scorgeference IS the score of the climatology point, for each method, each
initialisation date and each catchment.p&rfect forecast results in a forecaskill score of
oneand a forecast with equajuality as the reference forecasbrresponds to a&kill score of
zero. Any forecasts with legpualitythan the reference forecast produces negative skill score
values.Skill scores were calculated in order to have a similar score rasdee R (i.e., a

climatological score of ze@nd a perfect scoref one), for comparativepurposes.

Skill elagtitieswere subsequently calculated for all the skill scotesngEq (4) and (5),
for all three methods and for the-Bionth streamflow forecasts produced for each catchment
and forecast initialisation dateFrom these skill elasticityalues, the influence of
improvements in theHG and SCBon theseasonastreamflow forecast skilan be assessed,
Jv 8 Gue }( 8Z (}E 5[ }JA E 00 % E(}EuU v ~ }ve] E]JVP §Z
full ensemble spread, from the MAE artde CRIS respectively), their resolution and

uncertainty (CRPSpot) and their reliability (CRPSreli).
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2. Results

a. Can EPI and EPB discriminate the influencéH® and SCBerrors on
seasonal streamflow forecasincertainties?

For the first part of this studythe Crystal RiverGO;USGS gaye 009081600) a
snowmelt driven catchmentwill be used as a test case to illustrate the skill surface plots
obtained from the EPI and the EPB methaoztsmpared to the VESR@proach Precipitation
is the highestin winter and spring in this catchmerand falls as snow between November
and April. In April, the snow starts meltingd consequetly the soil moistue and streamflow

both increase.

Figure 4 displays the skill surface plots obtained for the VESPA (Fegutketlinear
EPI (Figure 4b) and the EPB methods (Figure 4c), friontRe 3month streamflow forecast
for the Crystal River, for initialisations on the first of each month (each row on Figure 4).
Figures 4d and 4e show the differences between thiéskiface plots obtained for the VESPA
and the EPI methods, and the VESPA and the EPB methods, respeétiviedy. visual
comparison of theskill surface plots obtained from tHmear EPI methodFiguredb) and the
EPB method (Figur4c) with those obtined fom the VESPA approadfrigure4a) for the
Crystal Rivetells us thatthe skill surface plots obtaineflom all three methods arevery
similar. For each initialisation date, the orientation of the gradients in streamflokecast

skill appeas identical. TheEPland the EPBhethods seento correctly indicate the dominant
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predictability source on th&8-month streamflow forecast skilfor each initialisation date for

this catchment Similar results were obtained for the other 17 catchmentseg(

Supplementary Figures 1 to J1Forecasts made on thé'bf February, March and September

show a sensitivity to thesCF skilfi.e., horizontal or near to horizontal orientation of the

streamflowforecastskill gradients), while all other forecasts arentioantly sensitive to the

IHC skil{i.e.,vertical or near to vertical orientation ohe streamflowforecastskill gradients).

The gradients in streamfloviorecastskill contained in th&PI skill surface plofigure

4b) differ moderatelyfrom the gradients obtained from theESPA approagkigure 4). This

can be observed in Figure Zhowing he differences between the skill surface plots obtained

for both methods TheVESPA approadives very strong gradients causing a rapid decrease

in streamflow forecast skill with a decrease in one of the predictability sourfesl]oo

depending on the initialisation date. In comparison, the EPI method indicates a gradual

decrease in streamfloforecastskill with a decrease in one of the two prew@ibility sources,

depending on the initialisation dat&hestreamflowforecastskill gradients produced by the

EPI methodare a reflection of the interpolation method useide(, here linear) and because

the corner points lack information about descrigiourvature of thesurface at interior points,

they cannot fully capture notinearities in the skill gradients across the skill surf&oe some

interior points, tis limitation of theEPImethod couldestimateverydifferent skill elasticities

than thoseobtained from theVESPA approach
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362 The skill surfacelpts produced by the EPB meth@€iguredc) showminordifferences

363 in the streamflowforecastskill gradientavhen compared tdhe skill surface plots generated

364 by theVESPA approachAgure ). This can be seen in Figure 4e, which shows the differences

365 between the skill surface plots obtained fdroth methods. To further inspect those

366 differences, they will be exploregliantitatively (i.e., by comparing the skill elasticities) below.

367 To quantify the accuracy of the patterns contained in &Rl and the EPSill surface

368 plots compared to the patterns of the VESPA skillagar plots,SCF and IHgKill elasticities

369 (i.e., Escrand Bng respectively)were calculated acrossa quadrant siiated within the

370 response surfactor all three methods, for the 18atchmens and each forecast initialisation

371 date, from Eq (4) and(5) respectivelyFigue 5Spresents the skill elasticgsfor nine of the 18

372 catchmentgthe plots for the other nineatchmens are shown irsupplementary Figure 18

373 Each plot corresponds to eatchmentand shows the skill elasti@s obtained from the

374 VESPAthe EPland the EPBnethods, as a function of the forecaisiitialisationdate. From

375 the nine different plots, theskill elasticitiegjiven by theEPBnethod appear almost identical

376 to the VESPA approactvhereas theskill elasticitieobtained from theEPImethod differ in

377 some placesThis confirms that the patterns of thEPBmethod are very similato the

378 patterns of theVESPA approagchith it beingthe closest out of the two tested methods

379 The value of thesCF skill elastici{y.e., Escp in relation to the value of the IHC skill

380 elasticity (i.e.BH9g, for a given methodndicates the dominant predictability source on the
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3-month streamflow forecasskill (here calculated from theadR For a selected methoaqual

SCF and IHC skill elasticity valsigsifies thatequalimprovemensin both theSCBEand the

IHG will lead to equal improvemestin the streamflow forecast skilllf Escris superior

[inferior] to Brg it reflectsa larger potential increase sireamflow forecast skiby improving

the SCFJIHC$. Although theEPI methodalmost alwaysindicates the same dominant

predictability source as the two other methods, the degree of influesfa@hanges in IHC and

SCF skithn the streamflow forecast skilli.e., the exact valus of the skill elasticitiesoften

differs. For many catchments and forecast initialisation datéke EPIlappears to

underestimate the skill elasticitiggroduced by the VESPA method

The nine differentatchmens for which theskill elasticitiesare presented in Fige 5

display three different types of behaviours, best captured byMBE&SPA approaemd theEPB

method. For the threecatchmens onthe leftmost colurm of Figure Simprovements in the

IHGwould yield the highest improvements in thenonth streamflow forecasskillfor spring

to summerinitialisations(April-Augustfor the CrystaRiver, Marchluly forthe Fish Riveand

March-June for the Middle Branch Escanaba Riaad in the winte{OctoberJanuaryor the

CrystalRiver, Novembebecember for the Fish River and in December for the Middle Branch

Escanaba Riverp CHmprovements would lead to better-onth streanflow forecastskill

for forecastdnitialised in the late winter and summer to falgbruaryMarch and September

for the Crystal River, February and AugOstober for the Fish River and Janu&sbruary
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412

413
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417

and JulySeptember for the Middle Branch EscanaldeeR. For the threecatchmensin the
middle column of Figur®, a notable feature is thathe 3-month streamflow forecast skill
would benefit fromSCHmprovementsfor summer initialisationgJuneSeptember for the
Chattooga and the Nantahala Rivers aldlySeptember for the New Rivefyinally, for the
three catchmens of the rightmost columief Figure 5the 3-month streamflow forecast skill
would benefit from improvements ithe SCEfor all initialisation datesThis is true with the
exception of foecasts initialiseth December foEast Fork Shoal Creédds important to note

that there is uncertainty around these estimates. However, this is a good first indication of
the sensitivity of 3anonth streamflow forecast skill (measured from th8 B HCs and SCFs

errors, for each forecashitialisationdate and each catchment.

The skill elasticities produced by the EPB method appear to be almost identical to the
skill elasticities obtained from the VESPA approach, with occasional marginal diffefgmeses.
suggests that the EPB method captures nearly exactly the degree of influenbanges in
IHC and SCF skith the streamflow forecast skijllobtained from the VESPA approa8bth
methods additionally indicate the same dominant predictability source: the predictability
source which, once improved, could lead to the largest increasenmordh streamflow
forecast skillTheEPBmethod will therefore be used as an alternative to MESPA approach

to investigate thesecond objectivef this paper.
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b. What is the sensitivity of the response surface to the choice of the
verification score?
In order to investigate the sensitivityf the response surface to the choice of the

verification score, and therefore tohé attribute of the forecastseveral scoreswvere
computed to evaluatehe streamflowforecast quality TheR, the MAEsKill score(MAESS)
and the CREBA E o po 8 3} Aop $ 8Z (}JE 3+ }JA E o0 % E(}
ensemble mean and the entire ensemble. Hutential CRPSCRPSpot) was computed to
o0}}l §8Z (}E +S¢[ € °+}ous]dnd the CRESelESIli(GRPSeli) to look

§ SZ (}E& <S[Qysa|RiMegGTOOSGS gaud®9081600) wilhereagain be used

as a test case to illustrathis part of the results.

Figure6 presents thelHC and SCskill elasticites (i.e., Bucand Escgin the top two
plots and the bottom two plots of Figure 6, respectivelg)a function of forecast initialisation
date, for the Crystal River catchmenthese are calculateilom Eq.(4) and (5), for all the
mentionedverificationscores, for the VESPA approacRigure @, the two leftmost plot$ and
the EPB method (Figurgéb, the two rightmost plots If we compare the skill elasticities
obtained from the VESPA approach with the skill elasticities obtained from the EPB method,
it appears that both methods produce very similar elasticities fer & the MABSSand the
CRPS This further confirms the results of the first part of the analysis, which highlighted the

similarity of the EPB results to the VESPA results, and extends it to multiple attributes of the
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437 seasonal streamflow forecasts. Howeyvslight differencesbetween the skill elasticities
438 produced by the two methodsan beobservedfor the CRPS#®t and significant differences

439 existfor the CRP®eli. These dissimilarities aiscussed further below.

440 If we now compare the skill elastigsobtained br the variousverificationscoresfor
441 both methodsitis clear hatthe R, the MAESSthe CRPSand theCRPSpot give very similar
442 skill elasticities.This hints that those verification scores overall agree othe degree of
443 influence ofchanges in IHC and SCF skillthe streamflow forecast skillHowever,a few
444 dissimilarities can be observed for some of the forecast initialisation dakes is for example
445 the case for forecasts made in the spring amdummer, where thdancappeardower for the
446 MAESSand the CRRES(and the CRFpot for the VESPA approach) compared to the:
447 obtained for the R for both methods It is alscapparentfor forecass made on the i of
448 February, March and Septembeavhere theEscrcalculated for the MAESand the CRPEand
449 the CRP%ot for the VESPA approach) is lower than feerobtained for the R for both
450 methods For both examples, it infers that improvements in the IHC and the SCF skill could
451 lead to larger improvements ithe streamflow forecast skilh terms of the Rthan in terms
452 of the MAESand the CRPES(and the CRFBot for the VESPA approachlhis overall
453 indicatesthat the degree of influence othanges in IHC and SCF shkillthe streamflow

454 forecast skilbiffers relative to the choice of the verification score.
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While the R, the MAESS the CRPSand the CRPPot give a very similar picture¢he

skill elasticites obtained for the CRPSeli appear very different, occasionally reaching

negative valuesThese negative values indicate a losstieamflow forecast ski(in terms of

the forecastreliability) as a result ofmprovements in one of the two predictability sourges

while all the otherverificationscores suggest @ain instreamflow forecast sk (in terms of

the forecastensemblemean andthe ensemble overall performance, its resolution and

uncertainty) with improvements in one of the two predictability sources.

The substantial differences in skill elasticities obtained for the CRPSSrelthieom

VESPA versus EPB method suggest that there are limitations to the ability of EPB to

reconstruct the full ensemble information present in VESPA, and of VESPA (applied with

relatively small ensemblest the end point¥to estimate sensitivities for cormgst verification

scores such as reliability. The reliability verification score is influenced by the combination of

bias, spread and other ensemble properties, and exhibits more noisy outcomes here than

were obtained for other verification scores. A negatielasticity may occur because the

ensemble spread has narrowed without sufficient improvements in bias, for instance. The

behaviour of the elasticity of reliabilities is even more difficult to diagnose, but we suspect

that the presence of noise (erronesilocal minima or maxima) or curvature in the associated

VESPA skill surface greatly undermines the linear blending techniques.
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Overdl, these results suggest thatnprovements inthe skill of either of the two

predictability sourceswill impact streamflow forecast skilldifferently depending onthe

attribute (i.e., verification scoredf the forecastskill that isconsidered and whether the

ensemble man or the full ensemble is used.

3. Discussion

a. Implications and limitations of the results

W16 introduced the variational ensemble streamflow prediction assessment (VESPA)

approach a sensitivity analysis technique used to pinpoint the dominant predictability source

of seasonal streamflow forecastinge(, the IHG and the SG§}, as well as quarftiing

improvements that can be expected in seasastedamflow forecast skills a result of realistic

improvements in those keyredictability sources. Despite being a powerful sensitivity

analysisapproach VESPAresentstwo keylimitations.

1) It is compuationally intensive requiring multipleensemblehindcass to define the

skill response surface (81 were used in the VESPA papsss one fothe EPB and

the EPI techniques)

2) It requires a complex state and forcing blending procedure that may introduce

additional uncertaintiesbiasesor interactions between the predictability sources

(Saltelli et al2004; Baroni ad Tarantole2014)that arenot accounted for odifficult

to quantify. This is not necessary in any of the end points required in the two
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approaches presented herevhich rely instead on analysing a single conventional

hindcast dataset that is more likely to be feasible for forecasting centres

Thecentralaim of this paper was to address thest limitation of the VESPA approadly
presening two computationallynexpensivalternative methods: th&end Point Interpolation
(EPI) and the End Point Blending (ERB)hods Both methods successfully identified the
dominant predictability source of-Bionth streamflow forecasts for a given catchmeand
forecast initialisation datgi.e., given by the orientation of thetreamflow forecast skill
gradients in the skill surface plot$jowever, the EPB wa®ore successfuh reproducinghe
VESPA skill elasticitiethe exactstreamflow forecasskill gradientssituatedwithin the skill
surface plotgfor skill and accuracy verification scores includimg R, the MAESS the CRPS
and the potential CRB%0 a certain extent)Theseskill elasticitiesndicatethe influence of

changes in IHC andC§E skilbn streamflow forecast skill

Thenew methods, by differing in their setup from tARéESPA approacto not inherit the
drawbacks specific to thispproachand mentioned aboveThe EPI and the EPB methods

neverthelesdhavetheir ownlimitations.

TheEPI(both for the linear and cubic interpolation methadbe latter was not shown)
did not fully capture the VESPA skill elasticitiedye to the nature of the method which
produces predefined gradients within the skill surface plots (efined bythe interpolation

method used) Additionally,curvature orlocal minima or maximé&f any)of the response
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surface cannot be represented by the EPI methbde EPBon the other hand performs

better at reflecting curvature in the skill response surfacende local elasticities between

the end pointsThe EPBhethod aimed at reproducing ESPA elasticitiesly by manipulating

the outputof a single hindcastataset(interpreted as ESlPeverseESRJ §Z Z% E( S[ (}&E

and climatology. The EPBnethod cannotmatch exactly the forecasts created by tHESPA

approach asit does not account for théiosyncrasiesn modelforecastbehaviout such as

interactions between the predictability sourcdsurthermore,it is likelythat the more the

model investigted is nonrlinear or exhibits skill response thresholdhe more the results

obtained from the EPB method will differ from the ones obtained from\{IEESPA approach

These results overadlllow that the EPB method can be used asiexpensivealternative

method to the VESPA approagfet with the potential limitations of the method stated

above.

For the first part of the analysis, the streamflow forecast quality was evaluated in terms

}(8§Z (YE S+ IR theg a8g of midtiple verificationcores ishioweveressential

to obtain a more complete perspective of forecast quality. Thus, we explored the

performance ofthe two new methods and theVESPA approador a range of additional

verification scors. The results, presented for the EPB method and WieSPA approach

showed differences in the response surfaces obtained for the various verification siceres (

the R, the MAESSthe CRPSand its decomposition). This suggests distinct sensitivitiéseof
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seasonal streamflow forecast attributeise(, overall performance of the forecasinsemble

mean and its full ensemble, forecast resolution, uncertainty and reliability) to changes in the

IHCand SCF skilldeally,a sensitivity analysis should beajoriented ti.e., it should be

performed with prior knowledge of the intended us# the results (Saltelli et aR004;

Pappenberger et al. 2@]1 Baroni and Tarantol2014) which may favour using one

verification score over another

This paper covered selected limitations of the work presented by W16. Many areas were

however left unexplored and could be interesting topics to focus future reseéicstly, a

major area inherent to modetbased sensitivity analysess that their results are model

dependent (Saltelli et aR000) thus the extent to whictihey canbe transferred to reality

depends on the model fidelityThe results presented in this papare specific to the

forecasting systemand similar systemsn which this analysiwas based and stuld be used

as an indicator of catchment sensitivitieds noted in W16, an extension of the elasticity

analysis to include observations and a model error component would provide valuable

insights. Another possible approach could be to usiee results from variougorecasting

systems asmput to the sensitivity analysis, in order to achieve a multi model consensus view

of the skill.As shown in Cloke et al. (2017), a multi model forcing framework can be highly

beneficial for streamflow foreastingcompared to a single model forecasting approach

provided the models are chosen judiciously so as to provide a rational chasatitari of
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forecasting uncertaintySecondly, the dependence of blending technique performance versus

VESPA on the characteristics of the skill surface (e.g., linear elinean) bears further

investigation.Firally, this sensitivity analysisaves generic the concepf improvements in

either of the predictability sourceslthough the spacéime nature of improvements may be

consequential This work could therefore be extended by studying the effect of degradations

in the temporal and spatial accuracy of the input dateereby indicatig the relative value

of improvements in the spatial or temporal predictabilityr a specific catchment and a

specific time of the year.

b. The wider context

The new strategy of operational forecasting centres isniove towards more

integrated operational modelling and forecastingapproaches, such as land surface

atmosphere coupled systems, and beyond thaarth System Models. These advances are

enabled by the continuous growth ofcomputing capabilities, a better understanding of

physical processes and tinénteractions throughout all compartments of the Earth, and the

availability and use of more and better observation data (satellitedata). Despite all these

advancesmostforecasts stilkeflect substantialncertaintythat grows with time and lints

the predictability of observed evestbeyond a few weeks of lead timeherapid progress

has ledour systemsto be ever moredata hungryas increasesin model complexityand

resolution are sought These computationally expensivdevelopmentsare not dways

31



568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

feasible, hencemodel developers musbe creative andconstantly weigh the costs and

benefits of improving one aspect over another, such as increaiegresolution or

complexity of the modelgFlato2011)

In this context, sensitivity analyses appeasre than eveas a natural tool t@stablish

priorities in improving predictions based oBarth §stem Modelling. Such analyseare a

powerful and valuable tool to support the examination wicertainty and prdictability

across spatial and temporal scales and for various applicafidrey can be used for a large

range of activities, including: examining model structure, identifying minimum data

standards, establishing priorities for updating forecasting systetasigning field campaigns

and providing realistic insights into the potential benefits of efforts to improve a forecasting

system to managers ithh prior knowledgeof their costs (Cloke et al. 2008; Lilburne and

Tarantola2009; W16).

However, sensitivitgnalysesnustbe easily reproducibl® be effective irsupporing

each new model or forecast system updaséad the results should easily bppliedin order

to constitute aontinuous learning proces¢Baroni and Tarantola014).In other wordsa

sersitivity analyss should be a simp)éractabletool for addressing multi-facetedchallenge.
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4. Conclusions

This paper presents twoomputationallyinexpensivealternative methodsto the VESPA

approachfor estimating forecast skill sensitivities and elasticiti® these the End Point

Blending (EPBhethod provides auseful substitute to the VESPA approactbDespite the

existence obomedifferences between the EPB and the VE&Réomes the EPB sucssfully

identifies the dominant predictability sourced.,the initial hydrologial conditions [IHE] and

the seasonal climate forecas{SCH]|) of seasonalstreamflow forecast skillfor a given

catchment and forecast initialisation date. The EPB methodachiitionallyreproduce the

VESP/Aorecastskill elasticities, indicating the degree of influencecbénges in IHC and SCF

skill on the streamflow forecast skillThe paper also rdws attentionto how the choice of

verification scoreimpacts the forecast ¢ sensitiviy to improvements made to the

predictability sourcesWith a goodunderstandingof the limitations of the methods, such a

sensitivity analysispproach can represerd valuable tool to guidduture forecasting and

modelling developments.
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756 Figurel Schematic of a. the ESP, b. the rew&S®, c. the climatology and d. the VESPA (this

757 figure is adapted from Figure 3 from W16).

758 Figure2 Schematic of a skill surface plot. The y and theex display the SCF and the IHC skill,
759 respectively. They are expressed as a percentage of the climatological variance explained in
760 the respective predictability source. The blending weightésiand wwg from which the skill

761 values are derived are shown in square brackets in the figure.

762 Figue 3 Map of the 18 catchments of the CONdgfected for the analysis, and the HCDN

763 regions (darlblueoutlines).

764 Figure 4 Skill surface platbtained br a. the VESPA, b. the linear EPI and c. the EPB reethod
765 The skills calculated from the?®fthe 3month streamflowforecast ensemble means against
766 SZ Z% & ( S§,[fof pidcasts produceilom 1981-2010for the Crystal RivdCO; USGS
767 gauge 009081600Q)with forecastinitialisations on the first day of each montbifferences
768 between theskill surface plots obtained for the VESPA and linear EPI methods and the e.

769 VESPA and EPB methods are also shown.

770 Figure 5 Streamflow forecast skill elasticities for the IHCs (ke sdid line) and the SCFs (i.e.,
771 Escr dashed line), calculatedceoss a quadrant situated within the-rBonth streamflow
772 forecast skill surface plots for the VESPA (in red), the linear EPI method (in grey) and the EPB

773 method (in blue; using E@) and (5)). Each plot shows the evolution of the IHC and SCF skill
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774 elasticities with the initialisation date for a given catchmente Thmatological regions of the

775 § Zu vSe & v ] S ]v SZ Theoskilleduriace plo 1.8m which these skill

776 elasticities were calculated are presented in Figure 4 and Supplementary Figures 1 to 17.

777 Figure 6 Streamflow forecast skilasticities for the IHCs (i.ewd:top two plots) and the SCFs

778 (i.e., Bcr bottom two plots) as a function of forecast initialisation datefr hindcasts

779 produced from 198P010 for the Crystal RivéCO; USGS gauge 009081600)ese skill

780 elasticiies werecalculated across a quadrant situated within them8nth streamflow

781 forecast skill surface plots (froBq.(4) and (5)) for severaverificationscores (the Rn red,

782 the MAESsKIll score[MAESSI]n blue, the CRBSn grey solid line, theotential CRPS

783 [CRPS®t] in grey dashed line and tHeRPSE&eliability [CRPSeli] in grey dotted line). The

784 results are shown for a. the VESPA approach (two leftmost plots) and b. the EPB method (two

785 rightmost plots).
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790 Figure2 Schematic of a skill surface plot. The y and theex display the SCF and the IHC skill,
791 respectively. They are expressed as a percentage of the climatological variance explained in
792 the respective gedictability source. The blending weights;cnd wiwg from which the skill

793 values are derived are shown in square brackets in the figure.
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Figure 4Skill surface plots obtainedrfa. the VESPA, b. the linear EPI and c. the EPB rsethod
The skill is calculated from thé & the 3month streamflowforecast ensemble means against

§Z Z% E&( S [fofpimdcastsprdduceddm 19812010for the Crystal RivdCO; USGS
gauge 009081600Q)with forecastinitialisations on the first day of each monthifferences
between the skill surface plots obtained for the d. VESPA and linear EPl methods and the e.

VESPA and EPB methodsals® shown.
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Figure 5 Streamflow forecast skill elasticities for the IHCs (i€ s&id line) and the SCFs (i.e.,

Escr dashed line), calculated across a quadrant situated within tineoBth streamflow
forecast skill surface plots for the VESPA (in red), the linear EPI method (in grey) and the EPB
method (in blue; usingq.(4) and(5)). Each plot shows the evolution of the IHC and SCF skill
elasticities with the initialisabn date for a given catchment. The climatological regions of the

§ Zu vSe & v ] § ]v SZ Theoskilleduriace ploR 1.8m which these skill

elasticities were calculated are presented in Figure 4 and Supplementary Figures 1 to 17.
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Figure 6Streamflow forecast skill elasticities for the IHCs (ives, tBp two plots) and the SCFs

(i.e., Bcr bottom two plots) as a function of forecast initialisation datefr hindcasts
produced from 1982010 for the Crystal RivéCO; USGS gau@®9081600) These skill
elasticities werecalculated across a quadrant situated within them8nth streamflow
forecast skill surface plots (from E4) and (5)) for severaverificationscores (the Rn red,

the MAEskill score[MAESSI]n blue, the CRB3Sn grey solid line, thepotential CRPS
[CRP3®t] in greydashed line and th€RPSS reliabilit¢ RPSeli] in grey dotted line). The
results are shown for a. the VESPA approach (two leftmost plots) and b. the EPB method (two

rightmost plots).
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