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ABSTRACT

Seasonal streamflow prediction skill can derive from catchment initial hydrological conditions (IHCs) and from the

future seasonal climate forecasts (SCFs) used to produce the hydrological forecasts. Although much effort has gone into

producing state-of-the-art seasonal streamflow forecasts from improving IHCs and SCFs, these developments are ex-

pensive and time consumingand the forecasting skill is still limited inmost parts of theworld.Hence, sensitivity analyses are

crucial to funnel the resources into useful modeling and forecasting developments. It is in this context that a sensitivity

analysis technique, the variational ensemble streamflow prediction assessment (VESPA) approach, was recently in-

troduced. VESPA can be used to quantify the expected improvements in seasonal streamflow forecast skill as a result of

realistic improvements in its predictability sources (i.e., the IHCs and the SCFs)—termed ‘‘skill elasticity’’—and to indicate

where efforts should be targeted. The VESPA approach is, however, computationally expensive, relying on multiple

hindcasts having varying levels of skill in IHCs and SCFs. This paper presents two approximations of the approach that are

computationally inexpensive alternatives. These new methods were tested against the original VESPA results using 30

years of ensemble hindcasts for 18 catchments of the contiguousUnited States. The results suggest that one of themethods,

end point blending, is an effective alternative for estimating the forecast skill elasticities yielded by the VESPA approach.

The results also highlight the importance of the choice of verification score for a goal-oriented sensitivity analysis.
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1. Introduction

Unprecedented increases in computer capabilities

have shaped the last several decades’ advances in

numerical weather prediction (NWP), and with them,

the development of environmental forecasting and

modeling systems. This has led to a shift in the strat-

egy of operational forecasting centers toward more

integrated modeling and forecasting approaches,

such as coupled systems and Earth system models

(ESMs), with the final aim to extend the limits of

predictability (i.e., from subseasonal to seasonal

forecasting). These developments are supported by

the assimilation of more and better-quality observa-

tion data as well as the increase in model resolutions

and complexity. However, such advances can be very

expensive and data hungry and may not yield pro-

portional improvements.

Seasonal hydrological forecasts are predictions of the

future states of the land surface hydrology (e.g.,

streamflow), up to a few months ahead. They are valu-

able for applications such as reservoir management for

hydropower, agriculture and urban water supply, spring

flood and drought prediction, and navigation, among

others (Clark et al. 2001; Hamlet et al. 2002; Chiew et al.

2003; Wood and Lettenmaier 2006; Regonda et al. 2006;

Luo and Wood 2007; Kwon et al. 2009; Cherry et al.

2005; Viel et al. 2016). They have the potential to pro-

vide early warning for increased preparedness (Yuan

et al. 2015). Traditionally, seasonal streamflow forecasts

have relied upon land surface memory, the persistence

in the land surface (e.g., catchment) initial hydrolog-

ical conditions (IHCs; of soil moisture, groundwater,

snowpack, and the current streamflow). IHCs are one

of the most important predictability sources of sea-

sonal streamflow forecasts and were thus the starting

point for the development of the ensemble streamflow

prediction (ESP) approach in the 1970s (Wood et al.

2016b). The ESP was first developed and used for

reservoir management purposes. It is produced by

running a hydrological model with observed meteo-

rological inputs to produce current observed IHCs,

from which the forecast is started, and the forcing over

the forecast period is undertaken using an ensemble of

historical meteorological observations (Day 1985).

The ESP method assumes that the model states to

initialize a forecast are perfectly estimated, while the

future climate is completely unknown. However, the

skill of the ESP decreases significantly after one to a

few months of lead time over most parts of the world

because of a decrease in the land surface memory with

time. The achievable predictability from the ESP thus

depends on the persistence of the IHCs, which can

vary as a function of the season (i.e., the transition

between dry and wet seasons can, for example, be

hard to forecast) and the location and size of the

catchment (i.e., the streamflow in a large catchment

with a slow response time and/or situated in a region

with negligible precipitation inputs during the fore-

cast period will for example be easier to forecast;

Wood and Lettenmaier 2008; Shukla et al. 2013; van

Dijk et al. 2013; Yuan et al. 2015).

More recently, seasonal climate predictability derived

from large-scale climate precursors [e.g., El Niño–
Southern Oscillation (ENSO) and the North Atlantic

Oscillation (NAO)] has been used to enhance seasonal

streamflow forecasting (e.g., Wood et al. 2002; Yuan

et al. 2013; Demargne et al. 2014; Mendoza et al. 2017).

Such systems produce streamflow forecasts by initializ-

ing a hydrological model to estimate IHCs and forcing

the model with inputs based on seasonal climate fore-

casts (SCFs; of temperature and precipitation) instead

of historical observations. Their skill is also still limited

because of the rapid decrease in precipitation forecast-

ing skill beyond two weeks of lead time, and the skill

is variable in both space and time (Yuan et al. 2011;

van Dijk et al. 2013; Slater et al. 2017). In Europe, for

instance, the skill is higher in winter in regions where the

winter precipitation is highly correlated with the NAO.

Regions with high skill include the Iberian Peninsula,

Scandinavia, and regions around the Black Sea (Bierkens

and van Beek 2009). In the contiguous United States

(CONUS), the skill is on average higher over (semi)arid

western catchments, due to the persistence of the IHCs

influence up to threemonths of lead time. The skill can be

higher in some regions of the western CONUS (i.e.,

California, the Pacific Northwest, andGreat Basin) in the

winter and fall due to higher precipitation forecasting

skill in strong ENSO phases (Wood et al. 2005).

Increasing the seasonal streamflow forecast skill re-

mains a challenge: one that is being tackled by improving

IHCs and SCFs using a variety of techniques. Techniques

include model developments and data assimilation and

can vary in computational expense. However, over the

past several decades, it has been shown that operational

streamflow forecast quality has not significantly improved

(Pagano et al. 2004; Welles et al. 2007). This is the mo-

tivation for the use of sensitivity analysis techniques to

guide future forecasting developments for seasonal

streamflow forecasting and is the basis for this paper.

It is in this context that the attribution of seasonal

streamflow forecast uncertainty to the IHC and SCF

errors has been researched extensively. Wood and

Lettenmaier (2008) introduced a method based on two

hindcasting end points: the ESP and the reverse ESP.

In contrast to the ESP, which only represents the
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uncertainty in the future climate, the reverse ESP only

represents the uncertainty in IHCs by using an ensemble

of initial model states taken from historical simulations

to initialize a prediction forced by a single set of ob-

served meteorological inputs. Typically, the input un-

certainty attenuates over a period of months as the

influence of the perfect future climate input increasingly

determines model states.

Comparing the skill of the ESP versus reverse-ESP

seasonal streamflow forecasts allows one to identify the

dominant predictability source (and conversely un-

certainty source) of seasonal streamflow forecasting (i.e.,

the IHCs or the SCFs), and its evolution in both space and

time. It was successfully used to disentangle the relative

importance of initial conditions and boundary forcing er-

rors on seasonal streamflow forecast uncertainties by sev-

eral authors: for example, for catchments in the United

States (Wood and Lettenmaier 2008; Li et al. 2009; Shukla

and Lettenmaier 2011), in France (Singla et al. 2012), in

Switzerland (Staudinger and Seibert 2014), in China

(Yuan et al. 2016; Yuan 2016), and in the Amazon (Paiva

et al. 2012), as well as for the entire globe (Shukla et al.

2013; Yossef et al. 2013;MacLeod et al. 2016). This work is

instructive as it enables the dominant predictability source

to be identified (i.e., where efforts and resources should be

targeted) to focus improvement, which could potentially

lead to more skillful seasonal streamflow predictions.

This method was extended by Wood et al. (2016a,

hereafter W16) via a method called variational ensem-

ble streamflow prediction assessment (VESPA), which

involves assessing intermediate IHC and SCF un-

certainty points between the perfect and climatological

points applied in ESP and reverse ESP. The approach

allows the calculation of ametric called ‘‘skill elasticity,’’

that is, the sensitivity of streamflow forecast skill to IHC

and SCF skill changes. A key drawback of the VESPA

approach, however, is that it is computationally in-

tensive. For each catchment and initialization month

of a forecast, the response surface was defined through

the use of dozens of multidecadal variable-skill ensem-

ble hindcasts, ultimately amounting to millions of sim-

ulations. In contrast, the ESP and reverse-ESP skill can

be estimated from a single set of ensemble hindcasts

spanning a historical period. The IHC and SCF skill

variation method was also highly specific to the partic-

ular model state configuration and involved a relatively

simplistic linear blending procedure. The elasticity cal-

culations were furthermore based only on a single ver-

ification score of forecast skill (i.e., coefficient of

determination R2) for the analysis. An ensemble fore-

cast has many attributes, for example, the skill, the re-

liability, the resolution, and the uncertainty of the

forecast, among others. To obtain a complete picture of

the forecast quality, the scores should encompass many

of these attributes, as each verification score will give us

different information about the forecast quality.

The drawbacks of VESPA motivate us to assess two

computationally inexpensive methods of estimating the

forecast skill elasticities, using only the original ESP and

reverse-ESP results that depend on the single hindcast

series as mentioned above. The twomethods are termed

end point interpolation (EPI) and end point blending

(EPB). In the first part of this paper, we compare results

from the two methods tested on 18 catchments of the

CONUS to the original results from the VESPA, using a

single verification score. The objective of this part is to

investigate whether the new methods can discriminate

the influence of IHC and SCF errors on seasonal

streamflow forecasting uncertainties and to assess the

ability of those new methods to correctly estimate the

forecast skill elasticities. In the second part, additional

verification scores are applied for streamflow forecast

verification, supporting the second objective of the pa-

per, which is to explore the sensitivity of the results

obtained from the two new methods and the VESPA

approach to the choice of the verification score.

2. Methods, data, and evaluation strategy

a. The VESPA approach

In this work, as in W16, the term ‘‘perfect’’ refers to

current observed meteorological data and the term clima-

tological refers to the whole distribution of historical ob-

served data. Figure 1 presents theESP (Fig. 1a), the reverse

ESP (Fig. 1b), the climatology (Fig. 1c), and the VESPA

forecast (Fig. 1d), as generated in W16. The ESP, the re-

verse ESP, the perfect forecast, and the climatology are all

end points of the uncertainty in the sense that the un-

certainty in those forecasts is either perfect or climatolog-

ical. They are the end points of the VESPA approach.

VESPA aims to produce streamflow forecasts from

IHCs and SCFs with an uncertainty situated between the

perfect and the climatological uncertainty (Fig. 1d).

Forecasts were generated by linearly blending the cli-

matological and perfect IHCs (i.e., model moisture

states) and the climatological and perfect SCFs (i.e.,

meteorological forcings of precipitation, evapotranspi-

ration, and temperature), subsequently used to run the

hydrological model. The weights used for blending the

data were (w 5 0, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95,

1.0), applied so that a weight of zero is the perfect

knowledge and unity is the climatological knowledge,

with wIHC and wSCF denoting the weights used to blend

the IHCs and the SCFs, respectively (W16). An ESP

forecast results from the weightswIHC5 0 andwSCF5 1,

the reverse ESP fromwIHC5 1 andwSCF5 0, the perfect
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forecast from wIHC 5 0 and wSCF 5 0, and the clima-

tology from wIHC 5 1 and wSCF 5 1.

To plot the skill of the VESPA forecasts as a function

of the IHC and SCF skill, W16 used skill surface plots

(Fig. 2), interpolating forecast skill results from different

IHC and SCF weighting combinations. The axes repre-

sent the SCF and IHC skill, derived respectively from

the blending weights wSCF and wIHC using the following

equations (W16):

SCF skill5 1003 (12w2
SCF) and (1)

IHC skill5 1003 (12w2
IHC). (2)

The SCF and the IHC skill values obtained from these

equations are the percentage of climatological variance

explained in the respective predictability source (i.e., SCF

and IHC; W16). Each SCF skill–IHC skill combination

corresponds to a specificVESPA forecast, the skill of which

can be plotted on the skill surface plot (black plus signs in

Fig. 2). The blue circles are the end points of the VESPA

forecasts: the reverse ESP (revESP in Fig. 2), the perfect

forecasts, theESP, and the climatology (climo inFig. 2). The

skill surfaceplots arehence a graphical representationof the

response surface obtained from the VESPA sensitivity

analysis.

The VESPA seasonal streamflow forecasts were gener-

ated by W16 using lumped Sacramento Soil Moisture Ac-

counting (SAC-SMA)andSNOW-17 catchmentmodels for

unimpaired catchments. The models were forced with daily

inputs in precipitation, temperature, and potential evapo-

transpiration and were calibrated and validated against

observed daily streamflow from theU.S. Geological Survey

(USGS). Eighty-one skill variations of a 30-yr hindcast

(from 1981 to 2010) were produced for 424 catchments in

the CONUS, starting at the beginning of each month (i.e.,

forecast initialization dates), with lead times up to 6months.

b. Alternative methods to the VESPA approach

In this paper we present two alternative methods of the

VESPA approach, the EPI and the EPB. These methods

aim to reproduce the response surface obtained from the

VESPA approach by using the same 30-yr hindcast en-

sembles produced by W16, aggregated over the first three

months with zero lead time for each initialization date

(referred to as 3-month streamflow forecast hereafter) and

corresponding exclusively to the end points (i.e., the ESP,

the reverseESP, the perfect forecast, and the climatology).

FIG. 1. Schematic of (a) the ESP, (b) the reverse ESP, (c) the climatology, and (d) theVESPA (this figure is adapted

from Fig. 3 in W16).
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The two new methods were tested for a subset of the

CONUS-wide catchment dataset presented in W16

(Fig. 3), comprising 18 catchments from the large USGS

Hydro-Climatic Data Network (HCDN; Lins 2012). The

18 selected catchments cover a large range of hydrome-

teorological conditions, including the maritime climate

regime of the U.S. West Coast catchments; the humid

regime of the eastern United States (south of the Great

Lakes) with rainfall-driven runoff and variable winter

snow in the most northern catchments; and the In-

termountain West and northern Great Plains regions,

where streamflow is greatly influenced by the snow cycle.

1) END POINT INTERPOLATION

The EPI produces a response surface by interpolating

the forecast skill of the end points throughout the skill

FIG. 2. Schematic of a skill surface plot. The y and x axes display the SCF and the IHC skill,

respectively. They are expressed as a percentage of the climatological variance explained in the

respective predictability source. The blending weights, wSCF and wIHC, from which the skill

values are derived are shown in square brackets in the figure.

FIG. 3. Map of the 18 catchments of the CONUS selected for the analysis and the HCDN regions (dark blue

outlines).
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surface plot. Both linear (i.e., linear barycentric in-

terpolation) and cubic interpolation techniques were

tested. However, results will be shown for the linear

interpolation only as the cubic interpolation did not

provide noticeable improvements to the linear in-

terpolation given that the interpolation is based on only

four points situated at the corners of the response sur-

face. The linear EPI was performed for each forecast

initialization date and for each catchment.

2) END POINT BLENDING

The EPB generates hindcasts for each wSCF–wIHC

combination (i.e., each plus sign in Fig. 2;wSCF andwIHC

are selected to be the same blending weights used by

W16, for the purpose of comparison). For each combi-

nation point, a new ensemble of 100 members was

generated by blending the four end points, given a spe-

cific weighted average. The percentage of each end point

used [EP(%); i.e., the number of members randomly

selected from each end point], was calculated for each

combination point using the following equation:

EP(%)5 (12 jx
EP

2w
IHC

j)3 (12 jy
EP

2w
SCF

j) , (3)

where xEP and yEP are the wIHC and wSCF values of the

end point for which the percentage is calculated, re-

spectively. For example, if the wIHC and wSCF match the

end point values, 100% of the EPB hindcast members

are resampled from that end point (i.e., the end point

skill is reproduced). This was done for each forecast

initialization date and for each catchment.
To produce the skill surface plots for the EPBmethod,

the SCF and IHC skill was calculated using the same

equations as in W16 [i.e., Eqs. (1) and (2), respectively].

c. The evaluation strategy

The aim of this paper is to compare two computa-

tionally inexpensive alternative methods to the VESPA

approach, the EPI and the EPB. To this end, the paper

unfolds into two distinct objectives. First, we want to

investigate whether the EPI and/or the EPB can dis-

criminate the influence of IHC and SCF errors on

seasonal streamflow forecasting uncertainties and

reproduce VESPA skill elasticity estimates. This will

validate the use of one or both methods as alternative to

the VESPA approach. Second, we want to explore the

sensitivity of the results obtained from the EPI, the EPB,

and the VESPAmethods to the choice of the verification

score. This will be an attempt to demonstrate the im-

portance of the choice of the verification score for fore-

cast verification and communication.

1) CAN EPI AND EPB DISCRIMINATE THE

INFLUENCE OF IHC AND SCF ERRORS ON

SEASONAL STREAMFLOW FORECAST

UNCERTAINTIES?

To explore the first objective of this paper, skill sur-

face plots were produced for the EPI, the EPB, and the

VESPA methods. As in W16, the seasonal streamflow

forecast skill depicted in the skill surface plots was cal-

culated from theR2 of forecast ensemble means with the

observations, where perfect forecasts (model simula-

tions driven by the observed meteorology) were treated

as observations to calculate the R2. As discussed at

length in W16, this choice deliberately excludes the

model errors as a source of forecast uncertainty.

The skill surface plots obtained from the EPI and the

EPB methods were subsequently compared qualitatively

and quantitatively to the skill surface plots obtained for

the VESPA approach. The qualitative analysis consisted

in visually inspecting the patterns contained in the skill

surface plots, giving an indication of the dominant pre-

dictability source on the streamflow forecast skill. The

quantitative analysis of the results was based on the cal-

culation of the skill elasticities for the IHCs and the SCFs

(EIHC and ESCF, respectively), for the EPI, the EPB, and

theVESPAmethods, averaged across three transects of a

quadrant situated in the center of the response surface,

according to the following equations:

E
IHC

5 1003
S(F[75, 19 ])2 S(F[19, 19 ])

75%219%
1

S(F[75, 44 ])2 S(F[19, 44 ])

75%219%
1

S(F[75, 75 ])2 S(F[19, 75 ])

75%219%

� �
=3

(4)

and

E
SCF

5 1003
S(F[19, 75 ])2S(F[19, 19 ])

75%219%
1

S(F[44, 75 ])2 S(F[44, 19 ])

75%219%
1

S(F[75, 75 ])2 S(F[75, 19 ])

75%219%

� �
=3.

(5)

The numerators, expressed as S(F [�]) 2 S(F [�]), con-
tain the gradients in the streamflow forecast skill

between IHC skill (or SCF skill) values of 75% and

19% (the denominator). The values in between the
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square brackets of the numerator are the IHC skill

followed by the SCF skill values, which indicates a

certain wSCF–wIHC combination point in the example skill

surface plot in Fig. 2. In the denominator, the IHC and SCF

skill gradients are gradients in the percentage of the cli-

matological variance explained in the respective pre-

dictability source. The skill elasticities (EIHC and ESCF) are

positively oriented, where a skill elasticity of zero is ob-

tained when the predictability source has no influence on

the skill of the streamflow forecast,while positive (negative)

elasticities mean that an improvement in the predictability

source will lead to higher (lower) streamflow forecast skill.

The skill elasticities were calculated for all three methods

and for the 3-month streamflow forecasts produced for each

catchment and forecast initialization date.

The only difference between Eqs. (4) and (5) and the

skill elasticities calculated in W16 is that they chose to

calculate skill elasticities around the ESP point in the

skill surface plots. Here, we choose to calculate skill

elasticities across a quadrant within the skill surface plot

(between 75% and 19% of the climatological variance

explained in the IHC and the SCF) in order for the skill

elasticity values calculated in this paper to reflect the

forecast skill gradients within the response surface. This

is done differently to W16 because the aim of this paper

is to compare (qualitatively and quantitatively) the skill

surface plots obtained from the EPI and the EPB

methods to the VESPA approach.

2) WHAT IS THE SENSITIVITY OF THE RESPONSE

SURFACE TO THE CHOICE OF THE

VERIFICATION SCORE?

To investigate the second objective of this paper,

several verification scores were calculated for each

method (i.e., the EPI, the EPB, and the VESPA ap-

proach). These scores were selected in order to cover

key attributes of the forecasts verified, and they include

d the mean absolute error (MAE) of forecast ensemble

means, relative to the perfect forecasts and
d the continuous rank probability score (CRPS) and its

decomposition:
d the potential CRPS (CRPSpot), where CRPSpot 5
resolution 2 uncertainty, and

d the reliability part of the CRPS (CRPSreli).

The potential CRPS is the CRPS value that a forecast with

perfect reliability would have. The uncertainty is the var-

iability of the observations and the resolution is the ability

of the forecast to distinguish situations with distinctly dif-

ferent frequencies of occurrence. The CRPS reliability is a

measure of the bias and the spread of the system.

TheCRPSwas chosen as it is awidely used score to assess

the overall quality of an ensemble hydrometeorological

forecast. The CRPSmoreover has the advantage that it can

be decomposed into different scores in order to look at the

many different attributes of an ensemble forecast. The

CRPS for a single forecast is equivalent to theMAE, which

is why the latter was chosen.

For all of the above verification scores, the corre-

sponding skill scores were calculated for each point of

the skill surface plots from

skill score
forecast

5 12
score

forecast

score
reference

, (6)

where the scorereference is the score of the climatology

point, for eachmethod, each initialization date, and each

catchment. A perfect forecast results in a forecast skill

score of unity and a forecast with equal quality as the

reference forecast corresponds to a skill score of zero.

Any forecasts of lower quality than the reference fore-

cast produce negative skill score values. Skill scores

were calculated in order to have a similar score range as

the R2 (i.e., a climatological score of zero and a perfect

score of one), for comparative purposes.

Skill elasticities were subsequently calculated for all

the skill scores, using Eqs. (4) and (5), for all three

methods and for the 3-month streamflow forecasts pro-

duced for each catchment and forecast initialization

date. From these skill elasticity values, the influence of

improvements in the IHCs and SCFs on the seasonal

streamflow forecast skill can be assessed, in terms of the

forecasts’ overall performance (considering the mean of

the ensemble or the full ensemble spread, from the

MAE and the CRPS, respectively), their resolution and

uncertainty (CRPSpot), and their reliability (CRPSreli).

3. Results

a. Can EPI and EPB discriminate the influence of
IHC and SCF errors on seasonal streamflow
forecast uncertainties?

For the first part of this study, the Crystal River

(Colorado; USGS gauge 009081600), a snowmelt-driven

catchment, will be used as a test case to illustrate the skill

surface plots obtained from the EPI and the EPB

methods, compared to the VESPA approach. Pre-

cipitation is the highest in winter and spring in this

catchment and falls as snow between November and

April. In April, the snow starts melting and conse-

quently the soil moisture and streamflow both increase.

Figure 4 displays the skill surface plots obtained for

the VESPA (Fig. 4a), the linear EPI (Fig. 4b), and the

EPB methods (Fig. 4c), from R2 for the 3-month

streamflow forecast for the Crystal River, for initializa-

tions on the first of each month (each row in Fig. 4).
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FIG. 4. Skill surface plots obtained for (a) theVESPA, (b) the linear EPI, and (c) the EPBmethods. The skill

is calculated from theR2 of the 3-month streamflow forecast ensemble means against the perfect forecasts, for

hindcasts produced from 1981 to 2010 for the Crystal River (USGS gauge 009081600), with forecast initiali-

zations on the first day of each month. Differences between the skill surface plots obtained for (d) the VESPA

and linear EPI methods and (e) the VESPA and EPB methods are also shown.
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Figures 4d and 4e show the differences between the skill

surface plots obtained for the VESPA and EPI methods

and the VESPA and EPB methods, respectively. A first

visual comparison of the skill surface plots obtained from

the linear EPI method (Fig. 4b) and the EPB method

(Fig. 4c) with those obtained from the VESPA approach

(Fig. 4a) for the Crystal River tells us that the skill surface

plots obtained fromall threemethods are very similar. For

each initialization date, the orientation of the gradients in

streamflow forecast skill appears identical. The EPI and

the EPBmethods seem to correctly indicate the dominant

predictability source on the 3-month streamflow forecast

skill, for each initialization date for this catchment. Similar

results were obtained for the other 17 catchments (see

Figs. S1–S17 in the supplemental material). Forecasts

made on the first of February, March, and September

show a sensitivity to the SCF skill (i.e., horizontal or near

to horizontal orientation of the streamflow forecast skill

gradients), while all other forecasts are dominantly sen-

sitive to the IHC skill (i.e., vertical or near to vertical

orientation of the streamflow forecast skill gradients).

The gradients in streamflow forecast skill contained in

the EPI skill surface plots (Fig. 4b) differ moderately

from the gradients obtained from the VESPA approach

(Fig. 4a). This can be observed in Fig. 4d, showing the

differences between the skill surface plots obtained for

both methods. The VESPA approach gives very strong

gradients, causing a rapid decrease in streamflow fore-

cast skill with a decrease in one of the predictability

sources’ skill, depending on the initialization date. In

comparison, the EPI method indicates a gradual de-

crease in streamflow forecast skill with a decrease in one

of the two predictability sources, depending on the ini-

tialization date. The streamflow forecast skill gradients

produced by the EPI method are a reflection of the in-

terpolation method used (i.e., here linear), and because

the corner points lack information about describing cur-

vature of the surface at interior points, they cannot fully

capture nonlinearities in the skill gradients across the skill

surface. For some interior points, this limitation of the

EPI method could estimate very different skill elasticities

than those obtained from the VESPA approach.

The skill surface plots produced by the EPB method

(Fig. 4c) showminor differences in the streamflow forecast

skill gradients when compared to the skill surface plots

generated by the VESPA approach (Fig. 4a). This can be

seen in Fig. 4e, which shows the differences between the

skill surface plots obtained for both methods. To further

inspect those differences, they will be explored quantita-

tively (i.e., by comparing the skill elasticities) below.

To quantify the accuracy of the patterns contained in the

EPI and the EPB skill surface plots compared to the pat-

terns of the VESPA skill surface plots, IHC and SCF skill

elasticities (i.e., EIHC and ESCF, respectively) were calcu-

lated across a quadrant situatedwithin the response surface

for all three methods, for the 18 catchments and each

forecast initialization date, from Eqs. (4) and (5), respec-

tively. Figure 5 presents the skill elasticities for nine of the

18 catchments (the plots for the other nine catchments are

shown in Fig. S18). Each plot corresponds to a catchment

and shows the skill elasticities obtained from the VESPA,

the linear EPI, and the EPB methods as a function of the

forecast initialization date. From the nine different plots,

the skill elasticities given by the EPB method appear al-

most identical to the VESPA approach, whereas the skill

elasticities obtained from the EPI method differ in some

places. This confirms that the patterns of the EPB method

are very similar to the patterns of the VESPA approach,

with it being the closest out of the two tested methods.

The value of the SCF skill elasticity (i.e., ESCF) in

relation to the value of the IHC skill elasticity (i.e.,

EIHC), for a given method, indicates the dominant pre-

dictability source on the 3-month streamflow forecast

skill (here calculated from the R2). For a selected

method, equal SCF and IHC skill elasticity values sig-

nifies that equal improvements in both the SCFs and the

IHCs will lead to equal improvements in the streamflow

forecast skill. If ESCF is superior (inferior) to EIHC, it

reflects a larger potential increase in streamflow forecast

skill by improving the SCFs (IHCs). Although the EPI

method almost always indicates the same dominant pre-

dictability source as the two other methods, the degree

of influence of changes in IHC and SCF skill on the

streamflow forecast skill (i.e., the exact values of the skill

elasticities) often differs. For many catchments and fore-

cast initialization dates, the EPI appears to underestimate

the skill elasticities produced by the VESPA method.

The nine different catchments for which the skill

elasticities are presented in Fig. 5 display three different

types of behavior, best captured by the VESPA ap-

proach and the EPB method. For the three catchments

in Fig. 5 (left), improvements in the IHCs would yield

the highest improvements in the 3-month streamflow

forecast skill for spring to summer initializations (April–

August for the Crystal River, March–July for the Fish

River, andMarch–June for the Middle Branch Escanaba

River) and in the winter (October–January for the

Crystal River, November–December for the Fish River,

and inDecember for theMiddleBranchEscanabaRiver).

SCF improvements would lead to better 3-month

streamflow forecast skill for forecasts initialized in the

late winter and summer to fall (February–March and

September for the Crystal River, February and August–

October for the Fish River, and January–February and

July–September for the Middle Branch Escanaba

River). For the three catchments in Fig. 5 (middle),
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a notable feature is that the 3-month streamflow forecast

skill would benefit from SCF improvements for summer

initializations (June–September for the Chattooga and the

Nantahala Rivers and July–September for the New

River). Finally, for the three catchments in Fig. 5 (right),

the 3-month streamflow forecast skill would benefit from

improvements in the SCFs for all initialization dates. This

is true with the exception of forecasts initialized in De-

cember for East Fork Shoal Creek. It is important to note

that there is uncertainty around these estimates. However,

this is a good first indication of the sensitivity of 3-month

streamflow forecast skill (measured from the R2) to IHC

and SCF errors for each forecast initialization date and

each catchment.

The skill elasticities produced by the EPB method

appear to be almost identical to the skill elasticities

obtained from the VESPA approach, with occasional

marginal differences. This suggests that the EPB

method captures nearly exactly the degree of influence

of changes in IHC and SCF skill on the streamflow

forecast skill, obtained from theVESPA approach. Both

methods additionally indicate the same dominant pre-

dictability source: the predictability source which, once

improved, could lead to the largest increase in 3-month

streamflow forecast skill. The EPB method will there-

fore be used as an alternative to theVESPA approach to

investigate the second objective of this paper.

b. What is the sensitivity of the response surface to the
choice of the verification score?

To investigate the sensitivity of the response surface

to the choice of the verification score, and therefore to

FIG. 5. Streamflow forecast skill elasticities for the IHCs (i.e., EIHC, solid line) and the SCFs (i.e., ESCF, dashed line), calculated across

a quadrant situated within the 3-month streamflow forecast skill surface plots for the VESPA (red), the linear EPI method (gray), and the

EPB method [blue; using Eqs. (4) and (5)]. Each plot shows the evolution of the IHC and SCF skill elasticities with the initialization date

for a given catchment. The climatological regions of the catchments are indicated in the plots’ headings. The skill surface plots fromwhich

these skill elasticities were calculated are presented in Fig. 4 and Figs. S1–S17.
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the attribute of the forecast, several scores were com-

puted to evaluate the streamflow forecast quality. The

R2, the mean absolute error skill score (MAESS), and

the continuous rank probability skill score (CRPSS)

were calculated to evaluate the forecasts’ overall per-

formance in terms of the ensemble mean and the entire

ensemble. The potential CRPSS (CRPSSpot) was

computed to look at the forecasts’ resolution and un-

certainty, and the CRPSS reliability (CRPSSreli) was

computed to look at the forecasts’ reliability. The

Crystal River (USGS gauge 009081600) will here again

be used as a test case to illustrate this part of the results.

Figure 6 presents the IHC and SCF skill elasticities

[i.e., EIHC and ESCF; in Fig. 6 (top) and Fig. 6 (bottom),

respectively] as a function of forecast initialization

date for the Crystal River catchment. These are cal-

culated from Eqs. (4) and (5), for all the mentioned

verification scores, for the VESPA approach (Fig. 6a)

and the EPB method (Fig. 6b). If we compare the skill

elasticities obtained from the VESPA approach with

the skill elasticities obtained from the EPB method, it

appears that both methods produce very similar elas-

ticities for the R2, the MAESS, and the CRPSS. This

further confirms the results of the first part of the analysis,

which highlighted the similarity of the EPB results to the

VESPA results and extends it to multiple attributes of the

seasonal streamflow forecasts. However, slight differences

between the skill elasticities produced by the twomethods

can be observed for the CRPSSpot, and significant differ-

ences exist for the CRPSSreli. These dissimilarities are

discussed further below.

If we now compare the skill elasticities obtained for

the various verification scores for both methods, it is

clear that the R2, the MAESS, the CRPSS, and the

CRPSSpot give very similar skill elasticities. This hints

that those verification scores overall agree on the degree

of influence of changes in IHC and SCF skill on the

streamflow forecast skill. However, a few dissimilarities

can be observed for some of the forecast initialization

dates. This is, for example, the case for forecasts made in

FIG. 6. Streamflow forecast skill elasticities for the (top) IHCs (i.e., EIHC) and (bottom) SCFs (i.e., ESCF) as

a function of forecast initialization dates, for hindcasts produced from 1981 to 2010 for the Crystal River (USGS

gauge 009081600). These skill elasticities were calculated across a quadrant situated within the 3-month streamflow

forecast skill surface plots [from Eqs. (4) and (5)] for several verification scores (R2 in red, MAESS in blue, CRPSS

in gray solid line, CRPSSpot in gray dashed line, and CRPSSreli in gray dotted line). The results are shown for

(a) the VESPA approach and (b) the EPB method.
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the spring and in summer, where theEIHC appears lower

for the MAESS and the CRPSS (and the CRPSSpot for

the VESPA approach) compared to the EIHC obtained

for the R2 for both methods. It is also apparent for

forecasts made on the first of February, March, and

September, where the ESCF calculated for the MAESS

and the CRPSS (and the CRPSSpot for the VESPA

approach) is lower than theESCF obtained for theR2 for

both methods. For both examples, it infers that im-

provements in the IHC and the SCF skill could lead to

larger improvements in the streamflow forecast skill in

terms of the R2 rather than in terms of the MAESS and

the CRPSS (and the CRPSSpot for the VESPA ap-

proach). Overall, this indicates that the degree of influ-

ence of changes in IHC and SCF skill on the streamflow

forecast skill differs relative to the choice of the

verification score.

While the R2, the MAESS, the CRPSS, and the

CRPSSpot give a very similar picture, the skill elastici-

ties obtained for the CRPSSreli appear very different,

occasionally reaching negative values. These negative

values indicate a loss in streamflow forecast skill (in

terms of the forecast reliability) as a result of improve-

ments in one of the two predictability sources, while all

the other verification scores suggest a gain in streamflow

forecast skill (in terms of the forecast ensemble mean

and the ensemble overall performance, its resolution,

and uncertainty) with improvements in one of the two

predictability sources.

The substantial differences in skill elasticities ob-

tained for the CRPSSreli from the VESPA versus EPB

method suggest that there are limitations to the ability

of EPB to reconstruct the full ensemble information

present in VESPA, and of VESPA (applied with rela-

tively small ensembles at the end points) to estimate

sensitivities for complex verification scores such as re-

liability. The reliability verification score is influenced

by the combination of bias, spread, and other ensemble

properties and exhibits more noisy outcomes here than

were obtained for other verification scores. A negative

elasticity may occur because the ensemble spread has

narrowed without sufficient improvements in bias, for

instance. The behavior of the elasticity of reliabilities is

even more difficult to diagnose, but we suspect that the

presence of noise (erroneous local minima or maxima)

or curvature in the associated VESPA skill surface

greatly undermines the linear blending techniques.

Overall, these results suggest that improvements in

the skill of either of the two predictability sources will

impact streamflow forecast skill differently depending

on the attribute (i.e., verification score) of the forecast

skill that is considered and whether the ensemble mean

or the full ensemble is used.

4. Discussion

a. Implications and limitations of the results

W16 introduced the VESPA approach, a sensitivity

analysis technique used to pinpoint the dominant pre-

dictability source of seasonal streamflow forecasting

(i.e., the IHCs and the SCFs), as well as quantifying

improvements that can be expected in seasonal

streamflow forecast skill as a result of realistic im-

provements in those key predictability sources. Despite

being a powerful sensitivity analysis approach, VESPA

presents two key limitations.

1) It is computationally intensive, requiring multiple

ensemble hindcasts to define the skill response

surface (81 were used in the VESPA paper vs one

for the EPB and the EPI techniques).

2) It requires a complex state and forcing blending

procedure that may introduce additional uncer-

tainties, biases, or interactions between the predict-

ability sources (Saltelli et al. 2004; Baroni and

Tarantola 2014) that are not accounted for or diffi-

cult to quantify. This is not necessary in any of the

end points required in the two approaches presented

here, which rely instead on analyzing a single con-

ventional hindcast dataset that is more likely to be

feasible for forecasting centers.

The central aim of this paper was to address the first

limitation of the VESPA approach by presenting two

computationally inexpensive alternative methods: the

EPI and the EPB methods. Both methods successfully

identified the dominant predictability source of 3-month

streamflow forecasts for a given catchment and forecast

initialization date (i.e., given by the orientation of the

streamflow forecast skill gradients in the skill surface

plots). However, the EPB was more successful in

reproducing the VESPA skill elasticities—the exact

streamflow forecast skill gradients situated within the

skill surface plots (for skill and accuracy verification

scores including the R2, the MAESS, the CRPSS, and

the potential CRPSS to a certain extent). These skill

elasticities indicate the influence of changes in IHC and

SCF skill on streamflow forecast skill.

The new methods, by differing in their setup from the

VESPA approach, do not inherit the drawbacks specific

to this approach and mentioned above. The EPI and the

EPB methods nevertheless have their own limitations.

The EPI (both for the linear and cubic interpolation

methods; the latter was not shown) did not fully capture

the VESPA skill elasticities because of the nature of the

method that produces predefined gradients within the

skill surface plots (i.e., defined by the interpolation

method used). Additionally, curvature or local minima

1726 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



or maxima (if any) of the response surface cannot be

represented by the EPI method. The EPB, on the other

hand, performs better at reflecting curvature in the skill

response surface, hence local elasticities between the

end points. The EPB method aimed at reproducing

VESPA elasticities only by manipulating the output of a

single hindcast dataset (interpreted as ESP, reverse

ESP, the perfect forecast, and climatology). The EPB

method cannot match exactly the forecasts created by

the VESPA approach, as it does not account for the

idiosyncrasies in model forecast behavior, such as in-

teractions between the predictability sources. Further-

more, it is likely that the more the model investigated is

nonlinear or exhibits skill response thresholds, the more

the results obtained from the EPB method will differ

from the ones obtained from the VESPA approach.

These results overall allow that the EPB method can be

used as an inexpensive alternative method to the

VESPA approach, yet with the potential limitations of

the method stated above.

For the first part of the analysis, the streamflow fore-

cast quality was evaluated in terms of the forecasts’ skill

from the R2. The use of multiple verification scores is,

however, essential to obtain a more complete perspec-

tive of forecast quality. Thus, we explored the perfor-

mance of the two new methods and the VESPA

approach for a range of additional verification scores.

The results, presented for the EPB method and the

VESPA approach, showed differences in the response

surfaces obtained for the various verification scores (i.e.,

theR2, theMAESS, the CRPSS, and its decomposition).

This suggests distinct sensitivities of the seasonal

streamflow forecast attributes (i.e., overall performance

of the forecast ensemble mean and its full ensemble,

forecast resolution, uncertainty, and reliability) to

changes in the IHC and SCF skill. Ideally, a sensitivity

analysis should be goal oriented, that is, it should be

performed with prior knowledge of the intended use of

the results (Saltelli et al. 2004; Pappenberger et al. 2010;

Baroni and Tarantola 2014), which may favor using one

verification score over another.

This paper covered selected limitations of the work

presented by W16. However, many areas were left un-

explored and could be interesting topics in which to

focus future research. First, a major area inherent to

model-based sensitivity analyses is that their results are

model dependent (Saltelli et al. 2000); thus, the extent to

which they can be transferred to reality depends on the

model fidelity. The results presented in this paper are

specific to the forecasting system and similar systems on

which this analysis was based and should be used as

an indicator of catchment sensitivities. As noted in

W16, an extension of the elasticity analysis to include

observations and a model error component would pro-

vide valuable insights. Another possible approach could

be to use the results from various forecasting systems as

input to the sensitivity analysis, in order to achieve a

multimodel consensus view of the skill. As shown in

Cloke et al. (2017), a multimodel forcing framework can

be highly beneficial for streamflow forecasting com-

pared to a single model forecasting approach, provided

the models are chosen judiciously so as to provide a

rational characterization of forecasting uncertainty.

Second, the dependence of blending technique perfor-

mance versus VESPA on the characteristics of the skill

surface (e.g., linear or nonlinear) bears further in-

vestigation. Finally, this sensitivity analysis leaves ge-

neric the concept of improvements in either of the

predictability sources, although the space–time nature

of improvements may be consequential. This work could

therefore be extended by studying the effect of degra-

dations in the temporal and spatial accuracy of the input

data, thereby indicating the relative value of improve-

ments in the spatial or temporal predictability for a

specific catchment and a specific time of the year.

b. The wider context

The new strategy of operational forecasting centers is

to move toward more integrated operational modeling

and forecasting approaches, such as land surface–

atmosphere coupled systems, and beyond that, Earth

system models. These advances are enabled by the

continuous growth of computing capabilities, a better

understanding of physical processes and their in-

teractions throughout all compartments of the Earth

system, and the availability and use of more and better

observation data (i.e., satellite data). Despite all these

advances, most forecasts still reflect substantial uncer-

tainty that grows with time and limits the predictability

of observed events beyond a fewweeks of lead time. The

rapid progress has led our systems to be ever more data

hungry as increases in model complexity and resolution

are sought. These computationally expensive develop-

ments are not always feasible; hence, model developers

must be creative and constantly weigh the costs and

benefits of improving one aspect over another, such as

increasing the resolution or complexity of the models

(Flato 2011).

In this context, sensitivity analyses appear more

than ever as a natural tool to establish priorities in

improving predictions based on Earth system model-

ing. Such analyses are a powerful and valuable tool to

support the examination of uncertainty and pre-

dictability across spatial and temporal scales and for

various applications. They can be used for a large

range of activities, including examining model structure,
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identifying minimum data standards, establishing

priorities for updating forecasting systems, designing

field campaigns, and providing realistic insights into

the potential benefits of efforts to improve a fore-

casting system to managers with prior knowledge of

their costs (Cloke et al. 2008; Lilburne and Tarantola

2009; W16).

However, sensitivity analyses must be easily repro-

ducible to be effective in supporting each new model or

forecast system update, and the results should easily be

applied in order to constitute a ‘‘continuous learning

process’’ (Baroni and Tarantola 2014). In other words, a

sensitivity analysis should be a simple, tractable tool for

addressing a multifaceted challenge.

5. Conclusions

This paper presents two computationally inexpensive

alternative methods to the VESPA approach for esti-

mating forecast skill sensitivities and elasticities. Of

these, the end point blending (EPB) method provides a

useful substitute to the VESPA approach. Despite the

existence of some differences between the EPB and

the VESPA outcomes, the EPB successfully identifies

the dominant predictability source (i.e., IHCs and

SCFs) of seasonal streamflow forecast skill, for a given

catchment and forecast initialization date. The EPB

method can additionally reproduce the VESPA fore-

cast skill elasticities, indicating the degree of influence

of changes in IHC and SCF skill on the streamflow

forecast skill. The paper also draws attention to how

the choice of verification score impacts the forecast’s

sensitivity to improvements made to the predictability

sources. With a good understanding of the limitations of

the methods, such a sensitivity analysis approach can be a

valuable tool to guide future forecasting and modeling

developments.
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