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ABSTRACT 6 

The Program Evaluation and Review Technique (PERT) has become a classic Project 7 

Management tool for estimating project duration when the activities have uncertain durations. 8 

However, despite its simplicity and widespread adoption, the original PERT, in neglecting 9 

the merge event bias, significantly underestimated the duration average and overestimated the 10 

duration variance of real-life projects. To avoid these and other shortcomings, many authors 11 

have worked over the last 60 years at producing interesting alternative PERT extensions. This 12 

paper proposes joining the most relevant of those to create a new reformulated PERT, named 13 

M-PERT. 14 

M-PERT is quite accurate when estimating real project duration, while also allowing for a 15 

number of interesting network modelling features the original PERT lacked: probabilistic 16 

alternative paths, activity self-loops, minima of activity sets and correlation between 17 

activities. However, unlike similar scheduling methods, M-PERT allows manual calculation 18 

through a recursive merging procedure that downsizes the network until the last standing 19 

activity represents the whole (or remaining) project duration. Hence, M-PERT constitutes an 20 

attractive tool for teaching scheduling basics to engineering students in a more intuitive way, 21 

with or without the assistance of computer-based simulations or software. One full case study 22 

will also be proposed and future research paths suggested. 23 

KEYWORDS 24 

Scheduling, PERT; GERT; Stochastic Network Analysis; Project duration. 25 
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Introduction 26 

In 1959, an Operations Research team formed by D.G. Malcom, J.H. Roseboom and C.E. 27 

Clark from the company Booz, Allen and Hamilton in Chicago, along with W. Fazar, from 28 

the US Navy Special Projects Office in Washington, published a technique for measuring and 29 

controlling the progress of the Polaris Fleet Ballistic Missile (FBM) program (Malcolm et al. 30 

1959). This technique was initially named the Program Evaluation Research Task and later 31 

renamed the Program Evaluation and Review Technique (PERT). It has become one of the 32 

most popular Project Management (PM) scheduling tools since then. 33 

The initial idea was to provide the project manager with an integrated and quantitative 34 

management methodology that allowed him/her to evaluate ‘(a) [the] progress to date and 35 

[the] outlook for accomplishing the objectives of the FBM program, (b) [the] validity of 36 

established plans and schedules for accomplishing the program objectives, and (c) [the] 37 

effects of changes proposed in established plans’ (Malcolm et al., 1959, p.646). These three 38 

aims were quite ambitious indeed, and despite one imagining PERT doing all of these with a 39 

leap of faith, what PERT actually and basically does is to estimate the probabilistic duration 40 

of any project or the remaining part of a project when the activities have uncertain (not 41 

deterministic) durations. Also, PERT can be implemented for cost estimation purposes with 42 

some technical variations (e.g. (Asmar et al. 2011)); however, for the sake of clarity we will 43 

just deal with the time dimension in this paper. 44 

In its favor, this technique is very easy to implement and was the first of its kind for 45 

dealing with projects whose activity durations are modeled by probability distributions, or 46 

Stochastic Network Analysis (SNA) as it known as nowadays. Against it, the procedure 47 

proposed by PERT underestimates the project duration when there are multiple parallel paths, 48 

which unfortunately is the norm in construction projects. Indeed, the authors were aware of 49 

this shortcoming since they very briefly mentioned in the original paper that ‘this 50 
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simplification gives biased estimates such that the estimated expected time of events are 51 

always too small’ (Malcolm et al. 1959). Two publications by C.E. Clark indeed followed the 52 

publication of PERT (Clark 1961, 1962), but the solution proposed was not easy to 53 

implement, so it opened interesting avenues of research for the scientific community that 54 

have continued to this day, mostly in the Operations Research discipline. 55 

Since the inception of PERT almost 60 years ago, the number of fields in which this 56 

technique has been applied has been quite varied. It is not only applied to military, research & 57 

development and civil engineering projects as was originally intended (Stauber et al. 1959), 58 

but also to fields as diverse as medicine (e.g. Woolf et al. (1968)), exports (e.g. Tatterson 59 

(1974)), contracting (e.g. Mummolo (1997)) and rural development (e.g. Tavares (2002)), to 60 

cite just a few. In fact, its reach and application are virtually unlimited since it is useful for 61 

any project duration estimation purposes where activities have non-deterministic durations. 62 

However, another collateral problem has been that despite PERT being a celebrated PM 63 

technique, it also probably is one of the most widely misunderstood. In particular, many 64 

engineering and scheduling students, as well as professionals, still think that PERT is either a 65 

type of network representation, as one of the first versions of the Project Management Body 66 

of Knowledge (PMBoK) pointed out explicitly (PMI 1996), or that it is just a three-point time 67 

and/or cost estimation technique (PMI 2008). The latter misrepresentation is the consequence 68 

of the second half of the PERT method, which deals with calculating the expected project 69 

duration and its variance by means of critical path project activities, being left out of this 70 

publication. 71 

The purpose of this paper is to update PERT and propose a newly redefined technique 72 

named M-PERT, which deals with the most relevant shortcoming of the original technique 73 

(the merge event bias), allows manual calculation, and adds a series of new interesting 74 

features that the original technique lacked. M-PERT will allow the modelling of real-life 75 
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projects far more representatively and help scheduling students to understand more intuitively 76 

basic concepts of scheduling when activities have uncertain durations. 77 

The number of PERT-related publications might be counted in the thousands nowadays, 78 

so we cannot reference them all. Instead, as in any other mature fields, we will undertake a 79 

systematic review of the most relevant sources that have shaped this new technique. This 80 

systematic review will be presented in the Background section under three thematic 81 

subsections. Then, an outline of the model will be presented followed by an application in the 82 

M-PERT outline and Case study sections. A Results section will gather the application 83 

outcomes while comparing the accuracy improvements achieved, whereas a final and brief 84 

Discussions and conclusions section will summarize the most important aspects and possible 85 

research directions for the model proposed. 86 

 87 

Background 88 

An overview of PERT and its limitations 89 

In a nutshell, PERT is a scheduling tool that is applied in two stages. First, after 90 

identifying all the activities involved in a project and stating their precedence relationships, 91 

the first stage comprises modelling their probable durations. For that purpose, the original 92 

PERT authors proposed a three-point estimation procedure. The user (or another expert on 93 

hand) is asked to state the Optimistic (O), most Likely (L) and Pessimistic (P) durations that 94 

each activity is foreseen to have before those activities take place. Then, the mean duration 95 

(μ) and the standard deviation (σ) from each activity are calculated by using these three 96 

duration estimates (O, L and P) by means of these straightforward expressions: 97 

( ) 64 PLO ++=      (1) 98 

( ) 6OP=       (2) 99 
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With the values of μ and σ for each activity, a Beta distribution which varies between  100 

[O, P] is fitted for modelling the activity duration. However, despite the highly controversial 101 

and still ongoing debate about the accuracy of both the three-point estimate procedure and the 102 

choice of the Beta distribution to model the activity durations, the PERT method is only 103 

interested in the μ and σ values of each activity for the second stage of the application. This 104 

second stage of PERT (not mentioned by any Project Management standard) comprises: (a) 105 

identifying the activities that are in the critical path, and (b) assuming that the Project 106 

duration mean (μp) and the standard deviation (σp) are equal: 107 

=
pathcriticali
ip      (3) 108 

=
pathcriticali
ip
2      (4) 109 

Now, if the project scheduler wants to know what the probabilities of ending a project in 110 

X days are, he/she just needs to know that the project total duration is supposed to be 111 

following a Normal distribution with mean μp and standard deviation σp. Then, the specific 112 

probability of X happening can be calculated by means of either the mathematical expressions 113 

of the cumulative Normal distribution, by resorting to a spreadsheet or, when the calculations 114 

are made by hand, by standardizing the project duration as in Equation 5 and then looking up 115 

the cumulative probability value of z in a standard Normal table. 116 

( ) ppXz =      (5) 117 

This is the essence of the PERT method. The logical lack of trust displayed by the 118 

research community since PERT was published has manifested itself as a determination to 119 

see what kind of errors are involved by implementing it. In this regard, MacCrimmon and 120 

Ryavec (1964) broke down PERT into every possible piece and developed the most thorough 121 

analytical review that anyone has made of PERT since its publication. This piece of research 122 
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was actually outsourced by the US Air Force to the Rand Corporation due to the consistent 123 

and systematic errors that PERT was evidencing in their project forecasts, and they divided 124 

their memorandum into two main sections. In the first section, they studied the activity 125 

duration-level errors, that is, ‘(1) the assumption of the Beta distribution, (2) imprecise time 126 

estimates, and (3) the assumption of the standard deviation (one-sixth of the range) and the 127 

approximation formula for calculating the mean time’ (MacCrimmon and Ryavec 1964). The 128 

second section checked the accuracy of the project duration mean, variance and the (Normal) 129 

probability statements. 130 

The results summary from the first section was that using the three-point estimates could 131 

cause a range estimation error of between 10% and 20% of the range [O, P], but, despite the 132 

error of estimation of the mean (µ) and standard deviation (σ) being likely to be bigger (from 133 

15% to 30%), a degree of cancellation was expected to occur depending on the network. 134 

Indeed, there is generally a high degree of cancellation as will be proven later. But the other 135 

noteworthy statement that the authors made at that time was that, to a certain extent, it was 136 

pointless having a discussion about what the right kind of distribution is – Beta or another – 137 

for modelling an activity duration. Indeed, they reinforced this idea by saying that if PERT 138 

had used triangular distributions instead of Beta distributions, their analysis would have given 139 

almost identical results (MacCrimmon and Ryavec 1964). A recent study only focusing on 140 

determining the importance of the specific distribution selection in PERT also supported this 141 

claim and stated that the maximum deviation by using alternative distributions in the project 142 

duration an estimation is generally well below 10% (Hajdu and Bokor 2014). 143 

Nevertheless, the results from the second section of the PERT model analysis evidenced 144 

the real problem. They confirmed that unless there is one clear dominant critical path (a chain 145 

of activities whose total duration is significantly longer than the second longest path), the 146 

PERT-calculated mean (equation 3) will be biased optimistically (underestimating the real 147 
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project duration), while the PERT-calculated variance (equation 4) will be biased in the other 148 

direction (overestimating the actual duration variance). At the time this study was published, 149 

Extreme Value theory had not been properly developed, but the authors clearly identified that 150 

the higher the number of parallel paths, the more positively skewed the distribution modelling 151 

the project duration would become, making the Normally-distributed assumption of the 152 

‘total’ project duration of questionable validity with multiple parallel paths. 153 

 154 

What matters and what does not matter in PERT 155 

The first part of the systematic review by MacCrimmon and Ryavec (1964) focused on 156 

the activity level duration modelling. They stated that the particular choice of the distribution 157 

was hardly relevant. Instead, it was the distribution (duration) mean and variance that really 158 

matters. This was an important outcome that, apparently, a big part of the research 159 

community had tried to ignore due to the extraordinary amount of research focused on 160 

improving the particular statistical distribution for better modelling of the activity duration. 161 

In a similar vein, a recent study by Herrerías-Velasco et al. (2011), seeking to close the 162 

unending debate about whether the approximations originally proposed by the PERT authors 163 

to estimate whether the activity duration mean and variance were accurate enough, concluded 164 

that, in general, the expression of the mean (Equation 1) is very accurate, whereas the 165 

expression for the variance (Equation 2) requires to be multiplied by a correction factor K 166 

whose expression is: 167 

( )( )
( )27

16
7
5

OP
LPOLK +=      (6) 168 

Concerning the (un)importance of the specific distribution chosen for modelling the 169 

activity duration, Figure 1 is divided into two vertical blocks. The top half shows how the 170 
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statistical distribution resulting from one, two and three activities in series evolves when the 171 

activity duration is modeled by a Uniform distribution (first row) or a Beta (PERT-like) 172 

distribution (second row). The case with just one activity (first column) illustrates indeed the 173 

original distribution, but when more independent and identically distributed (iid) activities are 174 

added in series, the resulting distribution quickly changes its shape to resemble a Normal 175 

distribution. In fact, if we observed the result for five activities in series, it would be quite 176 

difficult to tell them apart from a Normal distribution. Therefore, the particular statistical 177 

distribution chosen hardly matters since it is difficult to find more extreme examples than a 178 

Uniform and a Beta distribution, both equally and quickly converging to a Normal 179 

distribution. 180 

<Figure 1> 181 

However, what is relevant is the original activity duration mean and standard deviation. 182 

Both the Uniform and the Beta distribution had the same duration mean of μ=5 (time units) 183 

and it is easy to see that as we add more activities in series, the resulting mean is n·μ, where n 184 

is the number of activities in the series (n·μ =10 for two activities, 15 for three activities). On 185 

the other hand, the Uniform distribution above has a higher variance (higher standard 186 

deviation) compared to the Beta distribution below which, on top of that, is positively skewed 187 

and has a range of variation from 0 to 15. It is again evident that as we add more activities in 188 

series, the resulting distribution of the Uniform is sparser (since it originally had a bigger 189 

variance), whereas the result from the Beta-distributed activities has almost removed the 190 

skewness (degree of asymmetry) while it is narrower (duration values are more concentrated 191 

near the mean). 192 

Therefore, in any project that has three or more activities in series (basically any real 193 

project), the selection of the specific statistical distribution is not relevant. What matters is to 194 
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specify as accurately as possible the activity mean and standard deviation. The original PERT 195 

technique proposed doing this by a three-point estimate, but this caused an error of between 196 

15 and 35%, particularly concentrated in the variance estimation (when departing from the O, 197 

L and P estimates). The obvious solution is to get rid of the intermediate step and ask the 198 

scheduler (or the field expert) to directly provide a mean and a standard deviation for each 199 

activity duration, and if he/she feels unsure about quantifying particularly the variance, then 200 

resort to the original PERT expressions (equations 1 and 2) with the correction factor stated 201 

in Equation 6. 202 

With the activity-level duration issues clarified, it is time to address another PERT 203 

shortcoming: the result of having multiple parallel paths in a network. To exemplify this, we 204 

will make use of the bottom half of Figure 1. But first, let us propose an example. 205 

Imagine that the activity duration can be modeled with a fair six-sided die. Then, the 206 

activity duration might be {1, 2, 3, 4, 5, 6}, with equal probability each of 1/6 (a discrete 207 

Uniform distribution). The average of these six possible outcomes would be 3.5 (time units), 208 

So, if we cast two dice, the average duration would be two times 3.5, that is, 7. If we cast 209 

three dice the average duration would be three times 3.5, that is, 10.5. This is the effect of 210 

adding activities in series; we are just ‘adding’ distributions (convolution of distributions), as 211 

in the upper half of Figure 1. But when there are several parallel paths, we are not doing sums 212 

anymore: we are taking the ‘maxima’ (computing the Cumulative Distribution Function of a 213 

maximum) of the different path durations. In our dice example, imagine that we have two 214 

parallel paths the duration of which are modeled by a six-sided die. The next activity after 215 

these two paths merge in one path (gray nodes in Figure 1) will start only after the path with 216 

the maximum duration is finished (the one with the maximum die cast value). If two dice are 217 

cast, the maximum of both dice will not be 3.5 anymore, it will be higher. Analogously, if we 218 

had more and more parallel paths (imagine 10 paths with one activity each, for instance), the 219 
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probabilities of getting at least one six in one of the casts would be quite high. Therefore, 220 

what is happening is that when several parallel paths converge, the mean project duration is 221 

shifted to the right (the project ends later than expected) and the variance contracts. 222 

Additionally, the skewness and kurtosis also momentarily deviate from the Normal 223 

distribution (resembling more at that point an Extreme Value distribution). But unlike the 224 

mean and the variance, they will dissipate again when more activities in the series are added 225 

after the activities merger point or before the paths are separated. 226 

This same effect can be visualized in the bottom half of Figure 1. The same two 227 

distributions were chosen to illustrate how as more and more paths converge, the resulting 228 

distribution (which actually is the highest order statistic of several distributions) shifts its 229 

mean towards the right (it is increasingly higher than 5, which was the original mean duration 230 

value), whereas the dispersion (variance) also decreases (the distribution becomes more 231 

compressed). Overall, this phenomenon has been named merge bias or merge-event bias 232 

(Khamooshi and Cioffi 2013; Vanhoucke 2012), and it was the biggest problem that the 233 

original PERT had and the one that the scientific community has struggled most to solve. 234 

Indeed, this interesting phenomenon is hardly known by most professional construction 235 

schedulers nowadays. 236 

The reason why this has been an enduring problem (indeed, no exact analytical solution 237 

has been found to date) is that despite apparently any distribution could be chosen to model 238 

the activity durations, that distribution would need to be sum-stable and max-stable. Sum-239 

stable means that the distribution of the convolution (sum) of several activity durations 240 

(activities in series) should again belong to the same kind of distribution. An example is the 241 

Normal distribution, in which, after being summed, the result is again Normal and with a 242 

mean and standard deviation as in equations 3 and 4. Max-stable means that after computing 243 

the maximum from some distributions of the same type (activities in parallel), the result is 244 
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again another distribution of the same type. The only two existing max-stable distributions 245 

are the Gumbel distribution and the Fréchet distribution, and neither one is sum-stable. 246 

Hence, the ideal situation in which both operations can be performed with just one type of 247 

distribution is not feasible.  248 

To sum up, it is not possible to resort to an exact analytical approach for solving the 249 

PERT major shortcoming, and the only alternative is to work with mathematical 250 

approximations that keep the mean and variance relatively intact towards the end of the 251 

project. The logical alternative will be to resort to the Normal distribution, since at least it is 252 

sum-stable (which is the most frequent operation in any network due to the generally 253 

dominant number of activities in series), it is very well documented in the PERT-related 254 

literature, and it is still easy to handle. 255 

 256 

Review of the most relevant PERT-related extensions 257 

The study of project completion times when activities have uncertain durations mostly 258 

started attracting interest when PERT was published by Malcolm et al. (1959), but it has 259 

continued up to the present. Seminal works that followed PERT publication have been 260 

Anklesaria and Drezner’s (1986) multivariate approach to estimating the project completion 261 

time for stochastic networks, Elmaghraby’s (1989) study, review and critique of the 262 

estimation of activity network parameters, Kamburowski’s (1989) network analysis in 263 

situations when probabilistic information is incomplete, and, more recently, the 264 

computational studies by Ludwig et al. (2001) on bounding the makespan distribution of 265 

stochastic project networks. These works are considered, without exception, classics in the 266 

stochastic network analysis (SNA) field and have established the foundations of most of the 267 

later PERT-related research. 268 
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However, computer-based (Monte Carlo) simulations have been to date probably the best 269 

alternative for obtaining a highly accurate representation of the actual project duration 270 

distribution no matter what the SNA topology and size are (e.g. (Douglas 1978; Hajdu 2013; 271 

Khamooshi and Cioffi 2013; Nelson et al. 2016)). Simulations will also be used here for 272 

comparing M-PERT outputs with the actual solution. But, obviously, the main reason why 273 

approximations like M-PERT are developed is because implementing computer simulations 274 

in schedule networks with special attributes (e.g., self-loops, alternative paths, correlated 275 

activities) is not usually straightforward for most construction students and practitioners 276 

(Ballesteros-Pérez et al. 2015). Also, manual procedures like M-PERT allow step-by-step 277 

incremental calculations, offering a more intuitive vision than simulation results. 278 

Likewise, there have been other attempts to create pieces of software to develop PERT-279 

like approaches for Stochastic Network Analysis (SNA) (e.g., Pontrandolfo (2000); Trietsch 280 

and Baker (2012)) that basically have the same aim as the Monte Carlo simulation, but allow 281 

a higher user interaction mostly oriented to enhancing the Decision Support process and 282 

progress monitoring, but with some accuracy loss. 283 

In parallel, many recent algorithms (e.g., Mouhoub et al. (2011)) and other more 284 

advanced statistical techniques (Cho 2009; Węglarz et al. 2011), mostly involving Markov 285 

chains (e.g., Creemers et al. (2010); Magott and Skudlarski (1993); Xiangxing et al. (2010)), 286 

have also been developed for handling (optimizing) some project outcomes like activity time-287 

cost trade-offs (e.g., Azaron and Tavakkoli-Moghaddam (2007)), the total project duration 288 

(e.g., Baradaran et al. (2010)) or the project Net Present Value (NPV) (Creemers et al. 2010) 289 

while implementing PERT, but particularly in Resource-Constrained Project Schedules (e.g., 290 

Azaron et al. (2006); Baradaran et al. (2012); Yaghoubi et al. (2015)). These extensions, 291 

while worth noting, deal with computer implementations, unlike M-PERT, which adopts a 292 

manual approach. 293 
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Furthermore, other techniques like fuzzy logic (e.g., Chen (2007)) and Artificial Neural 294 

Network (ANN) analysis (e.g., Lu (2002)) have also been applied to improve activity 295 

duration estimation and critical path(s) determination for later ranking purposes. We think 296 

that these last two techniques and others in a similar fashion (e.g., Kuklan et al. (1993)), 297 

despite having proved to be successful in other fields, do not offer a significant advantage 298 

versus Monte Carlo simulations – commonly materialized in Schedule Risk Analysis (SRA) 299 

(Vanhoucke 2012) – which are equally (or less) computer-intensive and give almost exact 300 

results. 301 

Also, concerning the monitoring and control dimension of PERT, some research has been 302 

carried out to improve PERT for use as a project progress tool (e.g., Castro et al. (2007); 303 

Wenying and Xiaojun (2011)), for example, by means of intersecting buffers after key 304 

activities in networks considering both the time and cost dimensions (Khamooshi and Cioffi 305 

2013), sometimes referred as Dynamic Planning and Scheduling (Azaron and Tavakkoli-306 

Moghaddam 2007; Yaghoubi et al. 2015). Also in this vein, some research has been 307 

developed connected to crashing the PERT activities in order to fast-track project execution 308 

(e.g., Abbasi and Mukattash (2001); Foldes and Soumis (1993)). The scope of these PERT 309 

extensions, however, is related to control and schedule compression, which deviates from the 310 

aim of the current paper (proposing a technique for estimating the total or remaining project 311 

duration). 312 

Interesting, but certainly minority research has also been devoted to studying the possible 313 

effects of assuming independence versus the existence of (partial) correlation between 314 

activities (e.g., Banerjee and Paul (2008); Cho (2009); Mehrotra et al. (1996); Sculli and 315 

Shum (1991)). Some of their principles will be used here in M-PERT too, and two brief 316 

examples are provided later in Figure 5. 317 
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Concerning the application of PERT to situations where the activities are of a highly 318 

repetitive nature, other PERT extensions have been published (e.g., RPERT (Aziz 2014)). 319 

Repetition in activities will also be included among the M-PERT modelling capabilities later 320 

by means of activities (or groups of activities) self-loops. 321 

Concerning the number of point estimates to obtain the activity duration average and 322 

standard deviation, as in expressions 1 and 2, extensive research has also been conducted. In 323 

particular, the ‘three-point estimates’ from expressions 1 and 2, as this approach is commonly 324 

known, make use of the minimum (optimistic), most likely (mode) and maximum 325 

(pessimistic) durations that an activity duration following a Beta distribution can have. Other 326 

attempts, which are actually as complementary to M-PERT as the original three-point 327 

estimate proposal, have been proposed using two parameters (e.g., the mode with either the 328 

minimum or the maximum duration (Mohan et al. 2006)), three parameters but with some 329 

degree of reparametrization (e.g., Herrerías-Velasco et al. 2011), or even up to four 330 

parameters (e.g., (Hahn 2008)). However, normally, when the parameters have been changed, 331 

the distribution type modelling the activity duration changes too. 332 

Another minor but relevant subfield of research to this study is the work that deals with 333 

the PERT network reducibility problem. Essentially, M-PERT is a technique that recursively 334 

downsizes the schedule network by merging activities in series and in parallel. With a similar 335 

aim, but with a strong emphasis on the computational point of view, the original works by 336 

Ringer (1969), Elmaghraby (1989) and Bein et al. (1992) studied this challenging problem in 337 

extensive detail. As M-PERT lends itself to a manual reduction approach, the reader 338 

interested in computer implementations is referred to these remarkable works. 339 

Finally, as was anticipated earlier, an overwhelming amount of research has been devoted 340 

to trying to improve the original Beta distribution fitness (Hahn 2008; Premachandra 2001), 341 

or just try to find another probability distribution that better fits the activity durations (e.g., 342 
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Lau and Somarajan (1995); López Martín et al. (2012)). The variety of distributions that can 343 

be found as an alternative to the Beta distribution is overwhelming. They include the doubly 344 

truncated normal distribution (Kotiah and Wallace 1973), the triangular distribution (Johnson 345 

1997), the log-normal distribution (Mohan et al. 2006), the mixed beta and uniform 346 

distribution (Hahn 2008), and the Parkinson distribution (Trietsch et al. 2012), to cite a few.  347 

As expected, however, this line of research has caused quite a lot of controversy, with 348 

some researchers in favor of pursuing the fit-for-all distribution (e.g., Clark (1962); Golenko-349 

Ginzburg (1989); Grubbs (1962); Healy (1961); Sasieni (1986)) and others against (e.g., 350 

Herrerías-Velasco et al. (2011); Kamburowski (1997); Pleguezuelo et al. (2003)). As 351 

MacCrimmon and Ryavec (1964) anticipated and we again proved in Figure 1, the particular 352 

distribution is hardly relevant, so no more references will be made to this discussion. 353 

With the most relevant PERT-related lines of research identified, it is time to identify the 354 

subset of works upon which M-PERT has been built, which are those that deal with the 355 

merge event bias in some way or another. These works are summarized in Table 1 by 356 

columns, and all of them are approximate techniques for solving some flaws that the original 357 

PERT technique had. Unfortunately, these works are not widely known by the research 358 

community. Even more surprisingly, most of them were unaware of the others, even though 359 

all but the first one were contemporaneous. For the sake of brevity, some details have been 360 

given by the rows in Table 1 and some more will be specified later in the M-PERT outline 361 

section. 362 

<Table 1> 363 

Of particular interest perhaps, is the work by Pritsker (1966), who developed the 364 

Graphical Evaluation and Review Technique (GERT), which would have fulfilled the 365 

promise of devising a new PERT without most of its problems if it had not been for the 366 
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mathematical complexity that did not allow the authors to finally implement it without 367 

resorting to Monte Carlo simulations. However, this technique introduced very interesting 368 

features, some of which M-PERT has inherited, like self-loops and probabilistic (alternative) 369 

paths. 370 

Last of all, another small subset of approximate PERT variants sought to tackle the merge 371 

bias problem by obtaining the upper and/or lower bounds of the project total duration. 372 

Without seeking to be exhaustive, maybe some of the most relevant findings were the Clark’s 373 

(one of the PERT creators) bias correction procedure (Clark 1961, 1962), the ‘f’ estimate 374 

(Fulkerson 1962) and the Modified Network Evaluation Technique (PNET) (Ang et al. 1975). 375 

A recent exhaustive study by González et al. (2014) comparing the accuracy achieved by 376 

these methods when approximating the Project duration mean and variance in networks with 377 

a varied array of topological indicators showed that the best methods were the ‘f’ estimate for 378 

the mean (with an average error of 2.6%) and the PNET for the variance (with an average 379 

error of 29.8%). Anticipating some results presented later, the methods summarized in Table 380 

1, on which M-PERT was built, exhibited smaller errors in the benchmark networks tested, 381 

which has allowed M-PERT to currently have average errors below 2% for the mean and 382 

below 10% for the variance. Therefore, these methods, despite deserving acknowledgment, 383 

will not be referred to any more. 384 

 385 

M-PERT outline 386 

M-PERT has been built upon the five models presented in Table 1, most of which shared 387 

some common traits (evidenced in lines with several ‘ü’ marks). All five methods made use 388 

of Activity-on-Arc (AoA) networks, whereas M-PERT resorts to Activity-on-Node (AoN) 389 

representation since nowadays it is more user-friendly for practitioners and more commonly 390 

found in software (e.g., Microsoft Project, Oracle Primavera). 391 
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Consequently, the precedence relationships are necessarily represented by means of the 392 

arrows connecting the nodes. Initially, it is well known that, given two activities i and j, there 393 

can be four precedence relationships: Finishes i – Starts j (the most common by far), Starts i – 394 

Starts j, Finishes i – Finishes j, and Starts i – Finishes j, all of them with or without time lags 395 

between them. 396 

Representation of the last three, despite being possible, significantly complicates the 397 

network visualization and the critical path analysis when the number of activities is high 398 

since some arrows depart the nodes from their back and/or reach the nodes at their front. 399 

Fortunately, as recently found by Lu and Lam (2009), these three precedence types can be 400 

reformulated as a Finish-Start relationship, as Figure 2 illustrates, and with which scheduling 401 

students can be trained. Hence, from now on, M-PERT will make exclusive use of AoN 402 

networks with Finish-Start (FS) precedence relationships, and should the user wish to 403 

establish different types of precedence, he/she  should refer to Figure 2, or, alternatively, to 404 

Lu and Lam’s (2009) comprehensive treatment of non-finish-to-start relationships in project 405 

networks, and transform them to FS relationships. 406 

<Figure 2> 407 

Essentially, M-PERT is a reduction technique in which project activities are merged by 408 

groups of two or more, resulting in a new single merged activity, and this process is repeated 409 

until there is just one activity left, which represents the total project duration. An idea of this 410 

sequential merging procedure can be observed later in Figure 4 and the supplemental data. 411 

The merging procedure was proposed by Cox (1995), and it is an intuitive and relatively 412 

quick approach for reducing any (complex) network into a simple one. Of course, the 413 

challenge is how to exactly merge different activities (which in the end correspond to 414 

duration distributions). For that purpose and as justified earlier, it is assumed that the activity 415 

durations follow a Normal distribution. Being aware that the specific probability distribution 416 
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was hardly important, the Normal assumption was also made by three out of the five methods 417 

stated in Table 1, and this obeys the need of simplifying as much as possible the merging 418 

operation of activities in series, which is the most frequent in any network. The merger 419 

operations in the serial activities are represented in the first row of Figure 3. 420 

<Figure 3> 421 

Figure 3 is, in general, quite self-explanatory and basically represents the most common 422 

operations (mergers) that can be found in any network – mostly serial activities (first row) 423 

and maxima of multiple paths (bottom row) – along with other interesting operations that 424 

GERT (Pritsker 1966) proposed (probabilistic paths, self-loops and activity minima) but was 425 

not able to implement without ad hoc computational programmes. For illustrative purposes, 426 

the case study shown later in Figure 4 will provide examples of these logic operations. 427 

Particularly in construction projects, operations like probabilistic (alternative) paths might 428 

seem quite straightforward for modelling uncertain courses of action that will mostly depend 429 

on information that is still unknown, or at least inaccurate, at the conceptual stage. Examples 430 

are the choice between different types of foundations depending on the ground conditions or 431 

the soil-bearing capacity, or just the need to take special measures if the project uncovers 432 

archeological remains.  433 

Self-loops, on the other hand, are helpful for representing activities being repeated after 434 

an unsuccessful outcome. These activities can correspond to isolated activities (e.g., a load 435 

test, a calibration) or even groups of activities (e.g., a whole project drawing up process, a 436 

series of defective structural elements, a non-compliant subnetwork within a water supply 437 

system). It is up to the scheduler, however, to decide how many loops, or even how many 438 

multiple nested loops, could be feasibly implemented before the construction manager or the 439 

client stops the iterations. 440 
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Similarly, activity minima, despite certainly being much less frequent than activity 441 

maxima, can also be useful at times to allow the project continuation after one (or some) of 442 

the predecessors are finished. A distinctive quality of activity minima versus probabilistic 443 

paths is that all the activities involved in the minima merger must be executed at some point 444 

before the project finishes, whereas in probabilistic paths only one (or a subset of) path(s) 445 

will be finally carried out. Examples of activity minima are the supply of any 446 

electromechanical equipment among a series of any other equipment that needs to be 447 

received in a worksite before the mechanical engineers can start working, or the clearance of 448 

any stocking areas of a linear worksite before a new pipeline section can be supplied. 449 

Overall, for every operation by rows in Figure 3, their representation (second column) is 450 

shown; the input parameters (third column) necessary for defining the activities and 451 

performing the merger into a single activity (which is generically named k) are provided; the 452 

output parameters (fourth column) that define the new duration mean and variance of the 453 

resulting merged activity k are provided; a representation of the result (fifth column) is 454 

shown; and, finally, some observations (last column on the right) that clarify how to apply the 455 

merger operations in particular (more complex) contexts. 456 

It is worth highlighting that M-PERT requires that the activity duration means (μi) and 457 

variances (σi) have been specified for each activity beforehand, a requirement that forces the 458 

student or scheduler to elicit them or, if he/she wanted to start from the three-point estimates 459 

(O, L and P), it would require a first stage of application of equations 1 and 2 (with the 460 

correction proposed in equation 6) for each activity, like the original PERT. 461 

Concerning the origin of the mathematical expressions stated for all the mergers (stated in 462 

the Output parameters column), the serial activities merger just corresponds to the sum of 463 

means and variances of several Normal distributions (as in equations 3 and 4), whereas the 464 

expressions for the probabilistic alternative paths and the self-loops are easily derived from 465 
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the mathematical expressions of the mixture (Union) of n non-overlapping (Normal) 466 

population samples (Xi=X1 … Xn), which are: 467 
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Where the WXi are the weights of each Normal population merged, that is, the proportion 470 

by which that Normal distribution (representing a set of previously merged activities’ 471 

duration) will be present in the resulting distribution after the next merger. For example, for 472 

the probabilistic paths, the weights are the probabilities of each path occurring, that is, WX1=p 473 

and WX2=1-p for two paths; or WXi=px for i=x=1,2,…n paths, with 1
1

=
=

n

x
xW  always. For the 474 

self-loops, an activity i is merged with itself – activity i’s mean µX1=µi and standard deviation 475 

σX1=σi when the activity happens just once with probability WX1=1-pi, and µX2=2µi and σX2= 2476 

σi when it is repeated with probability WX2=pi. 477 

Finally, the case of the maximum from two Normal distributions (the durations of two 478 

activities) was coincidentally proposed by Clark (1961) but at that time it required intensive 479 

use of tables and did not allow for correlation (ρ) between both activities. In particular, the 480 

expression for the maximum was taken from Sculli and Shum (1991) and was also used by 481 

Cox (1995), whereas the expression for the minimum was taken from Nadarajah and Kotz 482 

(2008). Both expressions, despite looking long, are very easy to calculate. 483 

The obvious problem with the maxima and minima from several activities is that the 484 

formulae only allow for the merger of two of them at the same time. Then these expressions 485 

can be applied recursively until there is just one activity left, a moment in which the activity 486 

will be in series again and can keep being merged with its neighbor activities in series. This 487 

recursive merging procedure is not new either, as it was successfully applied by Cox (1995), 488 
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Gong and Hugsted (1993) and Sculli and Shum (1991). However, it is also true that when 489 

more than two activities are merged, there is a small error in the final mean and variance 490 

calculation, which is also dependent (but to a minimum extent) on the exact merger order too. 491 

Simulations performed that try to estimate the maximum error magnitude with M-PERT 492 

identified how this error is maximized when the different paths’ duration mean is the same, 493 

and variances are also identical between the parallel paths. However, even in that case, the 494 

error obtained when merging “eight” activities under the same node (which is a higher 495 

number than most of the real projects have under one converging node) causes an error of 496 

6.7‰ in the mean and 7.3% in the standard deviation, which are considered, in general, good 497 

approximations. 498 

Therefore, M-PERT consists of merging activities until there is one activity left that 499 

models the total project duration by means of μp and σp , which correspond to the project 500 

duration mean and standard deviation, respectively. The order in which merger operations are 501 

performed is relevant too. For example, if a self-loop comprised several activities, those inner 502 

activities should first be merged, and then the self-loop resolved; or, if there are several 503 

activities in series within a parallel path, those activities need to be merged before the path 504 

can be merged with other paths. Overall, there must be an overriding use of common sense 505 

when performing the mergers, and unless there is correlation among activities (a situation that 506 

will be treated separately later), the merging procedure is quite straightforward. 507 

There is just one last step left in the application of M-PERT. Obviously, the resulting 508 

distribution modelling the total project duration is forced to be Normal in M-PERT, but, in 509 

reality, this distribution might be more similar to an Extreme Value distribution when there is 510 

a “high number of parallel paths converging all of them to the same node (activity)”. This is 511 

not a secret, but it was not properly incorporated in a PERT model until Dodin and Sirvanci 512 
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(1990). He proposed using the Gumbel distribution (despite it being generically named the 513 

Extreme Value distribution) for modelling the total project duration.  514 

In M-PERT, however, we think the Normal distribution constitutes a reasonable 515 

approximation. This is because most construction projects, despite usually including multiple 516 

paths, they do not “all converge in the same single activity”, rather they have multiple paths 517 

which converge at different activities. In other words, there is not a dominance of maxima 518 

computation, but some maxima calculations mixed with a high number of activities in series 519 

or activity maxima in series, both of which quickly degenerate (as shown in Figure 1) in 520 

Normal distributions. Furthermore, students who are exposed to learning M-PERT are much 521 

more familiar with the Normal distribution than with Extreme Value distributions.  522 

 523 

Case study 524 

A fictitious and simplified bridge project 525 

M-PERT can be equally applied to simple and complex networks, the only difference 526 

being the number of mergers that are required to be performed before the network is reduced 527 

to a single activity representing the project duration. In this regard, Figure 4 presents the 528 

application in a simple but representative bridge project construction with three piles (three 529 

parallel paths), in which, purposefully, all possible kinds of merging operations have been 530 

included. The activities ‘Start’ and ‘End’ are just dummy activities (null duration). 531 

<Figure 4> 532 

On the lower part of Figure 4, the sequential merging procedure has been exemplified. 533 

Note, however, that the activities represent the standard deviation, not the variance, and this 534 

is to be considered when applying all the expressions stated in Figure 3. Furthermore, the 535 

type of merger operation has been stated in the five-step (solution) reduction procedure, 536 

replacing the original activity descriptions and allowing the reader to understand where each 537 
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newly merged activity came from. All these indications however, are not necessary when we 538 

try to expedite the manual calculation process. 539 

Few explanations are needed at this stage, since the merger procedure just requires the 540 

application of simple mathematical expressions already introduced mostly in Figure 3. It is 541 

worth highlighting that, unlike the original PERT with fixed paths (in which what was 542 

described in the network had to be necessarily carried out and excluded the possibility of 543 

going backwards), the introduction of probabilistic paths, minima and self-loops allows for a 544 

closer representation of construction projects. In this sense, M-PERT allows for some paths 545 

happening while others do not, and that a group (or even the whole project if need be) is 546 

repeated thanks to the inclusion of a self-loop. Overall, the modelling possibilities of M-547 

PERT are significantly more powerful than the original PERT. 548 

 549 

Networks with correlation between activities 550 

Sometimes there are networks (project schedules) in which the merger procedure ends in 551 

a knot that cannot be untangled. This is quite usual indeed when there are several parallel 552 

paths that do not depart from the same node and/or do not converge in the same node 553 

(Mehrotra et al. 1996). In those situations, the partially reduced network can end up in 554 

(sub)networks similar to the ones shown in Figure 5, although maybe with more nodes. 555 

<Figure 5> 556 

For solving these subnetworks that usually represent a small portion of the whole 557 

network, authors like Mehrotra et al. (1996) and Sculli and Shum (1991) proposed a 558 

sequential recursive procedure that involves calculating all the variance and covariance 559 

values between the ‘untangled’ paths. Implementing this procedure basically requires 560 

identifying all the possible paths and then merging them, first, two of them, and then one by 561 
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one with the already merged group. However, the user needs to be aware that there is a 562 

correlation (ρ≠0) between activities when applying the maxima (or minima) expressions from 563 

Figure 3, that is, between paths that have some activities in common (as the covariance 564 

between those two paths will not generally be zero). 565 

As can be seen in Figure 5, identifying all the possible paths is not difficult unless the 566 

network knot size involves a lot of activities and is very dense in precedence relationships 567 

(number of arrows). The only tricky part is to calculate the correct value of ρ between the 568 

paths. However, Sculli and Shum (1991) derived the generic expression for obtaining it, but 569 

since that expression is somehow difficult to understand for the beginner, the ρ expressions 570 

for up to four parallel paths (normally ordered from higher to lower mean duration µk and 571 

sequentially named A, B, C and D) are given here: 572 
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Where ρAB, ρABC, ρABCD representing, respectively, the correlation coefficients as paths A 576 

with B, AB with C, and ABC with D are merged one by one with the previously merged 577 

paths. COVXY simply corresponds to the sum of variances of the activities that paths X and Y 578 

have in common, and σX and σY, the standard deviations of the paths X and Y respectively, 579 

with X,Y=A, B, C, D. Examples of calculation of the variance and covariance values have 580 

been provided in Figure 5 in the covariance matrices. 581 

Finally, for the sake of clarity, the complete step-by-step procedure for implementing 582 

expressions 9 to 11 in a project network with four paths with correlation has been described 583 
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in the supplemental data under Alternative 2 in the example project 0, along with other 584 

multiple examples of M-PERT exercises. 585 

 586 

Results 587 

The five methods from which M-PERT has been built were tested in several benchmark 588 

networks. There is no reason to believe that M-PERT, which makes use of their most 589 

meritorious contributions, even including new features for better modelling real-life projects, 590 

will have a lower accuracy. Anyhow, M-PERT has been applied to one network in this paper 591 

and its accuracy comparison is presented in Figure 6. 592 

<Figure 6> 593 

It must be borne in mind, though, that Figure 6 shows a comparison of four statistical 594 

distributions of which the distribution parameters are perfectly known, not a comparison of 595 

datasets against another dataset or a known distribution, as is more usual in research analyses. 596 

Hence, we will not be testing how ‘significant’ the difference between any two distributions 597 

is, as it is already known that they are different distributions. Instead, a graphical approach is 598 

adopted here for illustrating the location and dispersion deviations between the distributions. 599 

 Figure 6, in particular, shows four curves. The two continuous gray curves show the 600 

exact solution of the project duration distribution (obtained through computer simulations) by 601 

modelling the activity durations with Normal distributions and Uniform distributions 602 

respectively. As stated before, the choice of one or other distribution hardly has any 603 

relevance, an outcome proven again by observing how close both gray curves are. The 604 

average (project duration) of these two simulated distributions is close to 147.5 days despite 605 

they being lightly positively skewed and leptokurtic. 606 

The dashed curve, on the other hand, represents the approximation offered by M-PERT 607 

by using the Normal distribution modelling the project duration distribution, whose 608 
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parameters were obtained at the bottom of Figure 4. The bridge project, with three dominant 609 

parallel paths, does not deviate much from the Normal approximation. It is also easy to 610 

appreciate how the M-PERT project duration mean is close to 147 days (estimation error 611 

below 1% when compared to the simulated curves, whereas the variance or dispersion error is 612 

also below 10%). 613 

Last of all, the continuous black curve representing the classical PERT approximation 614 

significantly falls behind, with an average project duration of 133 days (error above 10%). 615 

Again, this evidences how inaccurate the original PERT is when there are parallel paths and 616 

the merge event bias is neglected. 617 

Finally, for reassurance, results in other networks exemplifying step-by-step calculations, 618 

along with the (simulated) actual project duration distribution, can be found as supplemental 619 

data. 620 

 621 

Discussion and conclusions 622 

A new scheduling technique named M-PERT has been proposed. This technique takes 623 

advantage of several methods that were proposed since PERT was devised for correcting 624 

several shortcomings that the original technique had. In particular, in situations with multiple 625 

parallel paths (the norm in construction projects), the original PERT resulted in a project 626 

duration underestimation and a variance overestimation. 627 

A systematic literature review has been developed in order to justify why M-PERT 628 

concentrates on the really significant weaknesses of PERT and why, by neglecting other 629 

accessorial aspects, the resulting tool is still accurate, but not complex. Indeed, the method 630 

proposed is easy to implement and easy to learn due to its intuitive nature and simplifying 631 

assumptions. This makes M-PERT an attractive tool for teaching scheduling basics to 632 

construction and project management students, especially since its calculations can be 633 
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developed manually or by means of very simple spreadsheets. Finally, an application has 634 

been included in which the new features offered by M-PERT, such as the minima of 635 

activities, probabilistic (alternative) paths or activity or groups of activities self-loops 636 

evidence a higher resemblance between scheduled networks and real construction projects. 637 

However, there is still a long way to go. Indeed, despite this tool really departing from the 638 

original PERT conception, it is still open to improvement. The cost dimension has not been 639 

included in M-PERT, but it should follow a very similar approach. However, the inclusion of 640 

resources in the analysis really represents a challenging route that should probably be 641 

incorporated in the next versions of this scheduling technique. 642 

 643 

Data availability 644 

All data generated or analyzed during the study are included in the submitted article or 645 

supplemental materials files. 646 

 647 

References 648 

Abbasi, G. Y., and Mukattash, A. M. (2001). “Crashing PERT networks using mathematical 649 
programming.” International Journal of Project Management, 19(3), 181–188. 650 

Ang, A. H.-S., Chaker, A. A., and Abdelnour, J. (1975). “Analysis of Activity Networks 651 
under Uncertainty.” Journal of the Engineering Mechanics Division, 101(4), 373–387. 652 

Anklesaria, K. P., and Drezner, Z. (1986). “A Multivariate Approach to Estimating the 653 
Completion Time for PERT Networks.” Journal of the Operational Research Society, 654 
37(8), 811–815. 655 

Asmar, M. El, Hanna, A. S., and Whited, G. C. (2011). “New Approach to Developing 656 
Conceptual Cost Estimates for Highway Projects.” Journal of Construction Engineering 657 
and Management, American Society of Civil Engineers, 137(11), 942–949. 658 

Azaron, A., Katagiri, H., Sakawa, M., Kato, K., and Memariani, A. (2006). “A multi-659 
objective resource allocation problem in PERT networks.” European Journal of 660 
Operational Research, 172(3), 838–854. 661 

Azaron, A., and Tavakkoli-Moghaddam, R. (2007). “Multi-objective time–cost trade-off in 662 
dynamic PERT networks using an interactive approach.” European Journal of 663 
Operational Research, 180(3), 1186–1200. 664 

Aziz, R. F. (2014). “RPERT: Repetitive-Projects Evaluation and Review Technique.” 665 



 

 

28 

Alexandria Engineering Journal, 53(1), 81–93. 666 

Ballesteros-Pérez, P., Skitmore, M., Das, R., and del Campo-Hitschfeld, M. L. (2015). 667 
“Quick Abnormal-Bid–Detection Method for Construction Contract Auctions.” Journal 668 
of Construction Engineering and Management, 141(7), 4015010. 669 

Banerjee, A., and Paul, A. (2008). “On path correlation and PERT bias.” European Journal 670 
of Operational Research, 189(3), 1208–1216. 671 

Baradaran, S., Fatemi Ghomi, S. M. T., Mobini, M., and Hashemin, S. S. (2010). “A hybrid 672 
scatter search approach for resource-constrained project scheduling problem in PERT-673 
type networks.” Advances in Engineering Software, 41(7–8), 966–975. 674 

Baradaran, S., Fatemi Ghomi, S. M. T., Ranjbar, M., and Hashemin, S. S. (2012). “Multi-675 
mode renewable resource-constrained allocation in PERT networks.” Applied Soft 676 
Computing, 12(1), 82–90. 677 

Bein, W. W., Kamburowski, J., and Stallmann, M. F. M. (1992). “Optimal Reduction of 678 
Two-Terminal Directed Acyclic Graphs.” SIAM Journal on Computing, 21(6), 1112–679 
1129. 680 

Castro, J., Gómez, D., and Tejada, J. (2007). “A project game for PERT networks.” 681 
Operations Research Letters, 35(6), 791–798. 682 

Chen, S.-P. (2007). “Analysis of critical paths in a project network with fuzzy activity times.” 683 
European Journal of Operational Research, 183(1), 442–459. 684 

Cho, S. (2009). “A linear Bayesian stochastic approximation to update project duration 685 
estimates.” European Journal of Operational Research, 196(2), 585–593. 686 

Clark, C. E. (1961). “The Greatest of a Finite Set of Random Variables.” Operations 687 
Research, INFORMS, 9(2), 145–162. 688 

Clark, C. E. (1962). “Letter to the Editor—The PERT Model for the Distribution of an 689 
Activity Time.” Operations Research, INFORMS, 10(3), 405–406. 690 

Cox, M. (1995). “Simple normal approximation to the completion time distribution for a 691 
PERT network.” International Journal of Project Management, 13(4), 265–270. 692 

Creemers, S., Leus, R., and Lambrecht, M. (2010). “Scheduling Markovian PERT networks 693 
to maximize the net present value.” Operations Research Letters, 38(1), 51–56. 694 

Dodin, B., and Sirvanci, M. (1990). “Stochastic networks and the extreme value distribution.” 695 
Computers & Operations Research, 17(4), 397–409. 696 

Douglas, D. E. (1978). “PERT and simulation.” WSC ’78 Proceedings of the 10th conference 697 
on Winter simulation, IEEE, 89–98. 698 

Elmaghraby, S. E. (1989). “The estimation of some network parameters in the PERT model 699 
of activity networks: review and critique.” Advances in Project Scheduling (eds. 700 
Slowinski & Weglarz), Elsevier, 371–432. 701 

Foldes, S., and Soumis, F. (1993). “PERT and crashing revisited: Mathematical 702 
generalizations.” European Journal of Operational Research, 64(2), 286–294. 703 

Fulkerson, D. R. (1962). “Expected Critical Path Lengths in PERT Networks.” Operations 704 
Research, 10(6), 808–817. 705 

Golenko-Ginzburg, D. (1989). “PERT assumptions revisited.” Omega, 17(4), 393–396. 706 



 

 

29 

Gong, D., and Hugsted, R. (1993). “Time-uncertainty analysis in project networks with a new 707 
merge-event time-estimation technique.” International Journal of Project Management, 708 
11(3), 165–173. 709 

González, G. E. G., Hernández, G. O., and Roldán, F. (2014). “Effect of Network’s 710 
Morphology and Merge Bias Correction Procedures on Project Duration Mean and 711 
Variance.” Procedia - Social and Behavioral Sciences, 119, 2–11. 712 

Grubbs, F. E. (1962). “Attempts to Validate Certain PERT Statistics or ‘Picking on PERT.’” 713 
Operations Research, 10(6), 912–915. 714 

Hahn, E. D. (2008). “Mixture densities for project management activity times: A robust 715 
approach to PERT.” European Journal of Operational Research, 188(2), 450–459. 716 

Hajdu, M. (2013). “Effects of the application of activity calendars on the distribution of 717 
project duration in PERT networks.” Automation in Construction, Elsevier B.V., 35, 718 
397–404. 719 

Hajdu, M., and Bokor, O. (2014). “The Effects of Different Activity Distributions on Project 720 
Duration in PERT Networks.” Procedia - Social and Behavioral Sciences, 119, 766–721 
775. 722 

Healy, T. L. (1961). “Activity Subdivision and PERT Probability Statements.” Operations 723 
Research, INFORMS, 9(3), 341–348. 724 

Herrerías-Velasco, J. M., Herrerías-Pleguezuelo, R., and Van Dorp, J. R. (2011). “Revisiting 725 
the PERT mean and variance.” European Journal of Operational Research, 210(2), 726 
448–451. 727 

Johnson, D. (1997). “The Triangular Distribution as a Proxy for the Beta Distribution in Risk 728 
Analysis.” Journal of the Royal Statistical Society: Series D (The Statistician), 46(3), 729 
387–398. 730 

Kamburowski, J. (1989). “PERT networks under incomplete probabilistic information.” 731 
Advances in Project Scheduling (eds. Slowinski & Weglarz), Elsevier, 433–466. 732 

Kamburowski, J. (1997). “New validations of PERT Times.” Omega, 25(3), 323–328. 733 

Khamooshi, H., and Cioffi, D. F. (2013). “Uncertainty in Task Duration and Cost Estimates: 734 
Fusion of Probabilistic Forecasts and Deterministic Scheduling.” Journal of 735 
Construction Engineering and Management, American Society of Civil Engineers, 736 
139(5), 488–497. 737 

Kotiah, T. C. T., and Wallace, N. D. (1973). “Another Look at the PERT Assumptions.” 738 
Management Science, INFORMS, 20(1), 44–49. 739 

Kuklan, H., Erdem, E., Nasri, F., and Paknejad, M. J. (1993). “Project planning and control: 740 
an enhanced PERT network.” International Journal of Project Management, 11(2), 87–741 
92. 742 

Lau, H.-S., and Somarajan, C. (1995). “A proposal on improved procedures for estimating 743 
task-time distributions in PERT.” European Journal of Operational Research, 85(1), 744 
39–52. 745 

López Martín, M. M., García García, C. B., García Pérez, J., and Sánchez Granero, M. A. 746 
(2012). “An alternative for robust estimation in Project Management.” European 747 
Journal of Operational Research, 220(2), 443–451. 748 



 

 

30 

Lu, M. (2002). “Enhancing Project Evaluation and Review Technique Simulation through 749 
Artificial Neural Network-based Input Modeling.” Journal of Construction Engineering 750 
and Management, American Society of Civil Engineers, 128(5), 438–445. 751 

Lu, M., and Lam, H.-C. (2009). “Transform Schemes Applied on Non-Finish-to-Start Logical 752 
Relationships in Project Network Diagrams.” Journal of Construction Engineering and 753 
Management, 135(9), 863–873. 754 

Ludwig, A., Möhring, R. H., and Stork, F. (2001). “A Computational Study on Bounding the 755 
Makespan.” Annals of Operations Research, 102, 49–64. 756 

MacCrimmon, K. R., and Ryavec, C. A. (1964). “An Analytical Study of the PERT 757 
Assumptions.” Operations Research, 12(1), 16-37. 758 

Magott, J., and Skudlarski, K. (1993). “Estimating the mean completion time of PERT 759 
networks with exponentially distributed durations of activities.” European Journal of 760 
Operational Research, 71(1), 70–79. 761 

Malcolm, D. G., Roseboom, J. H., Clark, C. E., and Fazar, W. (1959). “Application of a 762 
Technique for Research and Development Program Evaluation.” Operations Research, 763 
7(5), 646-669. 764 

Mehrotra, K., Chai, J., and Pillutla, S. (1996). “A study of approximating the moments of the 765 
job completion time in PERT networks.” Journal of Operations Management, 14(3), 766 
277–289. 767 

Mohan, S., Gopalakrishnan, M., Balasubramanian, H., and Chandrashekar, A. (2006). “A 768 
lognormal approximation of activity duration in PERT using two time estimates.” 769 
Journal of the Operational Research Society, 58(6), 827–831. 770 

Mouhoub, N. E., Benhocine, A., and Belouadah, H. (2011). “A new method for constructing 771 
a minimal PERT network.” Applied Mathematical Modelling, Elsevier Inc., 35(9), 772 
4575–4588. 773 

Mummolo, G. (1997). “Measuring uncertainty and criticality in network planning by PERT-774 
path technique.” International Journal of Project Management, 15(6), 377–387. 775 

Nadarajah, S., and Kotz, S. (2008). “Exact distribution of the max/min of two Gaussian 776 
random variables.” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 777 
16(2), 210–212. 778 

Nelson, R. G., Azaron, A., and Aref, S. (2016). “The use of a GERT based method to model 779 
concurrent product development processes.” European Journal of Operational 780 
Research, 250(2), 566–578. 781 

Pleguezuelo, R. H., Pérez, J. G., and Rambaud, S. C. (2003). “A note on the reasonableness 782 
of PERT hypotheses.” Operations Research Letters, 31(1), 60–62. 783 

PMI. (1996). A Guide to the Project Management Body of Knowledge. 1st edition. Project 784 
Management Institute. Newton square, USA. 785 

PMI. (2008). A Guide to the Project Management Body of Knowledge. 5th edition. (P. M. I. 786 
N. square. USA, ed.), Project Management Institute. Newton square, USA. 787 

Pontrandolfo, P. (2000). “Project duration in stochastic networks by the PERT-path 788 
technique.” International Journal of Project Management, 18, 215–222. 789 

Premachandra, I. M. (2001). “An approximate of the activity duration distribution in PERT.” 790 



 

 

31 

Computers and Operations Research, 28(5), 443–452. 791 

Pritsker, A. A. B. (1966). GERT: Graphical Evaluation and Review Technique. RM-4973-792 
NASA. National Aeronautics and Space Administration under Contract No. NASr-21. 793 
Retrieved 2006-12-05. 794 

Ringer, L. J. (1969). “Numerical Operators for Statistical Pert Critical Path Analysis.” 795 
Management Science, 16(2), 136–143. 796 

Sasieni, M. W. (1986). “Note—A Note on Pert Times.” Management Science, INFORMS, 797 
32(12), 1652–1653. 798 

Sculli, D., and Shum, Y. W. (1991). “An approximate solution to the pert problem.” 799 
Computers & Mathematics with Applications, 21(8), 1–7. 800 

Stauber, B. R., Douty, H. M., Fazar, W., Jordan, R. H., Weinfeld, W., and Manvel, A. D. 801 
(1959). “Federal Statistical Activities.” The American Statistician, 13(2), 9–12. 802 

Tatterson, J. (1974). “PERT, CPM and the export process.” Omega, 2(3), 421–426. 803 

Tavares, L. V. (2002). “A review of the contribution of Operational Research to Project 804 
Management.” European Journal of Operational Research, 136(1), 1–18. 805 

Trietsch, D., and Baker, K. R. (2012). “PERT 21: Fitting PERT/CPM for use in the 21st 806 
century.” International Journal of Project Management, APM and IPMA and Elsevier 807 
Ltd, 30(4), 490–502. 808 

Trietsch, D., Mazmanyan, L., Gevorgyan, L., and Baker, K. R. (2012). “Modeling activity 809 
times by the Parkinson distribution with a lognormal core: Theory and validation.” 810 
European Journal of Operational Research, Elsevier B.V., 216(2), 386–396. 811 

Vanhoucke, M. (2012). Project Management with Dynamic Scheduling. Springer Berlin 812 
Heidelberg, Berlin, Heidelberg. 813 

Węglarz, J., Józefowska, J., Mika, M., and Waligóra, G. (2011). “Project scheduling with 814 
finite or infinite number of activity processing modes – A survey.” European Journal of 815 
Operational Research, 208(3), 177–205. 816 

Wenying, L., and Xiaojun, L. (2011). “Progress Risk Assessment for Spliced Network of 817 
Engineering Project Based on Improved PERT.” Systems Engineering Procedia, 1, 271–818 
278. 819 

Woolf, C. ., Cass, W., and McElroy, J. (1968). “The use of ‘Program Evaluation and Review 820 
Technique’ (PERT) in the design and control of a medical research project.” Computers 821 
and Biomedical Research, 2(2), 176–186. 822 

Xiangxing, K., Xuan, Z., and Zhenting, H. (2010). “Markov skeleton process in PERT 823 
networks.” Acta Mathematica Scientia, 30(5), 1440–1448. 824 

Yaghoubi, S., Noori, S., Azaron, A., and Fynes, B. (2015). “Resource allocation in multi-825 
class dynamic PERT networks with finite capacity.” European Journal of Operational 826 
Research, Elsevier B.V., 247(3), 879–894. 827 

 828 



 

1 

▼Highlights       Work ► Pritsker 
(1966) 

Sculli and 
Shum 
(1991) 

Gong & 
Hugsted 
(1993) 

Cox 
(1995) 

Mehrotra 
et al. 

(1996) 

Avoids having to calculate all the 
possible paths (critical and non-
critical) (allows big networks) 

ü  ü ü  

Allows for recursive application of 
activity maxima and/or minima (time-

saving simplification) 
 ü ü ü  

Normal distributions for modelling the 
activity durations 

(only mean and variance matter) 
 ü ü  ü 

Allows for correlation between 
different activities 

(allows complex projects) 
ü ü ü  ü 

Use of simple expressions for solving 
the activity mergers 

(calculation simplicity) 
   ü ü 

Allows for extra features (activity 
minima, self-loops or probabilistic 
paths, etc) (resemblance to reality) 

ü     

Number of benchmark networks in 
which the model was tested (Number 

of validation tests) 
4 2 3 2 10 

Table 1. Key works on which PERT 2.0 has been based 



Distribution of 
activity duration 

   

Uniform 
(a=0, b=10) 

   

Beta* 
(α=2.94,β=4.62, 

a=0, b=15) 
 

   
 

Distribution of 
activity duration 

  
 

Uniform 
(a=0, b=10) 

   

Beta* 
(α=2.94,β=4.62, 

a=0, b=15) 

   
*According to the original PERT, with Optimistic duration: 0, Most likely: 5, and Pessimistic: 15 time units. 

Fig. 1. Comparison of two probability distributions alteration as more activities are added 
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Precedence type Activity-on-Node (AoN) 
representation 

Finish-Start                               
equivalent 

Finishes i, Starts j  
with a time lag t 

(omit if t=0) 
 

Starts i, Starts j  
with a time lag t 

  

Finishes i, Finishes j  
with a time lag t 

  

Starts i, Finishes j  
with a time lag t 

  

Fig. 2. Array of activity precedences in M-PERT 
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j  
  

i 
  t 
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Operation AoN Representation Input par. Output parameters Result Observations 

Serial 
activities 

 

μi, σi² 
μj, σj² 

… 
μn, σn² 

¦
 

 
njix

xk
,...,
PP  

¦
 

 
njix

xk
,...,

22 VV  

 

When there is a time lag t between any 

two activities, then  

μk= μi+μj+t  and  σk²=σi²+σj² 

Probabilistic 
(alternative) 

paths 

 

μi, σi², p 
μj, σj², q=1-p 

μk= p μi + (1-p) μj 

σk²= p σi²+ (1-p) σj²+ p(1- p)(μi-μj)² 

 

If there are more activities after any of 
the first activities from the paths, resolve 

those mergers first, then merge into a 
single activity k 

 

μx, σx², px 

for x=1,2,3…n, 

with ¦
 

 
n

x
xp

1
1 

¦
 

 
n

x
xxk p

1
PP  

� � 2

1

222
k

n

x
xxxp

k
PPVV �� ¦

 

 

Self-loops 

 

μi, σi², pi 
μk= (1+pi) μi 

σk²= (1+pi) σi²+ p(1- p)μi² 

 

When the self-loop comprises more than 
one activity, resolve (merge) the 
activities within the loop first. 

If there are nested (or multiple) self-
loops, resolve inner self-loops first. 

(maximum or 
minimum) 
Parallel  

paths 

Maximum  
(all activities are to finish before 

continuing) 
or 

Minimum  
(just one activity needs to finish 

before continuing 

 

μi, σi² 
μj, σj² 

ρ (if i and j  
are correlated, 
otherwise ρ=0) 

  Maximum:    � � � �� � � �GITGPGPP ��� ΦΦ jik 1  
� � � � � � � �� � � � � � 222222 1 kjijjiik ΦΦ PGITPPGPVGPVV �������  

______________________________________ 

  Minimum:   � �� � � � � �GITGPGPP ��� ΦΦ jik 1  
� � � �� � � � � � � � � � 222222 1 kjijjiik ΦΦ PGITPPGPVGPVV �������  

 
Where � � TPPG ji �  ; 

jiji VUVVVT 222 ��  
and φ(·) and Φ(·) are the Probability Density Function (PDF) and 
Cumulative Distribution Function (CDF) of the Standard Normal 
distribution (use Supplemental Figure 1 from the Supplemental 

Online material for quick calculation) 

 

When there are several activities on, at 
least, one path, resolve (merge) the 

activities within that/those path/s first, 
then apply the maximum/minimum 

merger. 

When there are more than two alternative 
paths, keep recursively resolving 

(merging) the paths by groups of two 
activities, until finishing with just one 
path (activity k will be then in series) 

Fig. 3. Array of activity mergers in M-PERT 
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1+2 
  Serial merger 

(35,5.10) 

4 
  

3+6+9 
  Serial merger 

(90,12.25) 

= 
(20,4) 

5+8 
  Serial merger 

(60,11.31) 

7a+b 

(11,12)min 
Minimum 

(9.10,1.30) 

10 
  = 

(35,10) 

13+14 
  Serial merger 

(15,2.24) 

16+17+18 
Serial merger 

(8,1) 
Prob. paths merger 

(30,18.36) 

MAX 

0.50 

15° 

Self-loop 
(1.25,0.43) 

 
 

 

Fig. 4. M-PERT application in a fictitious simplified bridge project  
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Deep foundations 
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MAX 
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0.25 

Pile load test 
(1,0) 

Bridge Project 
(AoN network) 

id 
  Description 

(μ,σ) 
 

id: activity identifier 
μ: duration mean 
σ: duration std. dev. 

Legend 

(river) 

Step-by-step merger procedure 

1+2 
  = 

(35,5.10) 

4+7a+b+10+15° 

3+6+9 
  = 

(90,12.25) 

Serial merger 
(86.25,21.29) 

5+8+(11,12)min+13+14 
  

Serial merger 
(84.10,11.61) 

(16+17+18)° 
Self-loop 
(12,4.18) 

MAX 

1+2 
  = 

(35,5.10) 

(3+6+9, 4+7a+b+10+15°)max 
 

Maximum 
(98.04,13.73) (16+17+18)° 
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(12,4.18) 5+8+(11,12)min+13+14 
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(84.10,11.61) 
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[(3+6+9, 4+7a+b+10+15°)max , 
5+8+(11,12)min+13+14]max 

Maximum 
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(16+17+18)° 
= 

(12,4.18) 

1+2+[(3+6+9, 4+7a+b+10+15°)max , 
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Serial merger 
(147.29,13.55) 

Step 1 
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Step 2 
(3 mergers) 
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Fig. 5. Two examples of AoN networks with correlation and the calculation of their covariance matrix 
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μi: duration mean 
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Fig. 6. Comparison of project duration estimation accuracy between PERT and M-PERT for the 
simplified bridge project 
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Detailed step-by-step calculations for a (Sub)network with correlation. 
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Alternative 1 

This alternative is possible due to the problem symmetry. If, for instance, the Finish-Start precedence 

relationship between nodes 2 and 4 had not existed, this alternative would have not been possible, only 

Alternative 2. However, when Alternative 1 is possible is always preferable since it is quicker and more 

accurate (since normally it entails fewer recursive applications of the maximum merger formulae) 

Step 1 (2 mergers) 

■ Maximum merger between activities i=1 (with μi=10 and σi=3) and j=2 (with μj=10 and σj=3), then 

k=(1,2)max. Values of Φ(·) and φ(·) can be calculated with the Supplemental Figure 1. 

243.4183·3·0·2332 2222  jiji   (there is no correlation between 1 and 2, i.e. ρ=0) 

    0243.41010   ji
 

               

693.11399.0·243.4

5.01·105.0·100243.401100101max)2,1(



  ΦΦΦΦ jik  

                

          

477.2135.6135.6

726.136399.0·86.845.01·1095.0·109693.110324.4101001103

01031

222

22222222

max)2,1(

2







k

kjijjiik

Φ

ΦΦΦ







 

■ Maximum merger between activities i=3 (with μi=10 and σi=3) and j=4 (with μj=10 and σj=3), then 

k=(3,4)max. 

In this case, it is obvious that since the means and variances of all the activities are the same, the result 

coincides with the maximum merger for i=1 and j=2. Therefore, μk= μ(3,4)max =11.70 and σk= 

σ(3,4)max=2.46 

Step 2 (1 mergers) 

■ Serial merger between activities i=(1,2)max. (with μi=11.693 and σi=2.477) and j=(3,4)max (with 

μj=11.693 and σj=2.477), then k=(1,2)max+(3,4)max. 

385.23693.11693.11
,...,

max)4,3(max)2,1(  


 ji

njix

xk  →Project Duration mean 

503.3270.12270.12477.2477.2 2222

,...,

22

max)4,3(max)2,1(

2  


 kji

njix

xk
 →Project 

Duration standard deviation 

Now that μp=23.385 and σp=3.503 are known, the probabilities of any possible project duration (p) can 

be calculated by using the Φ(z) curve in Supplemental Figure 1 with  
ppDz  . Or the other 

way around, that is, given a known probability Φ(z)=P (Y axis value), obtain the respective z value and 

then 
pp zD   . 
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Alternative 2 (general approach) 

When alternative 1 option is not possible, a recursive (maximum) merger procedure for untangling the 

network is always possible between paths with shared activities. The only caution needed is to account 

for the correlation among the different paths when they are merged one by one until there is no one left 

to merge. 

Step 1 (identify all possible paths) 

■ There are four possible paths in this (sub)network 1-3, 1-4, 2-3 and 2-4, which we will name for the 

sake of brevity for later calculations as A, B, C and D, respectively. 

It is also necessary to calculate all the activities means and variances, as well as their covariances. The 

covariance between any two paths is just the sum of the variances of those activities which are common 

between those two paths (unless another additional source of correlation is stated). 

Path (i) Activities μi A B C D 

A 1,3 10+10=20 32+32=18 32=9 32=9 0 

B 1,4 10+10=20 32=9 32+32=18 0 32=9 

C 2,3 10+10=20 32=9 0 32+32=18 32=9 

D 2,4 10+10=20 0 32=9 32=9 32+32=18 

Values in the diagonal correspond to the variances, and those outside to the covariances between 

couples of paths. Finally, when the time comes later, the coefficient of correlation between two paths i 

and j will be calculated as 
jiijCOV   where all the values are taken from the table above. 

Step 2 (4 mergers) 

■ There are four serial mergers, as indicated in the table above. Detailed calculations are given for path 

A applying the serial activities merger from Figure 3:  

μA= μ1 +μ3=20 243.41833 222

3

2

1   A
 

Since the rest of the paths (in this example) have the same duration means and standard deviations, 

then: μA= μB =μC= μD =20 and σA= σB =σC= σD =4.243. 

Step 3 (1 merger) 

As a general rule all paths will be ordered from longest to shortest mean project duration and then 

merged. First, those two longest paths will be merged, and then one by one, in a recursive fashion, the 

rest will also be merged/added. This one-by-one order rule (unlike the quickest approach by couples of 

paths first, then by couples of couples of paths, and so on, when there is no correlation between paths) is 

necessary due to how the mathematical expressions of the correlation coefficients ρ between maxima of 

paths are stated, since it is not possible (not easily at least) to calculate covariance between two different 

groups with multiple paths each. 

■ Maximum merger between paths i=A (with μi=20 and σi=4.243) and j=B (with μj=20 and σj=4.243), 

then k=(A,B)max. Values of Φ(·) and φ(·) can be calculated with the Supplemental Figure 1. 

5.0
243.4·243.4

9


BA

AB

ji

ij

AB

COVCOV
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243.418243.4·243.4·5.0·2243.4243.422 222222  BAABBAjijiAB   

      0243.42020 
ABBAjiAB   

             

         AB

ABABABjABAjiBAk

ΦΦ
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693.21399.0·243.45.01·205.0·200324.40120020

11max),(  

            

            

            

  ABk

ABABABBAABBBABAA

kjijjiiBAk

ΦΦ

ΦΦ
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890.3132.15132.15586.470399.0·72.1695.01·4185.0·418

693.210324.420200120243.4020243.4

1

1

22222

22222

222222

max),(

2

  

Note that, for ease of notation, both results have been renamed as μAB and σAB. 

Step 4 (1 merger) 

■ Maximum merger between paths i=(A,B)max=AB (with μi=21.693 and σi=3.890) and j=C (with μj=20 

and σj=4.243), then k=[(A,B)max ,C]=ABC. The expression for the coefficient of correlation calculation 

is derived from Sculli & Shum (1991): 

         
273.0

505.16

05.0·9

243.4·890.3

010091
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ABBCABAC
ABC




  

913.4120.24243.4·890.3·273.0·2243.4890.32 2222  CABABCCABABC   

    345.0913.420693.21  ABCCABABC   

           

    ABC

ABCABCABCCABCABABC ΦΦΦΦ









921.22376.0·913.4635.01·20635.0·693.21345.0912.4

345.0120345.0693.211
 

            

            

 

ABCk

ABCABCABCCABABCCCABCABABABC
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548.3617.12

617.12372.525376.0·754.204635.01·418635.0·718.485921.22

345.0913.420693.21345.0120243.4345.0693.21890.3

1

2

2222

222222

 

Step 5 (1 merger) 

■ Maximum merger between paths i=[(A,B)max,C]max=ABC (with μi=22.921 and σi=3.548) and j=D 

(with μj=20 and σj=4.243), then k={[(A,B)max ,C]max,D}max=ABCD. The expression for the coefficient of 

correlation calculation is derived from Sculli & Shum (1991): 

          

              
408.0

054.15

635.01·9635.0·5.01·9

243.4·548.3

345.019345.001900
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278.4305.18243.4·548.3·408.0·2243.4548.32 2222  DABCABCDDABCABCD   

    683.0278.420921.22  ABCDDABCABCD 
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    nration meaProject Du

ΦΦΦΦ ABCDABCDABCDDABCDABCABCD





551.23316.0·278.4753.01·20753.0·921.22683.0278.4
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1
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2222
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It is easy to see that, due to the recursive application of the maximum merger for the four paths, these 

results (μp=23.551 and σp=3.420) do not exactly coincide with the previous from alternative 1 

(μp=23.385 and σp=3.503), but they are very close. Again, the probabilities of any possible project 

duration (p) can be calculated exactly as was explained for the Alternative 1. 
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Supplemental Figure 1. Abacus for calculating the probability density function φ(z) and the 

cumulative distribution function Φ(z) of the Standard Normal distribution 
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Sample of 7 exercises (project schedules) of increasing difficulty for learning M-PERT 

Note: for the calculations of the original PERT technique, self-loops are ignored (as they cannot be calculated with PERT) 

and it has been assumed that the Critical Path goes through the path with higher probabilities of happening in presence of 

probabilistic paths. 
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