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Abstract 

Rocket species are increasing in popularity with consumers, and in the last ten years 

scientific interest has also increased due to the potential health benefits of 

consuming leaves. They are known for pungent and bitter taste components, and the 

chemical compounds largely responsible for these sensations are also health 

beneficial. These compounds are called isothiocyanates (ITCs), and they are 

ubiquitous in the plant family Brassicaceae. Precursor compounds called 

glucosinolates (GSLs) are converted to ITCs via the action of myrosinase enzyme.  

This thesis presents data relating to numerous aspects of rocket species, such 

as differences in GSLs and ITCs. Other phytochemical constituents (flavonols, 

volatile organic chemicals (VOCs), free amino acids, free sugars, polyatomic ion 

content, and organic acids) are explored to determine their impacts on human 

sensory perceptions and consumer acceptance. 

The data presented highlight significant differences between ‘wild’ accessions 

of rocket and commercially available varieties, in terms of flavonol and GSL content 

and sensory attributes. There is great potential to develop underutilised genetic 

resources in breeding programs, and through collaboration with a breeding company 

(Elsoms Seeds Ltd., Spalding, UK) and a commercial salad supplier (Bakkavör 

Group Ltd., Spalding, UK), several accessions were selected for detailed analyses. 

Analysis of VOC profiles further demonstrated the differences between the selected 

cultivars, and by combining these data with sensory and consumer studies, it was 

observed that the diversity of phytochemical components fundamentally underpins 

taste, flavour, and consumer acceptance. 

The same accessions of rocket were also tested under commercial growth, 

processing and storage conditions. It was hypothesised that this would negatively 

impact GSL and ITC content of leaves, but in fact increased concentrations up to five 
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fold from the point of harvest in all accessions analysed. We also observed a 

previously undocumented link between GSL, ITC and free amino acid content with 

bacterial load. 
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CHAPTER 1: Introduction 

 

1.1. Project Background, PhD Aims & Objectives 

The origin of this project began in 2009 as a Knowledge Transfer Partnership 

(KTP) between Elsoms Seeds Ltd. (Spalding, Lincolnshire) and the University of 

Warwick HRI (now known as the Warwick Crop Centre). Sue Kennedy (Head of 

Vegetable Plant Breeding at Elsoms), Prof. David Pink, Dr. Paul Hand (Harper 

Adams University; both formerly University of Warwick), Dr. Guy Barker (University of 

Warwick) and Dr. Graham Teakle (University of Warwick Crop Centre) supervised 

the project. Elsoms was established in 1844 and has sold commercial seed for much 

of its history. Although predominantly a UK based wholesale seed merchant for 

European seed companies, such as Bejo Zaden, Gautier Semences and Florimond 

Desprez, Elsoms also has several of its own advanced breeding programs. The 

company has produced F1 hybrid varieties of swede, parsnip and purple-sprouting 

broccoli with a dedicated breeding and research team. Elsoms specializes in high-

quality plant breeding of niche crops, and initiated the KTP with the aim of expanding 

the company portfolio to include salads and herbs. 

The role given to the KTP Associate (the author) was divided into two parts: 

developing and introducing molecular markers to a parsnip male-sterile breeding 

program, and to initiate new breeding programs in crops with commercial potential. 

The first of these breeding programs to be initiated was in rocket species, as Elsoms 

Seeds had identified a potential ‘gap’ in the breeding market.  

Most cultivars of rocket species are considered to be lacking in breeding 

quality; i.e. ‘varieties’ are commonly produced from open-pollinated populations, and 

lack the uniformity and robustness of true varieties that are developed through 

intensive inbreeding, selection and cross-pollination (Bell & Wagstaff, 2014). Any 
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improvement that might be made through conventional breeding in traits such as 

germination, uniformity of colour and leaf shape, and disease resistance, would have 

added market value (Goldman, 2014; Hall, Jobling, & Rogers, 2012b; Stein & 

Roerink, 2015), and develop a market share for Elsoms where previously they had 

none. Initially, improvements in morphological traits and uniformity were the 

objectives of the new breeding program. 

There are two predominant cultivated rocket species across the globe, “salad” 

rocket (Eruca sativa) and “wild” rocket (Diplotaxis tenuifolia; Hall et al., 2012b). There 

are numerous other related species which can fall under these labels, such as Eruca 

vesicaria, Diplotaxis erucoides, Diplotaxis harra, Diplotaxis simplex and Diplotaxis 

muralis (D’Antuono, Elementi, & Neri, 2008), as well as Bunias orientalis (“Turkish” 

rocket). As will be explained in Chapter 2, these species all have similar 

morphological characteristics, though E. sativa is by far the most diverse in this 

sense (Egea-Gilabert, Fernandez, Migliaro, Martinez-Sanchez, & Vicente, 2009). 

Leaves range from large, rounded types that almost resemble lettuce or spinach, to 

small, ‘skeletal’ and serrated leaf types that are most commonly associated with D. 

tenuifolia (Hall, Jobling, & Rogers, 2015). It is this overlap in characteristics that has 

often led to confusion with retailers, and indeed within the scientific literature, as to 

which-is-which. It is quite common for example, for E. sativa to be grown and 

marketed as “wild” rocket due to the similar traits of some cultivars. There is even 

debate amongst taxonomists as to whether there are in fact two distinct species of 

“salad” rocket (E. sativa and E. vesicaria) or whether they are sub-species (Bell & 

Wagstaff, 2014). The only definitive way of telling the genera and species apart is by 

chromosome counting, or scrutinizing the flower morphology (which growers and 

producers would probably never observe due to short cropping cycles; Hall et al. 

2015). 
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These points might seem trivial and academic, but could have potential 

commercial implications that Elsoms Seeds are keen to take advantage of. By far the 

most cultivated species in the UK and Europe is D. tenuifolia, and its distinctive, 

deeply lobed shape has become the one that most consumers are familiar with 

(Lokke, Seefeldt, & Edelenbos, 2012). Plants also have robust leaves that are 

conducive to industrial processing, as they tend not to tear or break easily. The 

species usually has a deep green colour (though this varies according to light 

exposure; Jin et al., 2009), which consumers find appealing and “fresh” (Lokke et al. 

2012). The species does, however, have numerous drawbacks. Plants are typically 

very slow to germinate and grow to marketable size (Hall et al. 2012b), often taking 

between 36 to 99 days to reach harvestable size depending on the season (Hall, 

Jobling, & Rogers, 2012a). Producers grow “wild” rocket in high densities to 

encourage upward growth to improve yields (Bennett et al., 2013; Lovegrove et al., 

2015) which also makes harvesting easier. But plants sometimes become stressed 

through competition, causing red-purple leaf discoloration (Bell & Wagstaff, 2014). 

The close proximity of plants also reduces airflow around leaves, and coupled with 

high levels of humidity, can lead to downy and powdery mildew infestations (Gilardi, 

Gullino, & Garibaldi, 2012). If fungal infection is severe, this can make entire fields, 

glasshouses and polytunnels of “wild” rocket unsaleable, as leaves turn pale or 

yellow. 

While E. sativa shares some of these issues, it has an important distinction in 

that it germinates and establishes much more quickly than Diplotaxis species; usually 

between 26 to 68 days, depending on the season (Hall et al. 2012a). D. tenuifolia is 

also often anecdotally touted as being ‘hotter’ than E. sativa, however there is no 

quantitative evidence to support this claim. The fact that some E. sativa cultivars 

have similar leaf and phytochemical characteristics to D. tenuifolia led the project 
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collaborators to postulate that a “salad” rocket could be effectively sold and marketed 

as “wild” rocket, but with added benefits of improved germination and a shorter crop 

cycle.  

With these goals and ideas in mind, accession material was sourced from 

European germplasm collections. This was initially aided by a European project 

known as ‘GenRes’ (European Commission, Action 001 AGRI GEN RES No. 

870/2004), with the objective being to catalogue and characterise traits of minor leafy 

vegetables, such as rocket. The expressed aim was to make information available to 

breeders about such underutilised cultivars. Numerous commercial varieties were 

also collected from packet seed to act as a comparison to gene bank accessions, 

and to potentially utilise in breeding selections. Collections at the Genetic Resources 

Unit at the University of Warwick, the Centre for Genetic Resources in the 

Netherlands (CGN) and the Leibniz-Institut für Pflanzengenetik und 

Kulturpflanzenforschung Gatersleben (IPK) were assessed, and nearly 250 distinct 

accessions/cultivars/varieties of rocket were collected for the initial screening. The 

majority of those collected were of Eruca species, and this was partly the reason why 

they became the predominant focus of the Elsoms breeding program. For an 

unknown reason, Diplotaxis accessions were relatively few in germplasm collections 

despite their commercial prevalence, and those that were listed often had depleted 

seed reserves or were under embargo.  

Initial screening began to eliminate material with undesirable characteristics, 

such as early bolting, flowering, and poor germination. After this process, around 100 

accessions remained, but a substantial proportion of Diplotaxis accessions were de-

selected, predominantly due to poor germination. It was also at this point that the 

potential for E. sativa crop development became apparent, as there were numerous 

novel characteristics within the germplasm material. It was theorized that not only 
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could varieties be bred to fill the current market requirements, but also to create new 

ones with unique leaf characteristics. 

It was at this point in the project in 2010 that collaboration began with Dr. 

Lorraine Shaw of Bakkavor Group Ltd. Bakkavor is an international food 

manufacturing company specializing in prepared foods. Although Icelandic-owned, 

the company operates predominantly in the UK, which is its largest market. The 

Group operates 32 manufacturing facilities in the UK, each with a different food 

preparation focus. Sites in Spalding and Bourne in Lincolnshire, for example, deal 

predominantly with ready meals and bagged salads; products in which rocket 

features heavily. Bakkavor were therefore interested in the breeding material that 

was being produced at Elsoms and any future commercial potential, and began 

assisting in breeding selections with a producer/processor’s perspective. This close 

association became essential in developing breeding lines with specific, novel foci in 

mind. 

The KTP project ended in 2011 and succeeded in establishing new breeding 

programs for both “salad” and “wild” rocket types. It was around this time that 

discussions began with Dr. Carol Wagstaff (University of Reading) into beginning a 

PhD project focusing on the phytochemical diversity and sensory properties of rocket. 

Through the breeding selections conducted each year, it was common practice to 

taste leaves while in the field/glasshouse and inform selections on this basis, as well 

as a visual one. It became apparent that, even between closely related sister 

breeding lines, taste, flavour and aroma could vary dramatically, and that there was a 

wealth of phytochemical and sensory variability to be selected for/against. The 

University of Reading Food & Nutritional Sciences department is world renowned for 

research into phytochemical compounds, sensory science, and consumer studies. 

With facilities and expertise otherwise inaccessible, Elsoms and Bakkavor initiated a 
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BBSRC iCASE Award with The University of Reading, which is presented in this 

thesis. The overall aim of the PhD was to elucidate rocket phytochemical and 

sensory diversity in order to develop new breeding ‘markers’ for the industrial 

collaborators. 

By the start of the PhD project, 19 of the original 250 accessions were still 

present within the Elsoms Eruca breeding population. The total number of lines this 

encompassed exceeded 300, with many of the lines having been diversified greatly 

into sister populations via single seed descent. These 19 original lines supplied the 

large amount of morphological variation seen in the breeding population, and so it 

was decided that this project ‘go back’ to the germplasm collections and re-source 

the material to determine if the same was true for phytochemical and sensory 

diversity. Our objective was to characterise each accession and begin the process of 

selecting accessions for their chemical traits (initially glucosinolate and flavonol 

concentrations). The result of this screening is presented in Chapter 3, where the 19 

accessions and numerous commercial comparators were assessed using LC-

MS/MS. A similar characterization was performed on headspace volatile organic 

compounds (VOCs) by TD-GC-TOF-MS, to determine if these varied significantly 

between accessions. Our objective was to study VOCs produced by leaf damage 

over time in a simulated shelf-life environment, and to observe what effects (if any) 

there might be on composition and relative abundances. This was especially of 

interest for glucosinolate-myrosinase reaction products such as isothiocyanates. 

Results of this series of experiments are presented in Chapter 4. 

We aimed to establish how phytochemical diversity affects sensory perception 

and consumer acceptance of rocket. As rocket contains many similar glucosinolate 

and flavonol compounds to Brassica species (Cartea, Francisco, Soengas, & 

Velasco, 2011; Lelario, Bianco, Bufo, & Cataldi, 2012), a sensory and consumer 
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study was conducted with the objective of establishing if similar effects relating to 

sensory attributes (Beck, Jensen, Bjoern, & Kidmose, 2014; Hansen, Laustsen, 

Olsen, Poll, & Sorensen, 1997) were applicable to rocket. Firstly, the sensory 

attributes of rocket were determined utilising a trained sensory panel (presented in 

Chapter 5). Secondly, a consumer trial was conducted to establish which attributes 

people like and/or dislike according to their bitter taste receptor genotype (TAS2R38; 

Dinehart, Hayes, Bartoshuk, Lanier, & Duffy, 2006) and the phytochemical 

constituents of the accessions presented to them (presented in Chapter 6). 

The final aim of the project was to test accessions in a ‘real world’ industrial 

supply chain. We wanted to demonstrate objectively the effects of commercial 

cultivation, harvesting, processing and storage on phytochemical constituents of 

rocket, and how this might affect their nutritional intake. These data are presented in 

Chapter 7, where a full-scale supply chain was utilised to test our hypotheses, and 

for the first time, demonstrate its effects on glucosinolate, isothiocyanate, amino acid 

and sugar content of leaves. 

In the final chapter of this thesis (Chapter 8), the future aims and objectives of 

subsequent projects will be discussed in detail, and will summarize the key outputs of 

this PhD. Briefly, one such output has been the initiation of a project to obtain the full 

genetic sequence of three recombinant inbred lines of E. sativa – a world first to the 

author’s knowledge. These data will be utilised to link the genetic composition of E. 

sativa with phytochemical, sensory and consumer data. Coupled with our existing 

knowledge, the aim is to generate new, nutritionally and sensorially superior breeding 

lines. These will be made available to our collaborators, and in turn, will allow for 

further breeding programs to produce new commercial varieties. 
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1.2. Description of Rocket Species 

1.2.1. Eruca Species 

E. sativa is sometimes referred to as “cultivated” rocket, “annual” rocket, “true” 

rocket, arugula, roquette, or “white pepper” (Garg & Sharma, 2014). This species is 

also sometimes synonymously referred to as E. vesicaria subsp. sativa (Pasini, 

Verardo, Cerretani, Caboni, & D’Antuono 2011), but the exact taxonomic 

classification has yet to be properly agreed as rigorous genetic studies are absent 

from the literature.  

The Eruca genus is sometimes quoted as having a greater genetic diversity 

due to its supposed monospecific nature (Hall et al. 2012a). This is debatable, as 

there are currently five species recognised by the Med-Checklist (an online inventory 

of vascular plants of circum-Mediterranean countries). These include the two 

aforementioned species, as well as Eruca loncholoma, Eruca pinnatifida and Eruca 

setulosa. Until a comprehensive genomic survey is conducted, the ambiguity 

surrounding the diversity of the species will remain. 

E. sativa is a diploid organism containing 11 pairs of chromosomes (Table 1.1, 

2n = 22; Nothnagel, Budahn, Schrader, & Klocke, 2012). The species is a 

preferential out-breeder, with varying levels of self-incompatibility between cultivars. 

This can be overcome to a degree by performing bud-pollinations by hand and 

reducing the ambient temperature during flowering. Crosses with Diplotaxis species 

have been attempted with no viable results, but somatic hybrids have been produced 

with Brassica oleracea, with the purpose of introducing cytoplasmic male sterility into 

the species (Nothnagel et al. 2012). 

The mitochondrial genome of E. sativa has been sequenced (Wang et al. 

2014), however this did little to resolve the number of species present within the 

genus; only determine that it is more related to B. oleracea than Raphanus sativus  
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(radish) and Arabidopsis thaliana. As will be discussed in Chapter 2, the assertion 

that E. sativa is more highly domesticated than “wild” rocket (D. tenuifolia) has no 

supporting evidence (Bell & Wagstaff, 2014). One study by Egea-Gilabert, 

Fernández, Migliaro, Martínez-Sánchez, & Vicente (2009) looked at the genetic 

diversity between E. vesicaria and D. tenuifolia for agronomic traits and found a large 

amount of diversity within each species. The analysis was however very limited, as it 

Table 1.1. Rocket species names, observed chromosome ploidy counts, and native areas according 
to Med-Checklist (Greuter, Burdet, & Long, eds. 2008) and Eschmann-Grupe, Hurka, & Neuffer 
(2003). 

Species name 
Chromosome 
ploidy 

Geographical origin 

Eruca spp. 

Eruca sativa 

2n = 22 

Algeria, Turkey, Spain, Bulgaria, France, Greece, 
Cyprus, Israel, Jordan, Italy, Libya, Lebanon, 
Syria, Portugal, Morocco, Malta, Ukraine, Iran, 
India, Pakistan 

Eruca vesicaria Algeria, Spain, Morocco 
Eruca loncholoma Algeria, Tunisia 
Eruca pinnatifida Algeria, Spain, Morocco, Tunisia 
Eruca setulosa Algeria, Morocco 
Diplotaxis spp. 

Diplotaxis erucoides 2n = 14 
Belgium, France, Canary Islands, Romania, 
Spain, Italy, Algeria, Egypt, Israel, Jordan, 
Serbia, Lebanon, Syria, Morocco, Malta, Tunisia 

Diplotaxis harra 
2n = 26 

Egypt, Algeria, Spain, Israel, Jordan, Libya, 
Lebanon, Syria, Morocco, Italy, Tunisia 

Diplotaxis harra ssp. crassifolia Italy, Spain, Algeria, Morocco, Tunisia 
Diplotaxis siettiana 

2n = 16 
Spain 

Diplotaxis ibicensis 
Diplotaxis brevisiliqua Morocco 
Diplotaxis catholica 2n = 18 Spain, Portugal, Morocco 

Diplotaxis viminea 
2n = 20 

Germany, Greece, Algeria, Turkey, Spain, 
Bulgaria, Cyprus, Egypt, France, Spain, Israel, 
Jordan, Italy, Serbia, Lebanon, Syria, Portugal, 
Morocco, Malta, Ukraine 

Diplotaxis siifoila Morocco, Algeria, Spain, Portugal 

Diplotaxis tenuifolia 
2n = 22 

Switzerland, Germany, Netherlands, Austria, 
Italy, Hungary, Italy, France, Romania, Spain, 
Turkey, Albania, Bulgaria, Serbia, Lebanon, 
Syria, Portugal, Morocco, Malta, Ukraine 

Diplotaxis cretacea Russia 
Diplotaxis simplex Algeria, Egypt, Libya, Tunisia 

Diplotaxis muralis 4n = 42 

Germany, Greece, Spain, Austria, Italy, Belgium, 
Denmark, Algeria, Albania, Bulgaria, France, 
Serbia, Libya, Morocco, Malta, Ukraine, Tunisia, 
Turkey 
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only included nine ISSR primers which cannot be linked to any traits measured due 

to the absence of publically available genomic sequence data.  

Regardless of the speciation status of the Eruca genus, E. sativa is a member 

of the Brassicaceae family of plants, and is noted for its fast growing nature, and the 

hotness and pepperiness of its leaves (Pasini et al. 2011). This is reflected in the latin 

name, which originates from “uro” or “urere”, which translates to “burn” in English. In 

the current botanical classification of rocket species, E. sativa is thought to be 

descended from the Brassica rapa / oleracea lineage in the subtribe Brassicinae, 

along with the genera Brassica, Diplotaxis (see next section), and Erucastrum (Hall 

et al. 2012b). 

Historically E. sativa has been grown in the countries and regions surrounding 

the Mediterranean Sea and its use can be traced back to Roman times. A common 

use for the plant in such times was not in fact food, but as an aphrodesiac, and is 

regularly referenced in ancient texts for such properties (Hall et al. 2012b). There is 

no scientific evidence to support this property of leaves however.  

Its natural ecological distribution covers southern Europe, north Africa, Iran, 

India and Pakistan, and is traditionally grown as a winter crop in dry areas. It has 

evolved a fast-growing and efficient root system and is capable of withstanding 

severe drought conditions. This property makes it an important traditional food 

source in arid areas (Garg & Sharma, 2014). Due to its weedy and hardy nature, the 

species has become naturalised on every continent, with the obvious exception of 

Antarctica. 

In western countries, it is now most commonly used as a salad or garnish (Jin 

et al. 2009). Leaves are sold in both processed and fresh markets (Hall, Jobling, & 

Rogers, 2013) and the popularity with consumers is increasing significantly year-on-

year (Dr. Lorraine Shaw, Bakkavor, personal communication, 2016). This means that 
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the crop is gaining significant economic importance in baby leaf salad markets (Hall 

et al. 2012a). In India and Pakistan Eruca species are also used widely as oliseed, 

forage and fodder crops. Roots, flowers and seeds are all consumed, in a similar 

fashion to how mustard species are in the west (Garg & Sharma, 2014).  

Due to its various uses and the non-distinction between cultivated rocket 

species, it is difficult to determine how much is produced and consumed globally. In 

the UK, recent figures have indicated that the bagged rocket salad market is worth 

approximately £43 million (March 2015 – February 2016), which was an increase of 

3.9% compared to the previous year. It is estimated that 39.9 million bags of rocket 

were consumed during the same period, with shipped volumes increasing by 2.4% 

from the previous year (Dr. Lorraine Shaw, Bakkavor, personal communication, 

2016). 

 

1.2.2. Diplotaxis Species 

Diplotaxis species are synonymously refferred to as rocket, as with the other 

species highlighted in the previous section. D. tenuifolia can be more specifically 

referred to as “perennial wall rocket” and is the predominant species cultivated in this 

genus (Hall et al. 2012a). It is similarly known for its peppery and hot flavours (Pasini 

et al. 2011), and is arguably the most important species economically due to the 

prevalence of its commercial growth in Europe, North America and Australia (Hall et 

al. 2012a).  

As with Eruca, Diplotaxis species are also native to the countries surrounding 

the Mediterranean Sea, as well as India, Pakistan, Cape Verde and Nepal (Hall et al. 

2012b). D. harra and D. simplex are common in Tunisia for example, where 

traditionally, plants have been used for medicinal purposes because of reported 

antimicrobial properties, as well as for general food consumption (Falleh et al. 2013). 
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Unlike Eruca species, there is greater consensus about the diversity of the 

Diplotaxis genus. It is agreed that it is polyphyletic, but that morphology is an 

inadequate means of determining evolutionary relatedness (Arias & Pires, 2012). 

Diplotaxis species are diploid, with one exception; D. muralis is thought to be an 

amphiploid of D. tenuifolia and D. viminea, as it is the only known tertrapoid species 

within the genus (Eschmann-Grupe, Hurka, & Neuffer, 2003).  

D. tenuifolia contains 11 pairs of chromosomes (2n = 22) like E. sativa, but no 

progeny have ever resulted from crosses. D. erucoides has the smallest 

chromosome ploidy of the genus, and it is speculated that it may represent an 

ancestral species because of the continuous series of haploid chromosome numbers, 

ranging from seven to 13 (Martín & Sánchez-Yélamo, 2000). See Table 1.1 for a 

summary of rocket species chromosome ploidy counts. 

Within-species diversity is not well established, with some authors arguing for 

large amounts of genetic variation (Hall et al. 2012a), but again, this is not 

substantiated by much  evidence. To date it has only been inferred from differences 

between morphological and phytochemical traits, and limited RAPD marker analyses.  

In terms of growth habit, D. tenuifolia is much slower to establish and grow 

than E. sativa. The species D. erucoides however comprises attributes of both these 

species, having the early vigour of E. sativa and the distinctive lobed leaf shape of D. 

tenuifolia making it an attractive choice for breeders to utilise in the production of new 

varieties. 

 

1.3. Glucosinolate Biosynthesis & Metabolism 

Glucosinolates are specialised plant defense compounds produced by all 

members of the Brassicaceae (Stauber et al. 2012). The specific GSLs produced by 



	 33	

rocket species will be discussed in Chapter 2, but a brief background to biosynthesis 

and metabolism will be presented here. 

The majority of research into GSL metabolism has been conducted in plant 

species such as A. thaliana (Ishida, Hara, Fukino, Kakizaki, & Morimitsu, 2014) and 

Brassica oleracea (Tian, Xu, Liu, Xie, & Pan, 2016), with very little specific research 

conducted in rocket species. Rocket typically contains aliphatic GSLs, but also 

smaller concentrations of indolic and aromatic GSLs. 

The major pathways identified in aliphatic GSL biosynthesis (in A. thaliana) to-

date are presented in Figure 1.1. MYB transcription factors control the complete GSL 

biosynthetic pathway, and also influence primary and sulfate metabolic pathways. 

Differing transcript levels associated with MYB genes has been shown to affect 

indole GSL accumulation and the related metabolism products when plants are under 

pathogen stress (Frerigmann, et al. 2016). 

Aliphatic GSLs are synthesised from the amino acid methionine, and indolic 

GSLs predominantly from tryptophan (Kim & Jander, 2007). The gene BoGSL-PRO 

in B. oleracea converts methionine into dihomomethionine and a process of chain-

elongation begins. This is further regulated by other genes such as BoGSL-ELONG, 

and determines the length of the carbon side-chain (e.g. propyl, butyl, pentyl, etc.). 

Other genes, such as BoGSL-ALK, further modify the R-group of the GSL molecule 

later in the synthesis pathway, and determine its final configuration (Ishida, Hara, 

Fukino, Kakizaki, & Morimitsu, 2014). 

Levels of GSL biosynthesis are regulated by plant defense signaling compounds, 

such as salicylic acid (SA), ethylene and jasmonic acid (JA). The synergistic or 

antagonistic crosstalk between these three compounds determines the relative 

expression of genes, such as CYP79B2, CYP79B3, CYP79F1 and CYP79F2. These 

genes also regulate the GSL biosynthesis pathway and determine	
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the overall GSL profile of tissues, influencing the ratios between aliphatic and indolic 

GSLs (Mikkelsen et al. 2003). The level to which these and other biosynthetic genes 

are expressed depends greatly on the stimuli that initiate, which can be both biotic 

and abiotic in nature. Factors that have been shown to influence GSL profiles and 

concentrations include: plant age, light intensity, fungal infection, wounding, insect 

damage, temperature, and the growing season, to name but a few (Chen & 

Andreasson, 2001; Cartea, Velasco, Obregón, Padilla, & de Haro, 2008; Kim, 

Durrett, Last, & Jander, 2004). The relationship with primary sulfur metabolism is also 

important for GSL production, as two to three sulfur atoms are required per aliphatic 

GSL molecule (Jensen, Halkier, & Burow, 2014). 

Many species of insect have evolved a tolerance to the volatile compounds 

produced by the so-called ‘mustard oil bomb’ – the chemical reaction that converts 

GSLs into ITCs, nitriles and various other defensive compounds. Insects such as 

Pires rapae larvae have evolved their own nitrile specifier protein (NSP) to 

metabolise aromatic and aliphatic nitriles, for example, which can then be excreted 

harmlessly. The consumption of GSLs and the production of metabolic degradation 

products such as cyanide have also been proposed as being nutritious to the insects 

consuming them. Far from being harmful, they could provide a potentially valuable 

source of nitrogen for amino acid synthesis (Stauber et al. 2012). 

 

1.4. Health Effects of Glucosinolate Hydrolysis Products 

1.4.1. Reported Adverse Health Benefits 

From the late 1960s to the mid-1990s, much of the focus on glucosinolates 

and the associated hydrolysis products was in relation to adverse health effects. 

Much of the concern surrounded goitrogenic compounds, which are produced from 

the GSLs epiprogoitrin and progoitrin. The oxazolidine-2-thiones and thiocyanate 
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compounds produced by the hydrolysis of these GSLs interfere with thyroid 

metabolism and induce a condition known as goiter. In the presence of nitrate they 

also undergo nitrosation reactions, and the products of which are thought to have 

negative health consequences (Bones & Rossiter, 2006).  

High doses of GSL-derived nitriles have also been shown to be toxic (Chiang, 

Pusateri, & Leitz, 1998). The compounds under study typically elicited conflicting 

results, showing tumor promotion in some papers, and prevention in others (Suzuki, 

Ohnishi-Kameyama, Saskai, Murata, & Yoshida, 2006). 

Most of the adverse effects reported come not from human, but animal 

studies. It is likely that due to the diverse nature of the human diet, ingested 

quantities of Brassica vegetables are not enough to reach toxic levels as with 

herbivores. Instead, at relatively low levels the compounds are beneficial to humans 

and enhance cellular defenses against cancer and other diseases (Angelino et al. 

2015). 

 

1.4.2. Reported Human Health Benefits 

From the late 1990s onwards, the beneficial health effects of GSLs and ITCs 

was more widely recognised, and breeding goals in crops were modified to maximise 

the potential health benefits to the consumer. Breeding strategies are now being 

adapted to increase phytochemical concentrations within crops, and breeders are 

recognising that getting consumers to eat more vegetables is not a realistic goal 

(Kopsell, Barickman, Sams, & McElroy, 2007). By increasing the nutritional density of 

crops, people would only need to maintain a reasonable intake of vegetables to gain 

improved health benefits. 

Much of the reported health effects are attributed to the hydrolysis products of 

GSLs, such as glucoraphanin, glucoerucin and glucobrassicin (Vaughn & Berhow, 
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2005). The ITC and indole products (sulforaphane, erucin and indole-3-carbinol, 

respectively) have shown strong anti-carcinogenic effects in cell and animal studies 

(Sun, Liu, Zhao, Yan, & Wang, 2011), but as will be discussed in the next section, 

these studies are somewhat limited in their applicability to humans and day-to-day 

consumption. Other more limited and less well understood health-related effects 

associated with these compounds include: bactericidal effects on food-borne 

pathogens (van Eylen et al. 2009), reductions in the development of cardiovascular 

problems, and ultra-violet light protection in the skin (Schouten et al. 2009). 

Much of the evidence for anti-carcinogenic effects of ITC/indole consumption 

comes from epidemiological studies analysing dietary patterns of Brassica vegetable 

consumption and incidences of cancer. These studies highlight an important overall 

trend, but do not elucidate the mechanisms responsible for the observed effects 

(Angelino et al. 2015).  

Genetic studies on humans have identified several genes that play a role in 

ITC metabolism, and in turn infer the health benefits an individual will get from 

consuming Brassicaceae vegetables. Glutathione S-transferase (GST) loci and the 

associated polymorphisms of the GSTM1, GSTT1 and GSTP genotypes greatly 

impact the relative protective effects of ITCs that an individual will receive. The 

interactions between vegetable, gut microflora and human genetics are not yet fully 

understood, and are likely to be extremely complex (Traka & Mithen, 2009).  

A study by Bogaards, Verhagen, & Willems (1994) demonstrated that after 

human males consumed 300g of Brussels sprouts per day, that there was a 

significant increase in GST products in the blood compared to those on a GSL-free 

diet. While indicative of an underlying metabolic mechanism for ITC degradation, few 

people would be willing or able to consume such large quantities of Brussels sprouts 
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on a daily basis. The impracticality of some studies in the ‘real world’ often detracts 

from the importance of the mechanistic findings. 

 

1.4.3. Limitations of in vitro & in vivo Animal Studies 

Hundreds of papers have been published analysing the in vitro effects of GSL 

hydrolysis products on cancer cell lines and model animals. These studies have 

looked at various effects on cancer cells, such as cell proliferation, tumorigenesis, 

apoptosis, mutation, detoxification and cell survival rates. Some studies focus on 

individual GSL compounds, whereas others look at the effects of whole extracts, 

usually in the form of a juice to which cancer cells are exposed and challenged.  

Smith, Lund, Clarke, Bennett, & Johnson (2005) conducted a study exposing 

human colorectal carcinoma cells (HT29) to Brussels sprout juice. The study 

demonstrated a significant inhibition of cell proliferation, and determined that several 

GSL hydrolysis products possibly contributed to this effect. In another study of 

healthy skin biopsies, broccoli sprout juice was added to measure changes in 

NAP(P)H:Quinone Oxidoreductase (NQO1, a phase II detoxification enzyme; 

Dinkova-Kostova et al. 2007). Results showed a 1.5-fold increase in NQO1 after one 

exposure to the juice, and a 4.5-fold increase after three compared to placebo 

controls. While these studies clearly demonstrate an effect on cancer and healthy cell 

lines is present, the translation of the results into a living human is not 

straightforward. 

The concentrations to which cells are exposed in studies such as these are far 

in excess of what would be possible in a living human. There are numerous factors 

affecting the in vivo assimilation of ITCs and other compounds, such as the level of 

cooking (see next section) and the ability of the human to absorb, metabolise and 

excrete such compounds. The numerous reducing factors involved in these 
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processes ultimately means that any ingested compounds would often be lower than 

threshold doses established by such in vitro studies. They also often lack rigorous 

investigation in determining the molecular mechanisms responsible for the observed 

effects. Whole juice extracts from Brassica vegetables do not take into account the 

effects of other compounds present, such as flavonoids and carotenoids, which have 

also been reported to have anti-carcinogenic and beneficial health effects (Kopsell et 

al. 2007).  

That ITCs/indoles have beneficial effects to humans is not in question, as a 

large volume of diverse studies now supports this hypothesis (Traka & Mithen, 2009). 

The specific modes of action, the relative effects of some compounds compared to 

others, and the effect the regularity of Brassicaceae consumption has on human 

health, are not well understood however. 

 

1.4.4. Effects of Cooking on Health Beneficial Compounds 

Rocket species are unusual for Brassicaceae vegetables because they do not 

require cooking in order to be consumed by humans. One of the main drawbacks of 

cooking and consuming GSL-rich plants is that the availability of the health-beneficial 

compounds is often significantly reduced depending on the duration of cooking and 

the temperature used (Rungapamestry, Duncan, Fuller, & Ratcliffe, 2007), as 

myrosinase enzymes are usually denatured at high temperatures (van Eylen et al. 

2009). The consumption of raw Brassica vegetables over cooked has been 

advocated in the literature (Hayes, Kelleher, & Eggleston, 2008) but this would not be 

well accepted by consumers due to the toughness of some vegetables, and the 

strong sulfurous and bitter tastes common in uncooked Brassica species. 

Some bacteria found within the human gut are known to possess myrosinase 

enzymes. They act as a potential means by which humans can ingest ITCs, even if 
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cooking has inactivated plant myrosinase. It has been speculated that such bacteria 

play a vital role in mediating the health benefits of GSLs, but the degree to which this 

occurs is unclear and requires extensive study (Angelino et al. 2015; Traka & Mithen, 

2009). See Figure 1.2 for the proposed mode of action by gut bacteria and the 

subsequent metabolism and mechanisms for health effects by ITCs. 

Broccoli is a crop that has seen great interest because it contains high 

concentrations of glucoraphanin and its ITC sulforaphane. Varieties of broccoli have 

been bred specifically for enhanced glucoraphanin concentration, and to overcome 
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the negative effects associated with cooking (Traka & Mithen, 2009). Rocket species 

are similarly an ideal plant to work with in this respect, as modification of GSL profiles 

through breeding could potentially provide an important source of anti-carcinogenic 

compounds to the human diet that does not require cooking. That being said, the 

effects of the commercial supply chain on GSL/ITC concentrations, myrosinase 

activity and potential health benefits are poorly understood (Verkerk & Dekker, 2004). 

 

1.5. Literature Critique of Rocket Salad Research 

1.5.1. General 

 Within the scientific literature several studies have been conducted in relation 

to phytochemical diversity of rocket species (Jin et al., 2009; Martinez-Sanchez, 

Llorach, Gil, & Ferreres, 2007; Pasini, Verardo, Caboni, & D’Antuono, 2012; Villatoro-

Pulido et al., 2013) and have provided a foundation for this project. Very few studies 

have been conducted on sensory aspects however (D’Antuono et al. 2009; Lokke et 

al. 2012; Pasini et al. 2011), and none on consumer responses. No published work 

(to the author’s knowledge) has previously explored the supply chain of rocket in a 

working industrial setting, and the genomic sequence of multiple E. sativa inbred 

lines has never been obtained. 

There are three key underlying aspects of the study of rocket crops that have 

been identified in the course of this project that show inconsistencies and require 

improvement. These are briefly presented here, and have acted as an ‘undercurrent’ 

for the reasoning and experimental choices made in each of the chapters/papers of 

this thesis. Many of the assumptions that have been previously made within the 

literature will be assessed and challenged. 
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1.5.2. Experimental Aims & Designs 

As a general overview of rocket research to-date, it can be said that there has 

been little cohesion, continuity or direction. Richard Bennett and colleagues 

published several papers in the previous decade (Bennett et al., 2002; Bennett, 

Rosa, Mellon, & Kroon, 2006; Bennett, Carvalho, Mellon, Eagles, & Rosa, 2007), 

which laid an important foundation in identifying the core GSL components and 

diversity of rocket. The same can be said of Martinez-Sanchez and colleagues 

(Martinez-Sanchez, Gil-Izquierdo, Gil, & Ferreres, 2008; Martinez-Sanchez et al. 

2007) in identifying polyglycosylated flavonols in rocket leaves. 

Several groups have published works relating to LC-MS/MS analysis of rocket 

glucosinolate (GSLs), but the experimental designs of some experiments have been 

significantly flawed in the author’s opinion (Chun, Arasu, Lim, & Kim, 2013; Kim & 

Ishii, 2006; Pasini et al. 2012; Villatoro-Pulido et al., 2013). Many publications have 

failed to take into account the changing GSL profile of plants over the course of their 

life cycle, and fewer still have sampled at an appropriate commercially relevant 

growth stage. This has made consensus on exact GSL composition difficult, and is 

therefore of limited use to breeders. Similarly, the number of accessions studied is 

usually small, and the characterisation of lines across environments and research 

groups is largely non-existent. These issues are perhaps more a symptom of the fact 

that there are comparably so few studies in rocket compared to high value and 

mainstream Brassica crops like broccoli. 

 

1.5.3. Glucosinolate Extraction Methods 

Methods of extraction of GSLs have also been inconsistent between research 

groups. While results presented for desulfo and ‘crude’ GSL extracts of rocket do not 

differ wildly, there are arguments to be made for and against each method (Ishida, 
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Kakizaki, Ohara, & Morimitsu, 2011; Wathelet, Iori, Leoni, Quinsac, & Palmieri, 

2004). Research groups have tended to favor the desulfation method in the past, 

which utilises Sephadex anion exchange columns and sulfatase enzyme to remove 

GSLs from crude samples. It is argued that the desulphation method of extraction 

improves chromatographic resolution due to the removal of the sulphate group, which 

therefore decreases the polarity of the molecules. Crude extracts are becoming more 

prevalent in the literature however, as it is much less time consuming (Ares, Nozal, 

Bernal, & Bernal, 2015), and seems to produce equally robust results. This paper has 

favored the crude method of extraction and detection because of its less laborious 

nature. 

 

1.5.4. Acknowledgement Of Dimeric Glucosinolates 

The final area of importance is the acknowledgement of the unique disulfide 

GSLs found in rocket species and their possible independent organoleptic properties. 

Since the confirmation of the existence of 4-mercaptobutyl-GSL (glucosativin), the 

presence of dimeric GSLs have often been dismissed as products of extraction, and 

discounted as being naturally produced (Bennett et al., 2002). An excellent paper by 

Cataldi, Rubino, Lelario, & Bufo (2007) convincingly demonstrated that this was not 

the case, and that dimeric-4-mercaptobutyl-GSL (DMB) and diglucothiobeinin are in 

fact naturally occurring within the leaves of rocket species. Despite this significant 

result, very few research papers have since cited or acknowledged this key outcome. 

Several subsequent papers disregarded detections of monomeric glucosativin on the 

basis of previous speculations and assumptions, and potentially missed important 

details in the variability of GSL profiles between cultivars (Bennett et al., 2007; Chun 

et al. 2013; D’Antuono et al. 2008; Pasini et al. 2012; Villatoro-Pulido et al., 2013). 
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Some of the aforementioned papers actually cite Cataldi et al. (2007), yet still did not 

properly quantify the monomer and dimer separately.  

The importance of the Cataldi et al. (2007) paper and its findings is supported 

by many of the results presented in this thesis; particularly in Chapter 3, where 

concentrations of monomeric and dimeric glucosativin and their respective ratios 

differ significantly between accessions. There are instances where only the monomer 

form is present, indicating a potential genetic component to their synthesis. In other 

instances, relative amounts of each form are higher/lower in different accessions. 

Both of these outcomes further cast doubt on the hypothesis that the dimer is an 

extraction artifact. The abundance of each respective form also appears to be 

affected by growth stage and industrial processing (Chapter 7), and has implications 

for sensory (Chapter 5) and consumer acceptance (Chapter 6). 
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CHAPTER 2: Glucosinolates, myrosinase hydrolysis products and flavonols 

found in rocket (Eruca sativa and Diplotaxis tenuifolia) 

 

2.1. Introduction To Paper (as published in the Journal of Agricultural & Food 

Chemistry, 2014, Vol. 62, Issue 20) 

 At the start of this project, the main compounds of interest in rocket species 

were GSLs and flavonols. These two classes of phytochemical have numerous and 

important implications for potential health benefits. This is of particular interest to 

plant breeders and producers such as the industrial collaborators, as there is the 

potential for improving upon current cultivars by utilising underused genetic 

resources. 

Several research papers have highlighted the key constituents of GSL and 

flavonol profiles in rocket, but upon starting experimental procedures in this project, it 

became clear that the data needed to identify compounds in rocket by mass 

spectrometry was fragmentary within the literature. For glucosinolates in broccoli, for 

example, finding ion data is relatively straightforward, as this crop and its GSLs have 

been well studied for several decades. Rocket however contains GSLs that are less 

well characterised, and often have poor identification parameters associated with 

them. It was therefore a substantial challenge to amass reliable ion data from the 

literature without conducting extensive reading and cross-comparisons between 

studies. 

 The goals of the review paper presented in this chapter were therefore: 1) to 

provide a collated view of rocket phytochemical research from the perspective of 

plant breeding and crop improvement; 2) provide a useable, referenced resource of 

all GSL and flavonol compounds detected in rocket, with corresponding primary ions 

and fragmentation ions; and 3) highlight factors in the industrial supply chain that 
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may have implications for GSL and flavonol concentrations found in leaves. This has 

given a specific and focused view of rocket species, rather than relying on 

comparisons with related species such as broccoli and watercress. While there are 

many similarities with such crops, rocket has quite distinct and separate usages 

within cuisine and people’s diets. As is shown in this and later chapters, even the two 

predominant rocket species, Diplotaxis and Eruca, have subtle differences in terms of 

morphology, cultivation and phytochemical composition. 

 

2.2.Introduction 

In recent years, several species of minor leafy-crops have risen to prominence 

as potentially important commercial and edible species. One example is rocket, 

which has quickly gained popularity in the Western diet. Originally found as an 

obscure crop in Mediterranean and Middle-Eastern countries, rocket has become 

popular largely due to the pungent aromas and tastes associated with it. 

Glucosinolates (GSLs)/isothiocyanates (ITCs) and flavonols derived from many 

species (Chaudhary et al., 2012; Gross, Dalebout, Grubb, & Abel, 2000; Jongen, 

1996; Vinson, Dabbagh, Serry, & Jang, 1995) have been shown to infer significant 

protection against cancer and heart disease (Clarke, Dashwood, & Ho, 2008; Hayes, 

Kelleher, & Eggleston, 2008; Herr & Buechler, 2010; Melchini & Traka, 2010; Pappa 

et al., 2006; Vinson, Dabbagh, Serry, & Jang, 1995; Yang et al., 2002; Zhang, 2004). 

In Western countries, diets are generally lacking in fruits and vegetables. Despite 

government initiatives (such as the “5-a-day” campaign in the UK and USA), these 

diseases are increasingly leading to premature deaths (Casagrande, Wang, 

Anderson, & Gary, 2007). Plant breeders aim to maximise levels of such beneficial 

compounds, but with little genomic information about rocket species presently 

available, this is a formidable task. This review will give an overview of research in 
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rocket, an outbreeding crop, and how breeders and processors can utilise it to 

enhance beneficial compounds. 

 

2.3. Rocket species 

Rocket (also known as arugula, rucola and roquette) is a leafy vegetable crop 

that has gained substantial popularity across the world, particularly over the last 

fifteen years (D’Antuono, Elementi, & Neri, 2009; Hall, Jobling, & Rogers, 2012; 

Koukounaras, Siomos, & Sfakiotakis, 2007; Lamy et al., 2008). Two main species are 

predominantly farmed as salad crops; these are Eruca sativa (‘salad’ or ‘cultivated’ 

rocket; sometimes referred to as Eruca vesicaria subsp. sativa) and Diplotaxis 

tenuifolia (‘wild’ rocket). Both species share a peppery taste and aroma that is very 

distinctive (Pasini, Verardo, Cerretani, Caboni, & D’Antuono, 2011). They have been 

reported to contain high levels of vitamin C, GSLs, flavonols and phenolics (Bennett 

et al., 2002; Bennett, Carvalho, Mellon, Eagles, & Rosa, 2007; Bennett, Rosa, 

Mellon, & Kroon, 2006; Cataldi, Rubino, Lelario, & Bufo, 2007; Chun, Arasu, Lim & 

Kim, 2013; Kim & Ishii, 2007; Martinez-Sanchez, Gil-Izquierdo, Gil, & Ferreres, 2008; 

Martinez-Sanchez, Llorach, Gil, & Ferreres, 2007). These are all known to have both 

anti-oxidant and anti-cancer properties, and are also implicated in lowering the risk of 

cardiovascular and cognitive disease. For excellent information on these beneficial 

effects and their underlying causes, see Drewnowski & Gomez-Carneros (2000), 

Keum, Jeong, & Kong (2004), D’Antuono, Elementi, & Neri (2008), Egea-Gilabert, 

Fernandez, Migliaro, Martinez-Sanchez, & Vicente (2009), Degl’Innoocenti, Pardossi, 

Tattini, & Guidi (2008), Bjorkman et.al (2011) and Jeffery et.al (2003). 
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2.4. Taxonomy and domestication 

A distinction should be made that both Eruca and Diplotaxis species have 

overlapping characteristics, and that one can be easily mistaken for the other by the 

untrained eye, and/or before a certain level of maturity has been reached (D’Antuono 

et al. 2008). It is also arguable that D. tenuifolia is the least ‘wild’ of the two species 

even though the common name is ‘wild rocket’. It is featured and favored in 

commercial products and breeding programs, and is likely to be more domesticated 

than Eruca species as a result. Diplotaxis varieties are generally uniform 

phenotypically, with Eruca varieties being more diverse in this respect (Bennett et al., 

2006). No direct genomic evidence has been presented in the literature to suggest 

one species is any more or less genetically variable than the other. Variability in GSL 

data seems to support the hypothesis that Diplotaxis species are more ‘wild’ (Pasini, 

Verardo, Caboni, & D’Antuono, 2012), though it is not conclusive, as only a relatively 

small number of cultivars have been tested. This is a point that needs clarification 

through research and extensive breeding, as neither species can be considered fully 

domesticated (Egea-Gilabert et al. 2009). For example, germination rates are 

variable, reproductive organs are typically small, seedpods shatter and disperse 

freely (rather than staying on the plant), and physical defenses such as leaf hairs are 

still present in many commercial varieties (Gepts, 2010). 

 

2.5. Phytochemicals in Eruca sativa and Diplotaxis tenuifolia: types and 

structures 

2.5.1. Glucosinolates 

GSLs are β-thioglucoside N-hydrosulphates that are responsible for the sharp 

and bitter-tasting flavors found in cruciferous vegetables (Rungapamestry, Duncan, 

Fuller, & Ratcliffe, 2007; Velasco, Cartea, Gonzalez, Vilar, & Ordas, 2007). In 
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combination with the enzyme myrosinase (thioglucoside glucohydrolase, EC 

3.2.1.147), GSLs are hydrolyzed to create isothiocyanates, nitriles, thiocyanates, 

epithionitriles, indoles, oxazolidine-2-thiones, cyanopithioalkanes, ascorbigens, 

goitrogens and epithioalkanes (Baik et al., 2003; Bones & Rossiter, 2006; Grubb & 

Abel, 2006; Hecht, 1999; Jia et al., 2009; Jirovetz, Smith, & Buchbauer, 2002; 

Matusheski & Jeffery, 2001; McNaughton & Marks, 2003; Rangkadilok et al., 2002a; 

Taiz & Zeiger, 2006; Yan & Chen, 2007; Yuan, Sun, Yuan, & Wang, 2009; Zhang, 

Talalay, Cho, & Posner, 1992); see Figure 2.1. Many of these hydrolysis products 

have antibacterial, antifungal and insect repellant effects (Halkier & Gershenzon, 

2006; Jeffries, 1990; Mithen & Campos, 1996; Newman, Hanscom, & Kerfoot, 1992; 

Newman, Kerfoot, & Hanscom, 1990; Ostrofsky & Zettler, 1986). GSLs and ITCs are 

being increasingly used as ‘biofumigants’ to suppress soil borne pathogens, 

nematodes and weeds. Some of the volatile products have the opposite effect of 

attracting species that can tolerate high GSL concentrations, such as types of 

Figure 2.1. The glucosinolate-myrosinase reaction and some of the subsequent compounds 
produced under different conditions, such as pH and the influence of epithiospecifier proteins 
(ESP) (Adapted from Zhang, 2004, and Hall, McCallum, Prescott, & Mithen; 2001). 
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ovipositing insect (Brown & Morra, 1995; Vaughn, Isbell, Weisleder, & Berhow, 

2005).	 

The conditions under which hydrolysis of GSLs occurs will affect the 

respective proportions of the chemicals produced; pH, iron ions, thiol ions, 

temperature and hydration play a particularly prominent role in this process in vivo 

(Foo et al., 2000). The separation of GSLs in specialist ‘S-cells’ from myrosinase in 

myrosin cells means that the two components only come into contact upon tissue 

disruption; for example when damaged via chewing or digestion (Andreasson, 

Jorgensen, Hoglund, Rask, & Meijer, 2001; Chen & Andreasson, 2001; Fenwick & 

Heaney, 1983; Getahun & Chung, 1999; Hoglund, Lenman, Falk, & Rask, 1991; 

Husebye, Chadchawan, Winge, Thangstad, & Bones, 2002; Kliebenstein, Kroymann, 

& Mitchell-Olds, 2005; Song & Thornalley, 2007; Talalay & Fahey, 2001; Tripathi & 

Mishra, 2007; Verkerk, Dekker, & Jongen, 2001). It is the biological activity of the ITC 

hydrolysis products in humans that are of most interest in rocket (Halkier & 

Gershenzon, 2006). GSLs can be hydrolyzed within the intestinal tract by gut 

microflora that are known to have specific myrosinase activity (Fahey, Zhang, & 

Talalay, 1997; Heaney & Fenwick, 1980; Rabot, Nugonbaudon, Raibaud, & Szylit, 

1993; Shapiro, Fahey, Wade, Stephenson, & Talalay, 1998), but the efficacy of their 

action is not yet well determined.  

GSL concentrations can vary and change over time depending on 

environmental conditions and stress (Herr & Buechler, 2010). Other factors affecting 

GSL profiles include the plant age, organ type, developmental stage, ambient air 

temperature, level of water stress, photoperiod, agronomic practice, degree of 

wounding, and geographical origin of the variety/species (Agerbirk, Olsen, & Nielsen, 

2001; Ahuja, de Vos, Bones, & Hall, 2010; Bartlet, Kiddle, Williams, & Wallsgrove, 

1999; Coogan, Wills, & Nguyen, 2001; Hasegawa, Yamada, Kosemura, Yamamura, 
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& Hasegawa, 2000; Kushad et al., 1999; Rangkadilok et al., 2002b; E. Rosa & 

Heaney, 1996). These can often affect the profiles of all phytonutrients contained 

within tissue, not just GSLs (Jin et al., 2009), and they are all factors that plant 

breeders aim to mitigate through development of genetically advanced and uniform 

breeding lines. 

GSLs and the ITC derivatives have been an integral part of the human diet for 

millennia because of the presence of them in the family Brassicaceae (Cartea, 

Francisco, Soengas, & Velasco, 2011; Chen & Andreasson, 2001; Conaway, Yang, 

& Chung, 2002; Fahey, Zalcmann, & Talalay, 2001; Holst & Williamson, 2004; Rose, 

Won, Ong, & Whiteman, 2005; Stoewsand, 1995; Talalay & Fahey, 2001; Tripathi & 

Mishra, 2007; Zhang & Talalay, 1994). GSLs are evolutionarily recent secondary 

metabolic products having arisen 10-15 million years ago (Wheat et al., 2007; 

Windsor et al., 2005), acting to prevent pathogen attack and dissuade herbivory. 

They are known in only a few angiosperm families of the order Brassicales, which 

includes the Brassicaceae (Charron, Saxton, & Sams, 2005; Clarke, 2010; Mithen, 

Dekker, Verkerk, Rabot, & Johnson, 2000; Rodman, Karol, Price, & Sytsma, 1996; 

Rosa, 1997; Schouten et al., 2009; Schreiner, 2005; Verkerk et al., 2009; Wittstock & 

Halkier, 2002), and of which Eruca and Diplotaxis are members. 

A study by Pasini et al. (2012) of 37 rocket accessions (Diplotaxis and Eruca) 

showed that GSL profiles were all very similar, regardless of the species. In total, 

twelve GSL compounds were found across all accessions; Table 2.1 illustrates all 

known GSL compounds identified to-date in rocket. These include 4-mercaptobutyl 

GSL (glucosativin) (Bennett et al., 2002), 4-methylthiobutyl GSL (glucoerucin) 

(Graser, Schneider, Oldham, & Gershenzon, 2000), and 4-methylsulfinylbutyl GSL 

(glucoraphanin) (D’Antuono et al. 2008), which constitute the three most abundant 

GSLs in rocket. 
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2.5.2. Flavonols 

Flavonols are diphenylpropanes (C6–C3–C6) (Arabbi, Genovese, & Lajolo, 

2004) and are another important group of chemicals found within rocket species. 

Flavonols in rocket are found with sugar conjugates, and typically occur in relatively 

large quantities (Podsedek, 2007). The aglycones found (such as quercetin and 

kaempferol) are glycosylated and acylated, which in turn affects their biological 

properties (Martinez-Sanchez et al. 2008). A study by Martínez-Sánchez et al. (2008) 

identified over 50 different flavonol compounds across four different species. 

Watercress, mizuna and two species of rocket were all found to accumulate very 

different compounds within their leaves, and in varying quantities. Wild rocket 

showed high levels of quercetin-3,3’,4-triglucosyl (43.5 mg per 100g-1 fw) and salad 

rocket had mostly kaempferol-3,4’-diglucosyl (97.8mg per 100g-1 fw). The group also 

showed a correlation between quercetin derivatives and high antioxidant activity, 

despite the significant variations seen between species. 

Studies conducted on rocket tissues have identified significant concentrations 

of polyglycosylated flavonols. The core aglycones of these are kaempferol, quercetin 

and isorhamnetin (Arabbi et al., 2004); Table 2.2 provides an up-to-date list of all 

flavonol compounds identified in rocket to-date. Martinez-Sanchez et al. (2008) 

showed that Eruca species accumulate kaempferol derivatives, whereas D. tenuifolia 

accumulates predominantly quercetin instead, meaning that the two chemicals could 

be used as an identification marker between the two species (Cartea, Velasco, 

Obregon, Padilla, & de Haro, 2008). Isorhamnetin aglycones are common to both 

species but typically in much lower concentrations (Pasini et al. 2012). The specific 

aglycones also infer varying degrees of anti-oxidant activity. For example, quercetin 

derivatives have a higher activity than kaempferol and isorhamnetin. The differences 

in structure (the arrangement of hydroxyl groups and glycosylation) affect anti-
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oxidant activity by allowing the molecules to act as hydrogen/electron donors, single 

oxygen scavengers, or as reducing agents (Salah et al., 1995). 

 

2.6. Phytochemicals and the relationship with quality: taste and aroma 

It is thought that the presence of glucosativin, glucoerucin and their hydrolysis 

products within rocket leaves is what gives them a characteristic flavor (Bones & 

Rossiter, 2006). Many of the health beneficial GSLs and ITCs are thought to be 

responsible for strong tastes that some consumers find repellant (Hansen, Laustsen, 

Olsen, Poll, & Sorensen, 1997). It seems that to many people, these compounds 

contribute very little to a pleasurable eating experience and are actively avoided 

(Holst & Williamson, 2004). Conversely however, some people do prefer these strong 

tastes and aromas, and will actively seek to consume rocket when it is available. 

Growers in Italy often prefer the subsequent cuts because of the more intense tastes 

and aromas that are produced (Martinez-Sanchez et al. 2008) and some will even 

‘sacrifice’ the first cut in favour of the subsequent leaf growth. This highlights a divide 

between consumers that may be indicative of underlying genotype(s) for taste 

perception and preference.  

The breeding process in rocket varieties to-date has effectively made the 

species ‘milder’ in taste when compared to plants that grow naturally in the wild. 

Whether this has been intentional or as a result of selecting for other unrelated traits 

(such as leaf morphology) is debatable. Some recent commercial varieties have been 

bred for a ‘hotter’ taste, such as ‘Wildfire’, by Tozer Seeds (Surrey, UK).  

A study by Pasini et al. (2011) demonstrated how breeding for sensory traits 

could be achieved, by highlighting which glucosinolates contributed to specific taste 

and aroma elements in rocket. It was found that progoitrin/epiprogoitrin is responsible 

for bitter taste attributes, despite being only a minor component of the overall GSL 
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profile of rocket (4.3-11.4% of total GSL concentration). The perceived pungency of 

leaves was positively related to the overall GSL content of accessions, and the levels 

of glucoraphanin negatively contributed to the typical ‘rocket’ flavour. The study also 

highlighted an important difference between rocket and other Brassica sensory 

studies (Schonhof, Krumbein, & Bruckner, 2004), in that bitterness was perceived as 

a favorable characteristic according to panelists. The flavonol compound kaempferol-

3-(2-sinapoyl-glucoside)-4’-glucoside also significantly and positively contributed to 

flavor attributes in Eruca accessions. This would indicate that GSL compounds are 

not totally responsible for flavor in rocket. The study itself stopped short of saying 

how or if the information obtained would be used in breeding programs, but with 

study into rocket flavor components, milder (and/or stronger) varieties could be bred 

more efficiently once the responsible compounds are properly identified (Drewnowski 

& Gomez-Carneros, 2000). 

 

2.7. Health promoting properties of glucosinolate-myrosinase products and 

flavonols of rocket 

2.7.1. Isothiocyanates 

ITC hydrolysis products have been identified in rocket (Jirovetz et al. 2002), 

such as 4-(methylthio)butyl ITC (erucin) (Cerny, Taube, & Battaglia, 1996; Iori, 

Bernardi, Gueyrard, Rollin, & Polmieri, 1999) which is known to show anti-

proliferative activity in human lung carcinoma A549 cells, hepatoma (HepG2) cells, 

colon cancer cells, prostate cancer cell lines (PC3, BPH-1 and LnCap) and leukemia 

cells (Melchini et al., 2009). Erucin is a structurally reduced analog of sulforaphane, 

(which is predominantly found in broccoli) and has shown promising anti-cancer 

properties in vitro (e.g. anti-proliferation of human erytroleukemic K562 cells; Leoni et 

al., 1997). Research into the chemopreventative and anti-genotoxic nature of ITCs 
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has shown promising results (Wu, Zhou, & Xu, 2009; see Figure 2.2). Other studies 

involving chemically induced genotoxicity have shown very strong anti-genotoxic 

effects of E. sativa extracts (Lamy et al., 2008) which is in agreement with other 

Brassicaceae studies (Kassie et al., 2002; Zhu & Loft, 2003). Identifying specific 

cultivars of rocket with elevated levels of erucin and glucoraphanin would be an 

important first-step in developing superior varieties from a human nutrition 

standpoint. 

The results of GSL/ITC research prompted an investment in broccoli breeding 

in the last decade. A similar concerted effort could be made for rocket which contains 

similar compounds, and which are potentially just as efficacious in humans 

(Alqasoumi, Ai-Sohaibani, Ai-Howiriny, Al-Yahya, & Rafatullah, 2009). Erucin for 

example, has been shown to have very similar, and even superior, biological activity 

Figure 2.2. Pathways of documented ITC action in tumorigenic cells. See Wu, Zhou, & Xu, (2009) 
for a detailed review of the roles ITCs play in cancer prevention.  
 



	 67	

to sulforaphane (Hanlon, Coldham, Sauer, & Ioannides, 2009). One paper has 

specifically demonstrated that the concentrations of rocket ingested in an average 

daily diet is significant enough to infer a cancer preventative effect (Lamy et al., 

2008). The metabolism of ITCs in humans via the mercapturic acid pathway has 

been investigated. ITCs are conjugated with glutathione and degraded by N-

acetylation, initiating an increase of phase II detoxification enzymes; see Figure 2.3 

for detailed pathway breakdown of erucin (Wu, Zhou, & Xu, 2009). 
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Figure 2.3. The mercapturic acid pathway of ITC metabolism in the human body. After ingestion of 
rocket leaves glucoerucin is hydrolyzed by myrosinase to form erucin. This is released and 
absorbed in the ileum, where it is transported in the blood to cells around the body. ITCs initiate 
Phase II detoxification enzymes in this pathway, and are known to aid in cancer prevention. 
(Adapted from Wu, Zhou, & Xu, 2009). 
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2.7.2. Nitriles 

Along with ITCs, nitriles are the most abundant bioactive compounds 

produced by GSL hydrolysis (Alqasoumi et al. 2009). The hydrolysis of glucoraphanin 

for example, yields predominantly sulforaphane and sulforaphane nitrile. The ratio in 

which the two are formed depends greatly upon the environmental conditions and the 

plant cultivar that is used (Hanlon, Poynton, Coldham, Sauer, & Ioannides, 2009). A 

low pH medium tends towards the formation of nitriles, whereas high pH forms ITC 

(Cole, 1976; Matusheski et al., 2001). The presence of thiol and iron ions favors 

nitriles, and high temperature and hydration produce more ITCs (Macleod & Rossiter, 

1986; Uda, Kurata, & Arakawa, 1986). This can have substantial consequences for 

any potential health benefits that might be inferred from eating rocket (Matusheski et 

al., 2001). The nitrile form is approximately three orders of magnitude less efficacious 

than the ITC in inducing quinone reductase (phase II enzyme), and thus infers a 

reduced enzymatic and anticarcinogenic response. Nitriles also compete with ITCs in 

this induction, and reduce potential positive effects further (Matusheski & Jeffery, 

2001). As the ratio of these compounds may depend on plant variety, care must be 

taken in rocket breeding when selecting plants for GSL content, as this may not be 

reflective of the bioactives produced in subsequent hydrolysis reactions (Tookey & 

Wolff, 1970). Other underlying genetic factors may influence which degradation 

pathway is taken. 

 

2.7.3. Indoles 

Indoles are the predominant autolysis product of indole glucosinolates such as 

glucobrassicin, as their ITC counterparts are unstable (Fahey et al. 2001). 

Glucobrassicin has been detected as a minor GSL in rocket species (Pasini et al. 

2012), and the predominant indole species produced is indole-3-carbinol. This 
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compound is known to be cancer-preventative (Cashman et al., 1999; Graham, 

1983), particularly in reproductive organs in vitro and in vivo. A condensation product 

of indole-3-carbinol, 3,3’-diindolymethane, is also responsible for beneficial 

physiological effects. Both compounds have been shown to reduce cell proliferation 

in breast, prostate, cervical and colon cancer cell lines. They also show distinct 

differences from ITCs such as sulforaphane (Bonnesen, Eggleston, & Hayes, 2001), 

and inhibition of tumor development in the stomach, breast, uterus, tongue and liver 

of rodents (Bradlow, Michnovicz, Telang, & Osborne, 1991; Bresnick, Birt, 

Wolterman, Wheeler, & Markin, 1990; Kim et al., 1994, 1997; Kojima, Tanaka, & 

Mori, 1994; Tanaka et al., 1990; Tanaka, Kojima, Morishita, & Mori, 1992; 

Wattenberg & Loub, 1978). Experiments in rodents have shown an increase in drug-

metabolizing enzymes in the stomach, liver and small intestines of individuals 

consuming both ITCs and indoles. This is suggestive of enhanced detoxification 

phase II enzymes (such as quinone reductase, glutathione reductase and glutathione 

transferase; Tanaka et al., 1990), and a mechanism by which these phytochemicals 

infer chemopreventative effects (Kim et al., 1994; Staack, Kingston, Wallig, & Jeffery, 

1998). 

 Typically indoles inhibit cell proliferation through cytostatic mechanisms, 

whereas ITCs induce cytotoxicity within cell lines (at above 12.5 µM concentrations), 

which ultimately leads to increased apoptosis (Verhoeven, Verhagen, Goldbohm, van 

den Brandt, & van Poppel, 1997; Wattenberg, 1985). This indicates that both types of 

compound could act and be effective at different stages of cancer development 

(Pappa et al., 2006). Indoles have been shown to induce programmed cell death in 

prostate, breast and osteocarcinoma cell lines (Kuang & Chen, 2004) and G1 cell 

cycle arrest in breast and prostate cancer cell lines (Cover et al., 1998; Sarkar & Li, 

2004). It is these cytostatic effects on cell proliferation that has been suggested as 
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the mechanism responsible for the lack of apoptosis effects in indoles (Ge, Fares, & 

Yannai, 1999). 

 Using information on GSL content in rocket, the ITC and indole effects can be 

potentially maximized in new varieties, and be of a greater benefit to human health 

when considered in tandem, rather than separately (Bonnesen et al. 2001). 

 

2.7.4. Oxazolidine-2-thiones & goitrogens 

The hydrolysis of β-hydroxy-alkyl GSL compounds (e.g. progoitrin; a minor 

GSL in rocket) can produce oxazolidine-2-thiones such as goitrin (5-vinyloxazolidine-

2-thione) (Cover et al., 1998; Greer, 1962; Grubb, Gross, Chen, & Abel, 2002; Lijang, 

Iori, & Thornalley, 2006; Sarkar & Li, 2004; Wink, 2010; Zhao, Tang, & Ding, 2007). It 

is these compounds that are largely attributed to the thyroid condition of goiter in 

mammals (Ghawi, Methven, & Niranjan, 2013), but the action of microflora in the gut 

is thought to mediate the problems associated with high oxazolidine-2-thione intake 

(Higdon, Delage, Williams, & Dashwood, 2007; Mcdanell, Mclean, Hanley, Heaney, & 

Fenwick, 1988). That being said, oxazolidine-2-thiones interfere with thyroxine 

synthesis (Dewick, 2009) and are therefore likely to have an adverse biological effect 

regardless of gut microflora action or bodily iodine status (Jongen, 1996). A study by 

Nishie & Daxenbilcher (1980) showed that these compounds are not teratogenic or 

embryotoxic however.  

These molecules contribute significantly to the bitter taste of rocket that some 

people perceive quite strongly (Dewick, 2009). The detection of these compounds 

may be mediated in a similar genetic fashion as PROP (propylthiouracil), for example 

(Fenwick & Griffiths, 1981; Nishie & Daxenbichler, 1980). By using phytochemical 

data in rocket breeding programs these oxazolidine-2-thione components could be 

reduced, potentially improving consumer acceptance (depending on the target 
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consumer) and avoiding any possible adverse health effects associated with over-

consumption. 

 

2.7.5. Ascorbigens 

Ascorbigens are formed via the reaction of indole-3-carbinol and 3,3’-

diindolymethane with ascorbic acid in the stomach during myrosinase-catalyzed 

degradation of indoly-3-methyl glucosinolates (Fenwick, Griffiths, & Heaney, 1983; 

Lewis & Fenwick, 1987). In this manner it is thought that ascorbigens have a role in 

cancer-modulation (Buskov et al., 2000) via quinone reductase induction (Zhu & Loft, 

2003). As has been highlighted previously, this has important implications for 

breeding for plant varieties with enhanced chemopreventative effects. 

 

2.7.6. Epithioalkanes 

Epithioalkanes are formed as part of the myrosinase reaction with GSLs at low 

pH with epithiospecifier protein and ferrous ions. These GSLs typically have a side-

chain with a double bond, such as sinigrin (Hrncirik, Valusek, & Velisek, 2001; 

Preobrazhenskaya, Bukhman, Korolev, & Efimov, 1993). It is uncertain whether 

these compounds produce any significant bioactive effect in humans, but the ratio in 

which they are produced alongside ITCs, nitriles and indoles may impact on these 

compounds’ efficacy as anti-carcinogens. 

 

2.7.7. Flavonols 

The antioxidant and anti-inflammatory function of flavonols in the human diet 

are well known and include protecting the colonic epithelium from free radical 

damage (Harborne & Williams, 2000; Hollman & Katan, 1997, 1999; Olsson, Veit, 

Weissenbock, & Bornman, 1998). They can induce the up-regulation of enzymes 
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(such as cytochrome P450), that may lead to a decreased risk of cancer, 

cardiovascular disease, immune dysfunction, atherosclerosis and chronic 

inflammation (Kroon et al., 2004; Manach, Scalbert, Morand, Remesy, & Jimenez, 

2004). 

 

2.8. Factors affecting phytochemical content 

2.8.1. Breeding and cultivation 

Rocket has been consistently shown to be a good dietary source for flavonols, 

GSLs and anti-oxidants. However, there can be large differences between plants of 

the same germplasm accession due to a combination of genetic and environmental 

variability. This is probably due to the outbreeding nature of the species (Cartea et al. 

2008) and a lack of overall uniformity in varieties. Commercial varieties cannot be 

considered truly domesticated because of this tendency for outcrossing, and the 

susceptibility of plants to inbreeding depression (a loss of genetic variability due to 

repeated self-pollination or crossing with a closely related individual). Development of 

advanced open-pollinating breeding lines (lines that are allowed to cross-pollinate 

freely in a population of selected individuals), or even F1 hybrids (superior varieties 

produced by crossing distinctly different, elite inbred lines), could potentially minimise 

such variation. 

Throughout the food chain there are many aspects that can have an adverse 

effect on GSL levels within leaves (Figure 2.4). These include the cultivar choice, 
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cultivation practice, climatic conditions, photoperiod, sulphur and nitrogen availability, 

harvest date, time spent in storage, the temperature of wash water, levels of physical 

damage to leaves, packaging atmosphere and food preparation methods (Aires, 

Rosa, & Carvalho, 2006; Bjorkman et al., 2011; Degl’Innoocenti et al. 2008; Engelen-

Eigles, Holden, Cohen, & Gardner, 2006; Jeffery et al., 2003; Palaniswamy, McAvoy, 

& Bible, 1997; Palaniswamy, McAvoy, Bible, Singha, & Hill, 1995). 

 

Cultivation	

• Cultivar	
• Cultivation	practice	
• Climatic	conditions	
• Date	of	harvest	

Storage	

• Time	
• Temperature	
• Humidity	
• Type	of	atmosphere	

Processing	

• Time	
• Temperature	of	washwater	
• Levels	of	physical	damage	

Packaging	
• Packaging	design	

Storage	

• Time	
• Temperature	
• Humidity	
• Atmosphere	

Consumer	
Processing	

• Time	
• Preparation	temperature	
• Levels	of	physical	damage	

Figure 2.4. Factors and conditions within 
the commercial supply chain that affect 
GSL and flavonol levels within rocket 
leaves. 
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2.8.2. Harvesting 

Rocket species have the ability to re-grow their leaves repeatedly after cutting, 

which allows for several harvests to take place under optimal conditions (Martinez-

Sanchez et al. 2008). In parts of southern Italy, it is not unheard of for up to seven 

harvests to occur from a single planting. This has obvious cost-saving benefits for 

growers, but multiple harvests also induce stress responses in rocket that may be 

detrimental to the flavor and aesthetics of the crop. Stress drives up the production of 

secondary metabolites such as GSLs and anthocyanins, which will produce very 

strong, bitter tastes. There are other detrimental effects of multiple harvests; leaves 

become progressively smaller and more ‘skeletal’ in appearance with each cutting, 

for example. High anthocyanin levels also affect the color of leaves, turning them an 

undesirable pink, purple or red. Color has been found to be one of the most important 

characteristics consumers look for in rocket (A Koukounaras, Siomos, & Sfakiotakis, 

2010), and so the loss of fresh appearance can ultimately lead to rejection of crops 

by supermarkets and processors. 

 

2.8.3. Industrial and culinary processing 

There are five main influences that have been identified in affecting GSL levels 

during processing (Verkerk et al., 2009). These are the action of myrosinase 

hydrolysis, myrosinase inactivation, the lysis and leaching of GSLs into wash-water, 

thermal degradation of GSLs, and the loss of ascorbic acid, iron and other enzyme 

co-factors. Myrosinase inactivation and thermal degradation of GSLs is probably less 

of an issue in rocket species, as the leaves are not typically cooked. The leaves are 

not ordinarily frozen, and so freeze-thaw hydrolysis is not likely to be a major factor 

either. Other factors almost certainly play a significant role in GSL and phytochemical 
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loss in rocket. Verkerk et al. (2009) highlighted four key areas that affect GSL levels 

before reaching the end consumer. These are: 

1. The variety / cultivar used 

2. Storage and packaging (post-harvest, post-processing & in 

shops/supermarkets) 

3. Industrial processing 

4. Consumer preparation methods 

If each of these areas can be mitigated through breeding superior varieties, 

consumers will receive an end product that is of higher nutritive quality and thus 

provide increased health benefits. 

 

2.8.4. Post harvest storage 

Studies on both Diplotaxis and Eruca species have been conducted to 

determine the effects of post harvest storage conditions on chlorophyll content and 

respiration rates (Koukounaras et al. 2007). Both species of rocket have been found 

to have high respiration rates (Martinez-Sanchez et al. 2008) leading to rapidly 

impaired visual quality, such as stem browning, tissue yellowing and general decay 

(Koukounaras, Siomos, & Sfakiotakis, 2006). Provided initial GSL loss can be 

mitigated through breeding, ITC formation has been shown to increase over nitrile 

formation during the storage period (Howard, Jeffery, Wallig, & Klein, 1997). 

 Time, temperature, humidity and atmospheric conditions are all optimised for 

specific crops within the logistics chain, but these factors are often only designed to 

prevent visual degradation and not phytochemical breakdown (Schouten et al., 

2009). Getting producers, packagers and transporters to change their current 

practices in order to better preserve the health-promoting compounds in rocket would 

be a difficult task. Treatments and storage conditions are often integrated parts of 
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protocols and procedures, and changing these would require significant testing on a 

commercial scale. 

 

2.9. New selection tools for breeders 

2.9.1. Phytochemical selection 

It should not be forgotten that some GSLs and their breakdown products are 

thought to be toxic, and even carcinogenic, at high concentrations (Kim et al., 1997). 

Breeders and researchers should be mindful that more of a certain compound does 

not necessarily mean ‘better’ (Kassie et al., 1996). Humans seem to be able to 

tolerate GSLs much better than pigs, rats and rabbits for example; but 

overconsumption of these compounds may have serious health consequences 

(Tripathi & Mishra, 2007) as high dose-effect relationships are as yet unknown in 

humans (Verkerk et al., 2009). Few papers in GSL research (regardless of species) 

have acknowledged the potential for plant breeders to utilise HPLC/UPLC/LC-

MS/GC-MS methods within breeding programs to ‘monitor’ and select plants for their 

phytochemical content in this manner. These techniques would provide valuable 

information on breeding lines relatively rapidly, especially for GSL and flavonol 

breeding (Rochfort, Trenerry, Imsic, Panozzo, & Jones, 2008). It is not common 

practice to select rocket plants based on their phytochemical profile at present, but as 

interest in these compounds increases it will be necessary for breeders to modify 

their selection criteria and information sources in order to remain competitive in the 

salad vegetable market (Verkerk et al., 2009). This has been achieved with 

‘Beneforte’ broccoli (Seminis Vegetable Seeds; subsidiary of Monsanto Company, St. 

Louis, Missouri, USA; www.beneforte.com) for example. It has also been indicated in 

hybrid varieties of Brassica that ITC/nitrile ratios can be selected for (Faulkner, 

Mithen, & Williamson, 1998). 
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2.9.2. Genetic resources and Marker Assisted Breeding 

European initiatives (such as the EU GENRES project ‘Leafy vegetables 

germplasm, stimulating use’; http://documents.plant.wur.nl/cgn/pgr/leafyveg/) have 

included rocket species within their remit, indicating the rising prominence of the 

species, and the desire for more work to be conducted on them. The germplasm 

accessions stored in gene banks are a valuable genetic resource for breeders to take 

advantage of (Xu, 2010). The accessions contained within these collections are 

highly variable and have unique visual and sensory characteristics that could be 

introgressed into breeding lines relatively easily (Bozokalfa, Yagmur, Ilbi, Esiyok, & 

Kavak, 2009). 

Genetic information about rocket within the published literature is very scarce. 

Some molecular marker techniques such as Random Amplification of Polymorphic 

DNA (RAPD), Inter-Simple Sequence Repeats (ISSR) and Amplified Fragment 

Length Polymorphisms (AFLP) have been used to analyse morphological 

characteristics of Eruca vesicaria (Egea-Gilabert et al. 2009). ISSR and AFLP are 

relatively robust for screening variable populations and discriminating between 

cultivars (Xu, 2010) but RAPDs are notoriously unreliable and suffer from a lack of 

reproducibility and resolution. Perhaps one of the most underutilised marker types is 

SRAP (Sequence Related Amplified Polymorphism). The forward and reverse 

primers are designed to target arbitrary GC and AT rich sequences of the genome 

respectively, and are therefore more likely to anneal to active genomic regions (Li & 

Quiros, 2001). This could be of use in understudied crops such as rocket, as it 

provides a simple, repeatable and reliable way of screening large populations. 

These techniques are now for the most part however, obsolete in advanced 

molecular plant breeding, as NGS (Next Generation Sequencing) and SNP (Single 
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Nucleotide Polymorphism)/QTL (Quantitative Trait Loci) analyses are far more 

specific, reliable and cost-effective. SNPs are the most abundant marker type within 

genomes, and their high density is ideal for studying specific regions in detail (Baird 

et al., 2008). NGS techniques are now relatively affordable, even for relatively small 

companies. They are widely available in academic institutions, but many companies 

are bypassing these in favor of dedicated private commercial services (Glenn, 2011) 

or are developing their own in-house facilities. The inability of some research 

institutions to provide adequate customer service, cost-effectiveness, data storage, 

and results on time is jeopardising how much knowledge is in the public domain. 

Increasingly, both large and small breeding companies are collaborating privately 

and advancing techniques far beyond those found in academic institutions. Future 

work by institutes in advanced genomics, sequencing and genotyping is likely to be 

obsolete in some cases because private research is already finding new innovations, 

e.g. for data storage and bioinformatics. Because private companies have no 

obligation to share their knowledge, many of these advances may be unobserved by 

the mainstream scientific community. Institutes and Universities need to do more to 

attract business from industry in order to keep up with the pace of private advances 

in this area.  

Transcriptome sequences are now (generally) adequate for breeders to use 

and make huge advances in only a few years. Linkage mapping and QTL analyses 

can be conducted on desktop computers, making integration into breeding 

companies relatively straightforward from an IT point of view, even if the actual 

sequencing and genotyping are outsourced. Again, this may typically be to private 

companies providing a dedicated service. The availability of software licenses and 

advanced training courses from private companies also means plant breeders do not 
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necessarily need the expertise found in Universities and research institutes in order 

to attain their goals. 

 

2.10. Summary 

Of all the research papers concerning rocket species and their 

phytochemistry, none have directly addressed how information could be used within 

a working breeding population. Often it is explained or postulated purely as theory 

rather than actual practice, or only given a cursory mention. Only very rarely is a 

plant breeding program reflective of theory, due to the large number of environmental 

factors affecting plant growth, development and reproduction. The progressive 

selection of rocket plants through conventional/molecular breeding would be a 

valuable tool for the research community as well as providing an excellent incentive 

for breeding companies to fund research. The actual monitoring and quantification of 

GSL/flavonol levels through successive generations (i.e. not just one as has been the 

case with most studies) would not only validate the heritability of such traits in rocket, 

but would also provide a  ‘roadmap’ for how other minor crops might be developed 

for commercial use.  

Attention must be paid to the phytochemical content of varieties within 

breeding populations of rocket. By focusing solely on morphological traits, important 

phytochemical genotypes may be inadvertently lost from populations; this could be 

said of all Brassicaceae species, not just rocket. The balance of glucosinolate-

myrosinase degradation products does seem to have a genetic component to it and 

so could be selected for also. Utilising genetic resources, the falling costs of 

sequencing and bioinformatics can produce nutritively superior varieties of rocket in 

the near future. Plant breeding typically takes longer than the average research 

project allows for, even with the use of advanced genomic selection methods. This is 
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a situation that could be remedied by long-term industrial collaboration and 

sponsorship by plant breeding firms. 

2.11. References 
 

Agerbirk, N., Olsen, C. E., & Nielsen, J. K. (2001). Seasonal variation in leaf glucosinolates and insect 
resistance in two types of Barbarea vulgaris ssp arcuata. Phytochemistry, 58(1), 91–100.  

Ahuja, I., de Vos, R. C. H., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face 
climate change. Trends in Plant Science, 15(12), 664–674.  

Aires, A., Rosa, E., & Carvalho, R. (2006). Effect of nitrogen and sulfur fertilization on glucosinolates in 
the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). Journal of the Science of 
Food and Agriculture, 86(10), 1512–1516.  

Alqasoumi, S., Ai-Sohaibani, M., Ai-Howiriny, T., Al-Yahya, M., & Rafatullah, S. (2009). Rocket “Eruca 
sativa”: A salad herb with potential gastric anti-ulcer activity. World Journal of Gastroenterology, 
15(16), 1958–1965. 

Andreasson, E., Jorgensen, L. B., Hoglund, A. S., Rask, L., & Meijer, J. (2001). Different myrosinase 
and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiology, 127(4), 1750–
1763.  

Arabbi, P. R., Genovese, M. I., & Lajolo, F. M. (2004). Flavonoids in vegetable foods commonly 
consumed in brazil and estimated ingestion by the Brazilian population. Journal of Agricultural 
and Food Chemistry, 52(5), 1124–1131.  

Baik, H. Y., Juvik, J., Jeffery, E. H., Wallig, M. A., Kushad, M., & Klein, B. P. (2003). Relating 
glucosinolate content and flavor of broccoli cultivars. Journal of Food Science, 68(3), 1043–1050.  

Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., 
Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP Discovery and Genetic Mapping Using 
Sequenced RAD Markers. Plos One, 3(10).  

Bartlet, E., Kiddle, G., Williams, I., & Wallsgrove, R. (1999). Wound-induced increases in the 
glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer 
specialist. Entomologia Experimentalis Et Applicata, 91(1), 163–167.  

Bennett, R. N., Carvalho, R., Mellon, F. A., Eagles, J., & Rosa, E. A. S. (2007). Identification and 
quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad 
rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. Journal of 
Agricultural and Food Chemistry, 55(1), 67–74.  

Bennett, R. N., Mellon, F. A., Botting, N. P., Eagles, J., Rosa, E. A. S., & Williamson, G. (2002). 
Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa 
L. (salad rocket). Phytochemistry, 61(1), 25–30.  

Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic profiling of 
glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), 
Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis 
(Turkish rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005–4015.  

Bjorkman, M., Klingen, I., Birch, A. N. E., Bones, A. M., Bruce, T. J. A., Johansen, T. J., Meadow, R., 



	 82	

Molmann, J., Seljasen, R., Smart, L. E., & Stewart, D. (2011). Phytochemicals of Brassicaceae in 
plant protection and human health - Influences of climate, environment and agronomic practice. 
Phytochemistry, 72(7), 538–556.  

Bones, A. M., & Rossiter, J. T. (2006). The enzymic and chemically induced decomposition of 
glucosinolates. Phytochemistry, 67(11), 1053–1067.  

Bonnesen, C., Eggleston, I. M., & Hayes, J. D. (2001). Dietary indoles and isothiocyanates that are 
generated from cruciferous vegetables can both stimulate apoptosis and confer protection 
against DNA damage in human colon cell lines. Cancer Research, 61(16), 6120–6130.  

Botting, C. H., Davidson, N. E., Griffiths, D. W., Bennett, R. N., & Botting, N. P. (2002). Analysis of 
intact glucosinolates by MALDI-TOF mass spectrometry. Journal of Agricultural & Food 
Chemistry, 50(5), 983-988. 

Bozokalfa, M. K., Yagmur, B., Ilbi, H., Esiyok, D., & Kavak, S. (2009). Genetic variability for mineral 
concentration of Eruca sativa L. and Diplotaxis tenuifolia L. accessions. Crop Breeding and 
Applied Biotechnology, 9(4), 372–381.  

Bradlow, H. L., Michnovicz, J. J., Telang, N. T., & Osborne, M. P. (1991). Effects of Dietary Indole-3-
Carbinol on Estradiol Metabolism and Spontaneous Mammary-Tumors in Mice. Carcinogenesis, 
12(9), 1571–1574.  

Bresnick, E., Birt, D. F., Wolterman, K., Wheeler, M., & Markin, R. S. (1990). Reduction in Mammary 
Tumorigenesis in the Rat by Cabbage and Cabbage Residue. Carcinogenesis, 11(7), 1159–
1163.  

Brown, P. D., & Morra, M. J. (1995). Glucosinolate-containing plant tissues as bioherbicides. Journal 
of Agricultural and Food Chemistry, 43(12), 3070–3074.  

Buskov, S., Hansen, L. B., Olsen, C. E., Sørensen, J. C., Sørensen, H., & Sørensen, S. (2000). 
Determination of ascorbigens in autolysates of various Brassica species using supercritical fluid 
chromatography. Journal of Agricultural and Food Chemistry, 48, 2693–2701. 

Cartea, M. E. M. E., Francisco, M., Soengas, P., & Velasco, P. (2011). Phenolic Compounds in 
Brassica Vegetables. Molecules, 16(1), 251–280.  

Cartea, M. E., Velasco, P., Obregon, S., Padilla, G., & de Haro, A. (2008). Seasonal variation in 
glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry, 
69(2), 403–410.  

Casagrande, S. S., Wang, Y., Anderson, C., & Gary, T. L. (2007). Have Americans increased their fruit 
and vegetable intake? The trends between 1988 and 2002. American Journal of Preventive 
Medicine, 32(4), 257–263.  

Cashman, J. R., Xiong, Y., Lin, J., Verhagen, H., van Poppel, G., van Bladeren, P. J., Larsen-Su, S., & 
Williams, D. E. (1999). In vitro and in vivo inhibition of human flavin-containing monooxygenase 
form 3 (FMO3) in the presence of dietary indoles. Biochemical Pharmacology, 58(6), 1047–1055.  

Cataldi, T. R. I., Rubino, A., Lelario, F., & Bufo, S. A. (2007). Naturally occuring glucosinolates in plant 
extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with 
negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid 
Communications in Mass Spectrometry, 21(14), 2374–2388.  

Cerny, M. S., Taube, E., & Battaglia, R. (1996). Identification of bis(4-isothiocyanatobutyl) disulfide 
and its precursor from Rocket salad (Eruca sativa). Journal of Agricultural and Food Chemistry, 



	 83	

44(12), 3835–3839.  

Charron, C. S., Saxton, A. M., & Sams, C. E. (2005). Relationship of climate and genotype to seasonal 
variation in the glucosinolate-myrosinase system. I. Glucosinolate content in ten cultivars of 
Brassica oleracea grown in fall and spring seasons. Journal of the Science of Food and 
Agriculture, 85(4), 671–681.  

Chaudhary, A., Rampal, G., Sharma, U., Thind, T. S., Singh, B., Vig, A. P., & Arora, S. (2012). 
Anticancer, antioxidant activities and GC-MS analysis of glucosinolates in two cultivars of 
broccoli. Medicinal Chemistry & Drug Discovery, 2(2), 30–37. 

Chen, S., & Andreasson, E. (2001). Update on glucosinolate metabolism and transport. Plant 
Physiology and Biochemistry, 39(9), 743–758.  

Chun, J-H.; Arasu, M.V.; Lim, Y-P.; Kim, S.-J. (2013). Variation of Major Glucosinolates in Different 
Varieties and Lines of Rocket Salad. Horticulture, Environment and Biotechnology, 54(3), 206–
213. 

Clarke, D. B. (2010). Glucosinolates, structures and analysis in food. Analytical Methods, 2(4), 310–
325.  

Clarke, J. D., Dashwood, R. H., & Ho, E. (2008). Multi-targeted prevention of cancer by sulforaphane. 
Cancer Letters, 269(2), 291–304.  

Cole, R. A. (1976). Isothiocyanates, Nitriles and Thiocyanates as Products of Autolysis of 
Glucosinolates in Cruciferae. Phytochemistry, 15(5), 759–762.  

Conaway, C. C., Yang, Y. M., & Chung, F. L. (2002). Isothiocyanates as cancer chemopreventive 
agents: Their biological activities and metabolism in rodents and humans. Current Drug 
Metabolism, 3(3), 233–255.  

Coogan, R. C., Wills, R. B. H., & Nguyen, V. Q. (2001). Pungency levels of white radish (Raphanus 
sativus L.) grown in different seasons in Australia. Food Chemistry, 72(1), 1–3.  

Cover, C. M., Hsieh, S. J., Tran, S. H., Hallden, G., Kim, G. S., Bjeldanes, L. F., & Firestone, G. L. 
(1998). Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G(1) 
cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. 
Journal of Biological Chemistry, 273(7), 3838–3847.  

D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: 
Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187–199. 

D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: 
glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. 
Journal of the Science of Food and Agriculture, 89(4), 713–722.  

Degl’Innoocenti, E., Pardossi, A., Tattini, M., & Guidi, L. (2008). Phenolic compounds and antioxidant 
power in minimally processed salad. Journal of Food Biochemistry, 32(5), 642–653. 

Dewick, P. M. (2009). Medicinal natural products a biosynthetic approach. Chichester, West Sussex, 
UK: Wiley.  

Drewnowski, A., & Gomez-Carneros, C. (2000). Bitter taste, phytonutrients, and the consumer: a 
review. American Journal of Clinical Nutrition, 72(6), 1424–1435.  

Egea-Gilabert, C., Fernandez, J. A., Migliaro, D., Martinez-Sanchez, J. J., & Vicente, M. J. (2009). 



	 84	

Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by 
morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260–266.  

Engelen-Eigles, G., Holden, G., Cohen, J. D., & Gardner, G. (2006). The effect of temperature, 
photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium 
officinale R. Br.). Journal of Agricultural and Food Chemistry, 54(2), 328–334. 

Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of 
glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5–51.  

Fahey, J. W., Zhang, Y. S., & Talalay, P. (1997). Broccoli sprouts: An exceptionally rich source of 
inducers of enzymes that protect against chemical carcinogens. Proceedings of the National 
Academy of Sciences of the United States of America, 94(19), 10367–10372.  

Faulkner, K., Mithen, R., & Williamson, G. (1998). Selective increase of the potential anticarcinogen 4-
methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis, 19(4), 605–609.  

Fenwick, G. R., & Griffiths, N. M. (1981). The identification of the goitrogen, (-)5-vinyloxazolidine-2-
thione (goitrin), as a bitter principle of cooked brussels sprouts (Brassica oleracea L. var. 
gemmifera). Zeitschrift Für Lebensmittel-Untersuchung Und -Forschung, 172(2), 90–92. 

Fenwick, G. R., Griffiths, N. M., & Heaney, R. K. (1983). Bitterness in brussels sprouts (Brassica 
oleracea L. var.gemmifera): The role of glucosinolates and their breakdown products. Journal of 
the Science of Food and Agriculture, 34(1), 73–80.  

Fenwick, G. R., & Heaney, R. K. (1983). Glucosinolates and Their Breakdown Products in Cruciferous 
Crops, Foods and Feedingstuffs. Food Chemistry, 11(4), 249–271.  

Foo, H. L., Gronning, L. M., Goodenough, L., Bones, A. M., Danielsen, B. E., Whiting, D. A., & 
Rossiter, J. T. (2000). Purification and characterisation of epithiospecifier protein from Brassica 
napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from 
alkenyl glucosinolate hydrolysis. Febs Letters, 468(2-3), 243–246.  

Ge, X. K., Fares, F. A., & Yannai, S. (1999). Induction of apoptosis in MCF-7 cells by indole-3-carbinol 
is independent of p53 and bax. Anticancer Research, 19(4B), 3199–3203.  

Gepts, P. (2010). What is a crop?: The Domestication Syndrome. 
http://www.plantsciences.ucdavis.edu/gepts/pb143/lec08/pb143l08.htm: University of California 
Davis. 

Getahun, S. M., & Chung, F. L. (1999). Conversion of glucosinolates to isothiocyanates in humans 
after ingestion of cooked watercress. Cancer Epidemiology Biomarkers & Prevention, 8(5), 447–
451.  

Ghawi, S. K., Methven, L., & Niranjan, K. (2013). The potential to intensify sulforaphane formation in 
cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food 
Chemistry, 138(2-3), 1734–1741.  

Glenn, T. C. (2011). Field guide to next-generation DNA sequencers. Molecular Ecology Resources, 
11(5), 759–769. 

Graham, S. (1983). Results of Case-Control Studies of Diet and Cancer in Buffalo, New-York. Cancer 
Research, 43(5), 2409–2413.  

Graser, G., Schneider, B., Oldham, N. J., & Gershenzon, J. (2000). The methionine chain elongation 
pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Archives of 



	 85	

Biochemistry and Biophysics, 378(2), 411–419.  

Greer, M. A. (1962). The isolation and identification of progoitrin from Brassica seed. Archives of 
Biochemistry and Biophysics, 99(3), 369–371.  

Gross, H. B., Dalebout, T., Grubb, C. D., & Abel, S. (2000). Functional detection of chemopreventive 
glucosinolates in Arabidopsis thaliana. Plant Science, 159(2), 265–272.  

Grubb, C. D., & Abel, S. (2006). Glucosinolate metabolism and its control. Trends in Plant Science, 
11(2), 89–100. 

Grubb, C. D., Gross, H. B., Chen, D. L., & Abel, S. (2002). Identification of Arabidopsis mutants with 
altered glucosinolate profiles based on isothiocyanate bioactivity. Plant Science, 162(1), 143–
152.  

Halkier, B. A., & Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. In Annual Review 
of Plant Biology, 57, 303–333.  

Hall, C., McCallum, D., Prescott, A., & Mithen, R. (2001). Biochemical genetics of glucosinolate 
modification in Arabidopsis & Brassica. Theoretical & Applied Genetics, 102(2-3), 369-374. 

Hall, M. K. D., Jobling, J. J., & Rogers, G. S. (2012). Some perspectives on rocket as a vegetable 
crop: a review. Vegetable Crops Research Bulletin, 76, 21–41.  

Hanlon, N., Coldham, N., Sauer, M. J., & Ioannides, C. (2009). Modulation of rat pulmonary 
carcinogen-metabolising enzyme systems by the isothiocyanates erucin and sulforaphane. 
Chemico-Biological Interactions, 177(2), 115–120.  

Hanlon, N., Poynton, C. L., Coldham, N., Sauer, M. J., & Ioannides, C. (2009). The aliphatic 
isothiocyanates erucin and sulforaphane do not effectively up-regulate NAD(P)H:quinone 
oxidoreductase (NQO1) in human liver compared with rat. Molecular Nutrition & Food Research, 
53(7), 836–844.  

Hansen, M., Laustsen, A. M., Olsen, C. E., Poll, L., & Sorensen, H. (1997). Chemical and sensory 
quality of broccoli (Brassica oleracea L. var italica). Journal of Food Quality, 20(5), 441–459.  

Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 
55(6), 481–504.  

Hasegawa, T., Yamada, K., Kosemura, S., Yamamura, S., & Hasegawa, K. (2000). Phototropic 
stimulation induces the conversion of glucosinolate to phototropism-regulating substances of 
radish hypocotyls. Phytochemistry, 54(3), 275–279.  

Hayes, J. D., Kelleher, M. O., & Eggleston, I. M. (2008). The cancer chemopreventive actions of 
phytochemicals derived from glucosinolates. European Journal of Nutrition, 47, 73–88.  

Heaney, R. K., & Fenwick, G. R. (1980). The Analysis of Glucosinolates in Brassica Species Using 
Gas-Chromatography - Direct Determination of the Thiocyanate Ion Precursors, Glucobrassicin 
and Neoglucobrassicin. Journal of the Science of Food and Agriculture, 31(6), 593–599.  

Hecht, S. S. (1999). Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen 
metabolism. Journal of Nutrition, 129(3), 768S–774S.  

Herr, I., & Buechler, M. W. (2010). Dietary constituents of broccoli and other cruciferous vegetables: 
Implications for prevention and therapy of cancer. Cancer Treatment Reviews, 36(5), 377–383.  



	 86	

Higdon, J. V, Delage, B., Williams, D. E., & Dashwood, R. H. (2007). Cruciferous vegetables and 
human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research, 
55(3), 224–236.  

Hoglund, A. S., Lenman, M., Falk, A., & Rask, L. (1991). Distribution of Myrosinase in Rapeseed 
Tissues. Plant Physiology, 95(1), 213–221.  

Hollman, P. C. H., & Katan, M. B. (1997). Absorption, metabolism and health effects of dietary 
flavonoids in man. Biomedicine & Pharmacotherapy, 51(8), 305–310.  

Hollman, P. C. H., & Katan, M. B. (1999). Dietary flavonoids: Intake, health effects and bioavailability. 
Food and Chemical Toxicology, 37(9-10), 937–942.  

Holst, B., & Williamson, G. (2004). A critical review of the bioavailability of glucosinolates and related 
compounds. Natural Product Reports, 21(3), 425–447.  

Howard, L. A., Jeffery, E. H., Wallig, M. A., & Klein, B. P. (1997). Retention of phytochemicals in fresh 
and processed broccoli. Journal of Food Science, 62(6), 1098–+.  

Hrncirik, K., Valusek, J., & Velisek, J. (2001). Investigation of ascorbigen as a breakdown product of 
glucobrassicin autolysis in Brassica vegetables. European Food Research and Technology, 
212(5), 576–581.  

Husebye, H., Chadchawan, S., Winge, P., Thangstad, O. P., & Bones, A. M. (2002). Guard cell- and 
phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in 
Arabidopsis. Plant Physiology, 128(4), 1180–1188.  

Iori, R., Bernardi, R., Gueyrard, D., Rollin, P., & Polmieri, S. (1999). Formation of glucoraphanin by 
chemoselective oxidation of natural glucoerucin: A chemoenzymatic route to sulforaphane. 
Bioorganic & Medicinal Chemistry Letters, 9(7), 1047–1048.  

Jeffery, E. H., Brown, A. F., Kurilich, A. C., Keck, A. S., Matusheski, N., Klein, B. P., & Juvik, J. A. 
(2003). Variation in content of bioactive components in broccoli. Journal of Food Composition 
and Analysis, 16(3), 323–330.  

Jeffries, M. (1990). Evidence of Induced Plant Defenses in a Pondweed. Freshwater Biology, 23(2), 
265–269.  

Jia, C. G., Xu, C. J., Wei, J., Yuan, J., Yuan, G. F., Wang, B. L., & Wang, Q. M. (2009). Effect of 
modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food 
Chemistry, 114(1), 28–37.  

Jin, J., Koroleva, O. A., Gibson, T., Swanston, J., Magan, J., Zhang, Y., Rowland, I. R., & Wagstaff, C. 
(2009). Analysis of Phytochemical Composition and Chemoprotective Capacity of Rocket (Eruca 
sativa and Diplotaxis tenuifolia) Leafy Salad Following Cultivation in Different Environments. 
Journal of Agricultural and Food Chemistry, 57(12), 5227–5234.  

Jirovetz, L., Smith, D., & Buchbauer, G. (2002). Aroma compound analysis of Eruca sativa 
(Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry. Journal of 
Agricultural and Food Chemistry, 50(16), 4643–4646.  

Jongen, W. M. F. (1996). Glucosinolates in Brassica: Occurrence and significance as cancer-
modulating agents. Proceedings of the Nutrition Society, 55(1B), 433–446.  

Kassie, F., Parzefall, W., Musk, S., Johnson, I., Lamprecht, G., Sontag, G., & Knasmuller, S. (1996). 
Genotoxic effects of crude juices from Brassica vegetables and juices and extracts from 



	 87	

phytopharmaceutical preparations and spices of cruciferous plants origin in bacterial and 
mammalian cells. Chemico-Biological Interactions, 102(1), 1–16.  

Kassie, F., Rabot, S., Uhl, M., Huber, W., Qin, H. M., Helma, C., Schulte-Hermann, R., & Knasmuller, 
S. (2002). Chemoprotective effects of garden cress (Lepidium sativum) and its constituents 
towards 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ)-induced genotoxic effects and colonic 
preneoplastic lesions. Carcinogenesis, 23(7), 1155–1161.  

Keum, Y. S., Jeong, W. S., & Kong, A. N. T. (2004). Chemoprevention by isothiocyanates and their 
underlying molecular signaling mechanisms. Mutation Research-Fundamental and Molecular 
Mechanisms of Mutagenesis, 555(1-2), 191–202.  

Kim, D. J., Han, B. S., Ahn, B., Hasegawa, R., Shirai, T., Ito, N., & Tsuda, H. (1997). Enhancement by 
indole-3-carbinol of liver and thyroid gland neoplastic development in a rat medium-term 
multiorgan carcinogenesis model. Carcinogenesis, 18(2), 377–381. 

Kim, D. J., Lee, K. K., Han, B. S., Ahn, B., Bae, J. H., & Jang, J. J. (1994). Biphasic Modifying Effect of 
Indole-3-Carbinol on Diethylnitrosamine-Induced Preneoplastic Glutathione-S-Transferase 
Placental Form-Positive Liver-Cell Foci in Sprague-Dawley Rats. Japanese Journal of Cancer 
Research, 85(6), 578–583.  

Kim, S. J., & Ishii, G. (2006). Glucosinolate profiles in the seeds, leaves and roots of rocket salad 
(Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-
methoxyglucobrassicin. Soil Science & Plant Nutrition, 52(3), 394-400. 

Kim, S. J., & Ishii, G. (2007). Effect of storage temperature and where science meets business 
duration on glucosinolate, total vitamin C and nitrate contents in rocket salad (Eruca sativa Mill.). 
Journal of the Science of Food and Agriculture, 87(6), 966–973. 

Kliebenstein, D. J., Kroymann, J., & Mitchell-Olds, T. (2005). The glucosinolate-myrosinase system in 
an ecological and evolutionary context. Current Opinion in Plant Biology, 8(3), 264–271. 

Kojima, T., Tanaka, T., & Mori, H. (1994). Chemoprevention of Spontaneous Endometrial Cancer in 
Female Donryu Rats by Dietary Indole-3-Carbinol. Cancer Research, 54(6), 1446–1449.  

Koukounaras, A., Siomos, A. S., & Sfakiotakis, E. (2006). 1-methylcyclopropene prevents yellowing of 
rocket ethylene induced leaves. Postharvest Biology and Technology, 41(1), 109–111. 

Koukounaras, A., Siomos, A. S., & Sfakiotakis, E. (2007). Postharvest CO2 and ethylene production 
and quality of rocket (Eruca sativa Mill.) leaves as affected by leaf age and storage temperature. 
Postharvest Biology and Technology, 46(2), 167–173.  

Koukounaras, A., Siomos, A. S., & Sfakiotakis, E. (2010). Effects of 6-BA treatments on yellowing and 
quality of stored rocket (Eruca sativa Mill.) leaves. Journal of Food Quality, 33(6), 768–779.  

Kroon, P. A., Clifford, M. N., Crozier, A., Day, A. J., Donovan, J. L., Manach, C., & Williamson, G. 
(2004). How should we assess the effects of exposure to dietary polyphenols in vitro? American 
Journal of Clinical Nutrition, 80(1), 15–21.  

Kuang, Y. F., & Chen, Y. H. (2004). Induction of apoptosis in a non-small cell human lung cancer cell 
line by isothiocyanates is associated with P53 and P21. Food and Chemical Toxicology, 42(10), 
1711–1718.  

Kushad, M. M., Brown, A. F., Kurilich, A. C., Juvik, J. A., Klein, B. P., Wallig, M. A., & Jeffery, E. H. 
(1999). Variation of glucosinolates in vegetable crops of Brassica oleracea. Journal of 
Agricultural and Food Chemistry, 47(4), 1541–1548.  



	 88	

Lamy, E., Schroder, J., Paulus, S., Brenk, P., Stahl, T., & Mersch-Sundermann, V. (2008). 
Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma 
(HepG2) cells towards benzo(a)pyrene and their mode of action. Food and Chemical Toxicology, 
46(7), 2415–2421.  

Lelario, F., Bianco, G., Bufo, S. A., Cataldi, T. R. I. (2012). Establishing the occurrence of major and 
minor glucosinolates in Brassicaceae by LC-ESI-hybrid linear ion-trap and Fourier-transform ion 
cyclotron resonance mass spectrometry. Phytochemistry, 73, 74-83. 

Leoni, O., Iori, R., Palmieri, S., Esposito, E., Menegatti, E., Cortesi, R., & Nastruzzi, C. (1997). 
Myrosinase-generated isothiocyanate from glucosinolates: Isolation, characterization and in vitro 
antiproliferative studies. Bioorganic & Medicinal Chemistry, 5(9), 1799–1806.  

Lewis, J., & Fenwick, G. R. (1987). Glucosinolate Content of Brassica Vegetables - Analysis of 24 
Cultivars of Calabrese (Green Sprouting Broccoli, Brassica oleracea L. Var. botrytis Subvar. 
cymosa Lam.). Food Chemistry, 25(4), 259–268.  

Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker 
system based on a simple PCR reaction: its application to mapping and gene tagging in 
Brassica. Theoretical and Applied Genetics, 103(2-3), 455–461. 

Lijang, S., Iori, R., & Thornalley, P. J. (2006). Purification of major glucosinolates from Brassicaceae 
seeds and preparation of isothiocyanate and amine metabolites. Journal of the Science of Food 
and Agriculture, 86(8), 1271–1280.  

Macleod, A. J., & Rossiter, J. T. (1986). Isolation and Examination of Thioglucoside Glucohydrolase 
from Seeds of Brassica napus. Phytochemistry, 25(5), 1047–1051.  

Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: food sources 
and bioavailability. American Journal of Clinical Nutrition, 79(5), 727–747.  

Martinez-Sanchez, A., Allende, A., Cortes-Galera, Y., & Gil, M. I. (2008). Respiration rate response of 
four baby leaf Brassica species to cutting at harvest and fresh-cut washing. Postharvest Biology 
and Technology, 47(3), 382–388.  

Martinez-Sanchez, A., Gil-Izquierdo, A., Gil, M. I., & Ferreres, F. (2008). A comparative study of 
flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. 
Journal of Agricultural and Food Chemistry, 56(7), 2330–2340.  

Martinez-Sanchez, A., Llorach, R., Gil, M. I. M. I., & Ferreres, F. (2007). Identification of new flavonoid 
glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and 
Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 55(4), 1356–1363.  

Matusheski, N. V, & Jeffery, E. H. (2001). Comparison of the bioactivity of two glucoraphanin 
hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. Journal of 
Agricultural and Food Chemistry, 49(12), 5743–5749.  

Matusheski, N. V, Wallig, M. A., Juvik, J. A., Klein, B. P., Kushad, M. M., & Jeffery, E. H. (2001). 
Preparative HPLC method for the purification of sulforaphane and sulforaphane nitrile from 
Brassica oleracea. Journal of Agricultural and Food Chemistry, 49(4), 1867–1872.  

Mcdanell, R., Mclean, A. E. M., Hanley, A. B., Heaney, R. K., & Fenwick, G. R. (1988). Chemical and 
Biological Properties of Indole Glucosinolates (Glucobrassicins) - a Review. Food and Chemical 
Toxicology, 26(1), 59–70.  

McNaughton, S. A., & Marks, G. C. (2003). Development of a food composition database for the 



	 89	

estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous 
vegetables. British Journal of Nutrition, 90(3), 687–697.  

Melchini, A., Costa, C., Traka, M., Miceli, N., Mithen, R., De Pasquale, R., & Trovato, A. (2009). 
Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-
proliferative activity on human lung carcinoma A549 cells. Food and Chemical Toxicology, 47(7), 
1430–1436.  

Melchini, A., & Traka, M. H. (2010). Biological Profile of Erucin: A New Promising Anticancer Agent 
from Cruciferous Vegetables. Toxins, 2(4), 593–612.  

Mithen, R., & Campos, H. (1996). Genetic variation of aliphatic glucosinolates in Arabidopsis thaliana 
and prospects for map based gene cloning. Entomologia Experimentalis Et Applicata, 80(1), 
202–205.  

Mithen, R. F., Dekker, M., Verkerk, R., Rabot, S., & Johnson, I. T. (2000). The nutritional significance, 
biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food 
and Agriculture, 80(7), 967–984.  

Newman, R. M., Hanscom, Z., & Kerfoot, W. C. (1992). The Watercress Glucosinolate-Myrosinase 
System - a Feeding Deterrent to Caddisflies, Snails and Amphipods. Oecologia, 92(1), 1–7.  

Newman, R. M., Kerfoot, W. C., & Hanscom, Z. (1990). Watercress and Amphipods - Potential 
Chemical Defense in a Spring Stream Macrophyte. Journal of Chemical Ecology, 16(1), 245–
259.  

Nishie, K., & Daxenbichler, M. E. (1980). Toxicology of glucosinolates, related compounds (nitriles, R-
goitrin, isothiocyanates) and vitamin U found in cruciferae. Food and Cosmetics Toxicology, 
18(2), 159–172.  

Olsson, L. C., Veit, M., Weissenbock, G., & Bornman, J. F. (1998). Differential flavonoid response to 
enhanced UV-B radiation in Brassica napus. Phytochemistry, 49(4), 1021–1028.  

Ostrofsky, M. L., & Zettler, E. R. (1986). Chemical Defenses in Aquatic Plants. Journal of Ecology, 
74(1), 279–287.  

Palaniswamy, U., McAvoy, R., & Bible, B. (1997). Supplemental light before harvest increases 
phenethyl isothiocyanate in watercress under 8-hour photoperiod. Hortscience, 32(2), 222–223.  

Palaniswamy, U., McAvoy, R., Bible, B., Singha, S., & Hill, D. (1995). Phenylethyl isothiocyanate 
concentration in watercress (Nasturtium officinale R Br) is altered by the nitrogen to sulfur ratio in 
hydroponic solution. Phytochemicals and Health, 15, 280–283.  

Pappa, G., Lichtenberg, M., Iori, R., Barillari, J., Bartsch, H., & Gerhauser, C. (2006). Comparison of 
growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell 
lines by isothiocyanates and indoles from Brassicaceae. Mutation Research-Fundamental and 
Molecular Mechanisms of Mutagenesis, 599(1-2), 76–87.  

Pasini, F., Verardo, V., Caboni, M. F., & D’Antuono, L. F. (2012). Determination of glucosinolates and 
phenolic compounds in rocket salad by HPLC-DAD-MS: Evaluation of Eruca sativa Mill. and 
Diplotaxis tenuifolia L. genetic resources. Food Chemistry, 133(3), 1025–1033.  

Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad 
(Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic 
content. Journal of the Science of Food and Agriculture, 91(15), 2858–2864.  



	 90	

Podsedek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. 
Lwt-Food Science and Technology, 40(1), 1–11. 

Preobrazhenskaya, M. N., Bukhman, V. M., Korolev, A. M., & Efimov, S. A. (1993). Ascorbigen and 
other indole-derived compounds from Brassica vegetables and their analogs as anticarcinogenic 
and immunomodulating agents. Pharmacology & Therapeutics, 60, 301–313.  

Rabot, S., Nugonbaudon, L., Raibaud, P., & Szylit, O. (1993). Rapeseed Meal Toxicity in Gnotobiotic-
Rats - Influence of a Whole Human Fecal Flora or Single Human Strains of Escherichia-Coli and 
Bacteroides-Vulgatus. British Journal of Nutrition, 70(1), 323–331.  

Rangkadilok, N., Nicolas, M. E., Bennett, R. N., Premier, R. R., Eagling, D. R., & Taylor, P. W. J. 
(2002a). Determination of sinigrin and glucoraphanin in Brassica species using a simple 
extraction method combined with ion-pair HPLC analysis. Scientia Horticulturae, 96(1-4), 27–41.  

Rangkadilok, N., Nicolas, M. E., Bennett, R. N., Premier, R. R., Eagling, D. R., & Taylor, P. W. J. 
(2002b). Developmental changes of sinigrin and glucoraphanin in three Brassica species 
(Brassica nigra, Brassica juncea and Brassica oleracea var. italica). Scientia Horticulturae, 96(1-
4), 11–26.  

Rochfort, S. J., Trenerry, V. C., Imsic, M., Panozzo, J., & Jones, R. (2008). Class targeted 
metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation. 
Phytochemistry, 69(8), 1671–1679.  

Rodman, J. E., Karol, K. G., Price, R. A., & Sytsma, K. J. (1996). Molecules, morphology, and 
Dahlgren’s expanded order Capparales. Systematic Botany, 21(3), 289–307.  

Rosa, E. A. S. (1997). Glucosinolates from flower buds of Portuguese Brassica crops. Phytochemistry, 
44(8), 1415–1419.  

Rosa, E., & Heaney, R. (1996). Seasonal variation in protein, mineral and glucosinolate composition of 
Portuguese cabbages and kale. Animal Feed Science and Technology, 57(1-2), 111–127.  

Rose, P., Won, Y. K., Ong, C. N., & Whiteman, M. (2005). beta-phenylethyl and 8-methylsulphinyloctyl 
isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and 
prostaglandin E2 in RAW 264.7 macrophages. Nitric Oxide-Biology and Chemistry, 12(4), 237–
243.  

Rungapamestry, V., Duncan, A. J., Fuller, Z., & Ratcliffe, B. (2007). Effect of cooking Brassica 
vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proceedings of 
the Nutrition Society, 66(1), 69–81.  

Salah, N., Miller, N. J., Paganga, G., Tijburg, L., Bolwell, G. P., & Riceevans, C. (1995). Polyphenolic 
Flavanols as Scavengers of Aqueous-Phase Radicals and as Chain-Breaking Antioxidants. 
Archives of Biochemistry and Biophysics, 322(2), 339–346.  

Sarkar, F. H., & Li, Y. W. (2004). Indole-3-carbinol and prostate cancer. Journal of Nutrition, 134(12), 
3493S–3498S.  

Schonhof, I., Krumbein, A., & Bruckner, B. (2004). Genotypic effects on glucosinolates and sensory 
properties of broccoli and cauliflower. Nahrung-Food, 48(1), 25–33.  

Schouten, R. E., Zhang, X. B., Verkerk, R., Verschoor, J. A., Otma, E. C., Tijskens, L. M. M., & van 
Kooten, O. (2009). Modelling the level of the major glucosinolates in broccoli as affected by 
controlled atmosphere and temperature. Postharvest Biology and Technology, 53(1-2), 1–10. 



	 91	

Schreiner, M. (2005). Vegetable crop management strategies to increase the quantity of 
phytochemicals. European Journal of Nutrition, 44(2), 85–94.  

Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K., & Talalay, P. (1998). Human metabolism 
and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous 
vegetables. Cancer Epidemiology Biomarkers & Prevention, 7(12), 1091–1100.  

Song, L., & Thornalley, P. J. (2007). Effect of storage, processing and cooking on glucosinolate 
content of Brassica vegetables. Food and Chemical Toxicology, 45(2), 216–224.  

Staack, R., Kingston, S., Wallig, M. A., & Jeffery, E. H. (1998). A comparison of the individual and 
collective effects of four glucosinolate breakdown products from brussels sprouts on induction of 
detoxification enzymes. Toxicology and Applied Pharmacology, 149(1), 17–23.  

Stoewsand, G. S. (1995). Bioactive Organosulfur Phytochemicals in Brassica oleracea Vegetables - a 
Review. Food and Chemical Toxicology, 33(6), 537–543. 

Taiz, L., & Zeiger, E. (2006). Plant Physiology. Annals of Botany (4th ed., Vol. 24). Sunderland, Mass: 
Sinauer. 

Talalay, P., & Fahey, J. W. (2001). Phytochemicals from cruciferous plants protect against cancer by 
modulating carcinogen metabolism. Journal of Nutrition, 131(11), 3027S–3033S.  

Tanaka, T., Kojima, T., Morishita, Y., & Mori, H. (1992). Inhibitory Effects of the Natural-Products 
Indole-3-Carbinol and Sinigrin during Initiation and Promotion Phases of 4-Nitroquinoline 1-
Oxide-Induced Rat Tongue Carcinogenesis. Japanese Journal of Cancer Research, 83(8), 835–
842.  

Tanaka, T., Mori, Y., Morishita, Y., Hara, A., Ohno, T., Kojima, T., & Mori, H. (1990). Inhibitory Effect 
of Sinigrin and Indole-3-Carbinol on Diethylnitrosamine-Induced Hepatocarcinogenesis in Male 
Aci/N Rats. Carcinogenesis, 11(8), 1403–1406.  

Tookey, H. L., & Wolff, I. A. (1970). Effect of Organic Reducing Agents and Ferrous Ion on 
Thioglucosidase Activity of Crambe-Abyssinica Seed. Canadian Journal of Biochemistry, 48(9), 
1024–&.  

Tripathi, M. K., & Mishra, A. S. (2007). Glucosinolates in animal nutrition: A review. Animal Feed 
Science and Technology, 132(1-2), 1–27.  

Uda, Y., Kurata, T., & Arakawa, N. (1986). Effects of Thiol Compounds on the Formation of Nitriles 
from Glucosinolates. Agricultural and Biological Chemistry, 50(11), 2741–2746.  

Vaughn, S. F., Isbell, T. A., Weisleder, D., & Berhow, M. A. (2005). Biofumigant compounds released 
by field pennycress (Thlaspi arvense) seedmeal. Journal of Chemical Ecology, 31(1), 167–177.  

Velasco, P., Cartea, M. E., Gonzalez, C., Vilar, M., & Ordas, A. (2007). Factors affecting the 
glucosinolate content of kale (Brassica oleracea acephala group). Journal of Agricultural and 
Food Chemistry, 55(3), 955–962.  

Verhoeven, D. T. H., Verhagen, H., Goldbohm, R. A., van den Brandt, P. A., & van Poppel, G. (1997). 
A review of mechanisms underlying anticarcinogenicity by Brassica vegetables. Chemico-
Biological Interactions, 103(2), 79–129.  

Verkerk, R., Dekker, M., & Jongen, W. M. F. (2001). Post-harvest increase of indolyl glucosinolates in 
response to chopping and storage of Brassica vegetables. Journal of the Science of Food and 
Agriculture, 81(9), 953–958.  



	 92	

Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., De Schriver, R., Hansen, 
M., Gerhauser, C., Mithen, R., & Dekker, M. (2009). Glucosinolates in Brassica vegetables: The 
influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition 
& Food Research, 53, S219–S265.  

Villatoro-Pullido, M., Priego-Capote, F., Alvarez-Sanchez, B., Saha, S., Philo, M., Obregon-Cano, S., 
De Haro-Bailon, A., Font, R., Del Rio-Celestino, M. J. (2013). An approach to the phytochemical 
profiling of rocket [Eruca sativa (Mill.) Thell], Journal of the Science of Food & Agriculture, 
93(15), 3809-3819. 

Vinson, J. A., Dabbagh, Y. A., Serry, M. M., & Jang, J. H. (1995). Plant Flavonoids, Especially Tea 
Flavonols, Are Powerful Antioxidants Using an in-Vitro Oxidation Model for Heart-Disease. 
Journal of Agricultural and Food Chemistry, 43(11), 2800–2802.  

Wattenberg, L. W. (1985). Chemoprevention of Cancer. Cancer Research, 45(1), 1–8.  

Wattenberg, L. W., & Loub, W. D. (1978). Inhibition of Polycyclic Aromatic Hydrocarbon-Induced 
Neoplasia by Naturally Occurring Indoles. Cancer Research, 38(5), 1410–1413.  

Wheat, C. W., Vogel, H., Wittstock, U., Braby, M. F., Underwood, D., & Mitchell-Olds, T. (2007). The 
genetic basis of a plant-insect coevolutionary key innovation. Proceedings of the National 
Academy of Sciences of the United States of America, 104(51), 20427–20431.  

Windsor, A. J., Reichelt, M., Figuth, A., Svatos, A., Kroymann, J., Kliebenstein, D. J., Gershenzon, J. 
Mitchell-Olds, T. (2005). Geographic and evolutionary diversification of glucosinolates among 
near relatives of Arabidopsis thaliana (Brassicaceae). Phytochemistry, 66(11), 1321–1333.  

Wink, M. (2010). Biochemistry of Plant Secondary Metabolites. Annual Plant Reviews (Vol. 40). Wiley-
Blackwell. 

Wittstock, U., & Halkier, B. A. (2002). Glucosinolate research in the Arabidopsis era. Trends in Plant 
Science, 7(6), 263–270.  

Wu, X., Zhou, Q. H., & Xu, K. (2009). Are isothiocyanates potential anti-cancer drugs? Acta 
Pharmacologica Sinica, 30(5), 501–512.  

Xu, Y. (2010). Molecular Plant Breeding. CABI. 

Yan, X. F., & Chen, S. X. (2007). Regulation of plant glucosinolate metabolism. Planta, 226(6), 1343–
1352.  

Yang, Y. M., Conaway, C. C., Chiao, J. W., Wang, C. X., Amin, S., Whysner, J., Dai, W., Reinhardt, J., 
& Chung, F. L. (2002). Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by 
dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the 
postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 a. 
Cancer Research, 62(1), 2–7.  

Yuan, G. F., Sun, B., Yuan, J., & Wang, Q. M. (2009). Effects of different cooking methods on health-
promoting compounds of broccoli. Journal of Zhejiang University-Science B, 10(8), 580–588.  

Zhang, Y. S. (2004). Cancer-preventive isothiocyanates: measurement of human exposure and 
mechanism of action. Mutation Research-Fundamental and Molecular Mechanisms of 
Mutagenesis, 555(1-2), 173–190.  

Zhang, Y. S., & Talalay, P. (1994). Anticarcinogenic activities of organic isothiocyanates - chemistry 
and mechanisms. Cancer Research, 54(7), S1976–S1981. 



	 93	

Zhang, Y. S., Talalay, P., Cho, C. G., & Posner, G. H. (1992). A Major Inducer of Anticarcinogenic 
Protective Enzymes from Broccoli - Isolation and Elucidation of Structure. Proceedings of the 
National Academy of Sciences of the United States of America, 89(6), 2399–2403.  

Zhao, D. Y., Tang, J., & Ding, X. L. (2007). Analysis of volatile components during potherb mustard 
(Brassica juncea, Coss.) pickle fermentation using SPME-GC-MS. Lwt-Food Science and 
Technology, 40(3), 439–447.  

Zhu, C. Y., & Loft, S. (2003). Effect of chemopreventive compounds from Brassica vegetables on 
NAD(P)H : quinone reductase and induction of DNA strand breaks in murine hepa1c1c7 cells. 
Food and Chemical Toxicology, 41(4), 455–462.  

 



	 94	

CHAPTER 3: Identification and quantification of glucosinolate and flavonol 

compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis 

tenuifolia) by LC-MS: highlighting the potential for improving nutritional value 

of rocket crops 

 

3.1. Introduction To Paper (as published in Food Chemistry, 2015, Vol. 172) 

 With the aim of addressing some of the issues highlighted in the previous 

chapter, a comprehensive screening of GSLs and flavonols was conducted using LC-

MS/MS. By examining the profiles and concentrations found in both germplasm and 

commercial accessions of rocket salad, the range of compound concentrations would 

be elucidated in greater detail, and enable a measure of how different the two are in 

this respect. The ion data gathered in the review paper (Chapter 2) was utilised to 

give a rigorous analysis of the compounds that may, or may not, be present within 

leaves.  

An intention of this research paper was to develop a relatively simple 

extraction and analysis method that could be easily replicated. A relatively complex 

and laborious GSL desulphation method was attempted initially to isolate GSLs from 

other phytochemicals. For our purposes, this method proved too time consuming, 

costly, and did not produce viable results. A crude methanol extraction method was 

therefore adopted, which solved each of these problems. It also allowed both GSLs 

and flavonols to be extracted simultaneously, and reduced running costs, as a DAD 

was used to look for both types of compound at two wavelengths. This method of 

extraction and analysis has been very successful, and is now utilised by several 

groups within the Food & Nutritional Sciences department at the University of 

Reading. 
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A comment that has been made subsequent to the publication of this paper 

relates to the quantification of glucosativin and DMB separately, as mentioned in 

Chapter 1. Many people are familiar with the paper published by Bennett et al. (2002) 

identifying glucosativin as the predominant GSL of rocket. In that study a dimer was 

observed (DMB) and was deemed to be a product of the extraction method, rather 

than an independent plant metabolite. Several papers have based their quantification 

of glucosativin on this basis, despite the fact that it has been experimentally shown to 

be false. An elegant experiment conducted by Cataldi, Rubino, Lelario and Bufo 

(2007) demonstrated that DMB is in fact highly likely to be naturally occurring. 

Unfortunately, some researchers are not as aware of this experiment as the Bennett 

et al. (2002) paper, and so the disagreement with our method and results sometimes 

persists. 

The paper in this chapter also challenges the experimental design choices of 

previous studies. As will be demonstrated, the types of conditions under which plants 

are grown and the time at which leaves are harvested varies markedly between 

experiments. This was done, not to be confrontational or disparaging to others’ work, 

but to rather provoke an awareness of how such choices could impact results. This in 

turn may influence how the results are interpreted, and could therefore lead to false 

conclusions when relating data to industrial produce, for example. 

 A final objective of this paper was to identify germplasm accessions with 

substantially different flavonol and GSL profiles. The number of accessions utilised 

were too numerous to continue with into future experiments (such as those presented 

in Chapters 4-7), and a means with which to ‘narrow down’ the study samples was 

determined. The accessions chosen and the reasoning behind the choices will be 

explained in Chapter 4. 
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3.2. Introduction 

The groups of crops collectively known as rocket (or arugula, rucola, roquette) 

are all members of the Brassicaceae family, and are native to the areas surrounding 

the Mediterranean Sea (Martinez-Sanchez, Marin, Llorach, Ferreres, & Gil, 2006). 

Rocket crops belong to two genera, Eruca and Diplotaxis, and are increasingly 

important in the salad vegetable market (Pasini, Verardo, Cerretani, Caboni, & 

D'Antuono, 2011). The species are now grown commercially all over the world in 

countries as diverse as the USA, UK, Italy, Spain, Morocco, Israel, India and 

Australia (Bozokalfa, Esiyok, & Yagmur, 2011). 

 Previous studies have highlighted rocket as a rich source of glucosinolate 

(GSL) compounds (Kim, Jin, & Ishii, 2004). Virtually all other members of the 

Brassicaceae contain GSLs as secondary metabolites that act as part of plant 

defense mechanisms (Schranz, Manzaneda, Windsor, Clauss, & Mitchell-Olds, 

2009). GSLs and their hydrolysis products have also been implicated in giving rocket 

its characteristic pungent aromas and flavours (Bennett et al., 2002) and volatiles 

(such as isothiocyanates (ITCs) and indoles) have been consistently linked with 

anticarcinogenic activity in mammalian tissues (Lynn, Collins, Fuller, Hillman, & 

Ratcliffe, 2006).  

Both Eruca and Diplotaxis species contain similar profiles of GSLs within the 

leaf tissue, the most prominent of which are glucosativin (4-mercaptobutyl-GSL), 

glucoerucin (4-(methylthio)butyl-GSL) and glucoraphanin (4-(methylsulfinyl)butyl-

GSL). Glucosativin and glucoerucin breakdown products are thought to contribute 

most to pungency and flavour in rocket (Pasini, Verardo, Caboni, & D'Antuono, 

2012). Numerous other GSLs have also been identified within rocket tissue, for 

example diglucothiobeinin (4-(β-D-glucopyranosyldisulfanyl)butyl-GSL; Kim et al., 
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2007), 4-hydroxyglucobrassicin (4-hydroxy-3-indolymethyl-GSL; Cataldi et al. 2007) 

and 4-methoxyglucobrassicin (4-methoxy-3-indolymethyl-GSL; Kim & Ishii, 2006). 

Rocket species also contain large concentrations of polyglycosylated flavonol 

compounds, which are known to infer numerous beneficial health effects in humans 

and other animals. Particularly of note are their effects on the gastrointestinal tract 

and in cardiovascular health (Bjorkman et al., 2011; Traka & Mithen, 2011). Several 

studies in rocket have identified and quantified polyglycosylated flavonols, which 

belong to three core aglycones: isorhamnetin, kaempferol and quercetin (Bennett, 

Rosa, Mellon, & Kroon, 2006). 

Prolonged intake of Brassicaceae vegetables and leaves has a demonstrably 

beneficial impact on human health (D’Antuono, Elementi, & Neri, 2009); however 

much of the world’s population do not consume enough of them to have these 

benefits, as is highlighted in several studies (Casagrande, Wang, Anderson, & Gary, 

2007). Therefore, instead of only promoting increased consumption of leafy 

vegetables such as rocket, we propose increasing the nutritional quality and 

phytochemical density of varieties by using advanced screening and plant breeding 

methods, whilst still maintaining the sensory and visual acceptance of the consumer. 

This has already been achieved in broccoli with the production of varieties such as 

Beneforté which accumulates high concentrations of glucoraphanin (Traka et al., 

2013). 

In this study we draw a comparison between commercial rocket varieties 

available for public consumption and underutilised genetic resources. Nineteen gene 

bank accessions of Eruca sativa and sixteen commercial varieties (comprising Eruca 

sativa, Eruca vesicaria and Diplotaxis tenuifolia) were evaluated for GSL and 

polyglycosylated flavonol composition under controlled environment conditions. We 

hypothesise that through selective breeding for morphological traits in rocket, many 
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important health promoting phytochemical traits may have been lost in commercial 

varieties, and that by breeding from underutilised accessions, nutritionally superior 

varieties can be produced. We also hypothesise that controlled environment growing 

conditions minimizes the effects of environmental stress on rocket plants, and 

provides a platform for comparable results between research groups and repeat 

experiments. We also call on other groups to consider plant maturity and time of 

harvest as an important factor in determining the usefulness of data to breeders and 

growers. 

 

3.3. Materials and methods 

3.3.1. Plant material 

Rocket accessions were selected from three European gene banks based 

upon information provided by Elsoms Seeds Ltd. (Spalding, Lincolnshire, UK). In total 

19 were sourced; 2 from the Centre for Genetic Resources in the Netherlands (CGN, 

Wageningen, The Netherlands), 12 from the Leibniz-Institut für Pflanzengenetik und 

Kulturpflanzenforschung (IPK, Gatersleben, Germany), and 5 from the University of 

Warwick Crop Centre Genetic Resources Unit (Wellesbourne, UK; formerly Warwick 

HRI). A further 16 commercial varieties were collected: 13 were independently 

sourced from retailers, 1 provided by Elsoms Seeds Ltd., and 2 from Bakkavor Group 

Ltd. (Bourne, Lincolnshire, UK). 

 Three biological replicates of each accession/variety were germinated under 

controlled environmental conditions (in Saxcil growth cabinets) after being sown in a 

random sequence. Long-day lighting was used (16h light, 8h dark) at an intensity of 

200 µmol m-2 s-1 (equivalent to 10,800 Lux of sunlight). Daytime temperatures were 

set at 20°C and nighttime temperatures at 14°C. Seedlings were grown for ten days 

in seedling trays and then transplanted to larger trays; four plants of each replicate 
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were grown on. Plants were grown for another twenty days and then leaves from the 

four plants were harvested together. Sampling for each plant took approximately one 

minute from the cutting of the leaves at the petiole, to being placed in zip-loc freezer 

bags on dry ice inside a polystyrene container (with lid). For health and safety 

reasons it was decided that liquid nitrogen would not be used in this process. 

Thirty days was chosen as the optimum point of harvest as it reflects the 

typical number of days commercial growers grow their crop after sowing. Bags were 

placed in a -80°C freezer immediately after harvest and transport was completed 

(<30 minutes). Samples were freeze-dried in batches for three days (in a Vertis 

Bench-top Series). Leaves from each rep were ground into a fine powder using a 

combination of pestle and mortar and miniature coffee grinder (De’Longhi KG49, 

Treviso, Italy). 

 

3.3.2. Reagents and chemicals 

All solvents and chemicals used were of LC-MS grade and obtained from 

Sigma-Aldrich (Poole, UK) unless otherwise stated. 

 

3.3.3. Glucosinolate/flavonol extraction 

 The following method was adapted from Pasini et al. (2012) and Jin et al. 

(2009). Three experimental replicates of each biological rep were prepared as 

follows: 40mg of ground rocket powder was heated in a dry-block at 75°C for 2 

minutes, as suggested by Pasini et al. (2012), as a precautionary measure to 

inactivate as much myrosinase enzyme as possible before liquid extraction. 1ml of 

preheated 70% (v/v) methanol (70°C) was then added to each sample and placed in 

a water bath for 20 minutes at 70°C. Samples were then centrifuged for 5 minutes 

(6,000 rpm, 18°C) to collect loose material into a pellet. The supernatant was then 
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taken and put into fresh Eppendorf tubes. The volume was adjusted to 1ml with 70% 

(v/v) methanol and frozen at -80°C until analysis by LC-MS. 

 

3.3.4. LC-MS2 Analysis 

 Immediately before LC-MS analysis each sample was filtered using 0.25 µm 

filter discs with a low protein binding Durapore polvinylidene fluoride (PVDF) 

membrane (Millex; EMD Millipore, Billerica, MA, USA) and diluted with 9 ml of HPLC-

grade water. Samples were run in a random order with QC samples (Dunn, Wilson, 

Nicholls, & Broadhurst, 2012). An external reference standard of sinigrin hydrate was 

also prepared for quantification of GSL compounds, and isorhamnetin for flavonol 

compounds. Preparation was as follows: A 12 mM solution was prepared in 70% 

methanol. A dilution series of concentrations was prepared as an external calibration 

curve with HPLC-grade water (200ng µl, 150ng µl, 100ng µl, 56ng µl, 42ng µl, 28ng 

µl, 14ng µl and 5.6ng µl; sinigrin correlation coefficient: y = 12.496x – 15.012; r2 = 

0.993, isorhamnetin correlation coefficient: y = 0.3205x – 5.3833, r2 = 0.921). 

Standard response factors were used in the calculation of GSL concentration where 

available (Wathelet, Iori, Leoni, Quinsac, & Palmieri, 2004). Where such data could 

not be found for intact GSLs, response factors were assumed to be 1.00 (Lewis & 

Fenwick, 1987). 

LC-MS analysis was performed in the negative ion mode on an Agilent 1200 

Series LC system equipped with a binary pump, degasser, autosampler, thermostat, 

column heater, photodiode array detector and Agilent 1100 Series LC/MSD mass 

trap spectrometer. Separation of samples was achieved on a Zorbax SB C18 column 

(2.1 x 100mm; 1.8µm; Agilent, Santa Clara, CA, USA) with precolumn filter. Both 

GSLs and flavonols were separated in the same sample during a 40-minute 

chromatographic run. Mobile phases consisted of ammonium formate (0.1%) and 
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acetonitrile with an isocratic gradient of 95% and 5% respectively at a flow rate of 0.3 

ml/min, with a column temperature of 30°C. 5 µl of sample was injected. 

MS analysis settings were as follows: ESI was carried out at atmospheric 

pressure in negative ion mode (scan range m/z 50 to 1050 Da). Nebulizer pressure 

was set at 50psi, gas-drying temperature at 350°C, and capillary voltage at 2,000V. 

Compounds were identified using their nominal mass and characteristic fragment 

ions, and by comparing data with those published in the literature (see Tables 3.1 & 

3.2). GSLs were quantified at a wavelength of 229 nm, and flavonols at 330 nm. All 

data were analysed using Bruker Daltonics software. 

 

3.3.5. Statistical analysis  

The results reported are the averages of three biological replicates and three 

separately extracted technical replicates (n = 9). Processed GSL and flavonol data 

were analysed with ANOVA and Tukey’s HSD test, and principal component analysis 

(PCA) was performed in XL Stat (Addinsoft, New York City, New York, USA). 

 

3.4. Results and discussions 

3.4.1. Glucosinolate identification and concentration 

Table 3.1 lists all of the GSL compounds identified across all rocket samples, 

including systematic names, common names and the identifying ions. Unlike 

previous studies, the GSL profiles of each rocket accession were markedly different 

in some cases. See Table 3.3 for a comparison of results with similar, previous 

studies. Total average GSL concentration ranged from 3.1 mg.g-1 DW (‘Buzz’) to 11.6 

mg.g-1 DW (SR10). Both of these accessions are Eruca sativa, indicating the large 

degree of variability between accessions of this species, both commercial and 
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germplasm. The lowest average accumulation for Diplotaxis was ‘Wild Tirizia’ with 

4.4 mg.g-1 DW and the highest was 10.4 mg.g-1 DW, (‘Wild Grazia’). 

 For glucosativin both the monomeric and the dimeric forms were identified and 

quantified separately and concentrations of both forms varied significantly between 

accessions. On average 91.3% of the total GSL concentration was made up of 

glucosativin/DMB. This is much higher than the proportions presented in previous 

studies where values of around 60% have been generally given (Pasini et al. 2012). 

 Other GSL compounds such as glucoraphanin and glucoerucin were not 

detected in all accessions. Again, previous studies have highlighted the prevalence 

of these compounds, but we found them to be relatively minor. Concentrations 

ranged from nil to 0.9 mg.g-1 DW (‘Wild Grazia’) for glucoraphanin and nil to 1.6 

mg.g-1 DW (SR16) for glucoerucin. Several other GSLs were quantified, and in some 

cases these were as high as the more generally accepted ‘major’ GSLs of rocket in 

concentration. The other compounds were: 4-hydroxyglucobrassicin, glucotropaeolin, 

glucolepiidin, glucoiberverin, glucoalyssin, glucoraphenin, diglucothiobeinin and 

glucoibarin. None of these GSLs discriminated between species. 

In general, the total concentrations detected were similar to those found in 

other studies. In some of these, plants were grown in field conditions and therefore 

subject to many different environmental stresses and inconsistencies. It is widely 

known that both GSLs and flavonols increase in concentration as plants become 

stressed (Rohr, Ulrichs, Mucha-Pelzer, & Mewis, 2006). With this in mind it is 

somewhat unusual that the concentrations reported here were not lower, as stress 

was minimal in comparison to field conditions. Studies conducted in outdoor 

conditions are not directly comparable for this reason. Field conditions and climate 

vary greatly between growing regions and GSL proportions may change due to these 

variables. Our study represents GSL and flavonol accumulation in rocket varieties 
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and species under conditions that can be easily replicated using controlled 

environment apparatus. This allows the basic genetic differences in GSL profile to be 

observed, rather than the differences between how accessions respond to their 

normal, field-based growing environment. A trial of five gene bank accessions used 

in this study have been grown under field conditions and will be analysed using 

identical LC/MS methods to determine the effects the outdoor environment has on 

GSL and flavonol profiles. 

Table 3.3 summarizes the range of concentrations of some GSLs previously 

reported in comparison with our own data. The types of growing method employed 

vary, as do the number of days growth before harvest. This makes comparing and 

contrasting between studies difficult and could potentially lead to erroneous 

conclusions. The details of these varying factors are discussed in the concluding 

section. 

 

3.4.2. Flavonol identification and concentration 

Table 3.2 lists all identified flavonol compounds detected across all samples, 

including systematic names and identifying ions. In total eleven flavonol compounds 

were positively identified. 

 Myricetin was detected in relatively few accessions, but predominantly in 

Eruca. Previously this flavonol has not been identified in Diplotaxis species (to the 

authors’ knowledge), however, in this study it was detected in the commercial variety 

‘Wild Grazia’. 

 Kaempferol glucosides kaempferol-3-glucoside (Astragalin) and kaempferol-3-

diglucoside-7-glucoside have only been previously reported in Eruca species, but 

were additionally detected in two Diplotaxis varieties in our study (‘Wild Grazia’ and 

WR2). The ion fragments present in Table 3.2 confirmed their presence in these two 
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commercial varieties. Kaempferol-3,4’-diglucoside was detected in both genera as 

reported by Pasini et al. (2012)  and Martinez-Sanchez, Llorach, Gil, & Ferreres 

(2007). The only kaempferol glucoside that was exclusive to Eruca species was 

kaempferol-3-(2-sinapoyl-glucoside)-4’-glucoside. 

 A similar situation was observed for quercetin glucosides. Quercetin-3-

glucoside (Isoquercetrin) has only been previously reported in Eruca species, 

however it was also detected in one commercial accession of Diplotaxis (‘Wild 

Grazia’). The converse was also found with quercetin-3,3,4’-triglucoside, quercetin-

3,4'diglucoside-3'-(6-caffeoyl-glucoside) and quercetin-3,4'diglucoside-3'-(6-sinapoyl-

glucoside), which have only previously been reported in Diplotaxis. These were 

detected in several Eruca accessions, as well as in Diplotaxis. Quercetin-3,3,4’-

triglucoside showed the correct m/z 787 mass and secondary ions, and quercetin-

3,4'diglucoside-3'-(6-caffeoyl-glucoside) was determined by the presence of a 

characteristic 625 fragment. Quercetin-3,4'-diglucoside-3'-(6-sinapoyl-glucoside) was 

determined by primary m/z 993 ion and corresponding secondary fragment ions 

(Table 3.2). 

 Two isorhamnetin glucosides were detected in our analysis; isorhamnetin-3-

glucoside and isorhamnetin-3,4’-diglucoside. The latter compound was detected in 

both Eruca and Diplotaxis accessions, as has been reported in other studies 

(Martinez-Sanchez, Gil-Izquierdo, Gil, & Ferreres, 2008). Isorhamnetin-3-glucoside 

has only been previously reported in Eruca, but was also detected in seven 

Diplotaxis accessions. 

The concentration of each identified flavonol glucoside is presented in Table 3.5. As 

a general, overall observation, it can be said that Diplotaxis accessions have greater 

concentrations of quercetin flavonol compounds than Eruca, and the converse could 

be said for kaempferol. However using this as a broad, sweeping 
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view to classify the two genera would be a mistake. Our results clearly show the 

cross genera presence of substantial concentrations of different flavonols that are by 

no means exclusive to one or the other. Indeed the two species may still be in the 

process of evolutionary divergence as far as phytochemical content is concerned. 

Total average flavonol content ranged from 0.5 g.kg-1 DW (SR7) to 3.8 g.kg-1 DW 

(‘Unwins’) in Eruca samples, and from 0.6 g.kg-1 DW (WR1) to 1.6 g.kg-1 DW (‘Wild 

Grazia’) in Diplotaxis.  

 In agreement with Pasini et al. (2012)  and Martinez-Sanchez et al. (2007), 

kaempferol-3,4’-diglucoside was the most common kaempferol glucoside detected. 

Isorhamnetin-3-glucoside concentrations ranged from nil to 1.0 g.kg-1 DW (‘Wildfire’), 

and isorhamnetin-3,4’-diglucoside similarly ranged from nil to 1.0 g.kg-1 DW (SR10). 

Interestingly, flavonol concentrations were generally higher for commercial varieties 

than gene bank accessions. This may reflect inadvertent selection on the part of 

breeders when traits such as taste and flavour are considered. 

 Our results are roughly 20% of the concentrations that have been previously 

reported for rocket (Pasini et al. 2012). The controlled, unstressed growth 

environment used in our experiment may explain this. Jin et al. (2009) previously 

reported that flavonol concentrations are significantly affected by different light 

intensities. The outdoor equivalent to the light intensities used in our experiment 

would be akin to shade illuminated by an entire, clear blue sky at midday. Using this 

as a comparative scenario, the plants in this experiment experienced no direct 

sunlight stress conditions (equivalent to >2,000 µmol m-2s-1). Our method therefore 

offers a representation of unstressed conditions for rocket flavonol accumulation, as 

outdoor light intensities can vary greatly according to the growing region, climate and 

time of year. 
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3.4.3. Glucosinolate composition and profiles 

The profiles of all rocket accessions tested were broadly similar in terms of 

composition. No GSLs were detected that discriminated between the different 

species or commercial/gene bank accessions, and the dominance of glucosativin and 

DMB on GSL content broadly rendered differentiation between samples difficult. PCA 

analyses (not presented) showed data extremely skewed in the direction of 

glucosativin. Although some accessions such as SR5 contained relatively rare (for 

rocket species) GSLs such as 4-hydroxyglucobrassicin and glucoibarin, these 

concentrations were not significant enough to discriminate on a PCA scores plot due 

to this dominance. 

 

3.4.4. Flavonol composition and profiles 

Flavonol composition was markedly different from GSL composition. Figure 

3.1 shows the scores and loadings plot of a PCA, where PCs 1 and 2 accounted for 

55.79% of the observed variation. The scores plot shows a clear differentiation 

between Diplotaxis and Eruca with the two genera forming two distinct clusters. 

When compared with the loadings plot, it is clear that this divide is largely due to 

differences in kaempferol-3,4’-diglucoside and kaempferol-3-glucoside concentration 

in Eruca, and the tendency for Diplotaxis to accumulate quercetin and isorhamnetin 

glucosides in greater amounts. 
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(b)$

(a)$

Figure 3.1. (a) PCA loadings plot of flavonol compounds detected by LC-MS analysis. Abbreviations: 
M, myricetin; KG, kaempferol-3-glucoside; QG, quercetin-3-glucoside; IG, isorhamnetin-3-glucoside; 
KDG, kaempferol-3,4’-diglucoside; IDG, isorhamnetin-3,4’-diglucoside; KGG, kaempferol-3-
diglucoside-7-glucoside; QTG, quercetin-3,3,4’-triglucoside; KSG, kaempferol-3-(2-sinapoyl-
glucoside)-4’-glucoside; QC, quercetin-3,4’-diglucoside-3’-(6-caffeoyl-glucoside); QS, quercetin-3,4’-
diglucoside-3’-(6-sinapoyl-glucoside). (b) PCA scores plot for individual LC-MS samples tested and 
their relative distributions in relation to the loadings plot of flavonol composition. Green = Diplotaxis 
tenuifolia; Blue = Eruca sativa; Orange = Eruca vesicaria. 
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3.5. Conclusions 

3.5.1. Effects of growing conditions on GSL concentrations 

This study has highlighted phytochemical accumulation for rocket varieties 

and accessions grown under controlled conditions. This is in contrast to field 

conditions that often stress plants and create phytochemical profiles reflective of 

fluctuating environmental stresses such as light intensity, temperature, pests and 

diseases. These studies, while undoubtedly valuable to rocket salad research, are 

not always directly comparable with other growing regions and climatic backgrounds. 

It has been demonstrated in this study that under controlled conditions, and therefore 

due to genetic regulation rather than environmental response, that rocket 

predominantly accumulates glucosativin, and that virtually all other glucosinolates 

detected were minor by comparison. There was significant variability in these 

accumulations between varieties, providing scope for plant breeders to select 

varieties based on their baseline accumulations of health-beneficial precursors such 

as glucoraphanin and glucoerucin. This can also be said of flavonol compounds 

detected in rocket. Significant variability was detected between accessions, and high 

accumulators may be a valuable genetic resource for breeders. By determining the 

baseline accumulations of phytochemicals in this manner, varieties can then be 

tested in a field environment to ascertain any differences that could affect commercial 

production. 

 

3.5.2. Effects of time-of-harvest and plant maturity on GSL concentrations 

Several previous studies have made mention of using phytochemical 

screening as a means of selecting accessions to introduce into breeding programs. 

In almost every instance however, the experimental design of these studies was 

flawed by the fact that time-of-harvest was either much too early or much too late 
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relative to the commercial average. Not only does this make comparing results 

between studies more difficult, it also ignores the fact that phytochemical 

concentration and profiles change as plants grow (Fernandes, de Pinho, Valentao, 

Pereira, & Andrade, 2009). If researchers wish to make their data as useful to 

breeding programs as possible, the phytochemical profile must be determined at the 

point of commercial harvest, as this is when concentrations will be at their most 

useful in a “real-world” commercial setting. Plant breeders and food processors will 

not be interested in the phytochemical content of seedlings or of plants that have 

bolted or flowered (unless they provide products for a very niche market), as their 

customers will not eat the product at these points. 

Table 3.3 features the number of days each of the mentioned studies grew 

rocket plants before harvesting. Regardless of growing conditions, the number 

generally chosen seems arbitrary. It is generally quoted within the literature that 

rocket is harvested anywhere between 30 and 60 days (Martínez-Sánchez, Allende, 

Cortes-Galera, & Gil, 2008), however in reality it is more like between 25 and 35 

days. Bolting and flowering in rocket varieties is highly variable, but in general, most 

will reach this stage before 45 days of growth. This is why in our study 30 days was 

chosen as the point of harvest, and was determined in consultation with commercial 

partners who grow rocket on a large scale, in the UK, Italy and Portugal. 

Bennett, Carvalho, Mellon, Eagles, & Rosa (2007) harvested seedlings at the 

point where the cotyledons were fully expanded, which is typically around seven days 

of growth. This is not however the point at which growers will harvest their crop 

(unless it is marketed as a ‘microleaf’ product), and although GSL concentrations are 

likely to be higher in young leaves, this is not necessarily reflective of what the end 

consumer will receive. Conversely, the other studies all harvested at or after forty-

nine days (with the exception of Pasini et al., 2012) where no point of harvest time 
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was given). While still theoretically within the commercial harvest window, it is 

unlikely that growers would wait this long to harvest a crop, as the demand for rocket 

is so high. Chun, Arasu, Lim, & Kim (2013) stated that their work was part of a 

breeding program to determine varieties with high concentrations of health promoting 

GSLs. However, the point of harvest was at 69 days, which is well beyond 

commercial viability. Indeed it is stated that plants were of a height of up to 46cm 

when harvest occurred. From this it is clear that plants had begun flowering (or at the 

very least bolting), and as such, the GSL profile is likely to have altered substantially 

from the marketable stage of plant growth.  

If researchers and breeders wish to effectively breed new varieties with 

enhanced phytochemical content, the consumer end-point and supply-chain must be 

considered in the experimental design. Selecting plants with high GSL concentrations 

at cotyledon and flowering stage will not necessarily be the same plants with the 

highest concentrations at the marketable stage. 

 

3.5.3. Effects of genetics 

Research into the underlying genetic mechanisms for GSL regulation has 

shown that MYB transcription factors are responsible. In Arabidopsis thaliana it has 

been shown that the HAG2/MYB76 and HAG3/MYB29 transcription factors are 

responsible for the biosynthesis of aliphatic GSLs and the down-regulation of indolic 

GSL biosynthesis (Gigolashvili, Engqvist, Yatusevich, Müller, & Flügge, 2008). This 

would seem to indicate that Brassicaceae plants are capable of adapting their GSL 

profile to different environmental stimuli. Very little specific research has been 

conducted in rocket in this regard, but it is likely that the species share analogous 

genes and transcription factors with both A. thaliana and Brassica crops. With 

detailed study into these mechanisms, it is possible that breeders could select plants 
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based on sets of genes, to specify responses to different environments. In this way, 

health beneficial GSLs could be enhanced, and less desirable ones minimized or 

removed entirely. This could also apply to flavonols, which are also known to be 

regulated by MYB transcription factors (Stracke et al., 2007). 

 

3.5.4. Commercial vs. Gene bank accessions 

Our hypothesis that some phytochemical constituents have been lost through 

breeding does not appear to be wholly accurate. While some gene bank accessions 

showed very high concentrations, others showed the exact opposite. The same can 

be said for the commercial varieties, as some were very poor accumulators of health 

beneficial compounds, but others contained high concentrations. It seems that while 

gene banks are a valuable resource for beneficial phytochemical traits, not all 

accessions are worth breeding from. Breeders must therefore screen as large a 

number of accessions as possible in order to pick out the very best material. The 

‘super broccoli’ variety ‘Beneforté’ was bred in a similar fashion to this, by utilising 

hybridization with wild relatives. Broccoli accumulates predominantly glucoraphanin 

within floret tissue, and through selective breeding a threefold increase in yield was 

achieved (variety 1639; ~11.1 mg.g-1 DW) (Traka et al., 2013). Although rocket does 

not contain such inherently high concentrations, being only a small plant by 

comparison, there is no reason why similar concerted efforts could not enhance 

accumulations of glucoraphanin or other GSLs for the purposes of benefitting the 

consumer. It also has the added benefit that it does not need to be cooked before 

eating. This eliminates myrosinase thermal degradation and maximizes the 

production of health-beneficial volatiles such as indoles and ITCs. 

 Both genera showed significant variation in terms of the overall presence and 

absence of different phytochemicals. Several flavonols have been detected in each 
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species that have not been previously documented. This inherent variability between 

cultivars provides breeders and food producers with the opportunity to create 

products that are specific to the tastes and preferences of consumers. That being 

said, concentrations within accession groups and commercial varieties were highly 

variable in our study. More high quality breeding is needed to improve uniformity in 

this respect. The data produced in this study will be used actively in the production of 

new varieties of superior nutritional and sensory quality, in conjunction with industrial 

partners. 

 

3.5.5. Future work 

Despite the increase in rocket research in the last few years, much more study 

is needed to properly determine the effects of specific stresses on GSL composition 

and concentration. Here we have shown that concentrations under controlled 

conditions are generally in agreement with those of studies on field and hydroponic 

grown rocket. Flavonol concentration varied substantially however, and was likely 

due to controlled environment lighting conditions. Future work in our research group 

aims to compare field-grown material to the results presented here in order to 

properly determine which phytochemicals are affected by outdoor stresses, such as 

high light, high temperature, restricted water availability and increased growing 

density. 

Researchers and breeders may need to consider more carefully the producer, 

supply chain, and end consumer when selecting material for breeding programs. 

Furthermore, much more work is needed to properly understand the degradation 

products of GSLs, and the underlying genetics responsible for which volatiles are 

produced by myrosinase interaction, in what proportions, and what effects this may 

have for human health. 
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CHAPTER 4: Use of TD-GC-TOF-MS to assess volatile composition during 

post-harvest storage in seven accessions of rocket salad (Eruca sativa).  

 

4.1. Introduction To Paper (as published in Food Chemistry, 2016, Vol. 194) 

 Based upon the results presented in the previous chapter, the number of 

germplasm accessions to be studied was narrowed to six, plus one commercial 

comparator. These accessions were chosen on the basis of their varying GSL and 

flavonol profiles and compositions. The selection was not wholly based on the LC-

MS/MS results however, as other factors such as seed availability had to be 

considered. As limited stocks of seed are kept within gene banks, it is not always 

possible to obtain enough for multiple experiments. 

 Based on these considerations the accessions selected for further study were: 

SR2, SR5, SR6, SR12, SR14 and SR19. The commercial comparator was SR3, a 

variety sold by Elsoms Seeds Ltd., but not bred by them. This choice was largely 

based on the large amount of seed available for this variety. 

 The experiment presented in this chapter began as method development 

collaboration with Cardiff University. Dr. Natasha Spadafora, Dr. Carsten Müller and 

Dr. Hilary Rogers’ had purchased thermal-desorption GC-MS apparatus and also had 

an interest in rocket salad volatiles link with a European Food Quality & Safety 

project (QUAFETY). The initial experiments involved using different methods of 

tissue disruption, sampling intervals, and storage temperatures, to determine the 

optimal conditions for VOC recovery using the apparatus, and how abundances 

rise/fall over time. This was initially only conducted on supermarket-bought rocket (D. 

tenuifolia) and test sampling was conducted at the University of Reading with 

portable thermal-desorption tubes. This process of remote sampling is potentially 
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useful in field or processing settings, as the technique is very basic and requires little 

apparatus (the method itself will be discussed in this chapter). 

 After the success of these first experiments, collaboration began in a more 

formal way, and an experiment was designed to determine how headspace volatiles 

change over time at a commercially relevant temperature. VOCs could be utilised as 

‘markers’ for leaf quality throughout the supply chain. The experiment would also 

allow us to assess the genotypic variability of VOC production between accessions 

over time, and potentially, as a means to make breeding selections in future. 

 

4.2. Introduction 

Rocket (or arugula, rucola, roquette) species are of increasing commercial 

importance across the world. Leaves of the crop are usually sold in mixed salad bags 

or whole bags, and in some niche markets as gourmet microleaves. The nutritional 

and sensory quality of leaves throughout the supply chain is of major concern to 

producers and supermarkets, as they will ultimately be accepted or rejected by the 

consumer based on these attributes. Much of the current rocket supply chain is 

designed to preserve predominantly visual and morphological traits of leaves (such 

as stem browning/yellowing) before they reach the consumer. Very little research has 

been conducted to determine the phytochemical and volatile organic compound 

(VOC) losses incurred post-harvest (Verkerk, Dekker & Jongen, 2001). 

 Rocket varieties are genetically very diverse, and morphological uniformity can 

be an issue for plant breeders and growers alike. One plant can have very different 

leaf shapes from another, even within the same variety (Egea-Gilabert et al., 2009). 

Rocket species are generally preferential outbreeders, making production of uniform 

breeding lines difficult. This variability has been shown to extend to concentrations of 

phytochemicals (Bell, Oruna-Concha & Wagstaff, 2015), where significant differences 
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in glucosinolate (GSL) and flavonols have been detected amongst accessions. An 

important step in breeding for nutritionally enhanced varieties is determining the 

effects of the post-harvest supply chain on phytochemicals and the changes in 

volatile degradation products produced over time. The concentrations and/or relative 

abundances of both of these, which include isothiocyanates (ITCs), may also vary 

greatly depending on the levels of physical damage during processing of the leaves. 

The VOC bouquet is the term used to describe the collection of volatiles within the 

headspace of a plant or other foodstuff, often giving rise to aromas. These aromas 

will affect the sensory attributes perceived by the consumer when the product is 

eaten, and influence re-purchase (Ragaert, Verbeke, Devlieghere & Debevere, 

2004). This may have consequences on consumers’ nutritional intake, and hence 

long-term health.  

 VOCs found in rocket comprise of ITCs, alkanes, aliphatic alcohols, carbonyl 

compounds, fatty acids, esters, phenols and C13-norisoprenoids (Blazevic & Mastelic, 

2008). However, comparison of the relative abundance amongst cultivars has not 

been established, as earlier studies only utilized one commercially bought, bagged 

variety, and leaves from a wild population (Jirovetz, Smith & Buchbauer, 2002; 

Blazevic and Mastelic, 2008). Given the very different sample sources, differences 

between the two studies may be representative of environmental stresses, as well as 

genetic variation (Varming et al., 2004). These include exposure to fungal diseases, 

wounding (pre- and post-harvest), and variations in temperature and humidity during 

growth and while in controlled environment conditions – all of which can lead to 

changes in phytochemical content and VOCs produced (Schouten et al., 2009).  

 In this study rocket salad was grown under controlled environment conditions, 

thus reducing environmental stress responses, enabling effects of post-harvest 

storage on VOC profiles to be assessed.  Thermal Desorption Gas Chromatography 
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Time-Of-Flight Mass Spectrometry (TD-GC-TOF-MS) was used to determine 

changes in VOCs during storage of seven different accessions demonstrating that 

collection of headspace volatiles onto thermal desorption tubes is a rapid and robust 

method for assessing post-harvest changes and identifying differences in these 

changes amongst accessions.  

 

4.3. Materials and methods 

4.3.1. Plant material 

Six Eruca sativa accessions were obtained from European gene banks; four 

from the Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK 

Gatersleben, Germany), one from the Centre for Genetic Resources in the 

Netherlands (CGN, Wageningen, The Netherlands) and one from The University of 

Warwick Crop Centre Genetic Resources Unit (Wellesbourne, UK; formerly Warwick 

HRI). The Elsoms Seeds variety SR3 was used as a commercial comparator. 

Accessions have been coded to protect commercially sensitive information. 

 

4.3.2. Growing conditions & simulated shelf life 

Each accession was germinated under controlled environmental conditions 

(Fitotron, Weiss-Technik UK, Loughborough, UK). Long-day lighting was used (16 h 

light, 8 h dark) at an intensity of 200 µmol m-2 s-1. Day temperatures were set at 20°C 

and night temperatures at 14°C. Seedlings were grown for 10 days in seedling trays 

and then transplanted to larger trays. Subsequently, plants were grown for another 

20 days and then leaves were harvested at 30 days. Leaves were collected in 

batches of 70 g in three experimental replicates per accession. The amount of leaf 

material was chosen based on preliminary experiments, where abundant yields of 

VOCs were obtained. 
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4.3.3. Sample collection  

Whole leaves were placed into a multi-purpose roasting bag (25 cm x 38 cm, 

TJM Ltd.) and sealed using an elastic band and an Eppendorf tube with the end cut 

off, which served as a sampling port for the TD tubes (see appendix I for diagram). 

Leaves were then disrupted manually within the bags for 10 seconds by crushing the 

leaves between the hands and making a vigorous rubbing motion. Care was taken 

not to perforate the bags and inadvertently release VOCs. Three replicates were 

taken for each sample, including three ‘blank’ samples of atmosphere within empty 

bags to rule out any possible contaminating VOCs. These were prepared and 

sampled in an identical fashion, with the exception that no leaves were contained in 

the bag. 

 

4.3.4 Post-harvest storage simulation 

Harvested rocket leaves were stored in a dark, controlled temperature room at 

4°C, to simulate industrial storage conditions for 7 days. Bags were only removed 

from the environment while samples were taken (room temperature, ~22°C). 

 

4.3.5. TD-GC-MS-TOF analysis 

All tubes were desorbed using a TD100 thermal desorption system (Markes 

International Ltd., Llantrisant, Wales, UK) using the following settings for tube 

desorption: 5 min at 100°C followed by 5 min at 280°C, trap flow of 40 ml/min and 

trap desorption and transfer: 20°C/s to 300°C, split flow of 20 ml/min into GC (7890A; 

Agilent Technologies, Inc., Stockport, UK). VOCs were separated over 60 min, 0.32 

mm ID, 0.5 µm film thickness Rxi-5ms (Restek) at 2 ml continuous flow helium using 

the following temperature program: Initial temperature 40°C for 2 min, 5°C/min to 
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240°C, final hold 5 min. The BenchTOF-dx mass spectrometer (Almsco International, 

Cincinnati, OH, USA) was operated in EI mode at an ion source temperature of 

275°C and a mass range of 35 to 350 m/z. A retention time standard (C8-C20, Sigma 

Aldrich, Gillingham, UK) was prepared by injection of 1µl of the standard mixture 

directly onto a thermal desorption tube, and analysed under the same conditions as 

the samples. 

Data from GC-MS measurements were processed using MSD ChemStation 

software (E.02.01.1177; Agilent Technologies, Inc., Stockport, UK) and deconvoluted 

and integrated with AMDIS (NIST 2011) using a custom retention-indexed mass 

spectral library. MS spectra from deconvolution were searched against the NIST 

2011 library (Mallard, Sparkman & Sparkman, 2008) and only compounds scoring 

>80% in forward and backward fit were included into the custom library. Putative 

identifications were based on match of mass spectra (>80%) and retention index (RI 

+/-15) (Beaulieu & Grimm, 2001).  

Compounds abundant in controls or in only one of the three replicates were 

excluded from statistical analyses. Areas of remaining compounds were normalized 

to total area of chromatograms prior to averaging within samples. 

 

4.3.6. Statistical analysis 

Results from the three biological replicates for each time point were averaged 

and analysed using XL Stat software (Addinsoft, New York City, NY, USA). ANOVA + 

Tukey’s HSD test (p = <0.05) and Principal Component Analyses (PCA; Pearson n-1) 

were performed on the data to determine significant differences and correlations of 

compounds detected over time and on each respective sampling day. Tukey’s test 

was chosen because of its high stringency (compared to Fisher’s test, for example) 

and a reduced possibility of Type I statistical errors. 
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4.4. Results and Discussion 

4.4.1. Composition and functional analysis of Eruca sativa VOC bouquet  

We focused on Eruca sativa accessions to assess the range of VOCs 

produced by different genotypes from the same species, and then to determine 

whether within this narrower genetic range there were sufficient VOC differences to 

discriminate amongst accessions. A total of 39 compounds were putatively identified 

by comparison to NIST libraries, and a further three unknown volatile compounds 

were also detected (see Table 4.1 for compounds, their identification codes, retention 

indices and CAS numbers). Compounds comprised several classes of aliphatic 

organic compounds including alcohols, aldehydes, ketones, isothiocyanates and 

furanones; some of which have been reported in other studies (Jirovetz et al. 2002; 

Blazevic and Mastelic, 2008). However, to our knowledge, only four of these 

compounds have been previously reported in Eruca sativa (C8, C14, C20 and C38). 

Fifteen of the compounds have been detected in other members of the Brassicaceae 

family. These include broccoli (Brassica oleracea var. italica; C10, C15, C9; Hansen, 

Laustsen, Olsen, Poll & Sorensen, 1997), radish (Raphanus sativus; C8, C20, C33, 

C25; Blazevic & Mastelic, 2009), kale (Brassica oleracea var. acephala; C3, C10, C8, 

C31, C20, C29; Fernandes, de Pinho, Valentao, Pereira & Andrade, 2009), oilseed 

rape (Brassica napus; C20, C6, C7), Thale cress (Arabidopsis thaliana; C20, C29, 

C3, C9, C14; Rohloff & Bones, 2005) and mustard (Brassica juncea; C15, C9, C14, 

C23; Zhao, Tang & Ding, 2007). 
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4.4.2. Relative VOC abundance and differences amongst rocket gene bank 

accessions over simulated shelf life 

4.4.2.1. Across-day variation 

 The abundance of the 42 VOCs was determined in each of the seven Eruca 

sativa accessions (Table 4.2) over three different storage time-points: day 0 (at 

harvest) and following +3 and +7 days of storage at a commercially relevant 

temperature of 4°C. Seven days is the typical time taken from harvest to retail 

(Favell, 1998), assuming a typical supply chain where rocket is imported by lorry from 

northern or southern Italy (depending on the season) to the UK. Thirty-one of the 42 

compounds detected were significantly different in percentage-abundance amongst 

rocket accessions, across the three sampling days (ANOVA with post-hoc Tukey’s 

HSD test; see Table 4.2). Figure 4.1 (PCA scores plot) shows how each of the 

genotypes are arranged spatially according to the volatiles produced on each 

sampling day. On ‘Day 0’ there is a large degree of separation along the F1 axis, 

indicating that genotypic variability is high in terms of the types of volatiles produced 

and their relative abundance (cluster 1). Sample SR2 and SR12 are the most 

dissimilar in this respect with varying degrees of similarity with the other five 

genotypes. This indicates that there may be a high degree of genetic variability and 

control involved in VOC production in the early stages of shelf life, as environmental 

variation was minimal during plant growth and sampling. On ‘Day 3’ and ‘Day 7’, the 

distinction between accessions is somewhat reduced, and volatile profiles less 

variable for each respective accession (cluster 2). The profiles of SR2 on ‘Day 3’ and 

‘Day 7’ are virtually indistinguishable in Figure 4.1a, and similarly with SR5. 
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4.4.2.2. Within-day variation 

4.4.2.2.1. General 

 A separate ANOVA Tukey’s HSD test (p = <0.05) was performed on data from 

each of the three sampling days. Several significant differences were observed 

between cultivars on each day. Twelve compounds were significantly different 

Figure 4.1. Scores plot (a) and loadings plot (b) from Principal Components Analysis of seven 
accessions of E. sativa and the volatile organic compounds identified. Data points were averaged 
for each accession time point (consisting of three replicates). PC1 vs. PC2 (F1 & F2) accounted for 
56.72% of the total variation within data. For compound identities refer to Table 4.1. SR codes refer 
to each of the 7 accessions used in the experiment (SR2, SR3, SR5, SR6, SR12 SR14 & SR19) 
with the following colour coding, 0 (green), 3 (orange) and 7 (red) corresponding to the day of 
sampling. Numbers and circles inset (a) refer to cluster discussed within the text. 
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between accessions on ‘Day 0’, nine on ‘Day 3’ and six on ‘Day 7’. The dwindling 

abundances of VOCs in the latter shelf-life samples would seem to indicate the 

depletion of GSLs and other defense related compounds. The most interesting of 

these are discussed in this section. 

 

4.4.2.2.2. Isothiocyanates  

On ‘Day 0’ SR6 and SR5 were the only accessions where 4-isothiocyanato-1-

butene (C2, both 0.1 ± <0.1%) was detected. 4-methylpentyl ITC (C20) was detected 

in all accessions with SR5 being significantly different (4.3 ± 1.0%) from all others 

with the exception of SR19 (2.4 ± 0.5%). SR5 contained over six times the 

abundance of this ITC than SR3.  

Hexyl ITC (C29) was similarly detected in all accessions (‘Day 0’), with SR5 

having the highest abundance (1.8 ± 0.7%) – significantly different in this case from 

SR19, which had the lowest recorded abundance (0.2 ± 0.1%; nine times less 

abundant in relative terms). Bell et al. (2015) found that SR5 had high total GSL 

concentrations (11.5 mg.g-1 DW) compared to other Eruca and Diplotaxis accessions, 

potentially making it a valuable source of genetic material for breeding programs 

interested in enhancing GSL/ITC accumulation traits. 

  

4.4.2.2.3. Alcohols 

(Z)-2-penten-1-ol (C9) was detected in all accessions except SR5, with the 

highest abundance detected in SR12 (0.3 ± 0.1%; ‘Day 0’) which was significantly 

different from zero (i.e. significantly different from samples with 0% abundance). 

Other alcohols, such as 1-penten-3-ol (C3) displayed no significant differences on 

this sampling day. Some of these differences may indicate a genetic component to 

VOC production, i.e. the types and abundances produced may be under direct 
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genetic regulation. Alcohols are typically used by plants as a defensive mechanism 

(Ruther & Kleier, 2005), and often provide the ‘cut grass’ aroma found in leafy 

vegetables. Plant defense mechanisms are known to rely on genetic regulation via 

enzymatic regulation in other species (D’Auria, Pichersky, Schaub, Hansel, & 

Gershenzon, 2007), and it is reasonable to assume that the same may be true for 

rocket. D’Auria et al. (2007), showed this to be the case in Arabidopsis for production 

of (Z)-3-hexen-1-yl acetate via a BAHD acetyltransferase enzyme. It is also widely 

known that nitriles, epithionitriles and thiocyanates are produced enzymatically in 

Brassicaceae through specifier proteins in the GSL-myrosinase reaction (Kuchernig, 

Backenköhler, Lübbecke, Burow & Wittstock, 2011). 

 

4.4.2.2.4. Sulphur aromatic compounds 

3-ethyl-thiophene (C37) was detected in only two accessions, SR6 and SR12 

(both <0.1 ± <0.1%, ‘Day 0’) and were significantly different from each other, despite 

the exceedingly small abundances observed. Tetrahydrothiophene (C38) was 

detected in every accession, but SR5 had the highest abundance (1.2 ± 0.1%, ‘Day 

0’) which was significantly different from the other samples. It is likely that these 

types of VOCs also contribute to the characteristic pungent/mustard/pepper sensory 

attributes of rocket, as well as ITCs.  

By ‘Day 7’, pyrrolidine-1-dithiocarboxylic acid 2-oxocyclopentyl ester (C36) 

was detected in only two accessions: SR5 (0.4±0.2%) and SR6 (2.9±1.3%). 

Tetrahydrothiophene (C38) was present in all accessions with the exception of SR12 

and SR14. 
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4.4.2.2.5. Imines 

On ‘Day 3’ 5-nonanone-oxime (C21) was most abundant in SR5 (36.9 ± 

7.5%), significantly higher than in either SR3 or SR6 (8.7 ± 2.8%; 11.1 ± 2.8%). 

Abundances were generally much higher across all accessions than on ‘Day 0’, 

though with fewer significant differences between accessions, possibly because of 

more variation between replicates. SR3 also contained the lowest abundance of O-

methyloxime-butanal (C22) (4.2 ± 1.8%). In contrast, SR19 had the highest 

abundance  (30.9 ± 0.6%) of this compound. 

 

4.4.2.2.6. Aldehydes 

A very large range of abundances was observed for (E)-4-oxohex-2-enal (C1) 

amongst accessions. This compound was not observed at all in SR5 on ‘Day 3’, yet 

accounted for 49.9 ± 0.9% of VOCs produced by SR3 on this sampling day. SR3 also 

contained significantly higher abundance of (E)-2-pentenal (C10) (4.0 ± 0.8%) than 

SR5 (0.8 ± 0.6%) on ‘Day 3’. In contrast, a narrow range of abundance was observed 

for 2-hexenal (C7); SR19 had the lowest (1.0 ± 0.5%) and SR2 the highest (6.5 ± 

1.6%), with both being the only accessions significantly different from each other. 

The more exotic aldehyde (E,E)-2,4-hexadienal (C11) was only observed in 

SR12 (0.3 ± 0.1%) on ‘Day 3’. These observations are interesting in contrast with 

‘Day 0’, where no significant differences were observed in any of the aldehyde 

compounds that were present. Despite the apparent differences in the percentage 

abundances in compound C1 (ranging from 2.5% to 22.4%), the fact that no 

significant differences were observed can most likely be explained by the very large 

standard errors of each accession, and the highly variable nature of VOC production. 

It might suggest however, that some varieties are more genetically predisposed to 
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differing rates of lipid oxidation, that are characteristic of plants kept in storage 

(Varming et al., 2004). 

 Figures 4.1-4, which display the PCA plots, also show how individual 

replicates from each accession vary in VOC abundance and profile within each 

sampling day. In some cases this can be quite marked, illustrating how profiles can 

be affected by multiple and very small factors, despite efforts to maintain constant 

experimental conditions. Further independent experiments will allow better 

elucidation and confirmation of VOC profiles and relative abundances in rocket in 

terms of within-day and within-cultivar production. 

 

4.4.3. Correlation of VOC abundance with shelf-life time points: PCA 

4.4.3.1. General 

PCA of VOCs across and within the three time-points revealed significant 

correlations between accessions and the prevalence of different types of compounds 

during storage, indicating sizeable variation amongst the seven accessions. All data 

are represented as sample scores and loadings plots (Figures 4.1-4).  

 

4.4.3.2. Across-day PCA 

PC1 vs. PC2 (F1 and F2; Figure 4.1) accounted for 56.72% of the total 

variation within data and r-values became significant at ±0.434 (p = <0.05). ‘Day 0’ 

samples formed a distinct, linear cluster (green; Figure 4.1a) spanning the first 

principal component. In contrast, however ‘Day 3’ (yellow) and ‘Day 7’(red) samples 

were not separable and both formed a linear cluster along the second principal 

component (F2).  

Table 4.2 illustrates where significant differences between compounds for 

each accession were observed. When compared with the loadings plot, it can be 
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seen that a distinct cluster (1) of volatiles are highly correlated with ‘Day 0’ along the 

first principal component, and two other separate localisations of VOCs can be seen 

correlating in the top and bottom left of Figure 4.1b (cluster 2). This suggests that 

there may be some genotypic differentiation in terms of the volatiles produced on 

both ‘Day 3’ and ‘Day 7’. Compounds with strong correlations along the first principal 

component include (Z)-2-penten-1-ol (C9 r = 0.950), (E)-2-hexenal (C8 r = 0.946), 

(E,E)-2,4-hexadienal (C11 r = 0.964), 2-methyl-2-butanal (C6 r = 0.916), 5-ethyl-

2(5H)-furanone (C12 r = 0.915), 4-methyl-2-(2-methyl-1-propenyl)-pyridine (C35 r = 

0.907), ethylidene-cyclopropane (C24 r = 0.912) and 5-methyl-4-hexen-3-one (C19 r 

= 0.886).  

Compounds correlating with accessions along the second principal 

component, and with SR3 and SR2, on ‘Day 3’ and ‘Day 7’ consist of vinylfuran (C42 

r = 0.874), (E)-4-oxohex-2-enal (C1 r = 0.889) and tetrahydrothiophene (C38 r = 

0.716). 

The presence of aldehydes within the ‘Day 3’ and ‘Day 7’ clusters is consistent 

with extensive and prolonged lipid degradation over the shelf life period. The exact 

role of many of these VOCs is unknown, and the exact significance they may have in 

affecting human sensory attributes when rocket is consumed is similarly not well 

understood. 

 

4.4.3.3. Within-day PCA 

4.4.3.3.1. ‘Day 0’ 

 The first two principal components (F1 and F2; Figure 4.2) explained 50.29% 

of the total variation present within the sample set and correlations between 

accessions became significant at r = ±0.433 (p = <0.05). Four clusters are apparent 

in the scores plot (Figure 4.2a), however only one of these clusters contains all three 
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respective sample replicates for the accessions (SR2). This spread of individual 

replicates across clusters indicates that VOC production for different germplasm 

accessions is inherently variable, even within genotypes. 

 The cluster located in the top left of the plot (1) contains all three replicates of 

SR2, indicating a high degree of uniformity in terms of VOC production on the initial 

sampling day. This cluster also contains two replicates of accessions SR3 and SR19. 

sampling day. This cluster also contains two replicates of accessions SR3 and 

SR19.  
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Figure 4.2. Scores plot (a) and loadings plot (b) from Principal Components Analysis of seven 
accessions of E. sativa, and the volatile organic compounds identified on ‘Day 0’. Individual 
replicates were plotted to visualize variation within and between accessions. PC1 vs. PC2 (F1 & 
F2) accounted for 50.29% of the total variation within data. For compound identities refer to Table 
4.1. SR codes refer to each of the seven accessions used in the experiment (SR2, SR3, SR5, SR6, 
SR12 SR14 & SR19). See inset for accession colour coding. Numbers and circles inset (a) refer to 
cluster discussed within the text. 
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It is interesting to note that the commercial accession (SR3) displays more variation 

than many of the ‘wild’ germplasm accessions. It would be expected that commercial 

cultivars would be more uniform than cultivars of open pollinated accessions, as they 

(in theory) would have had at least had some rudimentary plant breeding before 

commercial sale. Artificial selections would have been made in a breeding 

programme to select plants that had desirable characteristics, such as a pungent 

odour. Throughout successive generations, one would expect the variation 

associated with such a trait to decrease, but that does not appear to be the case and 

is perhaps indicative of little concerted breeding to improve varietal uniformity for this 

trait.  When compared with Figure 4.2b, it can be seen that two compounds in 

particular are correlated with this cluster: (E)-4-oxohex-2-enal (C1 r = 0.816) and 3-

hexen-1-ol (C14 r = 0.699). The former of these was highlighted in the previous 

section as being an abundant compound in accessions, but on sampling ‘Day 3’ and 

‘Day 7’. 

 The second cluster (2) to the extreme right of Figure 4.2a is much less 

compact, containing two replicates of SR12 and individual replicates of SR3, SR14, 

SR6 and SR19. Compounds strongly correlated in this position along the principal 

component in Figure 4.2b are much more numerous and diverse, including (Z)-2-

penten-1-ol (C9 r = 0.934), (E,E)-2,4-hexadienal (C11 r = 0.911), (E)-2-hexenal (C8 r 

= 0.907), 2-methyl-2-butanal (C6 r = 0.884), 4-methyl-2-(2-methyl-1-propenyl)-

pyridine (C35 r = 0.837), 2-hexenal (C7 r = 0.847) and ethylidene-cyclopropane (C24 

r = 0.733). These compounds are indicative of ‘Day 0’ VOCs and seem to be 

produced in most abundance at the initial point of tissue damage, with levels 

declining or completely disappearing in subsequent sampling days. 

 The third cluster (3) contains two replicates of SR6 and single replicates of 

SR14 and SR12. Compounds correlated in this vicinity of the loadings plot are much 
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more loosely distributed and have no strong correlation with either principal 

component. The presence of ITC compounds towards the lower section of the 

analysis plot indicates that production of these compounds is more dominant in 

certain accessions, or perhaps even individual plants within each accession. 

 The final cluster (4) consists solely of two replicates of SR5, and is the most 

extreme within the sample set. As mentioned before, SR5 is a promising cultivar that 

appears to be very different in many respects to other accessions of E. sativa, such 

as its higher GSL and ITC content. 

 

4.4.3.3.2. ‘Day 3’ 

 Figure 4.3 illustrates the PCA for ‘Day 3’ samples. 46.23% of variation within 

the data is explained by the analysis, with correlations becoming significant at r = 

±0.434 (p = <0.05). Variation between replicates on this sampling day is much 

reduced, with replicates for each respective accession being much closer together 

spatially than on ‘Day 0’. Clusters are much less well defined, but can be broadly 

characterized into three groups. 
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 The first cluster (1; Figure 4.3a) consists of just two replicates of SR12 which 

seem to be relative outliers overall (much like SR5 on ‘Day 0’). These replicates are 

generally characterised by the prevalence of a set of VOCs correlated in this same 

direction: 3-hexenal (C15 r = 0.741), (E)-2-hexenal (C8 r = 0.742), 3-octyne (C17 r = 

0.671), and hexyl-ITC (C29 r = 0.634). Some of these compounds are more 
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Figure 4.3. Scores plot (a) and loadings plot (b) from Principal Components Analysis of seven 
accessions of E. sativa, and the volatile organic compounds identified on ‘Day 3’. Individual 
replicates were plotted to visualize variation within and between accessions. PC1 vs. PC2 (F1 & 
F2) accounted for 46.23% of the total variation within data. For compound identities refer to Table 
4.1. SR codes refer to each of the seven accessions used in the experiment (SR2, SR3, SR5, SR6, 
SR12 SR14 & SR19). See inset for accession colour coding. Numbers and circles inset (a) refer to 
cluster discussed within the text. 
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indicative of ‘Day 0’ VOCs, and may indicate a predisposition in this accession for 

these types of compounds to be produced for a prolonged period of time after the 

initial production stimuli. This may have implications for the food and agricultural 

industries, as it implies that beneficial health compounds can be sustained during 

shelf life by appropriate selection of varieties. The impact of the industrial supply 

chain on phytochemical content has yet to be properly determined. 

 The second cluster (2) is central to the plot in Figure 4.3a, stretching towards 

the lower left. This loose cluster contains all three replicates of SR6, SR5 and SR19, 

with two replicates of SR14, and a single replicate of SR12. Genotypically, this 

cluster represents the most diverse range of accessions.  

 The final cluster to the right side of Figure 4.3a (3) includes all three replicates 

of SR2 and SR3, and one replicate of SR14. Compounds correlating in this direction 

include (E)-4-oxohex-2-enal (C1 r = 0.571), 2-hexenal (C7 r = 0.582), 1-penten-3-ol 

(C3 r = 0.584), (E)-2-pentenal (C10 r = 0.835), 1-penten-3-one (C4 r = 0.650), 

vinylfuran (C42 r = 0.714), 2-ethyl-furan (C26 r = 0.830) and tetrahydrothiophene 

(C38 r = 0.647). These compounds are indicative of the ‘Day 3’ profile highlighted in 

the previous section. 

 

4.4.3.3.3. ‘Day 7’ 

 Figure 4.4 displays the PCA plots for ‘Day 7’, where 58.69% of variation was 

explained by the data, and correlations became significant at r = ±0.434 (p = <0.05). 

In Figure 4.4a, samples can be broadly divided into two clusters, left and right of the 

y-axis. Samples on the left are tightly clustered and those to the right are thinly 

spread along the x-axis. SR3, SR6 and SR5 have replicates contained in both 

clusters, which is unusual considering that on ‘Day 3’ they were relatively close 
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together. SR3 is the most extreme example with replicates spread very far apart, 

indicating increased variability under controlled environmental conditions. 

 The dense left cluster (1) contains all replicates of SR14, SR12 and SR19, two 

replicates of SR5 and one replicate of SR3, but contained no significant correlations 

with any compounds. 

 The cluster on the right of the plot (2) contains all replicates of SR2, two 

replicates of SR3 and SR6, and one replicate of SR5. Many of the compounds seem 

to be skewed on the loadings plot in the direction of the SR3 and SR2 replicates. 

This suggests that these accessions have maintained a degree of VOC diversity later 

in the shelf-life period than the other accessions, which may be attributable to 

differing genetics. Compounds correlated with these samples along the first principal 

component include: 2-hexenal (C7 r = 0.920), 3-hexenal (C15 r = 0.862), (E)-4- 

oxohex-2-enal (C1 r = 0.840), 1-penten-3-ol (C3 r = 0.837), (E)-2-pentenal (C10 r = 

0.791), (E)-2-hexenal (C8 r = 0.803), 3-octyne (C17 r = 0.697), 2-ethyl-furan (C26 r = 

0.663). The presence of aldehyde compounds in this group is again indicative of 

extensive lipid breakdown. 
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4.4.4. Implications of detected VOCs on rocket quality and human nutrition 

 Between 1.0 ± 0.6% (SR3) and 6.8 ± 2.2% (SR5) of volatile compounds 

produced on ‘Day 0’ are isothiocyanates that may have potential benefits for human 

health (Verkerk et al., 2009). Although present at relatively low levels compared to 

other VOCs detected, isothiocyanates have been shown to be efficacious in eliciting 
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Figure 4.4. Scores plot (a) and loadings plot (b) from Principal Components Analysis of seven 
accessions of E. sativa, and the volatile organic compounds identified on ‘Day 7’. Individual 
replicates were plotted to visualize variation within and between accessions. PC1 vs. PC2 (F1 & 
F2) accounted for 58.69% of the total variation within data. For compound identities refer to Table 
4.1. SR codes refer to each of the seven accessions used in the experiment (SR2, SR3, SR5, SR6, 
SR12 SR14 & SR19). See inset for accession colour coding. Numbers and circles inset (a) refer to 
cluster discussed within the text. 
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health benefits at very low concentrations in previous in vitro studies with other crops 

(10 µM; Hanlon, Webber & Barnes, 2007). Abundance of these compounds declined 

with storage to less than one percent on ‘Day 7’, indicating that by the time the rocket 

leaves reach the consumer, it is possible that there has been a substantial drop in 

nutritional value. Processes that precede packaging, such as harvest, transport and 

washing can be especially harsh on leaves, although some forms of stress can 

induce secondary metabolite production (Mewis et al., 2012). Thus, combined effects 

of storage and handling during the supply chain should be examined in relation to 

VOC loss.  

 

4.5. Conclusions 

Our results represent rocket plants grown under controlled environment 

conditions, and may differ from plants that are grown under variable field conditions. 

Many pre-harvest factors may affect the abundance and ratios of VOCs, such as 

disease status, soil type, light intensity and water status (Varming et al., 2004). Our 

method was established in order to minimize these stress effects and produce results 

based on genotypic and post-harvest storage factors, rather than pre-harvest 

environmental variation. Changes in phytochemical content between different 

growing environments are poorly documented in rocket species, and non-existent for 

VOCs. Future work will examine the effects that these factors may have on the crop 

and the end consumer by conducting experiments in a commercial, field trial setting. 

Our study has shown that there are significant differences amongst cultivars in 

the relative abundance of volatiles they produce post-harvest and their retention 

during storage. Therefore, there is scope for plant breeders to consider basing 

selections, at least in part, on post-harvest VOC profiles in order to select for 

improved flavour and nutritional value traits. By assessing such data in the supply 
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chain alongside phytochemical screening at harvest, rocket lines can feasibly be bred 

to limit losses of important VOCs, such as ITCs. More research is needed to fully 

understand where exactly these losses occur within the supply chain, and what (if 

anything) can be done to mitigate such potential losses. 

 The sampling methodology established here might also have potential 

applications within the food processing industry as part of quality assurance methods 

for rocket leaves. Sampling itself is straightforward and requires little specialist 

knowledge. Samples could be taken at critical points during processing to assess 

effects on VOC profiles with the aim of keeping ITC losses to a minimum. Most, if not 

all, producers routinely take and store samples of different batches of rocket salad to 

assess visual traits. In the near future, it is likely that quality assurance will expand 

beyond this to both phytochemical and volatile traits of many crops, not just rocket 

salad. 
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CHAPTER 5: Analysis of Seven Salad Rocket (Eruca sativa) Accessions: The 

Relationships Between Sensory Attributes and Volatile and Non-volatile 

Compounds 

 

5.1. Introduction To Paper (accepted by Food Chemistry) 

 After determining the inherent variability of phytochemicals and headspace 

volatiles present between cultivars of rocket, a second phase of research was 

initiated. This was focused on the sensory characteristics of rocket leaves, and how 

phytochemical constituents might influence responses. Much of the previous 

research concerning rocket sensory attributes has been minimal, and often focusing 

on shelf life aspects rather than the actual variability in tastes, odours and flavours 

found between cultivars. Researchers and industrial processors have often assumed 

that these attributes are dependent on storage, rather than any genetic or chemical 

basis.  

In this paper, we aimed to address these ideas and subject the same seven 

cultivars (as used in Chapter 4) to rigorous and detailed sensory analysis, combined 

with the phytochemical and volatile data presented in the previous chapters. 

Collaboration was formed as part of this experiment with Dr. Angelo Signore of the 

University of Bari, Italy, who performed the analysis of polyatomic ions. 

 

5.2. Introduction 

Rocket and other members of the Brassicaceae plant family have been 

consistently shown to contribute beneficial, health-promoting phytochemicals to the 

human diet (Holst & Williamson, 2004). Consumption of such vegetables, that 

contain glucosinolates (GSLs) and flavonols in particular, is associated with a 

reduced risk of numerous cancers (Higdon, Delage, Williams, & Dashwood, 2007) 
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and improved cardiovascular health (Podsedek, 2007). In this study we consider 

several phytochemical attributes that may also contribute to sensory traits of rocket, 

as well as influence nutritional ‘quality’. 

 Glucosinolates react with myrosinase enzymes (thioglucoside glucohydrolase, 

EC 3.2.1.147) to form several classes of compound which have potential benefits to 

human health (Saha et al., 2012). These products (particularly isothiocyanates; ITCs, 

thiocyanates, nitriles and sulphates) are thought to be primarily responsible for the 

array of sensory perceptions that humans detect in Brassicaceae vegetables. ITCs 

can result in bitter taste perception due to thiourea moieties, such as those found in 

synthetic bitter compounds like 6-n-propylthiouracil (PROP; Lipchock & Mennella, 

2013). ITCs are also known to contribute to the hot and burning perceptions on the 

tongue (Cartea, Velasco, Obregon, Padilla, & de Haro, 2008), as well as pungent 

aromas. Thiocyanates are thought to infer bitter taste (Drewnowski & Gomez-

Carneros, 2000), and sulfates the sulfurous, ‘rotten cabbage’ aromas and flavours 

often experienced (Pasini, Verardo, Cerretani, Caboni, & D’Antuono, 2011). A 

previous study  (Pasini et al. 2011) indicated that the individual glucosinolate and 

flavonol compounds in rocket contributed towards different sensory perceptions. The 

GSLs progoitrin/epiprogoitrin and dimeric-mercaptobutyl glucosinolate (DMB) were 

significantly associated with bitter taste, and total GSL content with perceived 

pungency. This study did not quantify the two forms of glucosativin separately 

however, (Cataldi, Rubino, Lelario, & Bufo, 2007), and it is unknown whether they 

infer differing sensory properties. 

 Flavonols are also thought to contribute towards the taste and aroma of 

Brassicaceae plants. Research is somewhat lacking in this area for the 

Brassicaceae, but studies conducted in other plants/foods (such as Ribes rubrum, 
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redcurrant juice) have found that flavonols are generally associated with astringent 

and bitter sensations (Schwarz & Hofmann, 2007). 

 The effect of polyatomic ion (PI) content and concentration on rocket sensory 

profiles has not been previously considered. PIs are covalently bonded atoms that 

act as single units or become dissociated from larger molecules, and can be created 

when small molecules become negatively charged. For example, hydrogen sulfate 

(HSO4-) is the polyatomic anion of sulfuric acid (H2SO4). Rocket is known to 

accumulate high nitrate (NO3-) concentrations (Jakše, Hacin, & Kacjan Maršić, 2013) 

but it is not known how this, and other PIs such as chlorides, phosphates and 

sulphates impact upon sensory attributes in the plant. 

 Free amino acids (AAs) are ubiquitous compounds found within foodstuffs and 

living organisms, and vary in relative concentration/abundance. They are known to 

contribute to sensory perceptions in foods, but to date no study has considered this 

in rocket. Some compounds such as glutamic acid infer savoury (umami) attributes in 

fruits such as tomato (Jinap & Hajeb, 2010) for example; whereas others may taste 

sweet (alanine), sour (asparagine), or bitter (leucine; Kirimura, Shimizu, Kimizuka, 

Ninomiya, & Katsuya, 1969). In this way, it is thought that they modify or enhance the 

flavours and tastes of food. The effects of sugars and organic acids (OAs) on 

taste/aroma/flavours has not been previously determined in rocket. It is widely known 

that sweetness reduces the perception of bitterness, but the degree to which this 

effect occurs in rocket leaves is poorly understood. OAs typically infer sour taste, and 

the relative abundances in crops such as tomato are known to infer changes to 

flavour (Jinap & Hajeb, 2010). 

 The rocket species Eruca sativa is commonly known as ‘salad’ or ‘cultivated’ 

rocket, and is notable for having hot, peppery and bitter attributes (Pasini et al. 2011). 

In this study a sensory profile of seven E. sativa accessions was developed, using a 
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trained sensory panel, to objectively quantify an agreed vocabulary of various 

sensory traits. The data were analysed in conjunction with chemical analyses of 

rocket, cultivated in controlled environment conditions, to determine which specific 

variables have an impact significantly on sensory properties. We hypothesised that 

the increased relative concentrations and abundances of the major GSL/ITC 

compounds alongside the concentration of PIs, free sugars, free AAs and OAs would 

be key influencing factors in the pungency and bitterness of the accessions. 

 

5.3. Materials and Methods 

5.3.1 Plant Material 

 For the source of each of the seven accessions used in this paper, and the 

exact controlled environment conditions under which plants were grown, see Bell, 

Oruna-Concha & Wagstaff (2015; Chapter 3). 20 accessions were analysed by this 

previous study, and the seven selected here represent a diverse range of GSL and 

flavonol profiles. Another factor for consideration was the availability of seed that 

could be provided by Elsoms Seeds Ltd. (Spalding, UK). SR2, SR5, SR6, SR12, 

SR14 and SR19 are accessions sourced from European germplasm collections, and 

SR3 is a commercially available cultivar sold by Elsoms Seeds Ltd.  

Each accession was germinated in a Fitotron controlled environment room 

(Weiss-Technik UK, Loughborough, UK) after being sown in a random sequence 

(using random number allocation in Microsoft Excel; Microsoft Corp., Redmond, WA, 

USA). Growth of plants was staggered over seven days to ensure that all leaves 

were of the same age (30 days) on each of the sensory assessment days. Plants 

were harvested each morning of the study (~10.00 am). After transport, samples 

were washed with cold water to remove any soil detritus and prepared under food 

grade conditions. Leaves were stored in a fridge (~4°C) until ready to be served to 
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assessors (between 12.30 pm and 2.00 pm). Leaves were selected at random from 

zip-loc storage bags when preparing samples for presentation on plates.  

For chemical analyses, the leaves of four plants were harvested together and 

collectively treated as one replicate. There were three ‘blocks’ of four plants for each 

accession, resulting in a total of three replicates per accession (n = 3); therefore a 

total of 12 plants were used as representative samples of each population. Leaves 

were harvested in an identical fashion as outlined above, but placed immediately into 

a -80°C freezer after transport. Samples were lyophilized in batches and ground into 

a fine powder using a miniature coffee grinder. 

 

5.3.2. Sensory Analysis 

Sets of sensory descriptors for rocket were established using an expert panel 

of eleven sensory assessors (see Table 5.1 for definitions of terms used). Panelists 

were selected and trained in accordance with ISO standards for sensory analysis 

(ISO 8586:2012) and are subject to performance monitoring (ISO 11132:2012). All 

panelists had a minimum of 6 months experience in sensory evaluation, and some up 

to eight years of experience. 

Samples were presented in a random, coded fashion over the course of five, 

half-hour sessions on consecutive days. Assessors discussed, with the aid of a 

facilitator, the various sensory attributes associated with the appearance, odour, 

mouthfeel, taste, flavour and aftereffects of leaf samples. Reference standards were 

used where appropriate to ensure agreement of the descriptive terms chosen. For 

example, for mustard attributes, assessors used a jar of Colman’s Mustard 

(Colman’s, Norwich, UK) as a reference. Once a consensus set of descriptors was 

established, a formal sensory assessment was conducted. 
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Table 5.1. Definitions for sensory attributes associated with 7 Eruca sativa accessions 

Attribute Agreed definition 

Appearance  

Leaf shape 
Variability of leaf shape between the two presented; none – completely 

different 

Depth of 

colour 
Shade of green; light green – dark green 

Leaf size Small, medium or large in reference to a scale provided to assessors 

Hairiness Extent of visibility of hairs on leaf petiole and underside of lamina 

‘Purple’ stem 
Presence of pink, red or purple within the stem, petiole or midrib of 

leaves 

Odour  

Sulfur Aroma associated with eggs 

Green Aroma(s) associated with cut grass and freshness 

Stalky Dry aroma associated with dried leaves or grasses 

Pepper Pungent aroma associated with ground peppercorns 

Earthy Resembling or suggestive of earth or soil 

Burnt rubber An aroma reminiscent of burning rubber 

Pungent A sharp aroma; associated with perceived strength 

Sweet A pleasant, sugary aroma 

Aromatic A pleasant aroma associated with herbaceous oils 

Mustard 
Potent aroma associated with crushed mustard seeds or condiment 

mustard 

Mouthfeel  

Initial heat 
The initial burst of ‘hotness’ on the tongue momentarily after placing 

into the mouth and chewing 

Spikiness 
Sensation associated with the sharpness of any leaf hairs that may be 

present on samples 

Crispiness Brittle sensation on the teeth or tongue when chewing or biting leaves 

Chewiness Degree of ease with which leaves are chewed and swallowed 

Toughness Degree of ease with which leaf stems can be broken by the teeth 

Moistness Associated with the water content of the leaf samples ingested 

Salivating 
Degree to which samples induced the production of saliva in the mouth 

upon chewing 

Astringent 
Degree to which samples induced drying and/or the sensation of 

shrinkage of the tongue and soft palate 

Tingliness 
The sensation produced upon the tongue; associated with slight 

prickling or stinging 

Warming 
The sensation of increased temperature within the mouth while 

chewing; prolonged and separate from “initial heat” 

Taste  

Sweet Pleasant taste associated with sugary foods 
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Sour Acidic sensation associated with vinegar 

Bitter Sharp, unpleasant or pungent taste upon the tongue 

Savoury Taste associated with slightly salty or spicy food 

Flavor  

Green Flavor associated with cut grass and freshness 

Stalky Flavor associated with dry, fibrous leaves 

Peppery Flavor associated with ground peppercorns 

Mustard 
Flavor associated with the potency of crushed mustard seeds or 

condiment mustard 

Sulfur A flavor associated with consumption of eggs 

Earthy A flavor resembling or suggestive of earth or soil 

Aftereffects  

Bitter A persistence of bitter taste after swallowing leaf samples 

Sweet A persistence of pleasant, sugary taste 

Acid 
Persistence of a sharp, unpleasant taste upon the tongue; reminiscent 

of vinegar 

Savoury Persistence of a salty or slightly spicy flavor upon the tongue 

Peppery Persistence of the flavor of peppercorns 

Mustard Persistence of the flavor of mustard seed/condiment mustard 

Green Persistence of a grassy, fresh flavor 

Earthy Persistence of flavours resembling or suggestive of earth or soil 

Warming 
A persistence of the sensation of heat/temperature within the mouth 

after swallowing 
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Sensory descriptors were entered into Compusense software (version 5.2; 

Guelph, ON, Canada) and assessors were asked to score each attribute on 

anchored unstructured line scales (15 cm, scaled 0-100), with each anchor 

corresponding to the agreed extremes of each attribute definition. Each accession 

was presented and assessed twice by each of the 11 panelists, and averaged. 

Odour, taste, flavour and aftereffects were assessed as an overall representation of 

the two leaves presented per accession (n = 22). Due to the variability of leaf 

morphology within gene bank accessions, the test was designed to ask assessors 

about the sensory characteristics of two leaves separately for appearance and 

mouthfeel descriptors (n = 44), which were then averaged.  

Stem colour was the only attribute assessed using a multiple-choice question 

(categories: white/green or pink/red/purple). E. sativa accessions show gradations of 

colouring in the leaf stem and it is thought to be a desirable commercial trait. Colour 

can range from being absent, to pink, to red, to purple. If colour was present, 

assessors selected ‘pink/red/purple’ and were asked to score the degree of this 

coloration on a standard, anchored line scale. Assessors were presented with a size 

chart encompassing the extremes of rocket salad leaf sizes in order to standardise 

responses. This indicated into which range on the line scale they should enter their 

response based on the leaf area (three size examples were given). 

Evaluation sessions were carried out under artificial daylight conditions in an 

air-conditioned room (~22°C), in isolated sensory booths within the Sensory Science 

Centre at the Department of Food & Nutritional Sciences, University of Reading, UK. 

Freshly harvested plant samples were presented twice to each assessor in a 

balanced order over five days (approximately two to three hours after harvest). Two 

random leaves from each accession were placed on a single plate with a randomly 

assigned, three-digit code. Panelists were provided with water (room temperature) 
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and frozen natural yoghurt (Yeo Valley Farms (Production) Ltd., Bristol, UK) for 

palate cleansing between samples. Warm water was also provided for assessors to 

wash their fingers between samples, to avoid carry-over of aromas to subsequent 

samples. No more than four samples were presented in any one session to avoid 

palate/trigeminal fatigue. There was a one-minute time delay between the finishing of 

one sample and the presenting of the next. 

 

5.3.3. Reagents & Chemicals 

All solvents and chemicals used were obtained from Sigma-Aldrich 

(Gillingham, UK) unless otherwise stated. The EZ:faast Free (Physiological) Amino 

Acid Analysis by GC-MS kit was obtained from Phenomenex (Macclesfield, UK). 

 

5.3.4. Glucosinolate & Flavonol Analysis  

GSLs and flavonols were extracted and analysed by LC-MS and presented in 

Bell et al. (2015; Chapter 3). Briefly, lyophilized leaves were milled, and extracted 

using 70% methanol at 70°C. Crude extracts were filtered and diluted (n = 3) before 

being run on a HPLC and ion trap mass spectrometer (MS/MS) with an isocratic 

gradient of 95% water (0.1% ammonium formate) and 5% acetonitrile over a 40 

minute run. GSLs and flavonols were quantified separately at two different 

wavelengths and quantified by two different external standards (GSLs: sinigrin 

hydrate; flavonols: isorhamnetin). 

 

5.3.5. Polyatomic Ion Analysis By Ion Chromatograph  

Lyophilized rocket powder for each accession (n = 3) was re-dried after 

transport (to the Dipartimento di Scienze Agro-Ambientali e Territoriali, University of 

Bari, Italy) at 65°C, and subsequently re-milled with a micrometric mill (IKA, 
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Germany). 0.5 g of the material was placed in a bottle of 100 ml, to which 50 ml of a 

solution composed of Na2CO3 (3.5 mM) + NaHCO3 (1.0 mM) was added. The bottle 

was shaken for 20 minutes (145 rpm). Before inserting the solution into the ion 

chromatograph (IC), the supernatant was filtered using a 0.22 µm filter to remove any 

residual organic matter. A Dionex DX-120 Chromatograph (Dionex Corporation, 

Sunnyvale, CA, USA) was used to measure chloride, nitrate, phosphate and sulphate 

anions by comparison to a multi-anion standard (Dionex, Milan, Italy). 

 

5.3.6. VOC Analysis  

VOCs were extracted and analysed presented in Bell, Spadafora, Müller, 

Wagstaff & Rogers (2016; Chapter 4), using Thermal Desorption Gas 

Chromatography Time-Of-Flight Mass Spectrometer (TD-GC-TOF-MS); see this 

paper for detailed methodology.  

Briefly, rocket leaves of each accession (70g) were placed into sealed bags and 

manually disrupted to release volatiles into the headspace (n = 3). Samples were 

collected using a hand-pump device attached to a portable thermal desorption tube, 

which was inserted through a port in the bag. Tubes were desorbed using a TD100 

thermal desorption system (Markes International Ltd., Llantrisant, Wales, UK) and 

samples analysed using a BenchTOF-dx mass spectrometer (Almsco International, 

Cincinnati, OH, USA). 

 

5.3.7. Free Amino Acid Analysis 

Lyophilized rocket powder (50.0 mg; n = 3) was added to 0.5 ml of 25% 

acetonitrile in 0.01 M hydrochloric acid. Samples were vortexed for five minutes and 

left to settle for one hour at room temperature (~22°C), and then centrifuged. The 

supernatant of each sample was removed and filtered with 0.22 µm filter discs with a 
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low protein binding Durapore polyvinylidene fluoride (PVDF) membrane (Millex; EMD 

Millipore, Billerica, MA, USA). 

A diluted aliquot of the filtrate (10 µl sample, 90 µl H2O) was derivatized using 

the EZ:faast Free (Physiological) Amino Acid Analysis by GC-MS kit. GC-MS 

analysis of the derivatized samples was carried out using an Agilent 7890A/5795C 

GC-MS instrument as described by Elmore, Koutsidis, Dodson, Mottram, & Wedzicha 

(2005). Samples were quantified using an internal standard of norvaline. 

 

5.3.8. Free Sugars & Organic Acid Analyses 

Lyophilized rocket powder (0.4 g; n = 3) was suspended in 10 mL of 0.01 M 

hydrochloric acid (except SR19 where dried material of two replicates was depleted; 

n = 1). Each sample was stirred for 30 min at room temperature (~22°C), and the 

mixture was set aside to settle for 30 min. An aliquot of the supernatant (1.5 mL) was 

centrifuged for 30 min. The supernatant of the resulting extract was filtered with a 

Millex Millipore sterile syringe driven filter unit (0.22 µm) and analysed by capillary 

electrophoresis (CE). An external standard method for sugars (glucose, fructose, 

sucrose, and galactose) and OAs (malic acid and citric acid; ranging from 0.5 – 10 

mg.g-1) was used for the quantification of the analytes of interest. 

The CE method used was adapted from Lignou, Parker, Oruna-Concha, & 

Mottram (2013) and Soga & Ross (1999).  Briefly, a HP3D CE with DAD and Agilent 

ChemStation software (Santa Clara, CA, USA) was used to run sugars and OAs 

within the same chromatographic run. Electrophoretic separation was performed at a 

constant pressure of 50 mbar, with a six second injection of sample, followed by a 

four second injection of buffer. A G1600-61311 capillary (Agilent, Stockport, UK) was 

used which measured 75 µm id, 64.5 cm in length, with an effective length of 56 cm, 
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maintained at 15°C. An anion buffer was used for sample separation and the column 

was preconditioned for four minutes with buffer before each run. 

 

5.3.9. Statistical analysis 

5.3.9.1. ANOVA 

To analyze the sensory profiling data, two-way analysis of variance (ANOVA; 

with accessions and assessors as treatment effects, and these main effects tested 

against their interaction) was carried out in Senpaq (Qi Statistics Ltd., Reading, UK). 

ANOVA was conducted using a 95% confidence interval and a tolerance of 0.0001%. 

A post-hoc Tukey’s HSD test was used for multiple pairwise comparisons. This was 

chosen for the higher level of stringency than other pairwise comparison tests, such 

as Fisher’s LSD Test. 

 The quantitative data for each compound identified in the CE, IC and GC 

analyses (sugars, OAs, PIs, AAs) were analysed independently by one-way ANOVA 

using XL Stat (Addinsoft, Paris, France). Significant differences between varieties 

were determined using Tukey’s HSD test to generate pairwise comparisons.  

 

5.3.9.2. Principal Component Analysis 

The means for the sensory data were taken (as described in section 2.2.) and 

used in Principal Component Analysis (PCA, Pearson n-1; XL Stat) to extract 

principal components (PCs). Sensory relationships were determined by coefficient 

analysis. Phytochemical data obtained from PIs, free sugars, organic acids, and free 

AAs were collated with data from Bell et al. (2015; Chapter 3) for GSLs and flavonols, 

and data from Bell et al. (2016; Chapter 4) for headspace VOCs. These were 

regressed onto the sensory PCA as supplementary data, and a correlation matrix 

was constructed to determine significant relationships. Sensory variables with 
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statistically significant correlations were identified at levels of P<0.05, <0.01 and 

<0.001. 

 

5.4. Results and discussion 

5.4.1. Sensory Attributes 

5.4.1.1. Appearance 

A summary table of sensory attribute scores can be found in Table 5.2, along 

with pairwise comparison statistical significances and the typical appearance of each 

cultivar can be seen in appendix II.  

Leaf sizes varied greatly across each accession; SR14 and SR12 had very 

large leaves, whereas SR5 and SR19 were significantly smaller by comparison. The 

range of sizes could potentially give breeders traits to select within gene bank 

populations, where new, novel types can be identified. Significant differences were 

also found for, depth of colour, leaf shape, hairiness and the prevalence of ‘purple 

stem’ (Table 5.2; P<0.05). SR2 had a significantly higher degree of colouration in the 

stem than both SR5 and SR19, potentially making this a desirable accession to 

select this trait from. 

 

5.4.1.2. Odour 

 There was a significant difference overall between samples for sulfur odour 

(Table 5.2; P<0.05). No other odour attributes were significantly different between 

accessions. The strength of sulfur traits may play a key role in this differentiation 

between rocket accessions and consumer preferences (Pasini et al. 2011), though 

consumer studies of rocket cultivars are lacking in the literature. 
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5.4.1.3. Mouthfeel 

Significant differences between accessions for mouthfeel attributes were 

found for initial heat, spikiness, chewiness, tingliness and warming (Table 5.2; 

P<0.05). Accessions SR5 and SR19 were significantly different from SR2, SR3, SR6 

and SR12 for initial heat, and also significantly higher in terms of tingling than SR3. 

SR5 was significantly different from SR2, SR3, SR6 and SR12 for warming 

mouthfeel. These data suggest a genetic component for inferring differing degrees of 

pungency between accessions, as SR5 in particular is scored highly in these traits.  

SR14 was significantly chewier than SR3, and spikier than SR3 and SR19. 

The presence of hairs on leaves is not thought to be a desirable characteristic for 

consumers, and would need to be bred out of any potential future varieties (Bell & 

Wagstaff, 2014; Chapter 2). 

 

5.4.1.4. Taste, flavour & aftereffects 

 There were significant differences in peppery, mustard flavour and sulfur 

between accessions (Table 5.2; P<0.05). Peppery flavour in SR19 and SR5 was 

significantly higher than in SR3; and mustard and sulfur flavour in SR5 was 

significantly higher than in SR12 and SR3, respectively. Acid, peppery, mustard and 

warming aftereffects were significantly different between some cultivars (P <0.05), 

though no statistically significant differences were found for taste attributes. These 

data suggest that pungency/warming effects are more important for discriminating 

between cultivars than bitterness as has been suggested in a previous study (Pasini 

et al. 2011). 
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5.4.2. Phytochemical Analyses 

5.4.2.1. Previous phytochemical analyses 

 The analysis of GSLs, flavonols and headspace VOCs is presented in Bell et 

al. (2015 & 2016; Chapters 3 & 4). The data for the seven accessions used here are 

summarised in appendix III. The material used in these analyses was grown under 

identical conditions to those presented in this paper, and the data were combined 

with new analyses of PIs, AAs, OAs and sugars.  

 

5.4.2.2. Polyatomic ions 

Table 5.3 summarises the concentrations of four PI groups found in the rocket 

accessions: chlorides, nitrates, phosphates and sulphates. The PI content of the 

seven cultivars varied significantly. Nitrate concentrations are relatively low for all 

accessions compared to previous reports, but this is not unusual as large variations 

in cultivar accumulations are known to occur across growing methods, cultivars, and 

environments (Cavaiuolo & Ferrante, 2014). 

Chloride concentration was lowest in accession SR12 (9.5 g.kg-1 DW) and 

highest in SR5 (16.6 g.kg-1 DW) and this was a significant difference (P<0.05). SR5 

is also high in phosphate concentration (15.2 g.kg-1 DW) and is significantly different 

from SR3, SR6 and SR14. SR19 accumulated significantly more phosphate than any 

of the other accessions tested. SR5 is conversely very low in nitrate concentration 

(10.0 g.kg-1 DW) – almost five times less than SR19 (48.5 g.kg-1 DW). SR19 was also 

relatively high in phosphate (20.7 g.kg-1 DW) and sulphate (17.7 g.kg-1 DW), making 

it distinct in terms of PI concentrations. 
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5.4.2.3. Free amino acids 

Table 5.3 shows the AA concentrations found in each of the seven 

accessions. In total 11 free AAs were detected and quantified, however only serine 

and glutamine showed significant differences between cultivars. The commercial 

cultivar SR3 had a high serine concentration of 167.2 µg.g-1 DW, which was 

significantly greater than SR2 (63.0 µg.g-1 DW). SR2 conversely had statistically 

higher glutamine concentration (90.8 µg.g-1 DW) than SR5 (29.2 µg.g-1 DW) and 

SR14 (35.8 µg.g-1 DW). Aspartic acid and glutamic acid were the most abundant AAs 

detected overall, and were present in every accession. Valine, leucine, asparagine 

and lysine were not observed in several accessions, with concentrations very low 

where they were detected. 

 

5.4.2.4. Free sugars & organic acids 

Table 5.3 displays the free sugar content of each accession tested. No 

significant differences were found in the ANOVA, with the possible exception of 

SR19. Unfortunately leaf material of this accession was limited, and only one 

biological replicate could be analysed (not included in ANOVA).  

Concentrations of free OAs are also presented in Table 5.3, and as with 

sugars, no significant differences between each accession were observed. This is 

perhaps due to the very large variation within some samples, particularly SR2, which 

had large variation in malic acid concentration. 

 

5.4.3. Principal Component Analysis 

5.4.3.1. Sensory attributes 

PCA extracted six components, all of which had Eigenvalues >1.0; however 

the majority of information was contained in the first three PCs (78.6%; appendix IV). 
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On this basis PC1, PC2 and PC3 are presented. The majority of explained variation 

is found in PC1 (43.49%) and this component separates traits associated with 

pungency and bitterness, and coupled with the correlation matrix data (appendix V), 

many of these traits share significant relationships. PC2 identifies a dimension 

characterised by green and sweetness characters, as well as some appearance and 

mouthfeel traits. The information contained within PC3 is related to earthy attributes 

and aromatic odour, but also visual and morphological characteristics such as leaf 

size, toughness, chewiness and spikiness. 

These separations are easily identifiable within the biplots presented in Figure 

5.1. SR5 is distinctive in Figure 5.1a, characterised by a high degree of association 

with pungent attributes, acid aftereffects and bitterness. SR19 is also separate from 

the main cluster (lower left), but separates along PC2 in terms of the distinct 

difference in appearance from the other cultivars. SR14, SR6, SR12, SR3 and SR2 

are broadly similar in these dimensions, and are characterised by a comparatively 

low bitterness, and lower scoring mustard, pepper, sulfur and initial heat mouthfeel 

attributes. This is coupled with an increase in relative perceptions of sweetness 

attributes, moistness mouthfeel and larger leaf shapes. In Figure 5.1b this pattern is 

broadly repeated, however SR19 separates along the negative axis of PC3 due to 

low scores for leaf hairiness, purple stem, spikiness, and earthy/aromatic attributes. 

The distinctiveness of SR5 and SR19 was also repeated in components PC4, PC5 

and PC6 (plots not presented). 

The purple stem attribute was correlated highest in PC5 (plot not presented), and in 

the Pearson’s correlation analysis was inversely and significantly correlated to traits 

such as bitter taste, peppery flavour, mustard aftereffects, initial heat, tingly and 

warming aftereffects (r = -0.765, -0.791, -0.812, -0.823, -0.792, -0.758 respectively; 

all P<0.05). This may suggest that stem colouration could be used as a visual cue for	
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determining pungency/bitterness of leaves, although this would need to be assessed 

in more focused experiments. 

Many of the sensory attributes assessed share highly significant correlations 

(appendix V). Briefly, the odour attribute of burnt rubber shares several significant 

relationships with traits such as sulfury flavour (r = 0.880; P<0.01), initial heat 

mouthfeel (r = 0.907; P<0.01) and warming mouthfeel (r = 0.921; P<0.01). Many of 

the perceptions associated with these types of pungent attributes are correlated and 

co-locate within the PCA in PC1. Peppery flavour is also significantly correlated with 

tingly mouthfeel (r = 0.956; P<0.001), and mustard flavour/aftereffects with initial heat 

(r =0.897, P<0.05; r = 0.956, P<0.001, respectively). 

 

5.4.3.2. Phytochemical data 

5.4.3.2.1. General 

 The regressed phytochemical data is presented in Figure 5.1, superimposed 

upon the sensory PCA, and illustrates the relationships found with these data across 

the three most informative principal components. Significant correlations (Pearson n-

1) between phytochemicals and sensory attributes are also summarised in appendix 

V, and the regressed factor loadings of each variable are presented in appendix VI. 

 

5.4.3.2.2. Glucosinolates  

Eleven GSL compounds were detected in the seven rocket accessions by Bell 

et al. (2015; Chapter 3). These were 4-hydroxyglucobrassicin, glucotropaeolin, 

glucoraphanin, glucoiberverin, glucosativin, DMB, glucoalyssin, glucoerucin, 

glucoraphenin, diglucothiobeinin and glucoibarin. For the purposes of the analysis, 

data for diglucothiobeinin were not included, as it was only detected in one of the 

accessions analysed. 
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 The major GSL of rocket, glucosativin (2.7 – 7.7 mg.g-1 DW; Bell et al. 2015; 

Chapter 3), was significantly and positively correlated to earthy flavour (r = 0.863, 

P<0.05; appendix V) and was most positively correlated along PC3 (Figure 5.1b). 

Unlike other studies where glucosativin and its dimer (DMB) have been linked with 

bitterness, there was no significant relationship found here. DMB was most highly 

correlated along PC1 and positioned between earthy and pungent attributes but no 

significant correlations were observed.  

Total GSL concentration separated along PC3 and PC1 (Figure 5.1b), and 

shared a significant correlation with bitter aftereffects (r = 0.766, P<0.05), and 

negatively with the perceived moistness mouthfeel of leaves (r = -0.803, P<0.05). 

These two correlations suggest an overall tendency for rocket GSLs to have a bitter 

component associated with them post-swallowing, and the intensity to be inverted to 

the levels of moisture.  

SR6 had high concentrations of total GSLs (10.0 mg.g-1 DW; Bell et al. 2015; 

Chapter 3), but the sensory profile of this accession is more similar to SR2, and is 

associated with sweet/green attributes (PC1 vs. PC3; Figure 5.1b). This indicates 

that individual GSLs may be more influential on sensory properties than the total 

concentration. SR6 was characterised by relatively high concentrations of 

glucoerucin (1.3 mg.g-1 DW), for example. The absence of any significant 

correlations with this GSL and glucoraphanin are also of potential importance. We 

hypothesise that they do not directly contribute to the sensory profile of rocket, and 

could be increased through selective breeding to produce more nutritionally dense 

rocket varieties without affecting flavour. 

Minor rocket GSLs such as 4-hydroxyglucobrassicin and glucoalyssin were 

reported in very low concentrations by Bell et al. (2015; Chapter 3) yet produced 

strong correlations with PC1 and PC2, respectively. This may be indicative of the role 
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minor GSLs play in sensory perceptions of rocket, and what creates distinctive 

flavours between cultivars. 4-hydroxyglucobrassicin for example was only detected in 

SR5 and SR19, and when these supplementary data were regressed onto the 

sensory principal components the presence of this compound is significantly 

correlated with bitter aftereffects (r = 0.794, P<0.05), pepper flavour and aftereffects 

(r = 0.901, 0.895; both P<0.01), mustard flavour (r = 0.908, P<0.01) and aftereffects 

(r = 0.959, P<0.001), the initial heat of leaves (r = 0.967, P<0.001), and tingly and 

warming mouthfeels (r = 0.936, 0.932; both P<0.01). It was observed that the 

presence of glucoalyssin had significant correlations with pepper odour (r = 0.950, 

P<0.01), pepper flavour (r = 0.838, P<0.05), and mustard aftereffects (r = 0.795, 

P<0.05).  

Although concentrations/presence differs across accessions, it is not possible 

to know definitively if they are the cause of sensory differences without isolated 

standards. It is likely however that a higher diversity of ‘minor’ GSLs is associated 

with distinctive sensory attributes, such as pepperiness in SR19, and 

hotness/pungency in SR5, rather than total GSL concentration. D’Antuono, Elementi, 

& Neri (2009) similarly found that 4-hydroxyglucobrassicin was highly associated with 

“pleasant” taste and pungency. It may be that minor GSLs and their hydrolysis 

products contribute more to these effects than has been previously realized.  

 

5.4.3.2.3. Flavonols  

Eleven flavonol compounds were identified and quantified in the rocket 

accessions tested by Bell et al. (2015; Chapter 3). These were myricetin, kaempferol-

3-glucoside, quercetin-3-glucoside, isorhamnetin-3-glucoside, kaempferol-3,4’-

diglucoside, isorhamnetin-3,4’-diglucoside, kaempferol-3-diglucoside-7-glucoside, 

quercetin-3,3,4’-triglucoside, kaempferol-3-(2-sinapoyl-glucoside)-4’-glucoside, 
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quercetin-3,4’-diglucoside-3’-(6-caffeoyl-glucoside) and quercetin-3,4’-diglucoside-3’-

(6-sinapoyl-glucoside). For the purposes of the analysis quercetin-3-glucoside and 

quercetin-3,4’-diglucoside-3’-(6-sinapoyl-glucoside) data were omitted as they were 

each only detected in one accession. Some of these compounds were highly 

correlated along PC3 (Figure 5.1b) and were generally associated with mouthfeel 

traits, and negatively with stalky and intense sensory attributes. 

 Flavonols and other polyphenols have been strongly linked with astringent 

sensory perceptions in studies of drink products, such as red current juice (Schwarz 

& Hofmann, 2007), red wine (Hufnagel & Hofmann, 2008), berry juice (Laaksonen, 

Ahola, & Sandell, 2013) and black tea (Scharbert, Holzmann, & Hofmann, 2004). 

Isorhamnetin-3-glucoside was the only compound where a significant correlation was 

observed with astringent mouthfeel (r = 0.762, P<0.05). This compound was 

significantly, negatively correlated with the perception of salivating mouthfeel (r = -

0.856, P<0.05), implying a possible link with perceptions of moisture on the palate. 

 

5.4.3.2.4. Polyatomic ions  

Chloride and phosphate separated highly along PC1, and this was largely due 

to the relatively high concentrations present in both SR5 and SR19. Nitrate and 

sulphate however were highly correlated with PC2 (Figure 5.1a), opposite to SR5, 

which is characterised by low nitrate concentration.  

In a previous study by Hufnagel & Hofmann (2008) on red wine fractions, both 

chloride and phosphate were linked with astringency and sourness. In this study, only 

chloride was positively correlated with sour taste (r = 0.821, P<0.05). One hypothesis 

for this association (which is usually caused by acids), might be that chloride ions 

react with thiol groups of some ITCs to produce hydrochloric acid (La Quèrè, 

Gierezynski, Langlois, & Sèmon, 2006), and thus create H+ ions which would be 
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perceived as sour on the tongue. Such reactions may also influence volatile 

formations (La Quèrè et al. 2006) and infer differing sensory properties according to 

relative abundances. Scores for sourness were low uniformly across accessions and 

non-significant in the ANOVA, but it is interesting to note SR5 was scored highest 

overall, as well as for acid aftereffects with which chloride ion concentration was also 

significantly correlated with (r = 0.837, P<0.05). Unfortunately studies of this kind are 

absent for rocket and other leafy vegetables. 

Accession SR5 had the highest concentration of chloride, and SR19 the 

highest concentration of phosphate, and is again a distinguishing attribute in terms of 

sensory properties. Numerous significant correlations were observed between 

chloride ions and traditional rocket traits (appendix V); particularly of note is mustard 

flavour (r = 0.953, P<0.001) and aftereffects (r = 0.907, P<0.01). These correlations 

are of course not proof that they are the causative agents; however there does seem 

to be a relationship in these samples between sensory attributes and chloride 

concentrations.  

The other three PIs also had significant correlations (P<0.05; appendix V). 

Phosphate was significantly correlated to peppery flavour (r = 0.802) and both 

sulphate and nitrate produced significances relating to salivating mouthfeel (r = 

0.799, 0.818, respectively). Nitrate levels have been linked to differences in spinach 

flavour (Maga, Moore, & Oshima, 1976), however information regarding direct and 

specific effects of these ions in leafy vegetables is sparse within the literature. 

 

5.4.3.2.5. VOCs  

 ITCs, sulfur volatiles and an oxime showed large separation along PC1, 

indicating that there is a strong relationship between their relative abundances and 

the hot, peppery, mustard and warming attributes present in accessions, such as 
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SR5 and SR19. Alcohols, aldehydes and ketone compounds separated along PC2 

indicating a high degree of association with odour and some taste, flavour and 

mouthfeel attributes (appendix VI), such as stalky, sweet and green. A smaller 

number of compounds separated to a high degree on PC3, and included some 

furans, acids, a thiophene and a cyclopropane. This associates them with earthy and 

savoury attributes, as well as with accessions that were typically described as being 

chewy or tough. The relative distribution of these compounds with sensory attributes 

is presented in the PCA biplots (Figure 5.1). 3-ethyl-1,5-octadiene, O-methyloxime-

butanal and oxalic acid diallyl ester were removed from the analysis as they were 

only detected in one accession, respectively (Bell et al. 2016; Chapter 4). 

4-methylpentyl-ITC and iberverin showed significant correlations with bitter 

taste (r = 0.827, P<0.05; r = 0.940, P<0.01, respectively) and aftereffects (r = 0.802, 

0.797; both P<0.05). n-pentyl-ITC and 1-isothiocyanato-3-methyl-butane also 

correlated strongly with bitter taste (r = 0.912, P<0.01; r = 0.781, P<0.05, 

respectively). Bitterness in ITC-containing compounds is well documented within the 

literature (Behrens, Gunn, Ramos, Meyerhof, & Wooding, 2013) and our data are in 

agreement with other studies in this regard.  

Three other compounds that are not ITCs were also correlated with bitter 

taste: pyrrolidine-1-dithiocarboxylic acid 2-oxocyclopentyl ester (r = 0.852, P<0.05), 

tetrahydrothiophene (r = 0.783, P<0.05), and an unidentified compound (Unknown 8; 

r = 0.804, P<0.05). Only one significant negative correlation was found with bitter 

taste, which was 3-methyl-furan (r = -0.847, P<0.05). This latter compound was 

significantly positive in correlation with the purple stem attribute (r = 0.954, P<0.001). 

Purple stem was inversely related to 5-nonanone oxime (r = -0.775, P<0.05) and 1-

isothiocyanato-3-methyl-butane (r = -0.957, P<0.001). This may again provide a 

possible visual cue for leaf pepperiness, bitterness and overall pungency. 
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n-hexyl-ITC and iberverin are correlated significantly with aroma perceptions 

such as mustard (r = 0.767, 0.815 respectively; both P<0.05), indicating that these 

compounds contribute heavily to rocket odour properties, despite their low relative 

abundance within the VOC bouquet. 4-methylpentyl-ITC (r = 0.912 P<0.01), n-hexyl-

ITC and iberverin (r = 0.836, 0.786; both P<0.05) all correlated with burnt rubber 

aroma. These along with pyrrolidine-1-dithiocarboxylic acid 2-oxocyclopentyl ester (r 

= 0.784, P<0.05) were higher in relative abundance in SR5, which is separated along 

PC1 with sulfur and mustard odours/flavours, as well as with high GSL 

concentrations and relative ITC abundances. 

5-nonanone oxime was significantly correlated with several attributes usually 

attributed to ITCs, and is correlated strongly with SR19 and PC1 (Figure 5.1). 

Significant correlations included pepperiness (odour, r = 0.760; P<0.05; flavour, r = 

0.889, P<0.01; and after effects, r = 0.798, P<0.05), initial heat (r = 0.794, P<0.05), 

tingliness (r = 0.839, P<0.05), warming aftereffects (r = 0.829, P<0.05), and mustard 

flavour and aftereffects (r = 0.843, 0.835; both P<0.05, appendix V). These results 

infer that the sensations commonly associated with rocket are perhaps not wholly 

due to direct products of the GSL-myrosinase reaction, and that other VOCs may 

have a role.  

Tetrahydrothiophene is a pungent chemical odourant (Swanston, 2000) and is 

likely an ITC derivative. It has significant correlations with burnt rubber odour (r = 

0.911, P<0.01), initial heat (r = 0.898, P<0.01), warming (r = 0.844, P<0.05), 

tingliness (r = 0.817, P<0.05), sour taste (r = 0.851, P<0.05), bitter taste (r = 0.783, 

P<0.05), bitter aftereffects (r = 0.809, P<0.05), acid aftereffects (r = 0.927, P<0.01) 

and peppery aftereffects (r = 0.786, P<0.05; appendix V). In agreement with Jirovetz, 

Smith & Buchbauer (2002), we found this compound to be significantly correlated to 

mustard odour, flavour and after effects (r = 0.807, 0.822, 0.842; all P<0.05), as well 
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as sulfur flavour (r = 0.945, P<0.01). This compound has been linked with unpleasant 

odours, allium-like smells and ‘cabbage’ odour (Jirovetz et al. 2002), and our results 

suggest that it is an important component in the volatile mixture produced by rocket 

leaves.  

At the low end of PC1, and opposite to the pungency/pepperiness of SR5 and 

SR19 are the ‘green leaf volatiles’, produced in higher relative abundances by 

accessions such as SR2. The initial heat of leaves (r = -0.854, P<0.05), and the 

aroma sensations of mustard (r = -0.796, P<0.05) and burnt rubber (r = -0.915, 

P<0.01) were negatively correlated with 1-penten-3-ol. This is an unexpected result 

as in previous studies 1-penten-3-ol has been linked with burnt and pungent 

attributes (Berger, Drawert, & Kollmannsberger, 1989; Buttery, Teranishi, Ling, & 

Turnbaugh, 1990), which is not consistent with our data. 

Ketones are VOCs thought to play an active part in plant defense (Jimenez, 

Lanza, Antinolo, & Albaladejo, 2009) and as such it is unsurprising that as these 

compounds are released they contribute to the sensory profile of rocket. They are 

known to have pleasant odours, and 3-pentanone was significantly correlated with 

green odour, flavour (r = 0.881, 0.944; both P<0.01) and aftereffects (r = 0.862, 

P<0.05). 3-pentanone has been previously described as having an ‘ether’ odour 

(Berger et al. 1989). 

Several alcohol, ketone, indole and aldehyde compounds were significantly 

correlated with sweet attributes, and separated highly along PC2. These include 2-

(1,1-dimethylethyl)-1H-indole, 1-penten-3-ol, 1-penten-3-one, 2-hexenal, (Z)-2-

penten-1-ol and (E)-2-pentenal (appendix VI). In previous studies 3-hexenal has 

been linked with green, stalky and aromatic attributes (Carrapiso, Jurado, Timón, & 

García, 2002), but no significant correlations with these was observed in our data. 

Green flavour was low in SR5, as was relative abundance of 3-hexenal. This may 
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suggest a tentative link between relative abundances of ‘green-leaf’ VOCs and the 

perception of pungency caused by sulfur-containing VOCs such as ITCs. From a 

plant defense point-of-view, this may be an evolutionary strategy to favour one 

biosynthetic pathway over another and vice versa. Differing genetic regulation of GSL 

synthesis/ITC formation and the octadecanoid pathway for ‘green-leaf’ VOCs in 

different cultivars may be responsible for the balance between ITC/sulfur volatile 

formation and ‘green-leaf’ volatiles (Ahuja, Rohloff, & Bones, 2010). The relative 

abundances of VOCs between these two pathways are likely to be a determining 

factor in rocket sensory properties. 

 

5.4.3.2.6. Free amino acids  

 AA concentrations were primarily separated along PC4 (plot not presented), 

with the exception of proline on PC3. In Figure 5.1b AAs are co-located with 

sweetness attributes, and negatively associated with pungency. AA compounds are 

known to infer a variety of tastes, and sometimes flavours. Sweet tasting AAs 

include: alanine, threonine, serine, proline and glutamine; sour/umami tasting 

include: aspartic acid and glutamic acid; and bitter tasting include: valine and leucine 

(Nishimura & Kato, 1988; Solms, 1969).  

No significant correlations with sweet attributes were observed for alanine, 

threonine, serine, proline or glutamine, however a general trend was observed for 

these AAs to correlate in the same spatial orientation of sweetness. Glutamic acid 

was significantly correlated with sweet aftereffects (r = 0.794, P<0.05), which is 

unexpected, as this AA has been previously described as having umami properties. 

As an observational trend, high AA concentrations are negatively correlated with 

strong and pungent rocket attributes in PC1, and concentrations are typically higher 

in the ‘milder’ accessions such as SR2 and SR3. 
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 Glutamic acid and aspartic acid did not correlate with savoury (umami) or sour 

tastes (Kirimura et al. 1969). Aspartic acid was significantly inversely correlated with 

savoury aftereffects within the model (r = -0.825, P<0.05). The AAs known to be 

bitter (valine and leucine) showed no significant correlations with this attribute. This is 

unsurprising as these compounds were of very low concentration and were not 

detected at all in some samples.  

 

5.4.3.2.7. Sugars 

Few significant correlations were found for sugar concentration in the sensory 

PCA. The spatial positions of the free sugars can be seen in Figure 5.1b, in the lower 

half of the plot, and are associated generally with sweetness attributes along PC3. 

After this determination, the sugar-GSL ratio was calculated and added as 

supplementary data and regressed onto the sensory PCA. Previous studies have 

suggested that the role of sugar-GSL ratios may influence the perception of 

bitterness (Jones, Faragher, & Winkler, 2006). The correlation matrix revealed no 

significant correlations with bitter taste, however three significant negative 

correlations were observed for total sugar-GSL, glucose-GSL, and fructose-GSL 

ratios with bitter aftereffects (r = 0.773, 0.780, 0.851; all P<0.05). This indicates that a 

greater ratio infers a reduction in bitterness after the swallowing of leaves, but does 

not in turn correspond to a significant increase in sweetness attributes. 

 

5.4.3.2.8. Organic acids 

 OAs have been linked with sourness (Tandon, Baldwin, & Shewfelt, 2000) and 

astringency (Hufnagel & Hofmann, 2008) in previous sensory analyses of other 

foods. Here we saw no such associations, which was unexpected considering the 

relatively high accumulations of OAs in rocket leaves compared with other 
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Brassicaceae. It is possible that an acid-sugar ratio should be considered, however 

only one significant negative correlation between this ratio and a sensory attribute 

(earthy flavour; r = -0.758, P<0.05) was observed (appendix V). Studies on apples 

have shown that the acid-sugar ratio affects sweetness and sourness (Kühn & 

Thybo, 2001) but in a crop such as rocket with so many bitter and pungent volatiles, 

it is difficult to separate and identify if such a ratio is truly affecting perceptions. 

 

5.5. Conclusion 

In this study six promising gene bank cultivars of rocket and one commercial 

comparator (SR3) were used to objectively elucidate the relationships between 

sensory characteristics and phytochemical content, as well as aspects of 

appearance. No study of rocket salad has previously encompassed such a wide 

range of analytical methods and chemical analyses in combination with sensory 

evaluation. It marks a significant step forward in understanding how compounds 

interact and influence perceptions. Whilst only a relatively few samples were tested 

here for practical reasons, it is recommended that in future other other 

cultivars/accessions of rocket to expand upon and elucidate the relationships 

identified. 

There was a large amount of morphological variation between accessions, 

and this also seems to be the case for some sensory attributes, as these varied 

significantly for pungent traits such as sulfur, initial heat on the tongue, tingliness, 

warming sensations, pepperiness, mustard flavour and some of the associated 

aftereffects. It should be remembered that these accessions are not commercial 

products, but are effectively wild (with the exception of SR3). That being said, no truly 

domesticated rocket varieties currently exist because of the relatively short time in 
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which humans have actively bred the species compared to other crops (Bell & 

Wagstaff, 2014; Chapter 2). 

It is important for breeders to have a wide range of traits to select for within 

germplasm collections, but this also makes producing a commercially viable end 

product much more difficult. Bell et al. (2015; Chapter 3) highlighted the diversity of 

GSL and flavonol accumulations in both commercial and germplasm accessions, 

which vary to a large degree regardless of the source or commercial availability. 

Unlike previous sensory studies on rocket, bitterness was not a significantly 

variable attribute in these particular accessions, but the concentrations of bitter-

causing sensations (such as ITCs) are highly variable. This indicates that the sugar-

GSL ratio, and perhaps the relative abundances of ‘green-leaf’ VOCs and ITCs, plays 

an important role in rocket taste perceptions, and could be utilised and modified by 

plant breeders in creating new varieties. These relationships would benefit from more 

in-depth investigation in future studies. 

Several ITC compounds were significantly correlated to the well-known hot 

and pungent rocket attributes, and some VOCs and AAs are negatively associated 

with these perceptions. ITCs typically constitute <9.0% of the overall VOC 

headspace bouquet (Bell et al. 2016; Chapter 4), suggesting that even in low 

abundances they have a very large impact upon sensory attributes. Selecting and 

breeding rocket plants with higher ITC headspace volatile abundance, by even a 

relatively small amount, may have large effects on the sensory properties of leaves. 

The results presented indicate the possibility of elevating health beneficial 

compounds such as glucoraphanin and glucoerucin without any perceptible or 

negative changes in sensory attributes. In this study, no significant correlations were 

observed for these GSLs with any sensory attribute. High glucoraphanin content has 

been selectively bred for in Beneforté broccoli, for example, with no apparent 
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adverse effects on consumer acceptance (Traka et al., 2013). Low concentration 

GSLs such as 4-hydroxyglucobrassicin also seem to infer, or are related to, an 

increased perception of pungent attributes. Therefore selecting for ‘minor’ rocket GSL 

constituents and ITCs could feasibly lead to the creation of “hot rocket” varieties. This 

has been attempted commercially through conventional breeding methods, but 

varieties marketed as such are often unstable across growing environments and 

have problems with reliable seed production due to a lack of true domestication (Bell 

& Wagstaff, 2014; Chapter 2). 

 A consumer study of these same seven rocket salad accessions has been 

conducted; the results of which will be subsequently published. Future work will also 

consider the impact of the industrial supply chain on phytochemical constituents, and 

the implications this might have for sensory attributes. 
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CHAPTER 6: Analysis of Seven Salad Rocket (Eruca sativa) Accessions: 

Consumer Preference Based On Perceived Sensory Attributes, TAS2R38 

Genotype, and the Abundance of Volatile and Non-volatile Compounds 

 

6.1. Introduction To Paper (submitted to Food Chemistry) 

 Immediately after the sensory analysis presented in Chapter 5, a consumer 

study of the same seven accessions of rocket was undertaken. As will be highlighted 

in this chapter, very little scientific evidence has been presented to determine on 

what basis consumers like/dislike/are indifferent to the leaves of the species. The aim 

of this study was to form a foundation for future research, by assessing both 

consumers’ preferences and their perceptions of four key sensory attributes. Utilising 

the knowledge gained from Chapter 5, we identified key discerning attributes on 

which consumers base their preferences. We also determined the taste receptor 

genotype of individuals in the study, which has not been previously tested in respect 

to the sensory attributes found in rocket species. 

 The author wrote an ethics application to the University of Reading ethics 

committee, with the aid and guidance of Dr. Lisa Methven. Ethical approval was 

granted for the experiments, and volunteers were recruited from in and around the 

University of Reading. This was achieved by emailing consenting individuals, whose 

names were listed on a database held by the Food & Nutritional Sciences 

department. Others were recruited via electronic mailing lists, distribution of flyers 

and posters, and word of mouth. 

 This chapter is currently in preparation for submission to Food Chemistry for 

publication. Several subsequent studies conducted at the University of Reading have 

used this experiment as a model, in particular Project SOAR, which was funded by 

Bakkavör. Details of this collaboration are outlined in Chapter 8. 
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6.2. Introduction 

Eruca sativa (“salad” rocket) and other species of rocket are popular leafy 

vegetables consumed all over the world as part of salads or as a garnish (Bennett, 

Carvalho, Mellon, Eagles, & Rosa, 2007). Previous research has largely focused on 

the diversity of phytochemical content and post-harvest quality. Studies have 

investigated the impacts of modified atmosphere and general sensory trends in 

rocket (Amodio, Derossi, Mastrandrea, & Colelli, 2015; D’Antuono, Elementi, & Neri, 

2009; Lokke, Seefeldt, & Edelenbos, 2012; Martinez-Sanchez, Marin, Llorach, 

Ferreres, & Gil, 2006; Pasini, Verardo, Cerretani, Caboni & D’Antuono, 2011), 

however these made certain assumptions regarding what is the ‘ideal’ or ‘preferred’ 

rocket sensory profile of consumers. Few have taken into account the genetic and 

phytochemical variability of rocket varieties, and none have accounted for the genetic 

variability of consumers. Harvest, post-harvest and shelf life processes affect salad 

‘quality’ (Amodio et al. 2015), but no study has tested consumers to determine the 

reasons for their liking/disliking of rocket. This is needed in addition to the 

quantification of sensory traits to plan and implement breeding and marketing 

strategies.  

Studies by D’Antuono et al. (2009) and Pasini et al. (2011) have combined 

aspects from both sensory and consumer studies on Eruca sativa and Diplotaxis 

tenuifolia. While no scores for liking of traits were given, some subjective descriptive 

terms were used, such as “typical rocket salad flavour”. Both studies used six 

untrained individuals but the minimum for profiling is eight trained assessors 

(Carpenter, Lyon, & Hasdell, 2012), and the minimum for a consumer study is 30 

(Hough et al. 2006). 
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Based on these previous studies of preserving appearance and analysing 

sensory traits (Lokke et al. 2012; Pasini et al. 2011), it is difficult to propose 

modification of supply chains/breeding programs without knowing the effects of 

phytochemicals on consumer acceptance. It has yet to be determined which 

attributes consumers like, and if they are able to discriminate between varieties on 

the basis of quantifiable traits. Previous studies have been successful at identifying 

‘bad’ sensory traits, such as leaf browning and off-odours (Lokke et al. 2012), as 

these are uniform across consumer groups.  There has been less focus on identifying 

positive traits preferred by the consumer. 

The reasons given why consumers like the taste and flavour of rocket salad 

are anecdotal. High levels of bitterness are quoted as being a negative aspect of 

consumer acceptance, but this is not universal (Hayes & Keast, 2011). Across 

Brassicaceae crops, it is has been demonstrated that bitter tastes contribute 

negatively to acceptance of products, and this could be part of a protective 

mechanism to prevent ingestion of harmful compounds, particularly at a young age 

(Tepper et al., 2009).  

Bitterness is cited as the main taste attribute of rocket that consumers reject. It 

is an extremely complex taste sensation, with 25 putative G-protein-coupled TAS2R 

receptors existing in humans (Le Nevé, Foltz, Daniel, & Gouka, 2010). 

Glucosinolates (GSLs) and isothiocyanates (ITCs) have been linked with the gene 

hTAS2R38 (Meyerhof et al. 2010) and the thiocyanate moiety (-N-C=S) confers the 

perception of bitterness and shows a bimodal distribution of two haplotypes: sensitive 

and insensitive (Tepper, 2008). Due to genetic recombination, three common 

diplotypes are present within the human population: PAV homozygotes 

(‘supertasters’), heterozygotes (‘medium-tasters’), and AVI homozygotes (‘non-

tasters’; Hayes, Bartoshuk, Kidd, & Duffy, 2008). 
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The hTAS2R38 gene is known to confer varying bitter-tasting sensitivity for 

certain bitter compounds depending on the diplotype of the person (Wooding et al., 

2004). Pasini et al. (2011) suggested that bitterness and pungency in rocket leaves 

has an association with the GSLs progoitrin/epiprogoitrin and dimeric-4-

mercaptobutyl-GSL (DMB). Individuals who have the PAV/PAV ‘supertaster’ 

conformation theoretically perceive bitter compounds such as these and their 

myrosinase derivatives with greater intensity. Some consumers find these tastes 

overpowering or repulsive and avoid consuming Brassicaceae vegetables (Garcia-

Bailo, Toguri, Eny, & El-Sohemy, 2009). 

 We hypothesised those individuals with PAV/PAV diplotype would score 

samples more intensely for bitter taste, and negatively for liking of rocket taste than 

those with PAV/AVI or AVI/AVI diplotypes. This study questioned which of seven E. 

sativa cultivars people preferred based on phytochemical composition and visual and 

textural characteristics. Data were combined with sensory analysis and 

phytochemical analyses presented in Bell, Oruna-Concha, & Wagstaff (2015; 

Chapter 3), Bell, Spadafora, Müller, Wagstaff, & Rogers (2016; Chapter 4), and Bell, 

Methven, Signore, Oruna-Concha, & Wagstaff (2017, Chapter 5) to determine which 

sensory attributes are most important for consumers in deciding if they like or dislike 

rocket. We also tested the hypothesis that sweetness, hotness and pepperiness are 

positive attributes in rocket consumer acceptance.  

Perceptions of sweetness in other foods increase liking, and for some people, 

hotness is also a desirable characteristic; e.g. in hot peppers. Hotness is a trigeminal 

sensation, and consumers vary in their sensitivity according to the number of papillae 

they possess, and the abundance of associated trigeminal neurons (Reed & 

Knaapila, 2010).  
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The study aims were to (a) determine which sensory attributes contribute most 

to consumer liking of rocket, (b) determine if TAS2R38 diplotype status influences 

consumer liking, and (c) determine which specific phytochemical components 

influence liking and disliking of rocket. 

 

6.3. Materials and methods 

6.3.1. Plant Material 

 Plant material was grown and harvested under identical conditions to those 

presented in Bell et al. (2017, Chapter 5). SR2, SR5, SR6, SR12, SR14 and SR19 

were sourced from European germplasm collections; see Bell et al. (2015; Chapter 3) 

for a list of institutes from which each was obtained. SR3 is a commercially available 

cultivar sold by Elsoms Seeds Ltd. (Spalding, UK). 

 

6.3.2. Untrained Consumer Assessments 

The untrained consumer study consisted of 91 consenting individuals, who 

were recruited from in and around the University of Reading (Reading, UK). 

Recruitment stipulated individuals must be over 18 years of age and be non-

smokers. Anchored unstructured line scales were used to determine assessors’ liking 

of overall appearance, leaf shape, mouthfeel and taste (extremely dislike – like 

extremely). Individual perception of selected sensory attributes (bitterness, hotness, 

sweetness and pepperiness) were rated using labeled magnitude scales (LMS). 

Scales ascended from ‘not detectable’, ‘weak’, ‘moderate’, ‘strong’, ‘very strong’ to 

‘strongest imaginable’, where spacing between descriptors increased logarithmically. 

These values were then converted into antilog values and normalised for statistical 

analyses (Bartoshuk et al. 2003).  
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Consumers were asked what the likelihood would be of purchasing each of 

the samples if they were available in supermarkets (5 point category scale; 1 = low 

purchase intent, 5 = high purchase intent). The questionnaire was designed, and 

data acquired, using Compusense software (version 5.2; Guelph, ON, Canada). After 

the testing was complete, consumers were asked to complete a demographic 

questionnaire and answer questions regarding their usual rocket consumption (n = 

90; 1 person declined to answer demographic questions). 

Assessments were conducted in a similar manner to the trained sensory panel 

assessments presented in Bell et al. (2017, Chapter 5) over six weekdays. There 

were two main differences: consumers were presented with each accession only 

once, and were asked to assess the two leaves presented for each accession in 

combination rather than separately. Samples (random coded) were presented in a 

balanced design over two days (four samples at first visit, three samples at second) 

to avoid palate and trigeminal fatigue. On the second visit, volunteers were asked to 

provide a buccal swab sample (in duplicate) using C.E.P. ejectable buccal swabs 

(Fitzco International Ltd., Plymouth, UK). 

 

6.3.3. DNA Extraction 

Buccal DNA samples were extracted using an Omega Bio-Tek E.Z.N.A. 

Forensic DNA Kit (Norcross, GA, USA). 550µl of phosphate buffered saline (PBS) 

and 25µl of protease solution was added to each sample, a further 550µl of bacterial 

lysis buffer, then vortexed (30 s). Samples were incubated for 30 minutes at 60°C in 

a heat block with occasional mixing. Samples were subsequently centrifuged (14,000 

x g), then 550 µl of 100% ethanol (Sigma, Poole, UK) was added, vortexed and 

centrifuged again. 700 µl of sample was passed through a Hi-Bind DNA mini column 

and centrifuged for 1 minute and repeated. 500 µl of isopropanol buffer was added to 
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columns and centrifuged for 1 minute. 700 µl of DNA wash buffer (diluted with 100% 

ethanol) was applied to columns and centrifuged, then repeated. Columns were dried 

by centrifugation for 2 minutes. DNA was eluted into sterile micro centrifuge tubes by 

adding 200 µl of preheated elution buffer (70°C) and left for 3 minutes at room 

temperature (~22°C). Samples were centrifuged for 1 minute and then the elution 

step was repeated. DNA was quantified using a NanoDrop ND 1000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and was subsequently 

stored at -20°C until analysis. 

 

6.3.4. SNP Genotyping 

 SNP genotyping kits were obtained from Life Technologies Ltd. (Paisley, UK) 

according to the three most common alleles of the hTAS2R38 gene: A49P 

(rs713598), A262V (rs1726866) and V296I (rs10246939). A reaction mixture of 

TaqMan Genotyping Mastermix (Life Technologies Ltd.) and primers was prepared 

as follows: 12.5 µl Mastermix, 1.25 µl primer, 6.25 µl d.H2O and 5 µl of DNA template 

(25 µl total per reaction). 3 non-template controls were used on each genotyping 

plate. Analysis was performed on a 7300 Real Time PCR system (Applied 

Biosystems Inc., Foster City, CA, USA). PCR run parameters were as follows: 0 

minutes at 55°C, 10 minutes at 95°C, 15 seconds at 92°C and 1 minute at 60°C. 

Alleles were automatically ‘called’ by RT-PCR software according to fluorescence 

probes. Genotype was determined by the presence/absence of the corresponding 

alleles; the diplotype of 69 individuals was successfully determined. The remaining 

21 individuals either: 1) did not consent to having a sample taken (n = 1), 2) did not 

yield sufficient DNA for analysis (n = 2), or 3) failed to attend the second study visit (n 

= 19). The expected frequencies of diplotypes were determined by comparison to 

observations by Mennella, Pepino, Duke, & Reed (2010). 
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6.3.5. Phytochemical Analyses 

 Point-of-harvest GSL, flavonol, polyatomic ion (PI), headspace volatile organic 

compound (VOC), free amino acid (AA), free sugar and free organic acid (OA) data 

from previous studies were incorporated into a statistical analysis to determine 

significant correlations with consumer preferences and perceptions. These data can 

be found in Bell et al. (2015, 2016, 2017; Chapter 3, 4, & 5). All leaves were 

harvested 30 days after sowing (Hall, Jobling, & Rogers, 2012). 

 

6.3.6. Statistical Analyses 

To ensure an unbiased data set, only consumers who attended both tasting 

sessions were included in statistical analyses (n = 67). Preference and perception 

data underwent analysis of variance (ANOVA) with accessions as a treatment effect. 

Individual consumer TAS2R38 diplotypes were input as a nested effect in a separate 

ANOVA, testing genotype*sample interaction. All ANOVA were conducted using a 

95% confidence interval and a tolerance of 0.0001%, and post-hoc Tukey’s HSD test 

was used for multiple pairwise comparisons. Observed TAS2R38 diplotype 

frequencies were compared with expected frequencies (Mennella et al. 2010) by 

Pearson’s chi-squared test. Any influence of bitter perception (normalised scores) on 

taste liking was tested by Pearson’s correlation.   

Agglomerative Hierarchical Cluster (AHC) analysis was used to identify liking 

and perception clusters; dissimilarity was determined by Euclidean distance, 

agglomeration using Ward’s Method (automatic truncation). ANOVA was then carried 

out separately for each cluster. All clusters containing ≥20 people, plus clusters of 

≤19 with significant discrimination between samples were included in subsequent 

Principal Component Analysis (PCA) analysis.  
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Taste liking data were used to extract principal components (PCs; Pearson n-

1). Phytochemical data were fitted as supplementary variables, as well as the ratios 

between sugars and GSLs, sugars and ITCs, and organic acids and sugars (see Bell 

et al. 2017, Chapter 5), and cluster means. A correlation matrix was constructed as 

part of the analysis to determine significant correlations between variables (P<0.05, 

P<0.01 and P<0.001). Internal preference maps were produced using PCA of 

consumer data (firstly taste liking, secondly appearance liking), with sensory profiling 

data and AHC class centroids regressed as supplementary variables. The taste liking 

preference map also used AHC class centroids relating to mouthfeel liking as well as 

taste liking, and taste perception (normalised bitterness, sweetness, hotness and 

pepperiness) and purchase intent as supplementary variables. All analysis was 

carried out using XLStat (Version 12.0, Addinsoft, Paris, France). 

 

6.4. Results and discussion 

6.4.1. Consumer Demographics & Usual Rocket Consumption 

 Table 6.1 presents the summarised demographic data for this study. 77.7% of 

the participants were between the ages of 18 and 35. Recruitment around the 

University of Reading, led to high numbers of female participants (n = 69; 76.7%), 

and Asian and African (n = 24; 22.2% and 4.4% respectively) participants 

volunteering for the study. 72.2% of those who took part described themselves as 

having White ethnicity. 

 Participants were asked to answer one question about their usual rocket 

consumption: ‘How often do you consume rocket when it is available?’ 36 people 

(40.0%) stated they sometimes eat rocket when available. 11 (12.2%) stated they 

never eat rocket, and only 4 (4.4%) said they always consume rocket when available. 

These responses indicate that the typical consumer makes conscious decisions	



Table 6.1. Summary of study participant demographics (n = 90) and level of usual rocket 

consumption 

Question Number of individuals (%) 

Age range  

18-25 40 (44.4%) 

26-35 30 (33.3%) 

36-45 15 (16.7%) 

46-55 4 (4.4%) 

56-65 1 (1.1%) 

Ethnicity  

White European 26 (28.9%) 

White British 37 (41.1%) 

White Irish 2 (2.2%) 

Asian Chinese 17 (18.9%) 

White/Black Asian 1 (1.1%) 

Black African 4 (4.4%) 

Asian Bangladeshi 1 (1.1%) 

Asian Indian 1 (1.1%) 

Declined to answer 1 (1.1%) 

Gender  

Male 21 (23.3%) 

Female 69 (76.7%) 

Rocket consumption 

Question: How often do you consume rocket when it is 

available? 

 

Never 11 (12.2%) 

Rarely 19 (21.1%) 

Sometimes 36 (40.0%) 

Usually 20 (22.2%) 

Always 4 (4.4%) 
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about the rocket they consume, and there are sensory attributes on which they base 

these decisions. Rocket from diverse growing regions are currently all used the same 

way for each salad product sold on the market. Due to this blanket approach to the 

species, and the inherent sensory diversity present between varieties/growing 

regions, consistency within products is not guaranteed. For the consumer this could 

affect the likelihood of re-purchase, and affect how often they choose to consume 

rocket. 

 

6.4.2. Consumer Preference, Perceptions & Purchase Intent 

6.4.2.1. General 

 The response of consumers for each perception and preference modality 

tested is presented in Table 6.2. Each of the attributes assessed by consumers were 

consistently divided into three clusters in each respective AHC analysis. The average 

scores of all consumers are summarised, as well as the results of ANOVA Tukey 

HSD test pairwise comparisons. Within the text, clusters where a significant 

difference was observed (Tukey HSD test, P<0.05) are denoted by *. Clusters with 

<20 individuals, but contained significant differences between consumer scores, are 

denoted by ^. 

 

6.4.2.2. Appearance liking 

 Appearance liking scores differed significantly between some accessions 

(Appendix II). The appearance of SR19 was liked significantly more than SR3 

(commercial cultivar) and SR14. SR19 closely resembles the leaf morphology of 

Diplotaxis tenuifolia (“wild” rocket), even though it is E. sativa. This demonstrates 

consumers have generally come to like and accept this leaf appearance, as it is the 
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type they are most familiar with. SR3 and SR14 typically have much broader, less 

serrated leaf profiles.  

From AHC analysis, appearance liking Cluster 2* (C2; n = 38, 56.7%) was the 

largest, and consumers differentiated their liking of appearance; generally these 

scores were lower than the total average. SR19 was again the most liked, and was 

significantly different from the commercial cultivar SR3. Appearance liking C3*^ was 

composed of only six individuals (9.0%), but showed a propensity for higher than 

average scores, and discriminated significantly between SR19, SR3 and SR6. 

 In terms of colour liking consumers discriminated significantly, again favouring 

SR19 over SR3 and SR12. Cluster analysis identified some consumers (C3*; n = 22, 

32.8%) liked the dark green leaf colour of SR19 significantly more than the lighter 

coloured SR3, SR6, SR12 and SR14. 

 The liking of leaf shape was also significantly different between accessions. 

SR19 scored significantly higher than SR3 across all consumers. C3* individuals (n = 

23, 34.3%) showed a high degree of preference for SR19 over SR2, SR3, SR5, SR6 

and SR14, but C1 (n = 20, 29.9%) and C2 (n = 24, 35.8%) did not show any 

significant preference. C1 uniformly scored lower than average for all accessions, 

whereas C2 scored much higher for their leaf shape. These data indicate some 

people discriminate based on leaf shape, favouring a “wild” rocket-type leaf, but over 

two thirds show no significant preference. 

  

6.4.2.3. Mouthfeel liking 

The smallest cluster (C2*^; n = 7, 10.4%) showed a significant preference for 

SR3 over SR2, SR5 and SR19. Generally this attribute can be described as being 

comparatively unimportant with regards to most consumers’ preferences, with only a 

minority discriminating in their liking of these accessions. 
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6.4.2.4. Taste liking 

 Considering the whole consumer group there was no significant difference in 

the liking of taste between samples, and this was reflected in the largest cluster (C2, 

n = 36; 53.7%). The minority cluster (C3^, n = 6; 9.0%) disliked the taste of most 

rocket samples (scoring <50). For C1* (n = 25; 37.3%) there was a significant 

difference between accessions where the taste of the commercial sample (SR3) was 

liked significantly higher than for SR12. These people were generally very accepting 

of all seven samples (scoring >63.4), yet still differentiated significantly between 

them. 

These data suggest over half of the people tested are indifferent to the taste of 

the tested cultivars, whereas a proportion of people like all rocket, but especially the 

milder cultivar (SR3). A small percentage of people conversely reject rocket taste to a 

large degree, and they do not discriminate for this modality. 

 

6.4.2.5. Bitterness perception 

 The perception of bitterness has long been held as a defining criterion of 

whether individuals accept or reject Brassicaceae vegetables. The role diplotype of 

the TAS2R38 taste receptor plays in this response will be explored in following 

sections, but irrespective of genetics, consumers could differentiate bitterness 

significantly between some cultivars.  

SR12 was perceived as more bitter than SR6 and SR19. Bitter perception C1* 

was the largest cluster (n = 49, 73.1%) and scores were low compared to the 

average. These people found SR14 to be significantly more bitter than SR6, whereas 

C2*^ (n = 14; 20.9%) conformed to the significance observed in the total average 
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scores (Table 6.2). These individuals scored higher by comparison to the average 

and to C1*, but not as high as the minority cluster C3^ (n = 4, 6.0%). 

Neither SR12 nor SR14 contain especially high concentrations of GSLs (Bell 

et al. 2015; Chapter 3) or volatile ITCs (Bell et al. 2016; Chapter 4). Following the 

assumption these compounds are generally responsible for bitterness in rocket, one 

would expect SR5 to be perceived as the most bitter as it has been found to contain 

11.5 mg.g-1 dw in total GSL concentration, and observed to have a high percentage 

of volatile ITCs within the headspace. This suggests other compounds present within 

leaves contribute to bitterness to a greater degree than has been previously realised. 

The counter-hypothesis is the bitterness caused by GSL-related compounds are 

masked to some degree, either by sugars, amino acids, or green-leaf VOCs (Bell et 

al. 2017, Chapter 5). 

 

6.4.2.6. Hotness perception 

 The perception and level of hotness has been used anecdotally to 

characterise the ‘ideal’ rocket leaf. As a whole cohort, consumers perceived SR19 to 

be the hottest and significantly different from SR2, SR3, SR6, SR12 and SR14. SR19 

was shown to contain lower concentrations of GSLs than all of these accessions 

(with the exception of SR3, Bell et al. 2015; Chapter 3), and as with bitterness, 

indicates other compounds influence the perception of hotness, such as the sugar-

ITC ratio (see 3.5.2.7.).  

Hotness was the only attribute measured in which all clusters discriminated 

significantly between accessions. C2* was the largest cluster (n = 34, 50.7%) and 

mirrored the consumer average, perceiving SR19 to be hotter than all of the other 

accessions. The smaller clusters did not follow this trend – in particular C3*^ (n = 19; 

28.4%) perceived SR5 to be hotter than SR2 and SR14, and C1*^ (n = 14, 20.9%) 
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found SR12 to be the hottest and significantly different from SR2, SR6, SR14 and 

SR19. The apparent differences in perceptions between each of the clusters infers a 

genetic component is responsible, but further study of papillae numbers and specific 

genes involved would be required to draw any meaningful conclusions. As observed 

for attributes associated with heat in Bell et al. (2017, Chapter 5; initial heat, 

tingliness, warming) the hotness attribute measured here has a significant degree of 

variability. This suggests heat is a key characteristic in determining the liking of 

rocket, rather than bitterness, as has been observed in other crops (Schonhof, 

Krumbein, & Brückner, 2004). 

 

6.4.2.7. Sweetness perception  

Several significant differences were observed for sweetness perception on 

average and in the AHC analyses. Overall, the consumers found SR6 to be sweeter 

tasting than SR5 and SR19, which have been previously noted for high levels of 

hotness (Bell et al. 2017, Chapter 5).  

C3* was the largest cluster for this attribute (n = 40; 59.7%) and scores were 

generally much lower than the average, and those of C1^ (n = 19; 28.4%) and C2*^ 

(n = 8, 11.9%). C3* found SR2 to be significantly sweeter than SR5 and SR19, and 

C2*^ found SR6 to be significantly sweeter than all the other accessions. C1^ 

individuals displayed no discrimination between samples, despite their scores being 

higher than the average. These data suggest the pungent compounds found in 

accessions such as SR5 and SR19 mask sweetness perception, which in turn mask 

bitterness. To develop new varieties of rocket that are more acceptable to the 

consumer, hotness, sweetness and bitterness must be considered together, not in 

isolation.  
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6.4.2.8. Pepperiness perception 

SR19 was again scored significantly higher than SR12 for pepperiness overall, 

and higher than SR2 and SR12 in C1* (n = 44; 65.7%). C3*^ (n = 18; 26.9%) scores 

were by comparison higher than the average, but SR2 was perceived as being more 

peppery than SR14. The differences between the two main clusters (C1* and C3*^) 

suggest a subset of people perceive this attribute more intensely. Further study is 

needed in this area, as no previous data have been published in relation to rocket 

and consumer perceptions/liking of this trait. 

 

6.4.2.9. Purchase intent 

 Overall there were no significant differences found for purchase intent, or for 

C1 (n = 31, 46.3%) and C3 (n = 21, 31.3%). C1 scores were generally higher than 

average, indicating the largest proportion of the cohort would consider buying most of 

the accessions were they all commercially available. C3 by comparison had lower 

than average scores, and would likely not buy any of the rocket accessions. 

Significant differences were observed for the smallest cluster, C2*^ (n = 15, 22.4%). 

These individuals would be significantly more likely to purchase SR19 than SR2, SR6 

or SR14. These varieties are typically milder and sweeter, according to the cohort 

averages. The basis of preference is likely to be a combination of appearance and 

perception traits, with SR19 consistently being scored favorably for liking of 

appearance, hotness and pepperiness.  
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6.4.3. Effects of TAS2R38 diplotype 

6.4.3.1. Taste liking and bitterness perception 

 Table 6.3 presents the numbers of each observed diplotype within the study. 

There was no significant difference between the observed and expected frequencies 

(Mennella et al. 2010; chi squared, P = 0.95). Figure 6.1 shows their respective 

average responses for perceived intensities of bitterness (a) and liking of taste (b). 

 TAS2R38 genotype had a significant effect on bitterness perception (P<0.02) 

(Figure 6.1a), and the effect of consumer genotype on bitterness scores was P<0.02 

(ANOVA sum of squares analysis). This suggests a significant effect on bitter 

perceptions, but in the ANOVA there were no significant differences between 

genotypes within a specific rocket accession. The effect of diplotype is not as	
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Figure 6.1. Consumer scores for bitterness perception (a) and taste liking (b) for seven 
accessions of Eruca sativa according to TAS2R38 taste receptor diplotype. Perception scores are 
given as normalised antilog values (a); differences in letters at the top of each bar indicate 
significant differences of ANOVA pairwise comparisons within and between accessions (P<0.05). 
An absence of letters indicates no significant differences were observed. See inset for diplotype 
colour coding. 

a 
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Table 6.3. Summary of consumer TAS2R38 diplotype numbers (n = 69). Observed vs. 

expected numbers and percentages for the whole cohort and AHC taste liking clusters 

C1* (n = 25) and C2 (n = 36). 

Diplotype Observed number (%) Expected % 

Total cohort   

PAV/AVI 35 (52.2%) 51.1% 

PAV/PAV 16 (23.9%) 24.3% 

AVI/AVI 18 (26.9%) 24.6% 

Taste liking C1* 

PAV/AVI 12 (48.0%) 51.1% 

PAV/PAV 6 (24.0%) 24.3% 

AVI/AVI 7 (28.0%) 24.6% 

Taste liking C2   

PAV/AVI 16 (47.1%) 51.1% 

PAV/PAV 7 (20.6%) 24.3% 

AVI/AVI 11 (32.4%) 24.6% 

Undetermined$ 2 - 

Expected numbers determined by comparison to observations in Mennella et al. (2010), 

but not including the frequency of rare diplotypes. Chi-squared tests found no significant 

differences with expected frequencies (Total cohort, P = 0.95; C1*, P = 0.918; C2, P = 

0.564). Chi-squared found no statistically significant differences between the observed 

frequencies in cluster C1* and C2 (P = 0.919). 

* = Significant differences observed between scores (ANOVA, P<0.05; refer to Table 2). 
$ = Individuals present in taste liking cluster C2 but declined to provide a DNA sample; not 

included in % determination 
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pronounced as was originally hypothesised, but a general trend for ‘non-tasters’ to 

score bitterness of rocket lower than ‘medium’ or ‘supertasters’ is apparent.  

The effect of consumer genotype was significant for liking of taste (P<0.004; 

ANOVA sum of squares analysis) however pairwise comparison scores (Figure 6.1b) 

were not significant when the interaction with the sample was taken into account. 

AVI/AVI individuals generally scored higher for liking in some accessions of rocket, 

however this pattern was reversed in accessions where bitter scores were low (SR3). 

In this instance, SR3 has been noted for high concentrations of AAs (Bell et al. 2017, 

Chapter 5), and for PAV/PAV ‘supertasters’ the relatively low concentration of GSLs 

and volatile VOCs infer higher liking.  

The disparity between bitter perceptions and taste liking suggests TAS2R38 

diplotype is only one of (potentially) many factors influencing an individual’s 

preference. A correlation test was performed independently of diplotype status on the 

total cohort data, comparing taste liking with bitterness perception. This test showed 

a significant negative relationship between the two attributes (r = -0.227, P<0.0001) 

and infers as bitter perception increases taste-liking decreases. 

A similar observation was made by Shen, Kennedy, & Methven (2016) for 

perceptions of bitterness and liking in raw broccoli and white cabbage. Influences on 

liking according to TAS2R38 diplotype were observed, but this determination alone 

was not an accurate predictor of whether an individual would like or dislike Brassica-

type vegetables. Other factors, such as consumer demographics, fungiform papillae 

density, familiarity with the food, and the conformation of other TAS2R taste 

receptors may also influence liking and preference in rocket. 
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6.4.3.2. TAS2R38 diplotype frequencies between agglomerative hierarchical clusters 

The individuals in the two largest clusters for taste liking (C1* and C2) were 

scrutinised to see if the respective TAS2R38 diplotype frequencies therein conformed 

to the expected population frequency. As previously stated, C1* individuals tended 

be more discriminating of accessions (preferring SR3 overall) and C2 were 

indifferent. We hypothesised the frequency of PAV/PAV individuals would be higher 

in C1*, which would account for their preference of a non-bitter accession of rocket. 

The frequencies of each diplotype in each cluster were compared to total expected 

population frequencies (Mennella et al. 2010; Table 6.3) by chi-squared tests. No 

significant differences were found between the observed and expected frequencies in 

either cluster (C1*: P = 0.918; C2: P = 0.564). There was no significant difference in 

diplotype frequencies between the two clusters either (P = 0.919), further suggesting 

TAS2R38 status is not a singularly determining factor in consumer preference of 

rocket. The basis for preference is likely due to learned responses and/or other 

sensory factors as mentioned in the previous section (Shen et al. 2016). 

 

6.4.4. Principal Component Analysis 

6.4.4.1. Correlations between consumer preference & perceptions 

  Two biplots from the PCA are presented in Figure 6.2 and PCs were 

extracted on the basis of consumer taste liking scores. A total of six components 

were generated, all with Eigenvalues >1.0, but only the first five contained >10% of 

the explained variation. PC1 explained the largest amount of variance (24.9%) and 

predominantly separated SR12 from all other products. The other dimensions (PCs 2 

to 5) all gave differing separations of the remaining accessions. PCs 1 vs. 4, and 1 

vs. 5 have been selected for discussion as they represented the highest correlations 

with the supplementary AHC centroid scores and phytochemical variables according	
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to their respective loadings scores; they are most informative for the purposes of this 

discussion. Cumulatively, these PCs illustrate 53.7% of the total variation within the 

data. For respective cluster scores for each accession refer to Table 6.2.  

Mouthfeel liking C1 and taste liking C1* correlated highest along PC1 (Figure 

6.2). These clusters locate closely with SR3 and purchase intent C1, indicating a 

preference of the commercial cultivar for some consumers. The bitterness of 

accessions such as SR12, to the extreme left of PC1 and away from SR3, indicates 

this preference is in part due to bitterness being perceived more intensely between 

accessions.  

Sweetness perception C3* correlated most strongly with PC5, as did purchase 

intent C1. These attributes again co-locate near SR3 and SR2, further indicating 

bitterness and hotness are not desirable traits for a subset of the cohort. Similarly 

pepper perception C1* correlates most strongly along PC4. In the top right corner of 

Figure 6.2a, this attribute is associated with SR3 and SR19, and this suggests some 

individuals favor mild, peppery cultivars most. The individuals correlating highest 

along PC4 generally co-locate with SR19 and purchase intent C2*^ (Figure 6.2a). 

Combined with the relatively low perceptions of bitterness, these data indicate SR19 

would be well suited to develop into a commercial product. Individuals showing a 

high degree of preference for SR19 would therefore be more likely to purchase 

rocket if it had more heat and pepperiness, and a low level of bitterness. 

 

6.4.4.2. Correlations with phytochemical content 

6.4.4.2.1. General 

A summary table of all phytochemical-AHC correlation coefficients and 

significances is presented in supplementary appendix VII. 
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6.4.4.2.2. Glucosinolates 

 In the PCA biplot presented in Figure 6.2, concentrations of GSLs yielded 

significant correlations with consumer preference and perception AHC centroids. 

Glucosativin was significantly inversely correlated with scores for purchase intent C1 

and mouthfeel liking C1 (r = -0.841, -0.766; both P<0.05). Individuals in these 

clusters were non-discriminatory but gave higher than average scores for each 

accession. Glucosativin is the most abundant GSL in these samples, and a high 

abundance infers reduced liking.  

Glucoraphanin concentration has no significant positive or negative effects on 

consumer preferences or perceptions, indicating it and its hydrolysis products do not 

have an inherent taste. The compound separates strongly on PC5 (Figure 6.2b), and 

towards the upper left, away from the positions of perception clusters. The broccoli 

variety Beneforté has been bred for very high concentrations of 

glucoraphanin/sulforaphane, and no significant impacts on taste or flavour have been 

reported (Traka et al. 2013).  

Another health beneficial GSL is erucin, which separates along PC5, and 

significantly with sweetness perception C2*^ (r = 0.894, P<0.01). Glucoraphenin is 

also significantly correlated with this attribute (PC5; r = 0.851, P<0.05), but is only 

found in small concentrations in SR2 and SR6 (Bell et al. 2015; Chapter 3). These 

compounds are unlikely to be causing sweetness themselves, but are more abundant 

in sweet-tasting accessions (Bell et al. 2017, Chapter 5; Bell et al. 2015, Chapter 3). 

Future rocket breeding should perhaps be selective for individual health beneficial 

GSLs such as glucoraphanin and glucoerucin, as suggested by Ishida et al. (2014). 

Glucoalyssin was significantly correlated with pepper perception C1* and 

hotness perception C2* scores (r = 0.896, 0.764; P<0.01 and P<0.05, respectively). 

4-hydroxyglucobrassicin was positively correlated with scores from hotness 
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perception cluster C3*^ and negatively with sweetness perception C3* (r = 0.805, -

0.826; both P<0.05). These observations were also made by Bell et al. (2017, 

Chapter 5) and indicate ‘minor’ GSLs of rocket contribute significantly to taste and 

flavour perceptions. Just as glucoraphanin is selected to produce health beneficial 

properties in plants, minor GSLs could also be selected to produce enhanced 

sensory properties. 

 

6.4.4.2.3. Flavonols 

 Negative correlations were observed for isorhamnetin-3-glucoside with 

hotness perception C2* (r = -0.859), and quercetin-3,3,4’-triglucoside and 

kaempferol-3-(2-sinapoyl-glucoside)-4’-glucoside with pepper perception C1* (r = -

0.767, -0.793; all P<0.05). The reduction in perceptions implies an increased 

abundance of these flavonols is associated with reduced pungency. 

 Another significant positive correlation observed was for bitter perception C1*, 

the largest bitter perception cluster, and kaempferol-3-(2-sinapoyl-glucoside)-4’-

glucoside (r = 0.782, P<0.05). It is unusual for a flavonol to have bitter taste, though 

in the complex matrix of the rocket leaf, consumers could have interpreted 

astringency as bitterness. It is likely field-grown rocket would have produced higher 

concentrations of flavonols due to higher light intensities than controlled environment 

(Bell et al. 2015, Chapter 3; Jin et al., 2009), and therefore might have produced 

stronger effects within the data. Further study is needed to properly determine the 

extent that flavonol glycosides influence taste attributes in rocket. 
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6.4.4.2.4. Polyatomic ions 

 Nitrate and sulfate were both correlated with the largest hotness perception 

cluster (Figure 6.2, C2*; r = 0.817, 0.871, both P<0.05). In Figure 6.2a, these 

compounds are closely associated with SR19, which is likely responsible for the 

significant correlations.  

Nitrate and sulfate assimilation pathways are known to be integral to GSL and 

amino acid metabolism within leaves (Hirai et al. 2004). By comparison to the other 

cultivars, GSL concentration was not high in SR19 (Bell et al. 2015; Chapter 3), 

which suggests total GSL content alone is not a good indicator of hotness of rocket. 

The diversity of GSLs and VOCs, and the relative concentrations of accumulated PIs 

and free sugars likely to interact to determine the heat perceived. Future studies 

should therefore explore and take these aspects into consideration when conducting 

sensory and phytochemical analyses of rocket. 

 

6.4.4.2.5. VOCs 

 C numbers in bold within the text refer to VOCs labeled in Figure 6.2; see 

appendix VII for a list of compounds and their corresponding abbreviations. 

An unexpected association with sweetness perception C3* was observed with 

3-methyl-furan (C27; r = 0.979, P<0.01), and a corresponding negative correlations 

with hotness perception C3*^ and pepper perception C1* (r = -0.840, -0.841, both 

P<0.05). Bell et al. (2017, Chapter 5) observed that this compound was significantly 

inversely correlated with bitter perception, but no corresponding association with 

sweetness. C3* was the largest cluster for sweetness perception, and the high 

degree of separation along PC5 (Figure 6.2b) means the compound could be utilised 

as a chemical marker for non-pungent, sweeter varieties of E. sativa. The compound 

was also significantly correlated with increased purchase intent C3 (who generally 
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would not buy rocket), and inversely correlated for purchase intent C2*^ (who 

discriminated for the hot accession SR19). This suggests hotness is preferable for 

one group of consumers, but is rejected by another. 

Sweetness perception C3* also shared corresponding significant negative 

correlations with 4-methylpentyl-ITC (C20; r = -0.764), 1-isothiocyanato-3-

methylbutane (C23; r = -0.869), iberverin (C33; -0.844), pyrrolidine-1-dithiocarboxylic 

acid 2-oxocyclopentyl ester (C36; -0.778) and an unknown compound (C40, r = -

0.832; all P<0.05). Individually, very little is known about the aroma characteristics of 

these compounds, but ITCs and their derivatives are generally known for sulfurous, 

pungent and unpleasant attributes (Engel, Baty, Le Corre, Souchon, & Martin, 2002). 

These data suggest higher abundance has a powerful masking effect on sweetness. 

This is particularly evident in Figure 6.2b where these compounds are clustered near 

to SR5 and SR19, which are both noted for their hotness (Table 6.2). 

 The same compounds were positively correlated with hotness perception C2* 

and C3*^ (C20 r = 0.814, C23 r = 0.794, C36 r = -0.778; all P<0.05; C33, r = 0.881, 

P<0.01). Additionally, 5-nonanone oxime (C21, r = 0.790) and tetrahydrothiophene 

(C38 r = 0.765; both P<0.05) were also associated with these clusters. The later 

compound in particular has been previously associated with hotness and pungency 

in rocket (Bell et al. 2017, Chapter 5). 

Pepper perception C1* (discriminated for SR19) was negatively correlated 

with 3-methyl-furan (C27, r = -0.841), as with hotness perception C3*^ (Figure 6.2b). 

Pepperiness perception C3*^ shared negative correlations with several volatiles, 

such as 2-hexenal (C7, r = 0.783), (E)-2-pentenal (C10, r = -0.772), 5-ethyl-2(5H)-

furanone (C12, r = -0.840) and ethylidene-cyclopropane (C24, r = -0.798; all P<0.05). 

The green-leaf VOCs C7 and C10 were noted by Bell et al. (2017, Chapter 5) for 

being linked with sweeter-tasting cultivars, and detracting from the sensations of 
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bitterness and pungency. C12 has previously been observed in tomato as a 

degradation product of (Z)-3-hexenal (C16; Buttery & Takeoka, 2004). The presence 

of these compounds within the headspace of rocket has important implications for 

consumer perceptions of pungent traits. 

 The dichotomy between those individuals who prefer hotter accessions and 

those who prefer milder can be seen in highly significant correlations with the ITC 

C23. Purchase intent cluster C2*^ (who discriminated for SR19) are positively 

correlated with this compound (r = 0.937, P<0.01) and purchase intent cluster C3 

(who had uniformly low scores for purchase intent) is the inverse of this (r = -0.913, 

P<0.01). This implies part of the reason why the latter individuals (31.3%) scored the 

accessions so low is because of the abundance of ITCs. Taking into account the fact 

that glucoraphanin shared no significant correlations with sensory perceptions, it is 

desirable to breed rocket with reduced pungency and maintain health beneficial 

components. This would cater to the previously undefined demographic of 

consumers who reject rocket because of the hotness of leaves. 

 

6.4.4.2.6. Free amino acids 

 High free AA concentrations detracted from the perception of pungent 

compounds such as ITCs in Bell et al. (2017, Chapter 5). In this study only one 

significant negative correlation was observed between pepper perception C1* and 

proline concentration. Proline is spatially distant at the bottom of the plot (Figure 

6.2a), separating negatively along PC4 from the peppery accession SR19.  

 Threonine correlated significantly with purchase intent C1 (r = 0.755, P<0.05) 

and is known to have sweet taste (Nelson et al. 2002). AAs correlated along PC5 

(Figure 6.2b) and are more highly associated with the milder accessions SR2 and 

SR6. This indicates amino acid content is generally in opposition to hotness, but 
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further study is needed to determine the full extent of the effects. Repeat experiments 

with other cultivars of rocket would help to confirm or reject this hypothesis. 

 

6.4.4.2.7. Free sugars, organic acids and compound ratios 

 Fructose concentration was positively correlated with purchase intent C3 (r = 

0.755, P<0.05), further suggesting these individuals would prefer rocket sweeter and 

less hot. Correlations with sugar-GSL and sugar-ITC ratios were more numerous. 

Purchase intent C3 (where scores were uniformly low) was correlated with high 

fructose-GSL, galactose-GSL and sugar-ITC ratios (r = 0.838, 0.791, 0.820; all 

P<0.05). This suggests the ratios between sugars and GSLs/ITCs are more 

important in determining consumer acceptance than the concentrations of each 

compound individually. The sugar-ITC ratio had a negative correlation with hotness 

perception C3*^ (r = -0.777, P<0.05), inferring higher sugar content masks hotness 

for a proportion of consumers, but not all, as no corresponding correlations were 

observed for C1*^ or C2*. 

 The sucrose-GSL ratio negatively correlated with bitterness perception C2*^. 

This ratio is almost directly opposite to SR12 (Figure 6.2b), separating strongly along 

PC1. SR12 was noted for high perceptions of bitterness (Table 6.2), and these data 

infer, for a proportion of the cohort (20.9%), the effect was an important determining 

factor in their responses. As this was not seen in the other clusters, other factors 

such as TAS2R receptor status and fungiform papillae density could impact the effect 

sugar-GSL ratios have upon perceived bitterness. 
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6.4.5. Internal preference map PCA 

6.4.5.1. Sensory perceptions 

 Figure 6.3a presents a preference map of consumer taste liking scores, where 

sensory panel data for all attributes (taken from Bell et al. 2017, Chapter 5; except 

appearance traits; see following section) and AHC centroids for mouthfeel liking, 

taste liking, perceptions and purchase intent have been regressed as supplementary 

variables. A summary table of relevant correlations is presented in appendix VIII.  

 Six PCs were extracted from the consumer liking data, with all having 

Eigenvalues >1.0. PCs 1 – 5 contained >10% of explained variation, respectively, but 

PC1 and PC2 discriminated most strongly for consumer responses, AHC centroid 

scores and sensory attribute scores. As such these two components were selected 

for presentation and 44.4% of the total variation is explained. 

 Of note are several correlations between sweet perception C3* and sensory 

analysis scores. Centroid scores for this cluster (which were discriminatory, but 

generally low) were inversely correlated with attributes such as stalky odour (r = -

0.820, P<0.05), bitter taste (r = -0.906, P<0.01), bitter aftereffects (r = -0.836, 

P<0.05) mustard aftereffects (r = -0.822, P<0.05) and initial heat mouthfeel (r = -

0.815, P<0.05). These correlations suggest perceptions of sweetness for these 

individuals are low predominantly because of the pungency, heat and bitterness of 

leaves (such as in SR5 and SR19) masking the taste. 

 Taste liking C1* was negatively correlated with earthy flavour attributes 

identified by the trained assessors (r = -0.872, P<0.05). This was also seen for 

purchase intent C1 (r = -0.950, P<0.01), where scores were generally high for all 

accessions, but lower where earthy flavour was more prominent (SR12; Figure 6.3a). 

Taste liking C2 by comparison was negatively correlated with mustard odour (r = -

0.782, P<0.05). Purchase intent C3 was negatively correlated with bitter taste (r = -	
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0.855, P<0.05) and further implies a uniform dislike of rocket because of their 

perceptions of bitterness and hotness. 

 

6.4.5.2. Appearance liking 

 Figure 6.3b illustrates a preference map of consumer appearance liking 

scores, where sensory data for appearance traits (Bell et al. 2017, Chapter 5), and 

AHC centroids for appearance liking traits and purchase intent have been regressed 

onto the PCA. A summary table of relevant correlations is presented in appendix IX. 

Six PCs were extracted from the data, with all scoring >1.0 Eigenvalues and >10% 

explained variability, respectively. PCs 1 and 3 discriminated the supplementary 

variables to the highest degree, and were selected for presentation (44.3% of data 

variation is explained). 

A disparity between leaf shape clusters was observed. Leaf shape liking C1 

was negatively correlated with leaf shape uniformity scores from the sensory analysis 

(r = -0.887, P<0.01), whereas leaf shape liking C3* was positively correlated (r = 

0.798, P<0.05). C3* individuals, who discriminated for SR19 and the traditional 

rocket shape, prefer this type of leaf and the relative uniformity of the accession. C1 

individuals did not discriminate significantly, but tended towards liking the shape of 

the broad-leaved accessions. A proportion of people therefore find the novel leaf 

types unobjectionable, but another proportion prefers the more familiar “wild” type. 

This dichotomy in preference can be observed in Figure 6.3b where these clusters 

are in opposing quadrants of the biplot, and associated with SR19 in the upper right 

of the plot, and SR5 and SR6 in the lower left. 

Correlations along PC1 indicate many consumers overall preferred the 

appearance of SR19. The high concentration of data points to the right is indicative of 

this, and the shape, colour, serrated and dark green leaf type of this accession has 
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likely driven this trend in the consumers. There is an indication of a general and 

substantial preference of this accession over the less familiar, round-shaped leaves 

overall. SR2, SR3, SR12 and SR14 are associated with attributes such as leaf 

hairiness and purple stem. It is perhaps unsurprising that hairiness is an undesirable 

attribute, but the purple stem has previously been thought of as a unique selling point 

for varieties, such as in the variety Dragon’s Tongue (Tozer Seeds). This trait was 

significantly and inversely correlated to purchase intent C2*^ (r = -0.932, P<0.01), 

indicating a proportion of individuals found this trait to be undesirable. 

 

6.5. Conclusions 

 This study has for the first time conducted a consumer analysis of E. sativa 

accessions in conjunction with sensory, phytochemical and human genotype 

analyses. The hypothesis all consumers reject bitter tasting cultivars is not fully 

supported by the data presented, even when human TAS2R38 diplotype of 

consumers is considered. Genotype effects are significant in determining the degree 

to which a person will rate the bitterness of rocket and their liking of taste; but when 

considered with sample effects, pairwise comparisons did not reveal significant 

differences with any specific cultivar tested. ‘Supertaster’ (PAV/PAV) individuals 

generally scored higher for bitterness and lower for taste liking, whereas AVI/AVI 

individual were the opposite of this (with the exception of the commercial cultivar, 

SR3). When these data are viewed in combination with AHCs and phytochemical 

correlations, it seems the predominant basis of acceptance/rejection is actually more 

related to the perceived hotness of leaves, rather than bitterness.  

Distinct clusters of consumer have been identified that show preferences for 

different accessions on the basis of phytochemical content and sensory properties, 

such as for and against ITCs and potent sulfur-containing VOCs. Our second 
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hypothesis that hotness, pepperiness and sweetness were positive traits was 

therefore not wholly accurate. Consumers preferred peppery cultivars like SR19, but 

a substantial proportion of people within the study preferred the ‘milder’ cultivar SR3. 

Many of the consumers were indifferent to any of the accessions, and roughly a third 

would generally not purchase these cultivars.  

The results run in opposition to the general dogma that a) rocket varieties 

should all be hot, but not bitter, and b) consumers either like or dislike varieties on 

this basis. The present study has shown this is an oversimplification of reality, and 

reduced hotness is a desirable sensory trait for a subset of consumers. Some of the 

consumers analysed preferred the hotness, pepperiness and appearance of SR19, 

perhaps making it the most accepted “all-round” accession tested in this study. By 

comparison, SR12 was perceived negatively due to its high levels of bitterness, and 

SR5 was not favored because of its high levels of hotness and low levels of 

sweetness. 

High concentrations of specific phytochemicals that typically contribute 

towards hot and bitter sensations are not acceptable to some consumers. Breeding 

varieties for high total GSL/ITC content is an unsophisticated approach that does not 

account for these differences in consumer preference. Some preferred the hot ITC 

and sulfur compounds that are produced from and associated with the GSL-

myrosinase reaction (as in SR19), but a substantial proportion rejected accessions 

because of low sugar-ITC ratios.  

It is also important to note the health beneficial GSL glucoraphanin had no 

significant effect on consumer perceptions and preferences. This adds weight to our 

hypothesis that specific GSLs can be increased through breeding without having a 

negative impact on sensory attributes (Bell et al. 2017, Chapter 5). With regular 

consumption of rocket and sulforaphane (the ITC of glucoraphanin) consumers could 
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potentially improve their long-term health and reduce the risk of developing chronic 

diseases, such as cardiovascular disease and some forms of cancer (Traka et al. 

2013). 

 The results of this study illustrate consumers of rocket leaves are able to 

differentiate between accessions, and are much more sophisticated in their 

evaluation of leaves than has been previously realised. Not all consumers of rocket 

are alike, and as such desire products that match their tastes. Plant breeders and 

processors must attempt to amalgamate positive visual, sensory and phytochemical 

traits in rocket to expand the market to individuals who at present are not specifically 

catered for. This can be achieved in the short term by selection of varieties that can 

produce a known and consistent standard of expected ‘quality’, and are well suited to 

specific growing regions or climates. In the long term, new varieties must be 

produced that account for the diverse preferences of consumers, such as those who 

prefer sweet and ‘milder’ leaves, and those who prefer hot and peppery leaves. 

These products must also be marketed appropriately; just as different types of apples 

are known for their differing sweet and sour tastes, rocket types could also be 

subdivided according to sensory properties and their intended consumer 

demographic. 
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CHAPTER 7: Changes In Rocket Salad Phytochemicals Within The Commercial 

Supply Chain: Glucosinolates, Isothiocyanates, Amino Acids, & Bacterial Load 

Increase Significantly Over Time 

 

7.1. Introduction To Paper (submitted to Food Chemistry) 

 After performing comprehensive phytochemical, sensory and consumer 

analyses on rocket cultivars under controlled conditions, a second phase of research 

was initiated. Cultivars from the previous analyses were selected to move forward 

into a ‘real-world’ research environment. This involved extensive collaboration with 

the industrial sponsors Elsoms Seeds and Bakkavor, and utilisation of their resources 

and infrastructure to grow, transport and process leaf material. The presented work 

was also in collaboration with a fellow PhD student, H. Nadia Yahya, who conducted 

the bacterial experiments. These data are presented here to provide a holistic view of 

the experiment, and highlight the previously unknown links between glucosinolates, 

isothiocyanates and bacterial leaf populations. 

With a sizeable body of work already conducted, the aim of this study was to 

determine if the conclusions drawn previously would hold true for industrial produce. 

The experiment was large in scope and scale, and to the author’s knowledge, is the 

first whole supply chain phytochemical analysis experiment conducted for any 

Brassicaceae crop that extends from field, to processing, to post-harvest shelf life. 

 

7.2. Introduction 

 The majority of rocket (Eruca sativa & Diplotaxis tenuifolia) consumed in the 

UK is imported from Italy (Bell, Spadafora, Müller, Wagstaff, & Rogers, 2016; 

Chapter 4). In 2015 sales of bagged rocket salad in the UK increased 3.9% on the 
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previous year (Dr. Lorraine Shaw, Bakkavor, Spalding, UK; personal communication, 

2016) and this trend is expected to continue in future.  

Leaves are typically harvested by machine from long, linear beds in open 

fields, polytunnels or glasshouses. Time from sowing to harvest can be between 20 

to 40 days depending on the growing region and species (Bell, Oruna-Concha, & 

Wagstaff, 2015; Chapter 3), and has been reported to extend up to 99 days in winter 

months (Hall, Jobling, & Rogers, 2012). Growing methods vary according to region 

and grower preference. Produce for the bagged salad market is generally processed 

in the same way; after harvesting, leaves are vacuum chilled and stored under cool-

chain conditions (<5°C) until processing. This may be at the site of harvest, a nearby 

facility, or after transport to the country where it will be sold and consumed. Leaves 

enter a ‘low care’ environment, and are typically washed in chlorinated water (Rico, 

Martín-Diana, Barat, & Barry-Ryan, 2007) with mechanically induced water 

turbulence to remove detritus. Leaves are spin-dried in a high care environment to 

remove excess water, and then passed into a ‘high care’ environment, where it is 

weighed and bagged. Products use micro or laser perforated bags that contain 

modified or unmodified atmosphere to preserve and prolong self life (Hall, Jobling, & 

Rogers, 2013). Bags are shipped through a cold-chain to supermarkets and other 

vendors who store them in open-fronted chiller cabinets (Hall et al. 2013). Shelf life of 

rocket has been reported to range from seven to 14 days depending on 

environmental conditions (Martínez-Sánchez, Allende, Cortes-Galera, & Gil, 2008). 

 The stressful nature of the supply chain on leafy produce has led to questions 

regarding how nutritional value is affected (Verkerk et al., 2009). It is known that 

adverse storage conditions post harvest have a negative impact upon the 

appearance and odour of leaves (Lokke, Seefeldt, & Edelenbos, 2012). Cutting and 

processing material also makes it more perishable during storage (Watada, Ko, & 
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Minott, 1996), and temperature is the predominant means by which degradation is 

controlled (Lokke et al. 2012). There has been little research into how nutritional traits 

are affected by the industrial supply chain in leafy salads. Studies have covered parts 

of the supply chain for different Brassicaceae, such as effects of cutting and washing 

(Martínez-Sánchez et al. 2008), post harvest storage (Bell et al. 2016; Chapter 4), 

and packaging treatments (Rangkadilok et al., 2002). 

In this study, a commercial supply chain was utilised to assess phytochemical 

profiles of rocket salads across multiple time points – immature leaves, harvest, 

processing, and throughout shelf life. Building upon previous phytochemical, sensory 

and consumer analyses (Bell et al. 2015, Chapter 3; Bell et al. 2016, Chapter 4; Bell, 

Methven, Signore, Oruna-Concha, & Wagstaff 2017, Chapter 5), six underutilised 

germplasm accessions and one commercial variety were tested for glucosinolate 

(GSL), isothiocyanate (ITC), free amino acid (AA), and free sugar concentrations.  

The aim of our work is to inform the breeding selections and practices of industrial 

collaborators to create new, sensorially and nutritively enhanced varieties of rocket. 

The accessions used throughout have been shown to vary significantly in  

phytochemical composition under controlled environmental conditions, but it is 

unknown how these might change under industrial circumstances. 

 Rocket is well known for accumulating GSL compounds, which are hydrolysed 

by myrosinase enzymes into ITCs, nitriles, and other degradation products (Bell & 

Wagstaff, 2014; Chapter 2). ITCs such as erucin (4-(methylthio)-butyl-ITC) and 

sulforaphane (4-(methylsulfinyl)-butyl-ITC) are both present in rocket species, and 

their potential anticarcinogenic properties are well studied in the literature (Traka et 

al. 2013). Other ITCs present in rocket are not well understood. The GSLs DMB 

(dimeric 4-mercaptobutyl-GSL), glucosativin (4-mercaptobutyl-GSL), 

diglucothiobeinin (4-(β-D-glucopyranosyldisulfanyl)-butyl-GSL), and their respective 
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myrosinase degradation products are poorly understood in terms of abundance and 

anti-cancer properties. As demonstrated in Bell et al. (2017, Chapter 5) some of the 

volatile derivatives of the GSL-myrosinase reaction, infer significant associations with 

sensory attributes such as bitterness and pungency. Some GSLs such as 

glucoerucin and glucoraphanin have no significant sensory properties associated 

with them.  

In Bell et al. (2017, Chapter 5), total AA concentration was negatively 

correlated with the perceptions of bitterness and pungency, leading to the hypothesis 

that certain AAs contribute to sensory qualities of the crop (Solms, 1969). The way 

AAs respond to commercial processing may therefore impact upon sensory traits, 

and are an important indicator of senescence and tissue breakdown (Buchanan-

Wollaston et al. 2003). Free sugars may also impact sensory attributes by masking 

bitter and pungent sensations, though it is unknown how they are affected by 

processing in rocket. 

 Another important aspect of rocket in the supply chain is the presence of 

bacteria (which are naturally present on leaves). Usually these are non-pathogenic 

strains and do not pose a health concern for humans, but can contribute to spoilage 

and shorten shelf life (Lokke et al. 2012). It has been known for over 20 years that 

chlorinated or chemically treated water does not erradicate bacterial populations from 

leaves, but does have a role to play in ensuring santitation of recirculated water in 

processing facilities. Strict field technical control protocols are followed to prevent 

contamination with pathogenic strains (Dr. Lorraine Shaw, Bakkavor, Spalding, UK; 

personal communication, 2016), however native leaf bacteria reside within cells and 

crevaces on the leaf surface, making it impossible to fully remove them from fresh-

cut produce (Watada, Ko, & Minott, 1996). ITCs are known to have antibacterial 

effects (Vig, Rampal, Thind, & Arora, 2009) but this relationship has not been studied 
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in the context of the commercial supply chain. Free sugars may also provide a food 

source for bacteria, and we question how natural populations respond to 

concentrations within leaves during commercial processing and shelf life. 

 With the aforementioned aspects in mind (Verkerk et al., 2009), we 

hypothesised that GSL and ITC content would decline significantly over time due to a 

combination of GSL hydrolysis and leaching into wash water. We theorised that this 

would lead to a reduction in the nutritive and health beneficial properties of leaves. 

We also hypothesised that with a decrease in potentially anti-microbial compounds 

(ITCs) bacterial populations would increase and peak during shelf-life. The results 

presented in this paper show however that these hypotheses could be rejected, and 

that  processing of rocket leaves may add nutritional value to the crop. 

 

7.3. Materials & Methods 

7.3.1. Plant Material 

 The five non-commercial accessions used in this paper (E. sativa) were 

originally sourced from European germplasm collections. See Bell et al. (2015; 

Chapter 3) for information regarding the supplying institutes. Due to the small 

amounts of seed given, each cultivar was individually bulked by open pollination in 

separate glasshouse compartments at Elsoms Seeds Ltd. (Spalding, UK) in the 

spring/summer of 2014. The amount of seed produced for each cultivar weighed 

>500 g. The commercial variety Torino (Diplotaxis tenuifolia) used as a comparator to 

gene bank-sourced cultivars. 

 

7.3.2. Growing & Industrial Supply Chain Conditions 

 Plants were grown in an open field at a Bakkavor supplier, (Dorchester, 

England) from the 3rd to the 25th of July 2014. Cultivars were sown using a tractor 
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mounted air drill in parallel beds measuring approximately 50 meters in length. Torino 

was sown as a guard crop surrounding the trial beds, and crop protection and 

irrigation of the trial was as per standard commercial practice.  

Plants were harvested on the morning of 25th of July 2014 (22 days old) by 

machine. Due to the slower growth of Torino, plants drilled on the same date as the 

E. sativa cultivars were not harvested. Leaves were loaded into crates, which were 

placed into a waiting trailer. From harvest (H) onwards, five temperature data loggers 

(Tinytag Transit 2, -40 to +70 °C sensitivity range; Gemini Data Loggers Ltd., 

Chichester, UK) were added to crates and set to record one data point every five 

minutes for the remainder of the trial. See appendix X for a temperature-time plot of 

averaged data. The temperature on the day of harvest was unusually hot for UK 

summer time, and the recorded average was 34.8 °C. 

 A tractor-trailer loaded with samples was driven approximately one mile to a 

storage facility. Crates were unloaded into a vacuum cooler, which removed field 

heat from the produce. Samples were stored in a 4 °C cold store, in the dark, for two 

days; the average temperature for this period was 4.9 °C. Samples were transported 

on the third day after harvest to a Bakkavor processing site via temperature-

controlled lorry. Produce was stored in a 4 °C environment for the remainder of that 

day, but temperatures ranged between 2.2 °C and 8.6 °C during this time. 

 The following day, samples were processed using a commercial wash line 

with mild water chlorination. Each cultivar was entered into the line separately with a 

five-minute gap between to prevent mixing. Leaves were spin-dried, before being 

transferred by conveyor belt to be bagged in unmodified atmosphere, micro-

perforated bags. Produce was stored overnight under controlled conditions; 

temperatures averaged 5.1 °C in the processing environment. The day after, samples 

were transported via courier in a temperature-controlled vehicle to the University of 
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Reading (UoR), but temperatures as high as 14.3 °C were recorded during this time, 

representing a potential breach in the cold-chain (appendix X). The temperature upon 

arrival at UoR was 21.7 °C. 

 

7.3.3. Shelf-life Storage Conditions 

 Samples were then stored in the dark continuously, for nine days in a 

controlled temperature storage room set to 4 °C. Temperatures varied, reaching an 

average low of 3.9 °C, and an average high of 6.4 °C. Storage conditions represent 

typical refrigeration temperatures used for storing rocket salad, although a range 

between 0 °C and 4 °C is considered optimal within the literature (Dekker, Verkerk, & 

Jongen, 2000). 

 

7.3.4. Sample Collection 

 Leaf samples were taken at ten time points (n = 3), spanning the previously 

described supply chain, with each bagged sample treated as one replicate. Bacterial 

count samples were taken separately, with each replicate weighing ~30 g (n = 3).  

The first samples were taken 12 days after sowing and included all E. sativa 

samples but not Torino because of the disparity in growth stages. These samples 

were designated ‘preharvest’ (PH) and represent produce at an immature growth 

stage. Both leaf and cotyledon were sampled and taken from random points along 

the complete length of each bed to avoid any potential bias from localised field 

effects. At harvest (H) Torino was again not sampled, as it was not of marketable leaf 

size. Samples were taken from multiple crates of harvested material spanning the 

length of the trial to again avoid bias. For both PH and H, samples were placed 

immediately into Ziploc freezer bags and frozen on dry ice in polystyrene containers 

to prevent phytochemical changes during transit. Samples were transported by car to 
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UoR, taking approximately two hours. Upon arrival samples were placed into a -80 

°C freezer. 

 Sampling at delivery to the Bakkavor processing site was designated ‘post 

transport’ (PT). It was at this time that the commercial variety Torino was first 

sampled. Samples were taken from a crop from the same producer and harvested on 

the same day, but had been sown approximately seven days before the E. sativa 

cultivars.  

The following day, two time point samples were taken and designated ‘pre-

wash’ (PR) and ‘post-wash’ (PW), and were again taken from random crates to avoid 

bias, and frozen on dry ice. Transit time from the Bakkavor processing site to UoR 

was approximately one hour.  

 Upon arrival at UoR the following day, transported bagged samples were 

taken and placed directly into a -80°C freezer. This time point was designated ‘day 0’ 

of shelf life (D0). Subsequent samples were taken at ‘day 2’ (D2), ‘day 5’ (D5), ‘day 7’ 

(D7; commercial display-until date, DUD), and ‘day 9’ (D9; DUD +2) in an identical 

fashion. 

 All samples were lyophilized in batches for three days. Dried tissue was milled 

using a Mini Cutting Mill (Thomas Scientific, Swedesboro, NJ, USA) into fine powder. 

Samples were stored in a cool, dry, dark place until analyses began. All time points 

were examined by analytical methods (see following sections), with the exception of 

PH and H time points for Torino (as explained previously), and D9 for bacterial 

counts. Due to the time consuming nature of extraction, only time points PT and D7 

were analysed for GSL hydrolysis products in each cultivar. 
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7.3.5. Bacterial Counting 

7.3.5.1. General 

 Total plate count (TPC) of the plant materials was determined at nine different 

processing points (PH – D7) for the cultivars of E. sativa. Samples of Torino began at 

time point PT. 

 

7.3.5.2. Preparation Of Nutrient Agar For TPC 

 11.75 g of standard plate count agar (APHA; Oxoid Ltd., Basingstoke, UK) 

was diluted in 500 ml of distilled water and stirred until boiling, giving a final 

concentration of 2.4% (w/v). Agar was sterilised (15 minutes at 121 °C) and 

subsequently kept in a 50 °C water bath to maintain molten state. 

 

7.3.5.3. Preparation Of Maximum Recovery Diluent For Sample Preparation & 

Enumeration 

 For sample preparation, 9.5 g of maximum recovery diluent (MRD; Sigma, 

Gillingham, UK) was diluted in 1 L of distilled water (0.95% w/v) and stirred until 

completely dissolved. 90 ml of MRD was poured into 100 ml bottles and then 

sterilised (15 minutes at 121 °C). The mixture was left to cool, or was kept in a 4 °C 

cold room for longer-term storage. For enumeration, MRD was prepared in an 

identical fashion. 9 ml of MRD was then transferred to a bottle, sterilised and cooled, 

as above. 

 

7.3.5.4. Total Plate Count 

 10 g of rocket leaves was added to the 90 ml preparation of MRD and placed 

in a stomacher (400 Circulator; Seward, Worthing, UK) and shaken for 120 seconds 

(230 rpm) to create a 10-1 dilution (w/v). 1 ml of the homogenised inoculum was 
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sampled and serially diluted into the 9 ml MRD preparation to obtain 10-2, 10-3, 10-4, 

10-5, 10-6, and 10-7. 1 ml of each respective solution was added to 15 ml nutrient agar 

(45 – 50 °C) in petri dishes, using the pour plate technique. Plates were swirled to 

mix evenly. Inoculated plates were allowed to cool at room temperature (~22 °C) until 

the liquid solidified, and incubated at 30 °C in inverted condition. After 72 ± 3 hours, 

the number of colonies per plate were counted using a colony counter. Bacterial 

numbers for each sample were estimated in colony forming units (cfu.g-1). 

 

7.3.6. Glucosinolate Extraction & Analysis By LC-MS/MS 

Glucosinolates were extracted and analysed according to the protocol in Bell 

et al. (2015; Chapter 3) with the following alterations: Extracts were filtered with 0.22 

µm Arcrodisc syringe filters with Supor membrane (hydrophilic polyethersulfone; 

VWR, Lutterworth, UK) after extraction. Analysis was performed using an Agilent 

1200 Series LC system (Agilent, Stockport, UK) equipped with a variable wavelength 

detector (GSLs quantified at 229 nm), and coupled with a Bruker HCT ion trap 

(Bruker, Coventry, UK). A Gemini 3 µm C18 110 Å (150 x 4.6 mm) column was 

utilised (with Security Guard column, C18; 4mm x 3mm; Phenomenex, Macclesfield, 

UK), and separation was optimised for use with the Bell et al. (2015; Chapter 3) 

isocratic gradient, at a flow rate of 0.4 ml/min. A six point sinigrin hydrate calibration 

curve was prepared (r2 = 0.977, y = 7.763; Jin et al. 2009). Compounds were 

identified using literature ion data and characteristic ion fragments (Table 7.1). 

Quantification was performed using Bruker Daltonics HyStar software (Bruker) with 

relative response factors. 
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7.3.7. Free Amino Acid Analysis By GC-MS & Free Sugar Analysis By Capillary 

Electrophoresis 

 Free sugars and free AAs were extracted and analysed using the protocol and 

instrumentation presented in Chapter 5. 

 

7.3.8. Glucosinolate Hydrolysis Product Extraction & Analysis By GC-MS 

 Samples were extracted and run in a random sequence to avoid bias (as for 

all other analyses). 0.5 g of lyophilized rocket powder was mixed with 10 ml of 

deionized water. Tubes were incubated for three hours at 30 °C in a temperature-

controlled room. The mixture was subsequently centrifuged for ten minutes (4,600 

rpm) and supernatant collected. This last step was repeated twice more and 

supernatants were combined and filtered (0.45 µm syringe filters, Sartorius Minisart 

cellulose acetate, surfactant free membrane; Sartorius, Epsom, UK) into glass 

centrifuge tubes. An equal volume of dichloromethane (DCM) was added, vortexed 

and centrifuged (3,500 rpm) for ten minutes. The organic phase was collected using 

glass Pasteur pipettes and transferred into a new glass centrifuge tube. Sample was 

salted with sodium sulphate (2 g; Sigma) and filtered using Whatman Grade 1 filter 

paper into a round-bottomed flask. Filtrate was dried using a rotary evaporator (37 

°C) and re-dissolved in 1 ml of DCM. This volume was filtered again with a 0.22 µm 

filter (VWR) into glass GC-MS vials for analysis. 

 GC-MS was performed on an Agilent 7693/5975 GC-MS with autosampler  

(Agilent, Manchester, UK). Sample was injected onto a HP-5MS 15 mm wax plus 

column (0.25 µm film thickness, 0.25 mm I.D.; Agilent). Injection temperature was 

250 °C in split mode (1:20); oven temperature was programmed from 40 – 320 °C at 

a rate of 5 °C/min until 250 °C. Carrier gas was helium, with a flow rate of 1.1 ml/min 

and a pressure of 7.1 psi. Mass spectra were obtained by electron ionization at 70 
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eV, and mass scan from 35 – 500 amu. 1 µl of sample was injected, and separation 

occurred within a 42 minute run. Compounds were identified using literature ion data 

(Table 7.1) and quantified based on integrated peak areas of an external standard 

calibration curve of sulforaphane (Sigma). Standards for the other ITCs and nitrile 

compounds detected were unobtainable. Five concentrations of sulforaphane were 

prepared from a stock of 5 mg.ml-1 in DCM: 0, 0.175, 0.25, 0.375, and 0.5 mg.ml-1 (r2 

= 0.947; y = 4E+08). Data analysis was performed using ChemStation for GC-MS 

(Agilent). 

 

7.3.9. Statistical Analysis 

 Results from three biological replicates of each sample (n = 3) at each time 

point, for all compounds analysed were averaged. All statistical analyses were 

performed using XL Stat (Addinsoft, Paris, France). 

 ANOVA followed by Tukey’s HSD test was used to conduct multiple pairwise 

comparisons and determine significant differences (P<0.05) between cultivars at 

each respective time point (i.e. SR2 vs. SR5 at H), and between time points for each 

cultivar (i.e. H vs. D7 for SR6). 

 Averaged data were entered in to Principal Component Analysis (PCA) with 

correlation matrix (Pearson, n-1) in two separate tests. The first test extracted 

principal components (PCs) using GSL, AA, sugar and bacterial count data, with time 

point regressed as a supplementary, qualitative variable. The second test extracted 

PCs using data from time points PT and D7 (for each of the aforementioned 

analyses) with the addition of GSL hydrolysis product data. Significance thresholds of 

P<0.05, 0.01, and 0.001 were applied to each respective analysis. 
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7.4. Results & Discussion 

7.4.1. Bacterial Counts & Phytochemical Composition Of Rocket Extracts Within The 

Commercial Supply Chain 

7.4.1.1. Bacterial Counts 

Bacterial count data for each time point and cultivar are presented in Figure 

7.1. The general trend in the data matched our hypothesis that bacterial populations 

would increase during shelf life, which is in agreement with  Martinez-Sanchez, 

Marin, Llorach, Ferreres, & Gil (2006). With the exception of SR12 and Torino, all 

other cultivar TPC numbers peaked on D7 (DUD); and with the exception of SR12 
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Figure 7.1. Total plate count (TPC) numbers of bacteria from rocket salad leaves (cfu.g-1) at each 
respective time point during the commercial supply chain (top) and shelf life (bottom) periods 
which are both part of the same ANOVA with Tukey’s HSD pairwise comparison tests. Error bars 
represent standard errors of the mean TPC. Letters a, b, c: bars not sharing a common letter differ 
significantly (P<0.05) between accessions for each individual time point. Letters w, x, y, z: bars not 
sharing a common letter differ significantly (P <0.05) across time points for each individual 
accession. Abbreviations: PH, preharvest (12 days old); H, harvest (22 days old); PT, post 
transport; PR, pre-wash; PW, post wash; D0, day 0 shelf life; D2, day 2 shelf life; D5, day 5 shelf 
life; D7, day 7 shelf life (DUD; display until date). 
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and SR14, these values were significantly higher than PR levels. Torino had 

significantly greater numbers of bacteria present from PW through to D7; possibly 

due to the difference in leaf morphology of D. tenuifolia. 

The breaches in the cool-chain combined with high summer field 

temperatures, likely contributed to the high bacterial counts. Previous data presented 

under pseudo-commercial conditions for rocket (D. tenuifolia; Spadafora et al. 2016) 

showed that produce stored above 10 °C for 14 days (~4.0 cfu.g-1 fw) has 

significantly more bacteria on the leaves than those stored at 5 °C and 0 °C. The 

samples in this experiment were stored for only nine days, and bacterial counts were 

highest on D2 of shelf life, and several log units greater in abundance (Torino; Figure 

7.1). Conversely, the cultivar SR14 saw no significant changes in bacterial load 

throughout the entire supply chain. This indicates that there may be a genotypic 

component imparted by each cultivar on the endemic leaf bacteria that determines 

their proliferation. Appendix X demonstrates that temperatures breached the 10 °C 

threshold twice after harvest, but without independent data it is difficult to determine if 

this is the absolute cause for the high bacterial numbers seen for the other cultivars 

in the subsequent days. 

Bacteria continued to propagate during shelf life on all accessions, possibly 

due to the unmodified air and high relative humidity within bags (Watada et al. 1996). 

The aforementioned factors likely allowed the natural bacterial populations present 

within/on leaves to proliferate. Non-pathogenic field bacteria are likely to be resistant 

to extremes of temperature due to the variable climate of the UK, and so are likely to 

grow even under cold-chain conditions. Further experimentation is needed on 

commercial produce in order to properly elucidate these effects. 
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7.4.1.2. Glucosinolates 

GSL concentrations for each cultivar are presented in Figure 7.2, and LC-

MS/MS ion data used for identification are presented in Table 7.1. At each respective 

time point, total GSL concentrations between cultivars did not differ significantly.  

The highest total GSL concentration was in Torino on D7 (11.5 mg.g-1 dw) and 

the lowest in SR12 at PR (1.0 mg.g-1 dw). The trend for GSL concentrations was to 

increase over time from H, before lowering at D9 (Figure 7.2), which was contrary to 

our hypothesis. SR5 had significantly higher GSL accumulation at D7 (9.7 mg.g-1 dw) 

compared with PH (1.9 mg.g-1 dw) and H (2.0 mg.g-1 dw) and this was also seen in 

SR6: H = 1.3 mg.g-1 dw, PW = 7.7 mg.g-1 dw, D0 = 9.3 mg.g-1 dw, D5 = 8.4 mg.g-1 

dw’; and in SR12: H = 1.8 mg.g-1 dw, D2 = 8.1 mg.g-1 dw. These GSL concentrations 

at PH (12 days old) and H (22 days old) are low compared to controlled environment  

(Bell et al. 2015; Chapter 3), as no cultivar contained >3.6 mg.g-1 dw (SR14).  

The relatively low concentrations at PH are likely due to the low dry matter 

content at this immature stage of growth. Work conducted in Arabidopsis thaliana 

(Brown, Tokuhisa, Reichelt, & Gershenzon, 2003) has indicated that dry matter and 

leaf number are related to total GSL concentration. One would therefore have 

expected GSLs in rocket to increase over this 10 day gap in growth and sampling 

(PH to H) but no significant differences in the concentrations were observed between 

the two time points. This implies that concentrations measured in the H samples 

were possibly reduced due to the damage induced by harvesting and the high 

ambient field temperature (appendix X). Further study is needed to ascertain the true 

effects of harvesting on GSL concentrations of commercial rocket. 

When the data at H are compared to controlled environment conditions (Bell et 

al. 2015; Chapter 3), concentrations are 48.5% lower for SR2, 82.6% lower for SR5, 

87.0% lower for SR6, 78.6% lower for SR12, and 52.0% lower for SR14. Despite this 
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difference in observed GSL abundances, only SR6 and SR12 failed to recover during 

shelf life and exceed concentrations previously reported (Bell et al. 2015; Chapter 3). 

When looking at the respective GSLs over time for each cultivar, it is apparent 

that concentrations are highly dynamic. Concentrations of glucosativin varied 

significantly between time points and most of the changes occurring in total GSL 

concentration are because of the relative increases/decreases of this GSL.  

 DMB was also observed at each respective time point, though no significant 

differences were seen until D9 (SR5; 2.4 mg.g-1 dw). The propensity for certain 

rocket accessions and varieties to accumulate DMB and glucosativin in differing 

ratios has been documented by Bell et al. (2015; Chapter 3), though relatively few 

studies have acknowledged that it is an independent GSL and is naturally present in 

rocket leaves. This was originally proposed by Cataldi, Rubino, Lelario, & Bufo 

(2007), and our study lends further support to the hypothesis that both monomeric 

glucosativin and DMB should be identified and quantified separately. 

Glucoerucin and glucoraphanin did not show any significant difference across 

either time points or cultivars. The lack of any significant changes in glucoraphanin 

concentration is in agreement with a previous study in broccoli florets (Winkler, 

Faragher, Franz, Imsic, & Jones, 2007). This GSL seems to be far more stable than 

others in rocket, such as glucosativin and glucoerucin (Figure 7.2). 

 Several other GSLs were also observed. These were: diglucothiobeinin, 

glucoiberverin, 4-hydroxyglucobrassicin, and epi/progoitrin. Diglucothiobeinin had 

significant changes over the course of the trial in both SR5 (Figure 7.2b) and Torino 

(Figure 7.2f). No significances were observed for glucoiberverin, which was transient 

between time points. 4-hydroxyglucobrassicin was only detected in SR5 and SR6 in 

small amounts (<0.3 mg.g-1 dw), though this GSL may infer important sensory 

attributes as suggested in Bell et al. (in press, Chapter 5), where it was correlated 



	 250	

with pungent sensations. Epi/progoitrin was only observed in SR5 at D0 (0.3 mg.g-1 

dw; Figure 7.2b) but has been previously linked with bitter taste in rocket (Pasini, 

Verardo, Cerretani, Caboni, & D’Antuono, 2011). 
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Figure 7.2. Glucosinolate (GSL) concentrations within each cultivar at each time point (mg.g-1 dw). Letters a, 
b, c: bars not sharing a common letter differ significantly (P<0.05) between time points for each individual 
accession. Letters x, y, z: bars not sharing a common letter differ significantly (P<0.05) across accessions for 
each time point. Letters above bars refer to differences in total GSL concentration; letters within/beside bars 
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7.4.1.3. Glucosinolate Hydrolysis Products 

ITC and nitrile concentrations are presented in Figure 7.3, and GC-MS ion 

data used for identifications are presented in Table 7.1. All concentrations are 

expressed as equivalents of sulforaphane. 

Total GSL hydrolysis products were predominantly composed of the ITCs 

sativin and sulforaphane (derived from glucosativin/DMB and glucoraphanin, 

respectively). The nitriles of erucin and sulforaphane were also observed, as well as 

a sativin degradation product, bis(4-isothiocyanatobutyl)-disulfide. Total 

concentrations varied significantly for SR2, SR12, and SR14 between the two time 

points analysed. Total hydrolysis products were significantly higher in Torino at PT 

(0.4 mg.g-1 dw) than the E. sativa cultivars, but by D7 there were no significant 
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differences between the cultivars. The decline in sulforaphane concentration between 

PT and D7 was significant in Torino, measuring 0.3 mg.g-1 dw (PT) and falling to 0.1 

mg.g-1 dw (D7). This suggests that although glucoraphanin concentration remains 

stable over time, this may not translate into consistent ITC formation. All of the E. 

sativa cultivars saw significant increases in sulforaphane between PT and D7, and 

SR14 saw significantly higher concentrations than any of the other cultivars (0.4 

mg.g-1 dw). This is contrary to the reductions seen in headspace ITC concentrations 

(Bell et al. 2016; Chapter 4), indicating this method of analysis may not be reflective 

of abundance within leaves, or of GSL concentration as has been sugested by 

Spadafora et al. (2016). 

 Sulforaphane (derived from glucoraphanin) was the most abundant ITC 

detected, which does not mirror the GSL composition of rocket salad. Logically, one 

would expect that sativin would be the predominant ITC, due to the large 

concentrations of glucosativin/DMB on D7. The observations were variable, and did 

not generally exceed those for sulforaphane. Significant differences were only 

observed for SR12 between each time point, despite the obvious large differences 

seen in the other cultivars (Figure 7.3). We hypothesise that the high variability of 

sativin concentration may be due to its unstable nature, when compared to 

sulforaphane, for example. 

 Another anomaly observed in our data are the low concentrations of erucin. 

Erucin increased significantly from PT to D7 in SR2, SR5 and SR12, and declined 

significantly in Torino. The highest concentration was only 5.7 µg.g-1 dw however 

(SR12; D7). A study comparing ITC extraction methods in E. sativa seeds (Arora et 

al., 2014) showed that erucin recovery was dependent on the homogenisation time 

and GC-MS injection temperature, which may account for the low concentrations 
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observed here. It may be that the extraction method has a significant impact on 

determining the relative abundances of ITCs, as well as their inherent volatility. 

4-isothiocyanato-1-butene was observed, and has been quoted in the 

literature as a breakdown product of gluconapin (Guo et al. 2014). No gluconapin 

was observed in the samples, and we hypothesise that this compound may be a 

breakdown product of either sulforaphane or erucin (Arora et al., 2014). 

Concentrations were significantly higher in SR14 (11.6 µg.g-1 dw) on D7 than any 

other cultivar, and SR14 also has high concentrations of both erucin and 

sulforaphane. 

Another point of note is the low amounts of nitrile compounds detected in 

leaves. This may depend greatly upon the acidity of hydrolysis conditions (Bell & 

Wagstaff, 2014; Chapter 2), however nitrile formation over ITC in broccoli has been 

shown to account for a substantial reduction in potential health promoting properties 

(Matusheski & Jeffery, 2001). Our data infer that the prevalence of ITC formation in 

rocket may have important implications for health benefits to the consumer. ITCs do 

survive commercial processing, and increase significantly post harvest. This 

suggests that consumers are able to ingest ITCs (particularly sulforaphane) from 

rocket salad bags, and that processing actually enhances this property of leaves. 

In a hypothetical scenario where SR14 contains 1.97 µmol.g-1 dw (0.35 mg.g-1 dw) of 

sulforaphane, a commercial 50 g bag would therefore contain approximately 9.85 

µmol, assuming 0.2 µmol.g-1 fresh weight with 10% dry matter. Cooked broccoli 

contains ~5.8 µmol.g-1 dw after boiling for four minutes, ~2.0 µmol.g-1 dw after eight 

minutes, and ~1.2 µmol.g-1 dw after 12 minutes (Ghawi, Methven, & Niranjan, 2013). 

This means that weight for weight, SR14 contains almost as much sulforaphane as a 

typical broccoli cultivar after cooking for eight minutes. Rocket requires no cooking in 

order to be eaten, and the present study data suggest that consuming rocket after 
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commercial processing could be an effective way for consumers to enhance their 

intake of sulforaphane. Clinical studies testing the direct and indirect effects of 

sulforaphane consumption are few, and the concentrations needed to elicit health 

beneficial effects in humans are ambiguous within the literature. Nevertheless, the 

weight of consensus suggests that increased consumption of sulforaphane in the diet 

has important long-term health benefits (Traka et al. 2013). 

  

7.4.1.4. Amino Acids 

Free AA concentrations are presented in Figure 7.4, and 18 compounds were 

detected and quantified. Significant differences between cultivars and time points are 

presented in appendix XI. 

 There were numerous significant differences between the abundances of 

respective AAs of Torino (Figure 7.4f) and the E. sativa cultivars (Figure 7.4a-e). 

Torino had significatly higher concentrations of valine, threonine, asparagine, 

aspartic acid, and phenylalanine, and significantly lower concentrations of proline. 

The increases seen in proline in E. sativa, and asparagine in D. tenuifolia, is possible 

evidence of stress signalling and response within tissues (Okumoto, Funck, Trovato, 

& Forlani, 2016). This change may also impact upon sensory attributes, though in 

what manner is difficult to predict, as no sensory study has previously compared D. 

tenuifolia with E. sativa by examining AAs. Relatively little is known about the specific 

influence of AAs in other Brassicaceae species, but it is thought that glycine and 

alanine influence sweetness, valine and leucine create bitterness, and aspartic acid 

creates sourness (Park et al. 2014). 

 There is a significant trend for AA concentrations to increase throughout shelf 

life, and a substantial proportion of this is due to elevations of glutamine, which 

peaked in accessions between D0 and D9. Increases in free glutamine are 
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associated with leaf senescence and are a result of protein breakdown, enzymatic 

conversion, and nitrogen transport (Buchanan-Wollaston et al. 2003). This has the 

possibility to impact bitter and pungent notes as glutamine is known to infer 

sweetness (Nelson et al. 2002). Concentrations observed in Bell et al. (2017, 

Chapter 5) did not exceed 90.8 µg.g-1 dw (SR2; Figure 7.4a) in freshly harvested 

leaves. In this study they reached as high as 1.4 mg.g-1 dw in Torino (D5; Figure 7.4f) 

– over 15 times higher. For the consumer, this may have a significant impact in the 

pleasurability and acceptance of leaves, especially if it masks other attributes such 

as pungency. Further study is needed on consumer preference and sensory 

properties during shelf-life for rocket. 

 Total AA concentrations were highest in SR3 (0.7 mg.g-1 dw; characterised as 

a ‘mild’ accession) and lowest in SR5 (0.4 mg.g-1 dw; characterised as having hot, 

pungent and bitter attributes, Bell et al. 2017, Chapter 5). In this study, total AA 

concentrations were substantially higher overall, being highest in Torino (Figure 7.4f) 

on D5 (2.7 mg.g-1 dw) and lowest in SR5 (Figure 7.4b) at H (0.2 mg.g-1 dw). Thus, 

depending on the time point at which the produce is hypothetically consumed, AA 

concentration may have a greater or lesser effect on perceived pungency and 

bitterness. 

 In Bell et al. (2017, Chapter 5), alanine was determined to have a strong 

influence on rocket sensory properties. In this study, alanine varied significantly 

across time points for SR5 (Figure 7.4b), SR14 (Figure 7.4e) and Torino (Figure 

7.4f). SR14 displayed a trend for alanine concentrations to decline post D0, and this 

is even more pronounced in Torino. As free alanine can confer sweetness, this may 

indicate a loss in some sweet taste attributes during shelf-life (Solms, 1969). 

Previously, the highest concentration observed was 65.1 µg.g-1 dw in SR2 (Bell et al. 

2017, Chapter 5), whereas in this study, alanine was highest in SR14 (61.6 µg.g-1 dw; 
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D0) and was not detected at all in Torino on D2, D5, D7 and D9. This may infer a 

stronger perception of pungent and bitter tastes in Torino.  

Leucine however showed the opposite trend, and is known to have bitter taste 

properties (Solms, 1969). The change in relative abundance of this AA may have 

implications for bitter perception also. The compound increased in the E. sativa 

cultivars potentially making them more bitter; but declined in Torino from PT. In Bell 

et al. (2017, Chapter 5), leucine concentrations were low, only reaching 4.0 µg.g-1 dw 

(SR6). Here, leucine was also highest in SR6 (D2; Figure 7.4c), but measured 24.7 

µg.g-1 dw. This coupled with the losses of alanine may increase bitterness during 

shelf life for E. sativa cultivars, although it is unknown if this would significantly 

enhance the bitterness caused by ITCs, or be mitigated by the large increases in 

glutamine concentrations. 

 Methionine is conspicuous by its absence in or results. No concentrations 

were detected in any of the samples tested, and the analysis by Bell et al. (2017, 

Chapter 5) similarly found no concentrations. This is puzzling, as methionine is the 

predominant precursor AA to aliphatic GSLs. Graser, Schneider, Oldham, & 

Gershenzon (2000) observed that methionine is involved in the synthesis of 

glucoerucin in rocket. The lack of any detectable free methionine in this study 

suggests that it is perhaps stored in another form, possibly as one of the precursor 

molecules postulated by Graser et al. (2000). This may explain some of the dynamic 

fluctuations seen in GSL concentrations between time points, facilitating rapid 

synthesis. The disparity between aliphatic GSL and free methionine concentration 

has yet to be addressed within the literature. 
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Figure 7.4. Amino acid concentrations for each cultivar at each time point (µg.g-1 dw). Letters above bars refer 
to total concentration. Letters a, b, c, d: bars not sharing a common letter differ significantly (P<0.05) between 
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7.4.1.5. Sugars 

 Relative concentrations of free sugars are presented in appendix XII. Few 

significant differences were observed overall, though Torino showed a trend to 

accumulate lower amounts than the E. sativa cultivars. SR2 contained significantly 

more fructose (46.1 mg.g-1 dw) and total sugar (141.9 mg.g-1 dw) at H than SR5 (7.2 

mg.g-1 dw and 52.7 mg.g-1 dw, respectively). A significant difference in total sugar 

was also observed at PW between SR2 (161.1 mg.g-1 dw) and Torino (32.4 mg.g-1 

dw).  

During shelf life significant differences became more numerous between 

samples at each time point. On D0, SR14 had significantly higher glucose (118.8 

mg.g-1 dw) and total free sugars (143.1 mg.g-1 dw) than Torino (14.9 mg.g-1 dw; 28.5 

mg.g-1 dw). By D7 Torino contained significantly less fructose (2.6 mg.g-1 dw), 

glucose (16.6 mg.g-1 dw) and total free sugar (32.4 mg.g-1 dw) than both SR12 (20.0 

mg.g-1 dw, 131.7 mg.g-1 dw, and 164.7 mg.g-1 dw, respectively) and SR2 (32.6 mg.g-1 

dw, 111.0 mg.g-1 dw, and 156.6 mg.g-1 dw, respectively).  

Bell et al. (2017, Chapter 5) observed that high free sugar concentrations in 

and of themselves do not correspond to milder taste, and that the ratio between 

sugars and GSLs/ITCs is the more significant attribute in determining pungency and 

bitterness. As GSLs and ITCs increase over time, and sugars are relatively stable, 

this is likely to have a large impact on how leaves taste. 

 

7.4.2. Principal Component Analyses 

7.4.2.1. General 

 Figure 7.5 displays the PCA for all phytochemical and time point data of each 

cultivar. Figure 7.5a (loadings) and b (scores) are plotted with GSL, sugar, and AA 
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data for all time points. Figure 7.5c and d are plotted with these same data for time 

points PT and D7, with the addition of GSL hydrolysis product data. 

 From the data used to generate Figure 7.5a and b, 31 principal components 

(PCs) were extracted, with the first eight having Eigenvalues >1.0. Of these only PC1 

and PC2 contained >10.0% of the explained variability (51.5% cumulatively) and as 

such were selected for presentation. PC1 separates for bacterial counts, the major 

GSL compounds of rocket (total, glucosativin, DMB), and amino acid concentrations. 

PC2 separates for sugar and proline concentration. 

In the analysis presented in Figure 7.5c and 7.5d, 11 PCs were extracted. PCs 

1 – 8 had Eigenvalues >1.0, but only PCs 1 – 3 explained >10.0% of the variation 

(72.4% cumulatively). PC1 vs. PC2 and PC1 vs. PC3 were selected for presentation 

as biplots. PC1 separates for glucosativin/DMB and the associated ITC hydrolysis 

products, as well as bacterial counts and amino acid concentrations. PC2 separates 

for sugars, alanine, glycine and proline concentrations, and PC3 separates for 

glucoraphanin, sulforaphane and 4-isothiocyanato-1-butene. Loadings values can be 

found in appendix XIII and correlation matrices in appendix XIV for each of the PCA 

analyses. 
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Figure 7.5. PCA loadings (a) and scores (b) plot for glucosinolate, sugar, amino acid and time point data for 
the five cultivars tested (PC1 vs. PC2; 51.5% variation explained). PCA biplots (c: PC1 vs. PC2, 62.1% 
variation explained; d: PC1 vs. PC3, 54.0% variation explained) for all phytochemical data, including ITCs and 
nitriles, at time points PT and D7. Plots a, c, d: red = active variables, blue = supplementary variables. Plot b: 
see inset for score plot key. Plots c, d: blue circles = time point PT, green circles = time point D7. 
Abbreviations: PH, preharvest (12 days old); H, harvest (22 days old); PT, post transport; PR, pre-wash; PW, 
post wash; D0, day zero shelf life; D2, day two shelf life; D5, day five shelf life; D7, day seven shelf life (DUD; 
display until date); D9, day nine shelf life. 
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7.4.2.2. Bacterial Counts 

 The most unexpected result from this study was the significant correlation 

between bacterial counts present on leaves and phytochemical composition. Our 

hypothesis was that higher GSLs/ITCs would reduce bacterial load, but the exact 

opposite was observed (Figure 7.5). Significant correlations were recorded with 

glucosativin (r = 0.442, P<0.001), DMB (r = 0.391, P<0.01) and total GSL 

concentration (r = 0.428, P<0.01, Figure 7.5a; appendix XIV). It has been previously 

hypothesised (Schreiner, Krumbein, & Ruppel, 2009) that under nutrient limited 

conditions some bacterial strains may use GSLs as a source of carbon. In our study 

nutrients were not limited, and were abundant in leaves due to the high free sugar 

concentrations. Bacterial counts were in fact inversely correlated with total sugars (r 

= -0.318, P<0.05) and fructose (r = -0.325, P<0.05). No significant correlations were 

observed between bacterial counts and GSL hydrolysis products, indicating that any 

ITCs formed throughout the supply chain and shelf life have no discernable anti-

microbial effect on endemic bacteria.  

We hypothesise microbes on rocket leaves are highly adapted to that 

environment, and have evolved a tolerance or for high ITC concentrations, or a way 

to circumvent the GSL-myrosinase system. It has been documented that soil bacteria 

(Citrobacter spp.) possess a glucoside hydrolase family 3 (GH3) β-glucosidase 

enzyme, which may potentially aid them in the scavenging of glucose from GSLs 

(Albaser et al., 2016). The same may be true of bacteria that live on leaves, but very 

little research has been conducted in this area. Adaptation by insects to the GSL-

myrosinase system is well documented (Alan & Renwick, 2002), but how bacteria 

have adapted is poorly understood. 
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 Positive correlations were observed for some AAs and bacterial numbers, 

whereas others displayed a negative association. Positive correlations (appendix 

XIV) were seen for valine (r = 0.603, P<0.001), isoleucine (r = 0.337, P<0.01), 

threonine (r = 0.611, P<0.001), asparagine (r = 0.659, P<0.001), phenylalanine (r = 

0.685, P<0.001), glutamine (r = 0.651, P<0.001), lysine (r = 0.558, P<0.001), 

histidine (r = 0.308, P<0.001), tyrosine (r = 0.439, P<0.001), tryptophan (r = 0.632, 

P<0.001), and total AA concentration (r = 0.584, P<0.001). Negative correlations 

were with alanine (r = -0.566, P<0.001) and proline (r = -0.323, P<0.05). Coupled 

with the trends seen for GSLs as a potential carbon source, we hypothesise that 

bacteria may similarly utilise free amino acids as a nutrient source. 

 

7.4.2.3. Glucosinolates & Hydrolysis Products 

 Aside from the aforementioned correlations with bacterial counts (Figure 7.5; 

appendix XIV), several other significant correlations are present in the results. Total 

GSLs were significantly correlated with numerous AAs and total AA concentration. 

This association may be reflective of the underlying degradation of proteins due to 

senescence (Buchanan-Wollaston et al. 2003) and up-regulation of secondary 

defense compounds (Jin et al., 2009). 

 GSLs and respective hydrolysis products correlated significantly (Figure 7.5c 

& 5d) as was expected. Total GSL concentration correlated with both sativin (r = 

0.621, P<0.05) and total ITC/nitrile concentration (r = 0.590, P<0.05). Glucoraphanin 

correlated significantly with both sulforaphane (r = 0.578, P<0.05) and 4-

isothiocyanato-1-butene (r = 0.585, P<0.05), further supporting the hypothesis that 

the latter ITC is a degradation product of the former. 
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7.4.2.4. Sugars & Amino Acids 

 The free sugars fructose (r = 0.308, P<0.05), glucose (r = 0.536, P<0.001) and 

galactose (r = 0.318, P<0.05) shared significant correlations with alanine (Figure 

7.5a; appendix XIV), and fructose (r = 0.560, P<0.001) and glucose (r = 0.746, 

P<0.001) with proline. It is interesting to note that these AAs are known to have 

sweet tastes (Solms, 1969), which could potentially influence the sensory properties 

of leaves. They were also negatively correlated with bacterial growth (alanine: r = -

0.566, P<0.001; proline: r = -0.323, P<0.05), perhaps indicating a relationship 

between sugar/AA content and bacterial load of leaves, though in what respect is 

presently unclear. 

 

7.4.2.5. Time Points 

 Several of the studied phytochemical components correlated significantly with 

specific time points (Figure 7.5; appendix XIV). Many of these have important 

implications for rocket breeding and commercial supply chain management.  

In the PCA (Figure 7.5b) the profile of D7 samples separate along PC1, and 

are indicative of significant phytochemical changes by this point of the trial. Time 

point PH and H form a distinct and tight cluster to the lower left of the plot on the PC1 

axis, blending with PT and PW before separating towards the top right, loosely 

according to shelf life time point. Torino is very distinct, separating away to the 

bottom right. This is due to the high bacterial load of these samples (PC2), as well as 

low sugar, and high GSL/AA concentration during shelf life (Figure 7.5a). This pattern 

is similar in Figure 7.5c and 5d where E. sativa PT samples are tightly clustered, with 

D7 separating along the PC1 axis in a more dispersed fashion to the right. The two 

Torino time points are isolated however, associated again with high bacterial counts, 
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asparagine, aspartic acid, and high total GSL concentration. The E. sativa cultivars 

trend towards higher total sugars and sweet AAs (PC2). 

 PH was distinct in several aspects from the subsequent time points (Figure 

7.5a). Glucosativin (r = -0.306, P<0.05) and total GSL concentrations (r = -0.394, 

P<0.01) were typically low, and were negatively correlated. There were also several 

AAs significantly correlated with PH, and not with any subsequent time point. Glycine 

(r = 0.961, P<0.001), alanine (r = 0.289, P<0.05), α-aminobutyric acid (r = 0.358, 

P<0.05) and glutamic acid (r = 0.580, P<0.001) are all relatively higher in abundance, 

whereas others, such as proline (r = -0.392, P<0.01), leucine (r = -0.308, P<0.05) 

and tryptophan (r = -0.286, P<0.05) were negatively correlated with PH.  

 At H, significant negative correlations can be seen with glucoraphanin (r = -

0.295, P<0.05), glucosativin (r = -0.262, P<0.05) and total GSL concentration (r = -

0.327, P<0.05); this is perhaps indicative of GSL depletion during the harvest 

procedure. Numerous AAs and total AA concentrations were also low and negatively 

correlated (Figure 7.5a). 

 D7 (DUD) is perhaps the key time point within the trial, as total GSL (r = 0.339, 

P<0.01), glucosativin (r = 0.341, P<0.01) and DMB (r = 0.404, P<0.01) 

concentrations were all significantly correlated (Figure 7.5c & 5d; appendix XIV). 

Total ITC/nitriles (r = 0.707, P<0.05), sativin (r = 0.720, P<0.01) and erucin (r = 

0.683, P<0.05) were also significantly correlated, demonstrating that all cultivars 

displayed the ability to re-synthesize GSLs/ITCs to a high level during shelf life. Total 

AAs (r = 0.410, P<0.01) and glutamine (r = 0.528, P<0.001) shared a strong 

correlation with this time point.  

There seems to be juxtaposition between the point of highest nutritional 

content (GSLs/ITCs) and the high degree of tissue and protein breakdown evidenced 

by the increases in free AAs. This may lead to visual and aroma changes that 
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consumers will reject, and may dissuade them from consuming leaves that contain 

the highest ITC concentrations. 

 

7.5. Conclusions 

 This study is the first to demonstrate the phytochemical and bacteriological 

effects of an entire commercial supply chain on rocket leaves. It is clear from our 

results that total GSL concentration increases post processing. Importantly, 

glucoerucin and glucoraphanin are not significantly reduced by processing, 

suggesting that GSLs are not lost due to leaching or myrosinase action in wash water 

as we originally hypothesised. 

ITCs (particularly sulforaphane) increase significantly during shelf life in E. 

sativa, and this could have positive health benefits for the end consumer. We have 

elucidated significant changes in AA composition of leaves, and that free sugars 

remain relatively stable throughout processing and shelf life. The fluctuations in 

relative abundance of GSLs, ITCs and AAs may have important implications for 

consumer acceptance and sensory properties of leaves. 

 We have demonstrated a possible link between GSL and AA concentrations 

with the bacterial load of leaves. At present it is unknown by what mechanism this is 

achieved, but further study and identification of bacterial strains on rocket leaves may 

provide insight. We hypothesise that bacterial populations have evolved to survive on 

GSL-producing plants, perhaps utilising GSLs as a carbon source and free AAs as a 

nitrogen source. We speculate that such native bacterial loads are non-pathogenic, 

however their presence and metabolism of sulphur-containing compounds (such as 

GSLs) within sealed bags may produce off-odors that consumers might reject 

(Spadafora et al. 2016). 
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 Finally, we have demonstrated that GSL/ITC profiles observed in controlled 

studies are not fully representative of commercially processed material. The data 

presented here illustrate how dynamic GSL profiles are over time. Future studies 

may wish to consider the impact of the whole supply chain when attempting to 

analyse crops for phytochemicals, and not just the point of harvest. 
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CHAPTER 8: Overall Discussion, Related Projects & Future Work 

 

8.1. Overall Discussion 

 The final summary chapter of this thesis will highlight the various outputs and 

collaborations of this PhD project, and summarise the key findings. The results 

presented in the preceding chapters highlight the potential for rocket, and in 

particular the species E. sativa, to be further developed into high quality varieties for 

human consumption. The inherent natural variation within the species means 

breeders have a broad palette of traits with which to diversify breeding lines and 

create novel varieties. This may range from unusual visual traits such as leaf shape, 

size and colour, to phytochemical attributes that improve sensory properties, 

consumer acceptance, and health benefits. 

 The results presented have significantly advanced research into the sensory 

and health promoting compounds of rocket, and their interactions with the consumer. 

Key outcomes have been the diversity of GSL profiles present in different cultivars of 

rocket (Chapter 3), particularly the propensity for some to accumulate more 

glucosativin in monomeric or dimeric form. The exact reasons for this are unknown, 

though it has been elucidated in Chapter 5 that the two forms may infer differing 

sensory properties. Similarly in Chapter 7 it was noted that glucoraphanin was 

consistently maintained across processing and shelf life. The differing abundances in 

sulforaphane at the two time points tested would suggest that it is myrosinase which 

is most adversely affected by the supply chain, not GSL content. The results in 

Chapter 5 suggest that glucoraphanin and glucoerucin impart very little effect on the 

overall taste and flavour of rocket leaves, and combined with results from Chapter 4, 

it is apparent that relative VOC abundances affect sensory perceptions. This may be 

beneficial for breeding new varieties of rocket, as high accumulators of glucoraphanin 
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can be selected for without imparting significant negative effects on sensory 

properties or consumer acceptance (Chapter 6). 

The increases in phytochemicals within the supply chain after processing 

(Chapter 7) are contrary to some previous literature findings. It was previously shown 

that GSL concentrations generally decrease under varying environmental conditions 

(Jones, Faragher, & Winkler, 2006), but analysis of how ITC formation is affected 

during shelf life is poorly understood, with no papers directly measuring ITC 

concentrations over time for any crop (to the authors’ knowledge). The results in 

Chapter 4 would seem to support the assumption that ITCs decrease over time in 

terms of VOC production, but due to the nature of the analysis, this is a 

representation of the relative abundances of ITCs within headspace, not tissues. It 

would have been interesting to study all of the time points in Chapter 7 for their ITC 

content in order to elucidate any other fluctuations during the entirety of the 

processing trial, rather than just PT and D7. Due to budget and time constraints this 

was not possible however.  

There is a danger that GSLs are used as a proxy measurement of ITC 

abundance over shelf life. The results of Chapter 7 demonstrate that GSL abundance 

does not necessarily reflect specific ITC concentrations, particularly with regards to 

glucoraphanin and sulforaphane. Concentrations of glucoraphanin did not vary 

significantly over the course of the experiment, however sulforaphane concentration 

increased significantly by D7. This suggests that myrosinase activity is reduced after 

harvest and recovers over time and after processing. 

 Work relating to the bacterial load of commercial salad leaves also an 

unexpected but intriguing result. The current literature thinking espouses the view 

that GSLs and ITCs are highly bactericidal and the differing profiles of cultivars 

should in theory produce differing levels of colonisation. By this logic, one would have 
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expected Torino to contain low levels of bacteria, but this was not the case. 

Publications have previously suggested the bacteria on rocket leaves play a role in 

producing off odours (Nielsen, Bergstrom, & Borch, 2008), however no study has tied 

the endogenous bacterial populations to the glucosinolate concentrations of the 

plant. We hypothesise that endemic bacterial populations within/on rocket leaves are 

highly specialised to that environment, and may have evolved to evade the GSL 

myrosinase system, or alternatively, evolved to tolerate ITCs and other volatiles 

much as some insects have (Nielsen, Nagao, Okabe, & Shinoda, 2010). There is 

clearly some form of relationship between the two, however it is not absolutely 

certain if bacterial load increases because of high GSLs or vice versa. The 

hypothesis put forward by Schreiner, Krumbein, & Ruppel (2009) that some bacteria 

utilise GSLs as a carbon source is interesting, but needs much more study in order to 

be verified. Our data would seem to suggest that nitrogen (from amino acids) and 

sulphur (from GSLs/ITCs) are more likely candidates for bacterial assimilation, as 

carbon is abundant in the form of free sugars.  

The specialisation of bacteria to GSL containing plants is only just being 

elucidated, and is more related to root systems than leaves at the present time 

(Albaser et al., 2016). The assumption that all ITCs have a general anti-microbial or 

anti-fungal effect may be misguided. The results presented in Chapter 7 suggest that 

there may be resistance to such compounds, and indeed an ability to thrive under 

high GSL conditions, as high ITC concentrations do not have any effect on bacterial 

numbers during shelf life. There is also the possibility that some leaf bacteria have 

formed a symbiotic relationship with rocket plants, but until specific strains can be 

identified there is little evidence for this at the present time. This work will continue to 

be investigated by the Wagstaff Group at the University of Reading. 
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8.2. Industrial Relevance, Collaboration & Related Projects 

8.2.1. Elsoms Seeds Ltd. Commercial Breeding Program 

 As stated in Chapter 1 the Elsoms Seeds rocket-breeding program ran in 

parallel to this PhD project. The results of sensory and consumer analyses (Chapters 

5 & 6) in particular have influenced plant selections and breeding goals. Due to 

commercially sensitive information, specific details about current breeding lines and 

their characteristics cannot be given. Several elite lines are however undergoing 

commercial trials. 

 

8.2.2. Bakkavor Group Ltd. Project SOAR 

 Following the results presented in Chapters 3, 4, 5 & 6, Bakkavör initiated 

Project SOAR with the Wagstaff Group at the University of Reading. Specific details 

about the project cannot be given for commercial sensitivity reasons, but multiple 

rocket salad varieties from several geographical regions were compared in terms of 

GSL, free sugar, sensory and consumer attributes over the course of one year. The 

project confirmed several aspects of the research presented in this thesis, and also 

highlighted numerous other areas for investigation. 

 

8.2.3. E. sativa Genome Sequencing Project 

 An ambitious project was initiated as part of this PhD to fully sequence the 

genomes of three E. sativa elite inbred lines (referred to as A, B & C) from the 

Elsoms Seeds breeding program. The aim is to produce two mapping populations, 

created by crossing A with B, and A with C. The Genome Analysis Centre (TGAC; 

The John Innes Centre, Norwich, UK) is conducting the project, and at the time of 

writing, sequencing and assembly has been completed, with single nucleotide 

polymorphism (SNP) calling currently underway. 
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8.2.4. BBSRC LINK Project: ‘Smart Breeding For Salad Rocket’ 

 The data generated by the aforementioned genome-sequencing project will 

feed into a BBSRC LINK funded project developed in collaboration with Elsoms 

Seeds and Bakkavör. The author is a co-applicant researcher named on the grant 

along with Dr. Carol Wagstaff and Dr. Lisa Methven, and it is the first BBSRC LINK 

award ever to be given to the University of Reading, and is worth over £900k across 

three years. 

 The TGAC project will yield substantial SNP data for each of the assessed 

parent lines, enabling the eventual construction of genetic linkage and quantitative 

trait loci (QTL) maps of their progeny. Genotyping of each of the mapping population 

lines for GSL, ITC, amino acid and sugar concentrations across environments will be 

conducted. These will be in controlled environment, a field environment (UK), and a 

polytunnel environment (Italy). This will investigate the stability of phytochemical 

traits in unprecedented detail for rocket, and determine if any QTL co-locate across 

environments. Extreme lines will be selected for further sensory analysis, utilising two 

trained panels – one that is composed of the ‘supertaster’ PAV/PAV TAS2R38 

diplotype, and one that is composed of the ‘non-taster’ AVI/AVI diplotype. The 

research presented in Chapter 6 revealed that each group perceived bitterness 

differently, and their differing responses will (in theory) allow us to detect QTL relating 

to the intensity of these perceptions within the plant genome. Each panel will be 

presented with leaves from commercial environments in the UK and Italy. Results 

from this study, in combination with phytochemical and transcriptomic data, will allow 

us to establish if sensory trait QTL co-locate with any related to phytochemicals or 

pathways, giving a better understanding of how plant genetics influences sensory 

attributes. 
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 With genomic and transcriptomic data, other experiments will also be 

conducted to examine orthologous sequences with Arabidopsis and Brassica 

oleracea. It is hoped that similar genes involved in GSL biosynthesis and ITC 

formation pathways can be elucidated in rocket, and ultimately be fast-tracked into 

generating SNP markers for breeders at Elsoms. The mechanisms responsible for 

high glucoraphanin accumulation in broccoli are now well understood (Traka et al., 

2013) and it is hoped that similar MYB gene sequences will be identified in cultivars 

of E. sativa. 

 In terms of future rocket breeding strategy, much has changed in terms of 

which phytochemical and sensory attributes should be selected for in order to 

produce a variety of improved quality. Firstly, the definition of quality has itself 

changed due to the results presented in this thesis. It was initially assumed that all 

consumers liked the same attributes of rocket, but it has been shown that this is not 

the case and that people like/dislike rocket for different reasons. This has influenced 

the breeding strategy in that certain compounds such as ITCs and sulfur volatiles can 

be selected for and against in order to produce hot and mild varieties. We have also 

elucidated that the ratio with sugars and amino acids should also be considered in 

order to mitigate the intensity of hotness in leaves. This was the defining attribute on 

which consumers based their liking of the cultivars tested, not bitterness as had been 

originally assumed.  

The screening of breeding lines for all of these aspects will likely become 

more common practice in breeding programs, and will eventually tie-in with genomic 

information generated from the upcoming LINK project. High-throughput in-house 

analysis of these compounds is not possible in the breeding company at the present 

time, and it can be expensive to outsource these types of analysis. This is perhaps 

the largest ‘gap’ in terms of full implementation of our results into a breeding 
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program. With the development of SNP markers linked to specific genes in rocket, 

this process will become significantly improved. 

 

8.3. Conclusion 

Rocket species have been cultivated for millennia (Hall, Jobling, & Rogers, 

2012), and are well known and documented in folk medicine and cuisine. Many of the 

therapeutic properties associated with the eating of leaves have only started to be 

properly understood in the last 15-20 years. In many respects, we are rediscovering 

the importance of vegetables in our daily lives, which particularly in Western 

societies, has been lost. People in urban communities have become disconnected 

from their food supply, and general knowledge and interest in food production is low. 

Increasingly, supermarkets dictate the foods that people have access to and can 

afford, and so in poor urban communities this has a significant impact on the amount 

and variety of vegetables consumed (McCaffrey, 2012). It is often the poorest in such 

places who are unable to access healthier food items, and as such have a higher risk 

of acquiring chronic health problems such as type-2 diabetes, cardiovascular 

disease, and cancer (World Health Organization, 2003).  

On a more positive side, it is likely that due to renewed interest and research 

in the health-beneficial properties of minor crops like rocket (and vegetables in 

general) that these will become much more prominent in future decades within 

personalised nutrition regimes. More people are becoming interested in the 

nutritional properties of foods, and this is encouraging; but such interest often comes 

with improved socioeconomic status, and in people least likely to benefit from dietary 

changes.  

The in vitro and in vivo studies analysing the effects of ITCs and other GSL-

hydrolysis products are very promising, but should be interpreted cautiously. Effects 
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in cell and animal models are not necessarily occurring in the human body, and it 

should not be assumed that the same mechanisms are occurring therein. Much more 

work is needed to properly understand how GSL-containing plants interact with gut 

microbiota, and how different individuals assimilate, metabolise and excrete ITCs. 

The systemic effects of regular consumption are only now being properly 

investigated, but are poorly understood in terms of what mechanisms are responsible 

for the anti-carcinogenic effects observed in clinical and epidemiological studies. 

Food chemists and qualified nutritionists should perhaps be more vocal and 

precise about the effects certain types of food could have on their health. As an 

example, rocket, kale, and other Brassicaceae are often mentioned for having anti-

cancer properties, and are portrayed by the mainstream media and on social media 

as “super foods” that will ensure people live longer and don’t get cancer. As every 

food scientist and cancer biologist knows, things aren’t quite so simplistic. Evidence 

is abundant within the literature that diets rich in Brassicaceae lower the risk of 

certain types of cancer (van Poppel, Verhoeven, Verhagen, & Goldbohm, 1999), and 

that the more general consumption of fruits and vegetables also lowers the risk 

(Block, Patterson, & Subar, 1992). It is in explaining the concept of these risks and 

statistics that problems lie, which often leads to consumers having unrealistic 

expectations of their food, or distorted views of what constitutes “healthy” or “natural” 

produce (Grunert, 2005).  

In a time where anyone with a computer can start a blog on “nutrition”, more 

should perhaps be done to improve scientific literacy and understanding of how food 

is produced, rather than offering inaccurate and inarticulate generalisations. During 

the course of this PhD, several social media “nutritionists” have risen to prominence 

advocating the consumption of “natural” foods, and promoting pseudoscientific 

theories with disturbing success. If experts do not take this role, charlatans will step 
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in and fill the void and mislead those who are uninformed, which will ultimately be to 

the detriment of efforts to improve food for the consumer. 
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Appendix II 
 

 

SR2 

SR3 

SR5 

SR6 

SR12 

SR14 

SR19 12cm 



	

Accession SR2 SR3 SR5 SR6 SR12 SR14 SR19

Glucosinolates	(mg.g-1	dw)
4-hydroxyglucobrassicin nd nd 0.1±0.1 nd nd nd 0.1±0.1

Glucotropaeolin nd 0.1±0.1 nd nd nd <0.1±<01 nd

Glucoraphanin 0.4±0.1 0.3±0.1 0.2±0.1 0.6±0.4 0.3±0.2 nd 0.3±0.1

Glucoiberverin <0.1±<0.1 <0.1±<0.1 nd 0.1±<0.1 0.1±<0.1 <0.1±<0.1 nd

Glucosativin 3.5±0.5 2.7±0.2 7.7±0.8 3.5±0.2 5.7±0.7 5.1±0.4 3.4±0.5

DMB 2.3±0.4 1.2±0.3 3.3±0.3 4.4±0.4 1.9±0.4 2.2±0.5 2.2±0.6

Glucoalyssin nd nd <0.1±<0.1 <0.1±<0.1 nd <0.1±<0.1 0.1±0.1

Glucoerucin 0.3±0.1 0.6±0.2 0.1±0.1 1.3±0.3 0.5±0.3 0.1±0.1 nd

Glucoraphenin <0.1±<0.1 nd nd 0.2±0.2 nd nd nd

Glucoibarin 0.1±0.1 nd <0.1±<0.1 nd nd nd nd

Average	total	GSL 6.6±0.6 4.9±0.6 11.5±0.9 10.0±1.1 8.4±0.8 7.5±0.7 6.3±0.8

Flavonols	(g.kg-1	dw)
Myricetin <0.1±<0.1 <0.1±<0.1 nd nd nd nd nd

Kaempferol-3-glucoside 0.1±<0.1 0.1±<0.1 0.3±<0.1 0.4±0.1 0.2±0.1 0.3±0.1 0.2±0.1

Isorhamnetin-3-glucoside 0.1±<0.1 0.1±<0.1 0.2±0.1 0.2±0.1 0.2±0.1 0.1±<0.1 nd

Kaempferol-3,4’-diglucoside 0.5±0.1 0.4±0.1 0.5±0.1 1.1±0.1 0.6±0.1 0.6±0.1 0.3±0.1

Isorhamnetin-3,4’-diglucoside 0.5±0.1 0.2±0.1 0.4±0.1 0.6±0.1 0.3±0.1 0.1±0.1 0.4±0.1

Kaempferol-3-diglucoside-7-glucoside 0.2±0.1 <0.1±<0.1 <0.1±<0.1 0.2±0.1 0.1±0.1 0.1±0.1 0.1±0.1

Quercetin-3,3,4’-triglucoside 0.2±0.1 0.1±<0.1 <0.1±<0.1 <0.1±<0.1 0.1±0.1 nd <0.1±<0.1

Kaempferol-3-(2-sinapoyl-glucoside)-4’-glucoside 0.2±0.1 0.1±0.1 0.1±0.1 0.1±<0.1 0.2±0.1 0.1±0.1 <0.1±<0.1

Quercetin-3,4’-diglucoside-3’-(6-caffeoyl-glucoside) 0.4±0.1 0.2±0.1 0.3±0.1 0.4±0.1 0.3±0.1 0.3±0.1 0.2±0.1

Average	total	flavonols 2.5±0.5 1.3±0.2 1.9±0.3 3.2±0.4 2.3±0.5 1.7±0.3 1.4±0.3

Headspace	VOCs	(relative	%	abundance)
(E)-4-oxohex-2-enal	(C1) 22.4±0.4 14.8±2.9 10.5±8.6 4.7±3.8 2.5±2.0 13.4±8.6 12.3±5.1

4-isothiocyanato-1-butene	(C2) nd nd <0.1±<0.1 0.1±<0.1 nd nd nd

1-penten-3-ol	(C3) 1.2±0.1 1.5±0.3 0.5±0.1 1.2±0.2 1.5±0.2 1.3±0.1 1.2±0.2

1-penten-3-one	(C4) 1.9±0.1 2.0±0.2 1.3±0.5 1.4±0.3 1.8±0.2 1.9±0.2 2.2±0.3

2-(1,1-dimethylethyl)-1H-indole	(C5) nd nd nd <0.1±<0.1 <0.1±<0.1 nd <0.1±<0.1

2-methyl-2-butenal	(C6) nd <0.1±<0.1 nd <0.1±<0.1 0.1±<0.1 <0.1±<0.1 <0.1±<0.1

2-hexenal	(C7) 4.3±0.5 7.7±2.1 4.7±1.6 7.3±1.8 9.9±1.7 7.7±2.4 8.9±0.9

(E)-2-hexenal	(C8) 0.7±0.2 3.1±1.6 0.4±0.1 3.5±1.5 5.5±1.7 3.4±1.9 1.9±1.0

(Z)-2-penten-1-ol	(C9) 0.1±<0.1 0.2±0.1 nd 0.2±0.1 0.3±0.1 0.2±0.1 0.2±<0.1

(E)-2-pentenal	(C10) 1.0±<0.1 1.2±0.2 1.0±0.3 1.0±0.1 1.3±0.2 1.3±0.1 1.5±0.1

(E,E)—2,4-hexadienal	(C11) 0.4±0.1 1.0±0.4 0.2±0.1 1.4±0.6 1.6±0.5 1.1±0.5 0.8±0.2

5-ethyl-2(5H)-furanone	(C12) 0.2±<0.1 0.2±0.1 <0.1±<0.1 0.4±<0.1 0.4±<0.1 0.5±0.1 0.4±0.1

3-hexen-1-ol	(C14) 39.3±5.4 36.9±14.1 14.1±1.9 17.0±1.4 14.3±1.1 15.7±1.9 24.2±5.2

3-hexenal	(C15) 12.2±2.6 18.7±5.6 6.9±1.6 15.3±1.8 16.5±1.2 11.7±3.3 17.4±3.2

(Z)-3-hexenal	(C16) nd nd nd 0.1±<0.1 1.4±1.1 nd nd

3-octyne	(C17) 0.1±<0.1 <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 nd <0.1±<0.1

3-pentanone	(C18) 0.2±<0.1 0.1±0.1 0.1±<0.1 0.1±<0.1 0.1±<0.1 0.2±0.1 0.3±0.1

5-methyl-4-hexen-3-one	(C19) nd nd 0.9±0.4 2.3±1.4 3.3±1.4 1.8±1.4 2.2±1.8

4-methylpentyl	isothiocyanate	(C20) 1.2±0.2 0.7±0.3 4.3±1.0 1.1±0.3 1.3±0.2 0.8±0.1 2.4±0.5

5-nonanone	oxime	(C21) 0.1±<0.1 0.1±<0.1 0.2±<0.1 0.1±<0.1 <0.1±<0.1 0.1±<0.1 0.3±<0.1

1-isothiocyanato-3-methylbutane	(C23) nd nd <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 nd <0.1±<0.1

Ethylidene-cyclopropane	(C24) <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 0.1±<0.1 0.1±<0.1 0.1±<0.1 <0.1±<0.1

2-ethyl-furan	(C26) 1.9±0.3 1.3±0.3 2.8±0.4 3.2±0.3 1.9±0.3 2.7±0.4 2.1±0.1

3-methyl-furan	(C27) <0.1±<0.1 <0.1±<0.1 nd <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 nd

Hexyl	isothiocyanate	(C29) 0.4±0.1 0.2±0.1 1.8±0.7 0.4±<0.1 0.3±<0.1 0.2±0.1 0.2±0.1

2-oxo-methyl	ester	hexanoic	acid	(C30) 10.4±1.4 7.0±2.9 6.2±1.1 10.8±1.3 12.1±1.6 16.7±3.5 8.9±1.8

Pentyl	isothiocyanate	(C31) nd 0.1±<0.1 0.4±0.2 0.1±<0.1 0.1±<0.1 0.1±<0.1 0.1±<0.1

Iberverin	(C33) nd <0.1±<0.1 0.1±0.1 <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 <0.1±<0.1

Propanoic	acid	anhydride	(C34) nd nd nd 2.2±0.9 3.9±0.5 3.1±1.5 nd

4-methyl-2-(2-methyl-propenyl)-pyridine	(C35) nd 0.1±<0.1 nd 0.2±<0.1 0.5±0.1 0.2±0.1 0.2±0.1

Pyrrolidine-1-dithiocarboxylic	acid	2-oxocyclopentyl	ester	

(C36)
1.5±0.9 2.4±1.1 41.7±16.8 15.8±7.0 7.4±3.2 8.2±2.5 11.2±1.6

3-ethyl-thiophene	(C37) nd nd nd <0.1±<0.1 <0.1±<0.1 nd nd

Tetrahydrothiophene	(C38) 0.3±<0.1 0.2±0.1 1.2±0.1 0.4±0.1 0.2±0.1 0.3±<0.1 0.5±<0.1

[Unknown	2]	(C39) nd 0.1±<0.1 nd 0.1±<0.1 0.1±<0.1 <0.1±<0.1 <0.1±<0.1

[Unknown	8]	(C40) 0.1±<0.1 0.3±0.1 0.3±0.1 0.3±<0.1 0.3±0.1 0.2±0.1 0.3±0.1

[Unknown	9]	(C41) nd nd nd 9.0±0.2 7.7±0.4 6.9±3.0 nd

Vinylfuran	(C42) <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 <0.1±<0.1 0.1±<0.1 0.1±<0.1

Appendix	III	Summary	of	glucosinolate	and	flavonol	average	concentrations,	and	headspace	VOC	relative	abundances	(at	point	of	harvest)	for	the	
seven	accessions	analysed	(±	standard	error).	Data	previously	presented	by	Bell	et	al.	(2015;	2016).

nd	=	not	detected
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Sensory	attribute PC1 PC2 PC3

Odour
Sulfury 0.733 -0.316 0.081

Green 0.150 0.802 0.010

Stalky 0.784 0.240 -0.216

Pepper 0.650 0.702 0.149

Earthy -0.634 0.543 0.351

Burnt	rubber 0.929 -0.235 0.041

Pungent 0.735 -0.285 -0.463

Sweet -0.441 0.551 -0.324

Aromatic 0.209 0.243 0.717
Mustard 0.858 -0.176 0.074

Taste
Sweet -0.471 0.663 -0.278

Sour 0.884 -0.305 -0.190

Bitter 0.741 -0.188 -0.030

Savoury 0.764 0.176 0.220

Flavour
Green -0.157 0.865 0.027

Stalky 0.843 -0.132 -0.206

Peppery 0.812 0.356 -0.045

Mustard 0.919 0.122 -0.141

Sulfury 0.941 -0.213 0.175

Earthy 0.149 -0.158 0.783
Aftereffects
Bitter 0.783 0.150 0.148

Sweet -0.895 0.235 0.074

Acid 0.921 -0.338 0.037

Savoury 0.415 0.441 0.539
Peppery 0.858 0.214 0.135

Mustard 0.938 0.191 -0.071

Green 0.073 0.750 -0.519

Earthy -0.402 0.189 0.681
Warming 0.828 0.246 0.247

Appearance
Depth	of	leaf	colour 0.359 0.904 -0.082

Leaf	shape -0.129 0.893 0.153

Size	of	leaves -0.738 0.016 0.528
hairiness -0.368 0.039 0.575
Purple	Stem -0.737 -0.363 0.244

Mouthfeel
Initial	heat 0.976 0.075 0.041

Leaf	spikiness -0.013 0.067 0.885
Crisp 0.342 0.843 0.048

Chewy 0.155 0.123 0.928
Tough -0.112 0.067 0.843
Moistness	of	Leaf -0.573 0.223 -0.729

Appendix	IV	Loadings	of	the	first	three	principal	components	for	sensory	trait	analysis,	and	the	Eigenvalues,	
variability,	and	cumulative	variability	explained	by	each	component.
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Salivating 0.023 0.806 -0.218
Astringency 0.155 -0.793 0.199
Tingly 0.927 0.219 0.094
Warming 0.942 0.130 0.092
Eigenvalues 19.135 8.709 6.743
Variability	(%) 43.488 19.793 15.324
Cumulative	variability	(%) 43.488 63.281 78.605
Bold	=	highest	correlation
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Phytochemical	variable PC1 PC2 PC3

Glucosinolates
4-hydroxyglucobrassicin 0.936 0.114 -0.201

Glucotropaeolin -0.194 -0.001 -0.195

Glucoraphanin -0.332 -0.177 -0.510

Glucoiberverin -0.802 -0.169 0.203
Glucosativin 0.576 -0.301 0.582
DMB 0.279 -0.124 0.276

Glucoalyssin 0.612 0.737 -0.091

Glucoerucin -0.480 -0.267 -0.080

Glucoraphenin -0.263 -0.077 0.037
Glucoibarin 0.068 -0.584 0.001

Total	GSL 0.479 -0.328 0.504
Flavonols
Myricetin -0.350 -0.446 -0.485

Kaempferol-3-glucoside 0.259 0.232 0.626
Isorhamnetin-3-glucoside 0.039 -0.737 0.585

Kaempferol-3,4'-diglucoside -0.375 -0.125 0.348

Isorhamnetin-3,4'-

diglucoside
-0.002 -0.248 -0.209

Kaempferol-3-diglucoside-7-

glucoside
-0.491 0.002 0.057

Quercetin-3,3,4'-

triglucoside
-0.654 -0.539 -0.192

Kaempferol-3-(2-sinapoyl-

glucoside)-4'-glucoside
-0.397 -0.574 0.385

Quercetin-3,4'-diglucoside-

3'-(6-caffeoyl-glucoside)
-0.374 -0.414 0.270

Total	Flav. -0.389 -0.370 0.277
Free	amino	acids
Alanine -0.854 -0.220 -0.356

Valine -0.445 0.034 -0.630

Leucine -0.515 -0.213 -0.267

Threonine -0.571 -0.003 -0.722

Serine -0.178 0.233 -0.561

Proline -0.228 -0.557 0.699
Asparagine -0.116 0.006 -0.349

Aspartic	Acid -0.458 -0.200 -0.716

Glutamic	Acid -0.734 -0.092 -0.080

Glutamine -0.554 -0.174 -0.625

Total	AA -0.741 -0.174 -0.579

Free	sugars
Fructose -0.292 -0.079 0.585
Glucose 0.210 -0.544 0.708
Galactose -0.070 -0.283 0.835
Sucrose 0.184 0.462 0.298

Appendix	VI	Loadings	of	the	first	three	principal	components	for	suplementary	phytochemical	variables	
regressed	onto	the	sensory	PCA	data.
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Total	Sugar 0.106 -0.331 0.763
Organic	acids
Malic	Acid 0.047 -0.506 -0.480

Citric	Acid -0.456 0.456 -0.118

Total	OA -0.152 -0.299 -0.523
Headspace	VOCs
(E)-4-oxohex-2-enal 0.042 -0.109 -0.183

4-isothiocyanato-butene 0.066 -0.162 0.111
1-penten-3-ol -0.876 0.348 -0.193

1-penten-3-one -0.388 0.609 -0.414
2-(1,1-dimethylethyl)-1H-

indole
-0.203 0.443 -0.265

2-methyl-2-butenal -0.591 0.238 -0.009

2-hexenal -0.369 0.628 -0.121

(E)-2-hexenal -0.663 0.248 0.172

(Z)-2-penten-1-ol -0.673 0.505 -0.055

(E)-2-pentenal -0.162 0.795 -0.196

(E,E)-2,4-hexadienal -0.688 0.309 0.109

5-ethyl-2(5H)-furanone -0.453 0.773 0.400

3-hexen-1-ol -0.312 -0.226 -0.615

3-hexenal -0.595 0.387 -0.623

(Z)-3-hexenal -0.430 -0.122 0.123

3-octyne -0.352 -0.279 -0.549

3-pentanone -0.089 0.798 -0.131

5-methyl-4-hexen-3-one -0.167 0.474 0.263

4-methylpentyl-ITC 0.918 -0.198 -0.023

5-nonanone	oxime 0.786 0.369 -0.396
1-isothiocyanato-3-methyl-

butane
0.663 0.236 -0.249

Ethylidene-cyclopropane -0.358 0.594 0.600
2-ethyl-furan 0.341 0.096 0.592
3-methyl-furan -0.797 -0.319 0.169

n-hexyl-ITC 0.774 -0.573 0.214
2-oxo-methyl	ester	

hexanoic	acid
-0.506 0.459 0.720

n-pentyl-ITC 0.778 -0.326 0.289

Iberverin 0.871 -0.275 0.081

Propanoic	acid	anhydride -0.511 0.208 0.647
4-methyl-2-(2-methyl-1-

propenyl)-pyridine
-0.451 0.417 0.035

Pyrrolidine-1-

dithiocarboxylic	acid	2-

oxocyclopentyl	ester

0.859 -0.263 0.238

3-ethyl-thiophene -0.447 -0.084 0.118
Tetrahydrothiophene 0.909 -0.318 0.150

[Unknown	2] -0.569 0.263 0.011

[Unknown	8] 0.346 0.152 -0.145

[Unknown	9] -0.498 0.192 0.586
Vinylfuran 0.258 0.843 0.153
Polyatomic	ions
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Chloride 0.862 -0.114 -0.041

Nitrate 0.002 0.577 -0.698

Phosphate 0.468 0.279 -0.438

Sulphate 0.118 0.720 -0.343

Compound	ratios
Total	Sugar:GSL	ratio -0.312 -0.122 0.133

Glucose:GSL -0.316 -0.300 0.096

Fructose:GSL -0.426 -0.011 0.045

Galactose:GSL -0.348 -0.201 0.483

Sucrose:GSL -0.050 0.410 -0.104

Sugar:ITC	ratio -0.518 0.130 0.383

Acid:sugar	ratio -0.004 0.391 -0.799

Bold	=	highest	correlation
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Glucosinolates

4-hydroxyglucobrassicin -0.206 -0.670 0.289 -0.190 -0.098 -0.249 0.702 -0.683 -0.375 -0.206 0.317 0.455 0.805 -0.400 -0.826 0.663 0.203

Glucotropaeolin 0.441 0.789 -0.854 0.686 -0.603 0.551 -0.339 0.555 0.223 -0.600 -0.166 -0.127 -0.295 0.159 0.272 -0.043 -0.053
Glucoraphanin 0.344 0.190 0.042 0.261 0.199 0.521 -0.102 -0.210 -0.742 0.135 -0.232 -0.133 0.195 0.535 0.115 -0.095 0.490
Glucoiberverin -0.273 0.454 0.019 -0.214 0.331 -0.001 -0.228 0.082 0.256 0.648 0.246 -0.705 -0.365 0.489 0.364 -0.481 -0.332
Glucosativin -0.766 -0.737 0.407 -0.678 -0.006 -0.841 0.365 -0.484 0.300 0.540 0.730 -0.315 0.420 -0.344 -0.532 -0.020 -0.125
DMB 0.095 -0.432 0.093 -0.055 -0.184 -0.021 -0.105 -0.330 -0.630 0.358 -0.038 -0.186 0.431 0.557 -0.318 0.042 0.328
Glucoalyssin 0.107 -0.370 0.167 -0.067 -0.028 0.015 0.544 -0.403 -0.387 -0.344 -0.125 0.764 0.444 -0.041 -0.656 0.896 -0.217
Glucoerucin 0.306 0.491 -0.394 0.358 -0.198 0.521 -0.402 0.045 -0.455 0.269 -0.071 -0.614 0.016 0.894 0.186 -0.291 0.236
Glucoraphenin 0.397 0.140 -0.180 0.265 -0.140 0.416 -0.385 -0.012 -0.640 0.244 -0.300 -0.292 0.084 0.851 0.089 -0.134 0.295
Glucoibarin 0.070 -0.468 0.330 -0.044 0.144 -0.252 -0.364 0.230 0.017 0.036 -0.292 0.055 -0.165 -0.514 0.441 -0.590 0.648
Total	GSL -0.447 -0.671 0.288 -0.452 -0.115 -0.503 0.170 -0.557 -0.241 0.628 0.504 -0.427 0.570 0.216 -0.541 -0.021 0.144
Flavonols
Myricetin 0.517 0.518 -0.440 0.638 -0.209 0.504 -0.521 0.591 0.040 -0.491 -0.422 -0.062 -0.387 -0.163 0.667 -0.495 0.528

Kaempferol-3-glucoside -0.115 -0.261 -0.064 -0.202 -0.290 -0.185 0.003 -0.239 -0.197 0.373 0.166 -0.220 0.271 0.598 -0.450 0.245 -0.278

Isorhamnetin-3-
glucoside

-0.463 -0.312 0.066 -0.334 -0.162 -0.487 -0.250 -0.119 0.181 0.708 0.516 -0.859 0.126 0.155 -0.014 -0.611 0.187

Kaempferol-3,4'-
diglucoside

0.121 0.167 -0.169 0.049 -0.118 0.176 -0.410 0.023 -0.311 0.504 -0.056 -0.566 -0.042 0.869 0.110 -0.279 0.021

Isorhamnetin-3,4'-
diglucoside

0.229 -0.304 0.275 0.044 0.170 0.181 -0.111 -0.287 -0.748 0.254 -0.240 -0.035 0.306 0.355 -0.011 -0.119 0.597

Kaempferol-3-
diglucoside-7-glucoside

0.078 -0.199 0.534 -0.242 0.620 -0.085 -0.293 0.138 -0.118 0.372 -0.446 0.117 -0.384 0.049 0.501 -0.384 0.122

Quercetin-3,3,4'-
triglucoside

-0.152 0.148 0.314 -0.142 0.544 -0.095 -0.296 0.252 0.302 0.320 -0.041 -0.321 -0.469 -0.298 0.705 -0.767 0.241

Kaempferol-3-(2-
sinapoyl-glucoside)-4'-
glucoside

-0.504 -0.010 0.196 -0.380 0.250 -0.529 -0.288 0.306 0.782 0.470 0.322 -0.565 -0.485 -0.413 0.511 -0.793 -0.104

Quercetin-3,4'-
diglucoside-3'-(6-
caffeoyl-glucoside)

-0.156 -0.355 0.517 -0.362 0.465 -0.292 -0.346 0.000 -0.092 0.674 -0.114 -0.329 -0.198 0.118 0.395 -0.629 0.280

Total	Flav. -0.026 -0.164 0.255 -0.185 0.236 -0.074 -0.398 -0.034 -0.278 0.664 -0.092 -0.485 -0.086 0.493 0.281 -0.531 0.266
Amino	acids
Alanine 0.191 0.453 0.115 0.121 0.499 0.323 -0.370 0.303 -0.017 0.182 -0.322 -0.197 -0.503 0.150 0.725 -0.552 0.174
Valine 0.456 0.217 0.170 0.276 0.418 0.506 -0.143 0.074 -0.495 -0.145 -0.545 0.289 -0.151 0.129 0.405 -0.098 0.396
Leucine 0.177 0.699 -0.465 0.360 -0.160 0.564 -0.180 -0.031 -0.300 0.174 0.147 -0.632 0.051 0.773 0.099 -0.167 0.071
Threonine 0.533 0.591 -0.179 0.498 0.195 0.755 -0.185 0.115 -0.507 -0.212 -0.427 0.043 -0.127 0.398 0.383 -0.081 0.336
Serine 0.129 0.750 -0.495 0.395 -0.162 0.533 0.288 -0.035 0.017 -0.422 0.194 -0.015 0.075 0.147 -0.134 0.366 -0.243
Proline -0.510 -0.378 0.369 -0.537 0.232 -0.716 -0.381 0.230 0.617 0.674 0.225 -0.539 -0.398 -0.282 0.416 -0.803 -0.034
Asparagine 0.268 -0.239 0.423 0.026 0.452 0.026 -0.129 0.222 -0.091 -0.245 -0.578 0.579 -0.287 -0.513 0.448 -0.170 0.366
Aspartic	Acid 0.585 0.449 -0.167 0.544 0.114 0.719 -0.286 0.146 -0.573 -0.235 -0.480 0.024 -0.080 0.312 0.426 -0.208 0.573
Glutamic	Acid 0.281 0.380 -0.020 0.148 0.256 0.388 -0.440 0.172 -0.316 0.348 -0.327 -0.336 -0.303 0.667 0.476 -0.394 0.124
Glutamine 0.646 0.494 -0.196 0.573 0.117 0.680 -0.451 0.398 -0.367 -0.323 -0.636 0.100 -0.333 0.178 0.644 -0.333 0.515
Total	AA 0.449 0.657 -0.202 0.450 0.208 0.664 -0.354 0.264 -0.301 -0.076 -0.379 -0.174 -0.307 0.383 0.576 -0.347 0.309
Free	sugars
Fructose -0.047 0.191 -0.240 -0.016 -0.177 -0.283 -0.547 0.755 0.850 -0.038 -0.153 -0.170 -0.749 -0.270 0.578 -0.511 -0.343
Glucose -0.506 -0.309 -0.036 -0.336 -0.297 -0.619 -0.187 0.057 0.530 0.444 0.518 -0.637 -0.006 -0.159 -0.045 -0.467 -0.057
Galactose -0.267 -0.091 -0.157 -0.208 -0.282 -0.505 -0.483 0.485 0.733 0.280 0.131 -0.452 -0.458 -0.120 0.309 -0.545 -0.263
Sucrose 0.221 0.227 -0.473 0.253 -0.470 0.029 -0.150 0.519 0.486 -0.570 -0.241 0.359 -0.350 -0.188 0.047 0.263 -0.447
Total	Sugar -0.342 -0.146 -0.175 -0.214 -0.355 -0.533 -0.329 0.342 0.699 0.234 0.287 -0.459 -0.274 -0.196 0.131 -0.439 -0.222
Organic	acids
Malic	Acid 0.463 -0.053 -0.064 0.446 -0.095 0.280 -0.356 0.299 -0.259 -0.419 -0.464 0.187 -0.073 -0.360 0.434 -0.382 0.823
Citric	Acid 0.528 0.879 -0.718 0.593 -0.338 0.612 -0.348 0.641 0.228 -0.557 -0.424 0.125 -0.538 0.331 0.377 0.115 -0.388
Total	OA 0.683 0.329 -0.374 0.695 -0.240 0.540 -0.501 0.571 -0.156 -0.653 -0.640 0.238 -0.305 -0.210 0.589 -0.325 0.640
Headspace	VOCs

(E)-4-oxohex-2-enal	(C1) 0.527 0.006 -0.167 0.434 -0.178 0.180 -0.459 0.637 0.115 -0.631 -0.676 0.472 -0.419 -0.494 0.544 -0.255 0.417

4-isothiocyanato-1-
butene	(C2)

0.246 -0.057 -0.190 0.189 -0.309 0.279 -0.202 -0.246 -0.701 0.283 -0.045 -0.367 0.389 0.818 -0.230 0.005 0.340

1-penten-3-ol	(C3) 0.176 0.809 -0.196 0.170 0.321 0.393 -0.218 0.446 0.326 -0.062 -0.260 -0.034 -0.669 0.244 0.567 -0.142 -0.480
1-penten-3-one	(C4) 0.183 0.460 0.024 0.116 0.386 0.260 0.153 0.308 0.315 -0.476 -0.350 0.607 -0.481 -0.332 0.311 0.273 -0.440
2-(1,1-dimethylethyl)-
1H-indole	(C5)

-0.179 0.031 0.387 -0.295 0.538 0.116 0.510 -0.584 -0.412 0.341 0.172 0.103 0.292 0.391 -0.353 0.447 -0.296

2-methyl-2-butenal	(C6) -0.362 0.515 0.023 -0.254 0.369 0.054 0.241 -0.186 0.233 0.430 0.418 -0.401 -0.134 0.394 -0.023 0.053 -0.627

2-hexenal	(C7) -0.269 0.455 0.049 -0.223 0.371 0.097 0.469 -0.231 0.199 0.123 0.290 0.050 -0.071 0.230 -0.210 0.455 -0.783
(E)-2-hexenal	(C8) -0.333 0.539 -0.035 -0.250 0.313 0.004 0.072 -0.004 0.374 0.446 0.331 -0.437 -0.309 0.412 0.111 -0.060 -0.701
(Z)-2-penten-1-ol	(C9) -0.154 0.577 0.022 -0.161 0.432 0.177 0.168 -0.019 0.208 0.245 0.111 -0.107 -0.312 0.391 0.105 0.158 -0.706
(E)-2-pentenal	(C10) -0.174 0.289 0.143 -0.198 0.401 0.011 0.523 -0.074 0.348 -0.228 0.063 0.515 -0.185 -0.231 -0.151 0.582 -0.772
(E,E)—2,4-hexadienal	
(C11)

-0.148 0.561 -0.076 -0.132 0.280 0.172 -0.001 -0.010 0.132 0.412 0.163 -0.381 -0.267 0.614 0.115 -0.009 -0.596

5-ethyl-2(5H)-furanone	
(C12)

-0.037 0.260 0.068 -0.235 0.290 -0.035 -0.027 0.206 0.306 0.170 -0.199 0.190 -0.478 0.341 0.119 0.236 -0.840

3-hexen-1-ol	(C14) 0.611 0.435 -0.295 0.627 -0.059 0.555 -0.416 0.541 -0.089 -0.603 -0.596 0.245 -0.374 -0.231 0.636 -0.313 0.519
3-hexenal	(C15) 0.258 0.792 -0.226 0.317 0.256 0.631 0.136 0.057 -0.115 -0.247 -0.140 0.109 -0.196 0.306 0.182 0.232 -0.263
(Z)-3-hexenal	(C16) -0.810 0.004 0.530 -0.711 0.691 -0.488 0.390 -0.384 0.457 0.760 0.696 -0.479 -0.060 -0.121 -0.030 -0.217 -0.483
3-octyne	(C17) 0.316 0.086 0.208 0.219 0.379 0.239 -0.252 0.292 -0.097 -0.232 -0.481 0.258 -0.323 -0.384 0.611 -0.400 0.515
3-pentanone	(C18) 0.430 0.347 -0.227 0.294 -0.027 0.300 -0.019 0.468 0.226 -0.694 -0.575 0.773 -0.451 -0.179 0.186 0.452 -0.453
5-methyl-4-hexen-3-one	
(C19)

-0.563 -0.128 0.481 -0.653 0.541 -0.340 0.514 -0.526 0.077 0.617 0.443 -0.080 0.137 0.260 -0.396 0.346 -0.694

4-methylpentyl	
isothiocyanate	(C20)

-0.370 -0.809 0.370 -0.323 -0.094 -0.440 0.588 -0.703 -0.302 0.057 0.467 0.164 0.814 -0.408 -0.764 0.380 0.324

Table	S2.	Summary	table	of	correlation	coefficients	between	agglomerative	hierarchical	clusters	and	phytochemical	variables	within	a	PCA	of	consumer	liking	scores.
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5-nonanone	oxime	
(C21)

0.144 -0.416 0.124 0.092 -0.119 0.038 0.557 -0.369 -0.365 -0.589 -0.084 0.790 0.536 -0.445 -0.582 0.746 0.172

1-isothiocyanato-3-
methylbutane	(C23)

-0.485 -0.595 0.554 -0.480 0.304 -0.337 0.937 -0.913 -0.315 0.117 0.540 0.346 0.794 -0.317 -0.869 0.701 -0.071

Ethylidene-
cyclopropane	(C24)

-0.231 0.061 0.168 -0.413 0.272 -0.233 -0.009 0.046 0.285 0.444 0.008 -0.042 -0.332 0.413 -0.006 0.139 -0.798

2-ethyl-furan	(C26) 0.002 -0.462 0.045 -0.166 -0.270 -0.202 -0.117 -0.198 -0.339 0.341 -0.019 -0.116 0.282 0.498 -0.354 0.129 0.000
3-methyl-furan	(C27) 0.310 0.410 -0.161 0.224 0.105 0.162 -0.846 0.793 0.332 0.104 -0.520 -0.303 -0.840 0.120 0.979 -0.841 0.128
Hexyl	isothiocyanate	
(C29)

-0.327 -0.699 0.132 -0.205 -0.346 -0.433 0.201 -0.476 -0.214 0.217 0.489 -0.277 0.681 -0.203 -0.541 -0.031 0.483

2-oxo-methyl	ester	
hexanoic	acid	(C30)

-0.136 0.088 0.135 -0.349 0.267 -0.318 -0.339 0.471 0.610 0.325 -0.235 0.006 -0.732 0.133 0.411 -0.200 -0.739

Pentyl	isothiocyanate	
(C31)

-0.565 -0.613 0.151 -0.383 -0.273 -0.543 0.471 -0.618 -0.016 0.281 0.749 -0.280 0.717 -0.208 -0.750 0.202 0.087

Iberverin	(C33) -0.372 -0.608 0.101 -0.219 -0.334 -0.335 0.514 -0.710 -0.321 0.138 0.626 -0.147 0.881 -0.096 -0.844 0.356 0.263
Propanoic	acid	
anhydride	(C34)

-0.504 0.116 0.201 -0.546 0.340 -0.396 -0.045 0.021 0.511 0.709 0.323 -0.456 -0.368 0.328 0.103 -0.199 -0.751

4-methyl-2-(2-methyl-
propenyl)-pyridine	(C35)

-0.529 0.214 0.364 -0.527 0.624 -0.177 0.471 -0.370 0.242 0.513 0.443 -0.151 -0.061 0.187 -0.165 0.219 -0.734

Pyrrolidine-1-
dithiocarboxylic	acid	2-
oxocyclopentyl	ester	
(C36)

-0.323 -0.702 0.136 -0.246 -0.346 -0.386 0.381 -0.633 -0.340 0.204 0.508 -0.140 0.809 -0.029 -0.778 0.285 0.278

3-ethyl-thiophene	(C37) -0.180 0.149 0.125 -0.210 0.256 0.073 -0.025 -0.308 -0.288 0.676 0.237 -0.563 0.103 0.720 -0.042 -0.157 -0.108

Tetrahydrothiophene	
(C38)

-0.276 -0.790 0.212 -0.225 -0.295 -0.412 0.361 -0.571 -0.319 0.095 0.404 0.002 0.765 -0.243 -0.689 0.235 0.405

[Unknown	2]	(C39) -0.437 0.461 0.099 -0.334 0.434 -0.030 0.299 -0.206 0.308 0.446 0.454 -0.358 -0.148 0.293 -0.036 0.067 -0.681
[Unknown	8]	(C40) -0.469 -0.018 0.032 -0.255 -0.021 -0.070 0.757 -0.787 -0.204 0.224 0.775 -0.216 0.714 0.218 -0.832 0.587 -0.295
[Unknown	9]	(C41) -0.253 0.165 0.054 -0.336 0.178 -0.160 -0.182 0.021 0.184 0.659 0.153 -0.481 -0.266 0.633 0.085 -0.170 -0.554
Vinylfuran	(C42) 0.358 0.036 -0.205 0.183 -0.225 0.126 0.048 0.290 0.096 -0.592 -0.476 0.764 -0.198 -0.063 -0.129 0.615 -0.460
Polyatomic	ions
Chloride 0.068 -0.739 0.189 -0.014 -0.270 -0.144 0.267 -0.469 -0.592 -0.133 0.014 0.313 0.707 -0.140 -0.588 0.359 0.531
Nitrate 0.382 0.090 0.194 0.202 0.356 0.428 0.350 -0.137 -0.433 -0.506 -0.454 0.817 0.077 -0.142 -0.066 0.564 0.041
Phosphate -0.237 -0.556 0.659 -0.354 0.508 -0.248 0.725 -0.560 -0.210 -0.148 0.096 0.698 0.421 -0.642 -0.435 0.529 0.065
Sulphate -0.041 -0.213 0.515 -0.256 0.572 -0.064 0.563 -0.241 -0.044 -0.268 -0.205 0.871 0.020 -0.441 -0.199 0.618 -0.331
Compound	ratios
Total	Sugar:GSL	ratio 0.194 0.550 -0.555 0.362 -0.356 0.131 -0.488 0.751 0.650 -0.371 -0.174 -0.155 -0.623 -0.190 0.551 -0.384 -0.165
Glucose:GSL 0.096 0.528 -0.521 0.319 -0.334 0.091 -0.458 0.659 0.635 -0.263 -0.034 -0.312 -0.540 -0.201 0.529 -0.479 -0.073
Fructose:GSL 0.307 0.588 -0.492 0.398 -0.230 0.210 -0.533 0.838 0.619 -0.444 -0.366 0.009 -0.748 -0.219 0.683 -0.379 -0.164
Galactose:GSL 0.063 0.358 -0.427 0.162 -0.317 -0.107 -0.636 0.791 0.753 -0.089 -0.152 -0.313 -0.715 -0.124 0.614 -0.573 -0.221
Sucrose:GSL 0.431 0.569 -0.623 0.521 -0.428 0.377 -0.191 0.600 0.362 -0.761 -0.360 0.367 -0.413 -0.133 0.224 0.222 -0.299
Sugar:ITC	ratio 0.227 0.637 -0.567 0.292 -0.306 0.153 -0.603 0.820 0.649 -0.194 -0.279 -0.202 -0.777 0.151 0.595 -0.349 -0.436
Acid:sugar	ratio 0.534 0.155 0.056 0.386 0.215 0.591 0.217 -0.108 -0.614 -0.547 -0.514 0.699 0.144 -0.009 -0.015 0.459 0.286

Numbers	in	bold	indicate	a	significant	correlation	(Pearson	n-1);	green	=	significance	at	P<0.05;	orange	=	significance	at	P<0.01.	*	=	significant	differences	observed	between	rocket	accessions;	^	=	
agglomerative	hierarchical	cluster	with	<20	individuals
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Sulfury_O -0.041 -0.299 -0.274 0.158 -0.599 -0.198 0.079 -0.006 0.130 -0.382 0.226 0.038 0.334 -0.456 -0.319 0.087 0.290
Green_O 0.305 0.339 -0.408 0.284 -0.302 0.255 0.126 0.285 0.205 -0.652 -0.282 0.592 -0.189 -0.016 -0.151 0.634 -0.562
Stalky_O 0.000 -0.087 -0.320 0.192 -0.526 0.123 0.566 -0.455 -0.281 -0.449 0.352 0.241 0.707 -0.029 -0.820 0.765 -0.023
Pepper_O -0.059 -0.524 0.277 -0.249 0.014 -0.247 0.508 -0.328 -0.133 -0.242 -0.064 0.742 0.327 -0.225 -0.606 0.785 -0.328
Earthy_O 0.373 0.560 -0.344 0.209 -0.045 0.307 -0.508 0.610 0.219 -0.043 -0.519 0.033 -0.691 0.559 0.471 -0.062 -0.545
Burnt	rubber_O -0.157 -0.730 0.162 -0.111 -0.308 -0.373 0.325 -0.360 -0.159 -0.199 0.228 0.256 0.593 -0.527 -0.543 0.255 0.401
Pungent_O 0.246 -0.118 -0.364 0.458 -0.593 0.251 0.224 -0.214 -0.388 -0.600 0.107 0.174 0.611 -0.253 -0.436 0.313 0.588
Sweet_O -0.287 0.281 0.390 -0.331 0.732 -0.034 0.480 -0.128 0.330 0.032 0.101 0.345 -0.265 -0.273 0.065 0.290 -0.623
Aromatic_O -0.140 0.049 -0.395 -0.058 -0.519 -0.247 -0.126 0.223 0.455 0.014 0.192 -0.191 -0.121 0.186 -0.202 0.129 -0.545
Mustard_O 0.169 -0.330 -0.388 0.295 -0.782 0.056 0.101 -0.257 -0.424 -0.311 0.154 0.001 0.669 0.108 -0.617 0.349 0.403
Sweet_T -0.083 0.266 0.346 -0.239 0.667 0.160 0.380 -0.222 -0.072 0.138 -0.068 0.319 -0.141 0.191 -0.021 0.387 -0.539
Sour_T -0.027 -0.613 0.088 0.048 -0.323 -0.192 0.309 -0.348 -0.283 -0.322 0.160 0.278 0.623 -0.519 -0.486 0.242 0.561
Bitter_T -0.549 -0.497 0.202 -0.351 -0.127 -0.356 0.724 -0.855 -0.241 0.239 0.811 -0.187 0.898 -0.115 -0.906 0.437 0.075
Savoury_T 0.082 -0.151 -0.460 0.219 -0.753 -0.009 0.183 -0.113 -0.073 -0.405 0.180 0.132 0.444 0.035 -0.610 0.518 -0.062
Green_F 0.503 0.371 -0.289 0.313 -0.094 0.351 -0.141 0.494 0.124 -0.584 -0.647 0.685 -0.472 0.103 0.185 0.445 -0.503
Stalky_F -0.151 -0.270 -0.185 0.094 -0.475 -0.089 0.508 -0.430 -0.131 -0.365 0.463 0.112 0.694 -0.346 -0.697 0.470 0.207
Peppery_F -0.125 -0.746 0.438 -0.275 0.072 -0.323 0.576 -0.487 -0.268 -0.216 0.029 0.703 0.529 -0.461 -0.634 0.649 0.049
Mustard_F 0.131 -0.618 0.086 0.067 -0.323 -0.034 0.400 -0.481 -0.589 -0.327 -0.004 0.487 0.735 -0.143 -0.700 0.606 0.380
Sulfury_F -0.191 -0.600 -0.049 -0.071 -0.520 -0.291 0.339 -0.479 -0.262 -0.064 0.416 -0.015 0.751 -0.140 -0.745 0.347 0.285
Earthy_F -0.849 -0.632 0.579 -0.872 0.316 -0.950 0.199 -0.273 0.569 0.773 0.603 -0.352 0.008 -0.301 -0.204 -0.230 -0.417
Bitter_AE -0.221 -0.711 0.303 -0.302 -0.111 -0.285 0.519 -0.717 -0.511 0.166 0.302 0.192 0.785 0.081 -0.836 0.569 0.099
Sweet_AE -0.066 0.430 0.198 -0.202 0.586 0.097 -0.203 0.195 0.191 0.445 -0.149 -0.208 -0.559 0.384 0.494 -0.285 -0.441
Acid_AE -0.086 -0.655 0.025 0.000 -0.443 -0.282 0.233 -0.330 -0.228 -0.206 0.232 0.130 0.627 -0.400 -0.531 0.195 0.494
Savoury_AE -0.263 -0.084 -0.223 -0.187 -0.389 -0.261 0.274 -0.159 0.246 0.020 0.365 -0.017 0.206 0.174 -0.569 0.497 -0.616
Peppery_AE -0.257 -0.852 0.466 -0.381 0.029 -0.492 0.527 -0.484 -0.151 -0.079 0.148 0.549 0.527 -0.502 -0.637 0.519 0.049
Mustard_AE -0.081 -0.684 0.218 -0.130 -0.200 -0.191 0.574 -0.622 -0.483 -0.190 0.183 0.459 0.785 -0.199 -0.822 0.681 0.203
Green_AE 0.479 0.448 -0.337 0.457 -0.123 0.555 0.259 0.134 -0.137 -0.805 -0.390 0.742 -0.042 -0.038 -0.127 0.710 -0.270
Earthy_AE -0.587 0.087 0.182 -0.568 0.297 -0.562 -0.027 0.204 0.875 0.502 0.346 -0.316 -0.522 -0.104 0.191 -0.240 -0.830
Warming_AE -0.034 -0.758 0.257 -0.188 -0.177 -0.387 0.266 -0.203 -0.109 -0.242 -0.088 0.592 0.348 -0.432 -0.472 0.443 0.076
Initial	heat_MF -0.264 -0.740 0.252 -0.249 -0.200 -0.380 0.599 -0.604 -0.250 -0.125 0.349 0.357 0.746 -0.381 -0.815 0.580 0.138
Leaf	spikiness_MF -0.295 -0.466 0.318 -0.493 0.120 -0.697 -0.331 0.374 0.638 0.347 -0.113 0.015 -0.502 -0.292 0.279 -0.351 -0.370
Crisp_MF 0.065 -0.083 0.009 -0.070 -0.050 0.103 0.475 -0.357 -0.304 -0.174 -0.030 0.510 0.328 0.307 -0.623 0.874 -0.492
Chewy_MF -0.221 -0.410 0.080 -0.370 -0.184 -0.492 -0.242 0.079 0.218 0.451 0.051 -0.209 -0.103 0.274 -0.118 -0.091 -0.345
Tough_MF -0.017 -0.099 -0.147 -0.142 -0.270 -0.214 -0.461 0.235 0.121 0.432 -0.076 -0.379 -0.226 0.569 0.071 -0.223 -0.284
Moistness	of	Leaf_MF 0.183 0.679 -0.072 0.253 0.391 0.511 0.157 0.091 0.007 -0.287 -0.136 0.181 -0.251 -0.033 0.302 0.092 -0.128
Salivating_MF 0.485 0.019 0.081 0.188 0.168 0.297 0.068 0.189 -0.215 -0.533 -0.695 0.912 -0.207 -0.057 0.051 0.539 -0.203
Astringency_MF -0.699 -0.543 0.497 -0.563 0.260 -0.657 0.157 -0.405 0.199 0.671 0.668 -0.588 0.283 -0.384 -0.102 -0.516 0.302
Tingly_MF -0.210 -0.774 0.324 -0.279 -0.113 -0.410 0.550 -0.493 -0.184 -0.174 0.188 0.526 0.599 -0.451 -0.715 0.594 0.057
Warming_MF -0.213 -0.778 0.300 -0.257 -0.151 -0.425 0.512 -0.459 -0.150 -0.189 0.201 0.486 0.590 -0.502 -0.681 0.527 0.115

Table	S3.	Summary	table	of	correlation	coefficients	between	mouthfeel	liking,	taste	liking	and	perception	agglomerative	hierarchical	clusters,	and	sensory	data	
variables	within	a	PCA	of	consumer	liking	scores.

Numbers	in	bold	indicate	a	significant	correlation	(Pearson	n-1);	green	=	significance	at	P<0.05;	orange	=	significance	at	P<0.01.	Abbreviations:	A	=	appearance;	
O	=	odour;	T	=	taste;	F	=	flavour;	MF	=	mouthfeel;	AE	=	aftereffects.	*	=	significant	differences	observed	between	rocket	accessions;	^	=	agglomerative	
hierarchical	cluster	with	<20	individuals
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Depth	of	leaf	colour_A 0.084 0.507 0.656 -0.117 0.626 -0.635 0.180 0.753 -0.005 0.636 -0.360

Leaf	shape_A 0.032 0.178 0.819 -0.355 0.426 -0.887 0.339 0.798 -0.207 0.425 -0.045

Size	of	leaves_A -0.176 -0.543 0.274 -0.386 -0.360 -0.412 0.173 0.049 -0.372 -0.415 0.554

Hairiness_A -0.684 -0.264 0.391 -0.149 -0.003 -0.160 0.356 -0.099 -0.383 -0.563 0.738

Purple	Stem_A -0.039 -0.749 -0.492 -0.138 -0.655 0.128 -0.203 -0.438 0.267 -0.932 0.800
Numbers	in	bold	indicate	a	significant	correlation	(Pearson	n-1);	green	=	significance	at	P<0.05,	orange	=	

significance	at	P<0.01.	Abbreviations:	A	=	appearance;	O	=	odour;	T	=	taste;	F	=	flavour;	MF	=	mouthfeel;	AE	=	

aftereffects.	*	=	significant	differences	observed	between	rocket	accessions;	^	=	agglomerative	hierarchical	

cluster	with	<20	individuals

Table	S4.	Summary	table	of	correlation	coefficients	between	agglomerative	hierarchical	clusters	for	appearance	

traits	and	sensory	data	variables	within	a	PCA	of	consumer	appearance	liking	scores
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Appendix X. Average temperature data recorded during the rocket field, processing and shelf life 
experiment. Dates refer to 2014, with sample points highlighted in bold text. 
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Appendix XII. Free sugar concentrations within each cultivar at each time point (mg.g-1 dw). Letters a 
– b indicate significant differences within each cultivar over time. Letters y – z indicate significant 
differences between each cultivar across time points. An absence of letters indicates no significant 
differences were observed (ANOVA + Tukey’s HSD test; P = <0.05). Letters above bars refer to total 
concentration; letters within/beside bars refer to individual compounds. See inset for colour coding. 
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Figure	7.5	a	&	b PC1 PC2
4-hydroxyglucobrassicin 0.134 0.209
Glucoerucin -0.046 0.227
Glucoraphanin 0.263 0.212
Epi/progoitrin 0.025 0.048
Diglucothiobeinin -0.026 -0.500
Glucosativin 0.737 0.167
Glucoiberverin -0.121 -0.134
DMB 0.461 0.134
Total	GSL 0.747 0.250
Bacterial	counts 0.630 -0.281
Fructose -0.456 0.582
Glucose -0.053 0.927
Galactose -0.190 0.257
Sucrose -0.194 -0.102
Total	Sugars -0.193 0.894
Alanine -0.265 0.611
Glycine -0.312 -0.345
α-aminobutyric	acid -0.017 -0.133
Valine 0.979 0.008
Leucine 0.720 0.509
Isoleucine 0.816 0.425
Threonine 0.966 -0.116
Serine 0.677 0.552
Proline -0.206 0.841
Asparagine 0.766 -0.500
Aspartic	acid 0.200 -0.112
Glutamic	acid 0.318 -0.095
Phenylalanine 0.951 -0.219
Glutamine 0.935 0.001
Lysine 0.922 -0.146
Histidine 0.742 -0.021
Tyrosine 0.857 0.289
Tryptophan 0.969 -0.057
Total	AAs 0.974 0.060
Time	point-D0 0.112 -0.003
Time	point-D2 0.302 0.186
Time	point-D5 0.251 0.016
Time	point-D7 0.395 0.186
Time	point-D9 0.018 -0.010
Time	point-H -0.367 -0.153

Appendix XIV Loadings of the first two principal components of 
analyses presented in Figure 7.5, and the Eigenvalues, variability, and 
cumulative variability explained by each component for each 
respective analysis.

Appendix XIII

Appendix XIII
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Time	point-PH -0.228 -0.329
Time	point-PR -0.191 0.108
Time	point-PT -0.281 -0.104
Time	point-PW -0.057 0.066
Eigenvalue 12.413 5.080
Variability	(%) 36.507 14.940
Cumulative	% 36.507 51.448

Figure	7.5	c	&	d PC1 PC2 PC3
4-isothiocyanato-butene 0.280 -0.272 0.674
4-mercaptobutyl-ITC 0.904 0.110 -0.205
Erucin 0.706 0.383 0.389
Sulforaphane/Erucin	nitrile -0.597 -0.277 0.231
Sulforaphane 0.493 -0.296 0.791
Bis(4-isothiocyanatobutyl)-disulfide0.723 0.226 0.327
Total	ITC/Nitrile 0.792 -0.191 0.571
4-hydroxyglucobrassicin 0.133 0.161 0.074
Glucoerucin -0.238 -0.127 0.090
Glucoraphanin -0.201 -0.525 0.631
Diglucothiobeinin -0.427 -0.391 0.444
Glucosativin 0.710 -0.442 -0.034
Glucoiberverin -0.463 0.164 -0.179
DMB 0.849 -0.106 -0.350
Total	GSL 0.733 -0.509 -0.008
Bacterial	counts 0.620 -0.565 -0.461
Fructose -0.263 0.755 -0.157
Glucose 0.389 0.858 0.205
Galactose 0.445 0.469 -0.367
Sucrose -0.160 -0.170 0.043
Total	Sugars 0.253 0.903 0.132
Alanine -0.100 0.930 0.113
Glycine -0.579 0.306 -0.081
α-aminobutyric	acid -0.206 -0.352 -0.222
Valine 0.975 -0.150 -0.090
Leucine 0.842 0.137 0.432
Isoleucine 0.920 0.189 0.252
Threonine 0.943 -0.219 -0.220
Serine 0.884 0.272 0.324
Proline -0.143 0.794 0.014
Asparagine 0.653 -0.596 -0.430
Aspartic	acid -0.133 -0.704 0.382
Glutamic	acid 0.540 0.098 0.301
Phenylalanine 0.904 -0.292 -0.285
Glutamine 0.963 0.006 -0.225
Lysine 0.947 0.100 -0.155
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Histidine 0.696 0.527 0.051
Tyrosine 0.925 0.258 0.171
Tryptophan 0.950 -0.113 -0.263
Total	AAs 0.977 -0.004 -0.171
Time	point-PT -0.900 -0.031 0.018
Time	point-D7 0.900 0.031 -0.018
Eigenvalue 17.467 7.362 4.145
Variability	(%) 43.667 18.405 10.362
Cumulative	% 43.667 62.073 72.434
Bold	=	highest	correlation


