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Abstract 
Knowledge of turbulent exchange in complex environments is relevant to a wide range of hydro-

meteorological applications. Observations are required to improve understanding and inform model 

parameterisations but the very nature of complex environments presents challenges for 

measurements. Scintillometry offers several advantages as a technique for providing spatially-

integrated turbulence data (structure parameters and fluxes), particularly in areas that would be 

impracticable to monitor using eddy covariance, such as across a valley, above a city or over 

heterogeneous landscapes. Despite much of scintillometry theory assuming flat, homogeneous 

surfaces and ideal conditions, over the last 20 years scintillometers have been deployed in increasingly 

complex locations, including urban and mountainous areas. This review draws together fundamental 

and applied research in complex environments, to assess what has been learnt, summarise the state-

of-the-art and identify key areas for future research. Particular attention is given to evidence, or 

relative lack thereof, of the impact of complex environments on scintillometer data. Practical and 

theoretical considerations to account for the effects of complexity are discussed, with the aim of 

developing measurement capability towards more reliable and accurate observations in future. The 

usefulness of structure parameter measurements (in addition to fluxes, which must be derived using 

similarity theory) should not be overlooked, particularly when comparing or combining scintillometry 

with other measurement techniques and model simulations. 

Keywords: heterogeneous landscape; scintillometer; similarity theory; structure parameter; surface 

flux; turbulence 

1 Introduction 
Much of the understanding underpinning current meteorological measurement and modelling 

capabilities is based on ideal environments, i.e. extensive areas of flat terrain with uniform surface 

characteristics (Rotach et al., 2004; Rotach et al., 2008). However, a vast proportion of the earth’s land 

surface does not conform to these ideals. Heterogeneity in surface characteristics can result from 

natural variation (in soil characteristics, sun-shade conditions, altitude, vegetation) as well as through 

human influences (agriculture, urbanisation). In urban areas, contrasting land cover characteristics, 

distribution of energy sources and size, layout and material properties of buildings can lead to extreme 

heterogeneity in terms of aerodynamic and thermal properties (Schmid et al., 1991). In regions with 

uneven terrain, surface heterogeneity results from differential heating by solar radiation (Whiteman 

et al., 1989; Matzinger et al., 2003). Even over ideal surfaces spatial variability in weather can result 

in inhomogeneity, for example rainfall causing uneven wetting or patchy cloud cover causing uneven 

heating. 

To make reliable predictions, observations are required to first understand the exchange of energy, 

moisture, momentum or pollutants between surface and atmosphere. These observations can then 

be used to inform and evaluate model parameterisations. Accurate interpretation of field data in 

complex environments requires understanding of relevant physical processes, how they differ from 

the ideal case and their potential impact on observations. 
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The most widely accepted technique for measuring surface fluxes is eddy covariance (EC) 

(Baldocchi et al., 2001). Fast measurements of the wind components, sonic temperature and gas 

concentrations (typically water vapour and carbon dioxide) are made by a sonic anemometer and gas 

analyser installed on a tower several metres above the surface. EC data are typically representative of 

a single field or neighbourhood (i.e. 102-103 m).  

Scintillometers provide measurements at a much larger scale. Scintillometry is a ground-based 

remote-sensing technique that uses changes in the refractive index of air to derive turbulence 

statistics. An electromagnetic beam propagates through the atmosphere from transmitter to receiver 

(Figure 1). Turbulent eddies moving in and out of the beam scatter the radiation. The amount of 

scattering depends on the refractive index (n) of air parcels, which depends on their density (ρ) which, 

in turn, depends on their temperature (T) and water vapour content (specific humidity, q). From the 

fluctuations in T and q, surface fluxes can be obtained using Monin-Obukhov similarity theory (MOST). 

As the received intensity is the result of fluctuations all along the beam, derived quantities are 

spatially-integrated.  

 

Figure 1: Schematic representation (not to scale) of a large-aperture scintillometer (LAS, blue), surface-layer scintillometer 
(SLS, red) and eddy covariance station (EC, yellow) deployed over a complex landscape. As the scintillometer beam 
propagates from transmitter (Tx) to receiver (Rx) it is scattered by turbulent eddies of density ρ at temperature T and 
humidity q. 

Scintillometers vary principally in terms of wavelength (λ) of the electromagnetic beam and size of 

the aperture. In the infrared region, refractive index fluctuations are mainly caused by changes in air 

temperature with humidity having a much smaller effect. Therefore infrared scintillometers are used 

to find the sensible heat flux. Large-aperture scintillometers (LAS) are relatively insensitive to eddies 

smaller than their aperture diameter (D ≈ 0.15 m) so can be used over long distances (Wang et al., 

1978), usually between 500 and 5000 m. For longer paths (up to 10000 m) extra-large aperture 

scintillometers (XLAS) are recommended. Small-aperture (near-)infrared scintillometers are affected 

by eddies of similar size to the inner-scale, l0 (Section 2.1). Two beams are therefore required to derive 

both the refractive index fluctuations and l0. These are known as displaced-beam small-aperture 

scintillometers, or surface-layer scintillometers (SLS) and operate across paths of 50-250 m. 

Scintillometers of longer wavelengths (millimetre-wave, microwave or radio-wave) are sensitive to 

fluctuations in both air temperature and humidity, so these instruments (denoted MWS) can be used 

in conjunction with an infrared LAS to determine sensible and latent heat fluxes. A value for the 

temperature-humidity correlation coefficient (rTq) must either be assumed (‘two-wavelength’ method 

(Hill et al., 1988; Andreas, 1989)) or obtained from the covariance between the two signal intensities 

(‘bichromatic correlation’ method (Lüdi et al., 2005)). Figure 2 summarises the various methods of 

obtaining fluxes from scintillometry. 
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Figure 2: Summary of methods to obtain turbulent heat fluxes (and momentum flux, τ) from scintillometers via Monin-
Obukhov similarity theory (MOST) or energy balance (EB) residual. I is beam intensity. Other notation is defined in the text. 

This review focuses on scintillometry in complex environments, where ‘complex’ describes some 

departure from the ideal (flat, homogeneous) case and therefore includes urban areas and variable 

topography. Published reviews of scintillometry are rare and much needed. Hill (1992) provides a 

comprehensive summary of optical scintillation before the application to complex environments really 

began, and a useful overview of surface-layer scintillometry is Odhiambo and Savage (2009). Here, the 

focus is on turbulence (i.e. structure parameters and fluxes). Given the volume and variety of studies 

in the last 20 years (Figure 3), combined with advances in the tools available (instrumentation, data 

loggers, numerical modelling, earth observation), this review is timely and relevant. Particular 

attention is given to potential issues with the application of scintillometry in complex environments 

and efforts that have been made to address these issues. The importance of this is to encourage best 

practice in future for the growing number of research groups using scintillometry.  

This article is structured as follows. Basic theory is outlined in Section 2. Key findings from studies 

in increasingly challenging environments are analysed in Section 3, with an emphasis on fundamental 

progress in understanding scintillometry and boundary-layer processes. Theoretical and practical 

considerations relating to complex environments are examined in Section 4. A summary and outlook 

is given in Section 5. 

 

Figure 3: Cumulative number of journal articles reporting scintillometry observations in complex and urban environments 
over the last 20 years. Only articles dealing with structure parameters and fluxes were counted. See Table 2 for references 
and further details. 
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2 Theory 

2.1 Relating intensity fluctuations to the strength of turbulence 
Turbulent transport is the primary mechanism by which heat, moisture and other scalars are 

redistributed within the near-surface boundary layer. Large-scale eddies (of the order of half the 

height of the boundary layer) generated by wind shear and convection break down into smaller and 

smaller eddies until their energy is dissipated as heat by molecular viscosity. This cascade process 

results in a turbulence spectrum of three parts: the production range consisting of the largest eddies; 

the inertial subrange containing eddies from tens of metres (or half the measurement height) to 

millimetres (the inner scale); and the dissipation range (e.g., Meijninger, 2003; Hartogensis, 2006; 

Moene et al., 2009). Within the inertial subrange, production and dissipation processes are 

unimportant and homogeneous and isotropic turbulence can be described by the three-dimensional 

Kolmogorov spectrum (Monin and Yaglom, 1971): 

3/112033.0)(  KCK nn          (1) 

where K is the eddy wavenumber (defined as K=2π/l where l is eddy size) and Cn
2 is the structure 

parameter of the refractive index of air. For SLSs the spectrum should be modified to more accurately 

represent behaviour at small scales (e.g., Hill, 1988; Frehlich, 1992). Cn
2 can be related to intensity 

fluctuations, expressed in terms of the variance of log-amplitude fluctuations σχ
2, using the following 

equation (in generalised form) (Lüdi et al., 2005): 
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where k is the optical wavenumber (k=2π/λ), x the normalised position along the path, L the path 

length, d the displacement between beams, J0 and J1 are Bessel functions, t denotes transmitter, r 

receiver and the subscripts 1 and 2 refer to each beam. For a single instrument the subscripted 

quantities are the same and integration yields an equation relating the variance of log-amplitude 

fluctuations to the strength of turbulence, described by the path-averaged structure parameter of the 

refractive index of air. For example, for a LAS (Wang et al., 1978),  

233/72 223.0 nCLD .         (3) 

The derivation assumes weak scattering, homogeneous turbulence and that Cn
2 only varies smoothly 

along the path so that local isotropy applies (Moene et al., 2004). Integrating Eq 2 over K gives the 

path weighting function, which describes the sensitivity of the scintillometer as a function of position 

along the path. The sensitivity is greatest for the middle third of the path and very small towards the 

ends of the path. 

2.2 Relating refractive index fluctuations to temperature and humidity fluctuations  
Cn

2 can be split into contributions from temperature and humidity fluctuations (Hill et al., 1980), 
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where CT
2 is the structure parameter of temperature, Cq

2 is the structure parameter of specific 

humidity and CTq is the temperature-humidity cross structure parameter. The coefficients AT and Aq 

depend on wavelength and are given in Ward et al. (2013). Solving this equation depends on the 

instrumental setup (Figure 2). For a two-wavelength system, Eq 4 can be written for each wavelength, 

allowing both CT
2 and Cq

2 to be found if a value of the temperature-humidity correlation coefficient 

rTq is assumed so that the cross term can be eliminated (Hill et al., 1988; Andreas, 1989). The 

bichromatic method uses the correlation between each scintillometer beam to provide a third 

equation of similar form to Eq 4, which enables CT
2, Cq

2 and CTq (and thus rTq) to be found directly 

(Lüdi et al., 2005; Ward et al., 2015b). For the typical single-wavelength setup, the first term on the 

RHS of Eq 4 usually dominates so the CTq and Cq
2 contributions can be approximated using the Bowen 

ratio β (=QH/QE, the ratio of sensible to latent heat flux) (Wesely, 1976; Moene, 2003), 
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Strictly, the appearance of β here is based on the assumption |rTq| = 1 and the value 0.03 is for 

standard atmospheric conditions (pressure, p = 105 Pa, T = 300 K). Applying the β approximation 

(instead of the full formula involving the standard deviations of T and q, see Moene (2003) Eq 8) can 

lead to errors in CT
2 of 5-40% for |β| < 1. The absolute impact on the energy budget is small, however, 

as the correction is negligible when QH is large and when the correction is substantial QH is small. 

2.3 Relating structure parameters to fluxes 
The conversion of structure parameters to fluxes relies on MOST, which requires homogeneous 

and stationary conditions. Wind speed, U, is used to estimate the friction velocity, u*, assuming a 

logarithmic wind profile adjusted for stability (e.g., Stull, 1988). The Okukhov length, LOb, and the 

temperature scaling variable, T*, are calculated iteratively using the following equations: 
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where κv is the von Kármán constant, zu the height of the wind speed measurement, zm the height of 

the scintillometer beam, zd zero-plane displacement height, z0 roughness length for momentum, g 

acceleration due to gravity, Ψm the integrated stability function for momentum (e.g., Panofsky and 

Dutton, 1984) and fMO is a similarity function (Section 4.1.1). Scintillometry does not provide the sign 

of the sensible heat flux, so additional information is required to determine whether stable or unstable 

similarity functions should be used (Samain et al., 2012a). For SLSs, measured U is not required as u* 
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is instead obtained from the turbulent kinetic energy dissipation rate, ϵ, via MOST (Wyngaard and 

Clifford, 1978; Thiermann and Grassl, 1992).  

The sensible heat flux is calculated, 

**TucQ pH  ,          (9) 

where ρ is the density of air and cp the specific heat capacity of air at constant pressure. For two-

wavelength systems the humidity scaling variable, q*, is obtained analogously from Cq
2, then the latent 

heat flux is obtained from, 

**quLQ vE  ,          (10) 

where Lv is the latent heat of vaporisation. For a standalone infrared scintillometer QE is instead 

obtained from the residual of the energy balance (Section 4.4). 

3 Progress in scintillometry 
This section is devoted to studies investigating fundamental science questions and advancing 

understanding of boundary-layer meteorology or scintillometry itself. For a more exhaustive overview 

of scintillometry studies in complex environments,  Table 2 (Appendix) summarises instrumentation, 

site details and key findings. 

The performance of scintillometry is often judged by its ability to match EC. However, uncertainties 

with EC and differences between the techniques must be considered. Although EC is a direct method 

of measuring fluxes, data processing consists of a series of adjustments and corrections (Aubinet et 

al., 2012) and different options can lead to differences of 10-15% in the fluxes (Mauder et al., 2007). 

As with scintillometry, EC measurements were also developed for flat homogeneous sites and 

application at more complex sites potentially introduces uncertainties and may require different 

treatment (Finnigan, 2008; Stiperski and Rotach, 2016). The main issue with EC is under-closure of the 

energy balance: the sum of the turbulent heat fluxes is often smaller than the available energy by 10-

30% (Wilson et al., 2002; Foken, 2008). Despite research into  the source of this energy imbalance, the 

full explanation remains elusive. Suggestions include sampling errors related to inconsistent source 

areas for the energy balance terms; advection or storage terms not accounted for; instrument bias; 

and missing low or high frequency contributions. Some studies force closure by increasing QH and QE 

while maintaining β (Twine et al., 2000). In the following, the subscripts ‘sc’, ‘EC’ and ‘agg’ are used to 

denote scintillometry, eddy covariance and area-aggregated datasets. 

More recently, other options for assessing scintillometer performance have emerged, including 

airborne measurements, numerical modelling (mesoscale weather models and large eddy simulation, 

LES) and satellite products. These enable analysis to extend beyond the limitations of the now familiar 

EC-scintillometry comparison and provide a broader understanding (being limited by a different set of 

issues to EC). 

3.1 Heterogeneous environments 
By the end of the 1990s, scintillometry had been shown to be a useful technique for deriving 

surface fluxes over flat homogeneous landscapes (e.g., Hill et al., 1992; De Bruin et al., 1995; 

McAneney et al., 1995) and interest grew in the applicability of scintillometry to heterogeneous 

surfaces (De Bruin, 2002). Initial studies considered the simplest case: two-surface composite paths 

where the scintillometer provides spatially-integrated measurements over both surfaces. Chehbouni 

et al. (2000) found ‘fairly good’ agreement between QH from a LAS spanning two patches (45% grass, 
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55% mesquite) and QH from EC stations in each patch aggregated according to the scintillometer path 

weighting function. A very similar study (25% grass, 75% mixed mesquite and grass) found ‘very good’ 

agreement between QH_sc and QH_EC_agg (r2 = 0.95) (Chehbouni et al., 1999). For both of these short 

studies, agreement between LAS and EC for the composite path was similar to or better than 

comparisons for each patch individually. It was suggested that the methodology could be improved 

with a dynamic aggregation scheme that would account for the changing composition of the LAS 

measurement (i.e. a scintillometer footprint model).  

Lagouarde et al. (2002) also used a composite path, over wheat and bare soil, introducing a step 

change in crop height as well as vegetation type. Good correlation (r2 = 0.96) was found, but QH_sc 

overestimated QH_EC_agg by 11%. This was largely explained by a fundamental difference between 

scintillometry and EC techniques: rather than measuring fluxes directly, scintillometers measure path-

averaged structure parameters which are non-linearly related to QH. For a heterogeneous surface, 

averaging CT
2 and then converting to QH will give different results to averaging QH from each of the 

individual patches. This property is clearly illustrated by Meijninger et al. (2006) (see their Figure 10) 

where it is also extended to include QE derived via Cq
2. When used below the blending height (see 

Section 4.1), scintillometry is expected to overestimate aggregated fluxes in heterogeneous 

landscapes by a few percent, depending mainly on the difference in fluxes between patches. 

Increasing the measurement height reduces the overestimation for QH, but was found to increase the 

overestimation for QE (Meijninger et al., 2006). Lagouarde et al. (2002) proposed a correction based 

on a rough estimate of the difference in QH between patches, but it has rarely been implemented. 

Assessing scintillometer performance in heterogeneous environments was revolutionised by the 

introduction of a scintillometer footprint function. Point source area models used for EC (Leclerc and 

Foken, 2014) are computed at several locations along the path and combined with the path weighting 

function, resulting in a source area along and (usually) upwind of the path, with greatest weight near 

the centre of the path. Meijninger et al. (2002b) introduced this approach in order to dynamically 

aggregate EC fluxes measured over multiple crop types in the Flevoland field campaign to match the 

changing composition of the scintillometer source area. The dynamic aggregation resulted in a 1:1 

agreement between QH_sc and QH_EC_agg and this approach is now used routinely for comparisons 

between datasets. 

At the Flevoland site, typical field sizes were 200-500 m (depending on wind direction) and the path 

length was 2200 m. The LITFASS campaigns address heterogeneity at a much larger scale (Beyrich et 

al., 2002b; 2006; 2012). The LITFASS region includes agricultural fields, grasslands, forests and lakes 

and also incorporates moderate topography. The main scintillometer path length (now operational 

for > 10 years) is 4700 m. Using EC, short- and long-path scintillometers, airborne instrumentation and 

modelling, the LITFASS campaigns have substantially advanced understanding of turbulent exchange 

over heterogeneous surfaces. During LITFASS-2003 fourteen EC stations were operated over different 

crops and surface types (Beyrich and Mengelkamp, 2006). ‘Encouraging’ agreement was obtained 

between aggregated EC fluxes and fluxes derived from a two-wavelength scintillometer system (r2 = 

0.8-0.9) (Meijninger et al., 2006). Scintillometer fluxes were higher than aggregated EC fluxes, 

attributed to under-closure of the energy balance and the non-linear relationship between structure 

parameters and fluxes. Other reasons for differences between methods include saturation of the LAS 

and uncertainty in similarity functions. An XLAS (path length 10.2 km) over the same region required 

a substantial saturation correction to achieve reasonable agreement with QH_EC_agg (Kohsiek et al., 

2006). 

Numerous other studies comparing EC and scintillometry report similar findings (Table 2). In Ghana 

QH and QE derived from LASs and the energy balance residual were compared with EC data for two 
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heterogeneous savannah sites (Schüttemeyer et al., 2006). Agreement in QH was poorer at the more 

heterogeneous ‘Ejura’ site (r2 ≈ 0.7 compared to ≈ 0.9), possibly due to the small size of the EC source 

area and a larger scale of heterogeneity, although this is not demonstrated conclusively. In a similar 

study, good agreement between LAS and EC was found for a mixed vegetation site in Benin (Guyot et 

al., 2009). Again, scatter was linked to mismatches in the LAS and EC footprint, but both techniques 

captured changes in the surface energy balance after rainfall. Remarkable agreement was found 

between QH_sc and QH_EC_agg over mixed agricultural landscape with undulating terrain (Evans et al., 

2012), even as crops matured and energy partitioning within the fields changed. Correlation between 

QH_sc and QH_EC_agg was higher (r2 = 0.94) than between QH_sc and QH_EC for each of the individual fields 

(r2 = 0.75-0.91) and the regression slope obtained for the aggregated flux was 1.00, while slopes for 

individual fields varied from 0.68 to 2.06. QE_sc calculated as the energy balance residual using 

aggregated net radiation and soil heat flux also agreed well with QE_EC_agg (r
2 = 0.75, slope = 0.94). 

Ezzahar et al. (2009b) compared QH_sc with QH_EC_agg from three land cover types (shrubs, fallow, 

crops) in Niger and found good agreement in QH (r2 = 0.85) and QE estimated from the energy balance 

(r2 = 0.75). Ezzahar et al. (2007a) investigated heterogeneity due to differences in soil moisture across 

an olive yard in Morocco. They installed LAS and EC systems in adjacent irrigated and unirrigated fields 

but, as it was not feasible to install a third LAS across both fields, an aggregation scheme was used to 

calculate area-averaged Cn
2. It was concluded that area-averaged CT

2 generally behaves according to 

MOST. Hoedjes et al. (2007) use thermal imagery and footprint modelling to neatly explain observed 

differences between EC and LAS fluxes from one of the olive yards as the surface changes from almost 

homogenous (before and after irrigation) to highly heterogeneous (during irrigation). During 

irrigation, clear differences were observed between QH_EC and QH_sc (r
2 = 0.80, regression offset = 

49.88 W m-2), compared to before/after (r2 = 0.93-5, offset = 28.42/11.25 W m-2). Footprint-weighted 

radiative surface temperatures were calculated for EC and LAS using ASTER and Landsat data, and 

found to correlate with differences in QH when the difference between the two exceeds 0.5 °C (smaller 

differences in radiative surface temperature indicate a more similar footprint composition and 

differences in QH at these times are believed to be for other reasons). A similar approach was used to 

assess heterogeneity within and between LAS and EC footprints at an alpine meadow site in China, 

which partially explained differences in the observed fluxes (Liu et al., 2011). 

Hence these studies (and others, Table 2) demonstrate scintillometry can be used to give 

reasonable fluxes in heterogeneous environments. Validation against aggregated EC datasets 

frequently demonstrates somewhere between reasonable and excellent agreement, at least under 

unstable conditions. Differences are usually attributable to uncertainties in one or other (or both) 

datasets (energy balance closure, footprint differences, saturation, similarity functions and instrument 

uncertainties being the main ones), which can somewhat unsatisfactorily limit further insight. 

To attempt to eliminate some of these issues, analysis of structure parameters can help separate 

out differences in techniques from uncertainties involved in the flux calculation. As scintillometers 

essentially measure structure parameters, deeper understanding of their behaviour is extremely 

relevant. Using EC data, Braam et al. (2014b) investigated structure parameter measurements over 

heterogeneous surfaces in an attempt to distinguish local variability due to the nature of the turbulent 

field from spatial variabilty related to surface characteristics. During LITFASS-2009 an automated 

unmanned aircraft flown along the scintillometer path revealed spatial variability in CT
2, however it 

was not possible to determine from a single flight whether this variability was related to surface 

heterogeneity since the pattern was observed to change on the timescale of a few minutes (Braam et 

al., 2016). Careful consideration of data processing decisions and errors in LAS and aircraft 

measurements (Braam et al., 2016) represents important progress in these fairly novel techniques, 
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however, analyses indicate CT
2 from the aircraft is significantly higher than from scintillometer or EC 

data, calling for further measurement campaigns.  

Earlier studies comparing airborne and ground-based fluxes took a broader approach. Good 

agreement was obtained during LITFASS-1998 (Bange et al., 2002): QH at 80 m height, derived from a 

turbulence probe mounted beneath a helicopter (Helipod), correlated well with the variations in land 

cover below, being higher over forest and lower over water. The results for QE were less clear, but it 

was suggested that, over water, turbulence was decoupled from the surface on account of the lower 

roughness. For LITFASS-2003, Helipod, scintillometer and aggregated EC fluxes exhibited consistent 

diurnal cycles on the example day presented in Beyrich et al. (2006). The recent analyses focusing on 

structure parameters allow for a more critical diagnosis; it is possible for derived fluxes to show good 

agreement if there are compensating errors in the inputs (e.g., De Bruin et al., 2002) or relatively poor 

agreement but within sizeable uncertainty estimates. 

Another approach to deciphering scintillometer measurements is high resolution modelling. 

Maronga et al. (2013; 2014) used LES to investigate CT
2 and Cq

2 for the surface layer above the LITFASS 

region. A cross-section of the simulated boundary layer at the height of the LAS path revealed clear 

signatures in CT
2 and Cq

2 that correlated with patches of forest (large QH) and oil-seed rape (large QE). 

By sampling the LES data according to the scintillometer path weighting, direct comparison between 

path-averaged structure parameters measured by the LAS and modelled by the ‘virtual LAS’ is possible. 

These studies demonstrate that LES is a very powerful tool that can be used, and surely will be used 

increasingly, to help understand measurements.  

Beyrich et al. (2002a) compared sensible heat fluxes from the long-term LAS path at the LITFASS 

site with output from a numerical weather prediction model. A comparison of monthly diurnal cycles 

reveals reasonably good agreement (differences between model and observations are generally 

smaller than the variation within each month), but since the model has been tuned to accurately 

predict two-metre air temperature by reducing QE, it overestimates QH compared to the LAS during 

summer, particularly during wet conditions when the impact of the tuning is largest. In winter, QH_sc 

overestimated modelled values, possibly due to reduced applicability of similarity functions. 

Samain et al. (2011) deployed an XLAS on a path of 9.5 km to obtain QH over a heterogeneous 

catchment including agriculture, pasture, forests and urban areas in Belgium. Results were assessed 

using a calibrated and validated energy and water balance model (TOPLATS) in conjunction with the 

XLAS footprint, and QH_sc was judged to be representative of the entire catchment (~100 km2). 

Explanations given for differences between modelled and observed QH for the scintillometer source 

area include saturation, non-applicability of similarity functions and flux divergence on account of the 

height of the beam (effective height zef = 68 m). Using area-average estimates of net all-wave 

radiation, Q*, and ground heat flux, QG, catchment-scale QE was estimated as the residual of the 

energy balance and compared with ETLook, a surface energy balance algorithm based on remote 

sensing data (Samain et al., 2012b). The study concludes that an XLAS paired with representative 

available energy measurements is better suited than ETLook for providing hourly evaporation 

estimates needed for flood forecasting. 

The measurement scale of long-path scintillometers is well suited for comparison with remote 

sensing products, but due to the large uncertainties in satellite-based estimates of surface fluxes, 

comparisons between scintillometer and remote-sensing products are typically used as a method of 

validating the latter (Schüttemeyer et al., 2007; Marx et al., 2008; Kleissl et al., 2009; Brunsell et al., 

2011; Jia et al., 2012). In many of these studies, large-area evaporation is the quantity of interest for 

agricultural or hydrological applications. The errors that can be introduced via poor spatial estimates 
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of net radiation and ground heat flux make a strong case for development and testing of two-

wavelength scintillometry. 

3.2 Complex topography 
Few scintillometry studies have been conducted in very steep terrain. Weiss (2002) describes a 

series of experiments under increasingly challenging conditions: homogenous and flat terrain, 

heterogeneous and flat terrain, and heterogeneous terrain in an alpine valley as part of the Riviera 

Project (Rotach et al., 2004). Although of short duration, comparison with EC data gives confidence in 

the performance of SLSs and it is concluded that scintillometers can be used to detect site-to-site 

differences in irregular terrain, such as the timing of peak QH between slope and valley floor sites 

(Rotach et al., 2008). Hill et al. (1992) also found that SLSs can be used under non-ideal conditions 

where MOST would not be expected to hold (limited fetch and spatio-temporal variation due to cloud 

cover). The fact that SLSs are sensitive to small-scale eddies in the inertial dissipation range may 

explain why non-homogenous conditions appear not to have a detrimental impact on the technique: 

small-scale eddies adapt more rapidly to changing surface conditions and thus quickly regain 

equilibrium with the local terrain (Rotach and Zardi, 2007). Rather than complex terrain, limited 

applicability of MOST in neutral conditions and lack of consensus about the similarity functions were 

found to represent the biggest limitations.  

As part of the i-Box network in the Alps, a LAS was installed across the valley with the centre of the 

path above an EC tower with three measurement levels: 4, 9, and 17 m. On one of the example days 

discussed in Rotach et al. (2016), there is good agreement between the EC stations and LAS. In the 

afternoon of the second example day, QH decreases with height so the LAS (at about 60 m) reads much 

lower than the EC stations, but the decrease is observed for the EC data as well, implying that the 

height of the surface layer is somewhere below the top of the EC tower. As these experiments were 

of short duration, conducting similar studies over longer periods would be beneficial. Further insight 

is expected following analysis of aircraft data. Other scintillometry studies in mountainous regions 

have focused on wind speeds rather than fluxes (Table 2).  

3.3 Urban environments 
One of the first uses of scintillometry in urban areas was in Tokyo (Kanda et al., 2002), where two 

SLSs were used to derive QH and zd. Micro-scale studies using SLSs have also been carried out in Basel 

(Rotach et al., 2005), Lausanne (Nadeau et al., 2009) London (Pauscher, 2010) and Oklahoma (Galvez, 

2011), and at the COSMO field site in Japan (Sugawara et al., 2016). With the exception of the higher 

paths in Tokyo and COSMO, these measurements are located within the roughness sublayer and are 

therefore influenced by the immediate surroundings.  

Application of large-aperture scintillometry to the urban environment was first carried out in the 

relatively homogeneous centre of Marseille (Lagouarde et al., 2006). The homogeneity of the site and 

substantial height of the beams minimised many potential complexities. Standard non-urban forms of 

the similarity functions (Andreas (1988), hereafter An88, and De Bruin et al. (1993), hereafter DB93) 

were used. Good agreement was obtained with EC and with a second scintillometer path nearby, 

confirming the homogeneous nature of the site. QH_sc exhibited a smoother diurnal cycle than QH_EC 

as a result of the greater spatial averaging. Other urban locations where QH has been derived from 

LASs include Nantes (Mestayer et al., 2011), Łódź (Zieliński et al., 2013), Helsinki (Wood et al., 2013a), 

Swindon (Ward et al., 2014) and London (Crawford et al., 2017). These are mostly multi-seasonal 

studies, describing the climatology of the sites rather than critically evaluating the performance of the 

technique.  
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Recently, LASs have been deployed in Asian cities, for example at a highly heterogeneous site in 

Gongju, Korea (Lee et al., 2015) and on two short paths (< 500 m) at suburban and urban sites in China 

(Zhang and Zhang, 2015). In the latter study, QH_sc was often much larger than QH_EC. Wavelet analysis 

was used to investigate the distribution of length scales contributing to QH (Zhang et al., 2016). Results 

suggested large-scale motions were important at the suburban site, but not at the urban site, which 

could explain the observed pattern of differences between LAS and EC datasets. To test the generality 

of these findings, similar analyses for other sites would be informative, for example to distinguish 

influences of surface characteristics from potential influences of the instrumental setup (here zef = 

30.0 m and 6.7 m at the urban and suburban sites, respectively). 

LAS paths in urban areas are usually selected so that they are above the roughness sublayer, 

thereby permitting use of standard similarity theory to calculate fluxes and sidestepping issues related 

to surface heterogeneity. For long paths traversing land use zones, such as from the city centre to 

suburbs (e.g., Wood et al., 2013a), conditions probably vary smoothly enough that MOST is not 

seriously violated. Much of the extreme variability within urban environments occurs instead at the 

microscale (e.g., sunlit versus shaded walls) or plot-scale (e.g., a mixture of road, building and 

vegetated surfaces). Compared to LAS footprints this scale of heterogeneity is very small. However, 

there are clearly some situations where larger-scale heterogeneity persists. A river or park surrounded 

by dry built areas would be expected to generate extreme changes in surface energy partitioning 

which may present a greater measurement challenge (not restricted to scintillometry). Turbulence 

may not be well-mixed at the height of the measurements if internal boundary layers from contrasting 

surfaces persist (Kotthaus and Grimmond, 2014). Additionally, since scintillometers cannot determine 

the sign of the heat flux, the impact of simultaneous positive and negative QH along the path is 

unknown (Chehbouni et al., 2000). Investigating the accuracy of the technique is very difficult in such 

complex urban environments. Lee et al. (2015) used high resolution numerical modelling to assess LAS 

performance over an urban river. The Weather Research and Forecasting (WRF) model was run for 

two days providing QH at 200 m resolution, which was then averaged over the 2.1 km path. Observed 

and modelled values were fairly similar but QH_sc peaked earlier during the clear-sky day and hour-to-

hour variations were slightly different. The advantage of model comparisons is that sensitivity analyses 

can be conducted easily. When the river was replaced with vegetation in this study, the model 

underestimated QH during the morning hours. With continued advances in computing power, it is 

becoming possible to run longer simulations to investigate a wider range of conditions. However, most 

models still require substantial validation themselves, especially in complex environments, so a careful 

approach is required to learn from both techniques. In this respect, well-designed experiments in 

more carefully controlled surroundings (e.g., scintillometers at several heights crossing a river 

surrounded by homogenous low vegetation) would be of substantial benefit in addressing some of 

these research questions. 

Salmond et al. (2012) present results from the intensive observation period of the BUBBLE 

campaign in Basel in 2002, demonstrating that with careful experimental design and extremely 

detailed analysis, scintillometers can be used to gain insight into turbulence exchange in cities. Two 

SLSs were installed over a roof surface and over a street canyon. QH from the roof surface was greater 

during the day and smaller at night, attributed partly to the low heat capacity of the roof materials 

compared to the canyon with its much greater surface area and ability to store and release heat. 

Differences in the observed fluxes with wind direction were related to the flow over the roof surface: 

before encountering the scintillometer beam southeasterly flows first pass over heated roof surfaces 

whereas northwesterly flows first pass over much cooler shaded roofs. In contrast, the canyon 

scintillometer data showed little difference between northwesterly and southeasterly flows. 
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4 Issues associated with scintillometry in complex environments 
Despite the theoretical basis of the technique, observational evidence suggests scintillometry can 

be used successfully in complex environments (Section 3), and actually offers many advantages. Large 

scintillometer footprints are generally less susceptible to variation in source area characteristics than 

point measurements, which also permits shorter averaging times (~minutes, see Hartogensis et al. 

(2002)). The path-weighting function reduces sensitivity towards the ends of the path so topography 

or buildings can be used as mounting structures without having a detrimental impact on the 

measurements, facilitating sampling of difficult regions (e.g., above a city or within a valley). Once 

installed, scintillometers require little maintenance. However, there are practical and theoretical 

aspects that should be considered to obtain reliable and accurate results in urban and complex 

environments. 

4.1 Applicability of MOST 
Monin-Obukhov similarity functions are widely used to calculate surface fluxes from profiles, 

variances or structure parameters of scalars. In the absence of an alternative framework, MOST is 

routinely applied to more complex situations than for which it was originally developed. Strictly, MOST 

requires horizontal homogeneity, stationarity and negligible influence of processes occurring above 

the surface layer (Katul et al., 2008; Moene and Schüttemeyer, 2008). Even over ideal surfaces, there 

are evidently times when MOST requirements are not fulfilled, simply due to the diurnal cycle. During 

strongly stable conditions weak turbulence, intermittency and the shallowness of the boundary layer 

create problems for observations (Hartogensis et al., 2002). Complex environments increase the 

probability that ‘other’ processes will be significant enough to affect behaviour, such as horizontal 

advection, non-local circulations, drainage flows or dissimilar scalar transport due to the distribution 

of sources and sinks (De Bruin et al., 1999; Katul et al., 2006; Moene and Schüttemeyer, 2008). 

Obstacles distort the flow and abrupt changes in surface characteristics generate internal boundary 

layers, which may make representative measurements difficult to conceptualise, let alone obtain. The 

challenge is to identify these processes and account for their effects on measurements. 

A relevant, if controversial, concept is the blending height, zb, (Wieringa, 1993), which describes 

the height above which turbulent signatures of a heterogeneous surface are assumed to be blended 

together and the atmosphere is horizontally homogeneous. Providing a scintillometer can be installed 

close to or above zb, and well below the height of the boundary layer, many of the complexities 

associated with heterogeneous surfaces are assumed to be resolved. Various methods exist for 

estimating zb (e.g., Pasquill, 1974; Garratt, 1978; Wood and Mason, 1991). Typical values are of the 

order of some tens of metres for urban areas (Grimmond and Oke, 1999), are lower for small 

agricultural fields and increase with the scale of heterogeneity. If the scale of heterogeneity 

approaches the boundary-layer height, the blending height may not exist at all (Maronga and Raasch, 

2013). Using LES, Maronga et al. (2014) indicated clear horizontal variation in CT
2 and Cq

2 up to heights 

of 100-200 m over heterogeneous farmland with patches 0.5-1.0 km in scale. It is not currently known 

how the blending height for fluxes might relate to a blending height for structure parameters (Beyrich 

et al., 2012). Many studies have used the blending height concept to (often vaguely) explain why 

reasonable fluxes appear to be obtainable in complex environments. There is little evidence, however, 

that findings are substantially different below zb (e.g. Chehbouni et al., 2000; Lagouarde et al., 2002), 

whereas at greater heights, flux divergence and entrainment can become problematic and 

measurements made above the surface layer usually cannot be related to surface fluxes (Braam et al., 

2012). 



13 
 

4.1.1 Similarity functions 
Similarity functions most relevant to scintillometry are those relating structure parameters to 

surface fluxes (Eq 7). These semi-empirical relations always include moderate scatter even with the 

highest quality data over homogeneous surfaces. Provided measurements are above the roughness 

sublayer, the complexity of the site does not appear to preclude the use of MOST, rather the issues 

are with the MOST approach itself. Under neutral and stable conditions, MOST relations are less well-

defined and less successful.  

Even for homogeneous surfaces the lack of consensus around similarity functions has led to 

substantial uncertainty. Commonly applied functions are An88 and DB93, although various 

formulations exist (Figure 4). DB93 tends to give 10-15% larger fluxes than An88 (Lagouarde et al., 

2006; Beyrich et al., 2012; Ward et al., 2014). Savage (2009) gives a detailed comparison of several 

similarity functions for stable and unstable conditions from an extensive 30-month SLS dataset 

collected over mixed grassland. Comparisons are made relative to the Thiermann and Grassl (1992) 

(TG92) functions as these gave the closest agreement with EC data. Taking TG92 as the reference, 

differences of up to ±30% were found for unstable conditions. For stable conditions relative 

differences are much higher (as QH is small) but absolute differences of up to 60 W m-2 were found. 

Note TG92 gives smaller fluxes than many of the other options (except for Hill et al. (1992) (Hi92) for 

neutral conditions – in Figure 4 the TG92 line is higher than the others). Several studies select one set 

of functions (perhaps guided by consideration of the measurement setup and conditions) and briefly 

illustrate how their choice affects the fluxes. In some cases, the choice may change the conclusions 

(from QH_sc ≈ QH_EC to QH_sc > QH_EC). Meijninger et al. (2006) averaged fluxes calculated using An88 

and DB93 and used the difference as the uncertainty. The advantage of this approach is that it partially 

avoids subjective selection of a particular similarity function.  

Observed CT
2 scaling has been compared to existing functions in the literature for homogeneous 

(e.g., De Bruin et al., 1993; Hartogensis and De Bruin, 2005; Li et al., 2012), heterogeneous (Hoedjes 

et al., 2007; Liu et al., 2011; Liu et al., 2013) and urban (Ward et al., 2015a; Zhang and Zhang, 2015) 

environments. Plotting dimensionless structure parameters as a function of stability (as in Figure 4) is 

often used to demonstrate the applicability of MOST at a particular site. However, since the 

expectation is for considerable scatter and possibly a deviation towards neutral conditions, it is often 

difficult to make an informative assessment. Furthermore, because T* is used both to make CT
2 

dimensionless (y-axis) and to calculate LOb (x-axis), spurious correlations can give misleading results 

(Hicks, 1981) so the reliability of the fluxes should also be verified (De Bruin et al., 1993).  

Because it is easier to measure, the majority of studies focus on temperature and, in accordance 

with MOST, humidity is assumed to behave similarly. Differences between the scaling of T and q 

variances have been observed (e.g., Katul et al., 1995; Andreas et al., 1998), but the scaling of Cq
2 has 

only been experimentally investigated in a few cases. Li et al. (2012) found similar behaviour for T and 

q over homogenous (lake and glacier) surfaces for unstable and stable conditions, but differences for 

weakly unstable conditions when surface fluxes are small and larger-scale processes which affect T 

and q differently become more significant (e.g., entrainment, advection). Data collected during the 

LITFASS-2009 campaign also indicate broadly similar behaviour for T and q in unstable conditions 

(Braam et al., 2014b), but less so in the near-neutral range. Using LES, Maronga et al. (2014) found the 

entrainment flux was too large to enable fitting of a similarity relation for Cq
2 at all. Very slightly 

different relations were found for CT
2 over the heterogeneous landscape compared to the 

homogeneous case. For two-wavelength scintillometry, identical similarity functions have always 

been assumed for temperature and humidity (Meijninger et al., 2006; Beyrich et al., 2012; Ward et al., 
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2015a). If distinct T and q functions are deemed necessary, wider implications for the technique will 

also have to be considered.  

In near-neutral conditions CT
2 scaling is often seen to diverge. In neutral conditions resulting from 

small heat fluxes (rather than large shear stress) both (zm-zd)/LOb and T* are small. Large uncertainties 

are associated with these data, but they have tended to distort the fit in the near-neutral range. Similar 

behaviour is not seen for humidity, as small q* does not necessarily occur under neutral conditions.  

Recently, two detailed and extremely useful studies have made a significant contribution to this 

topic. Braam et al. (2014a) analyse similarity functions for CT
2 and demonstrate that empirically-fitted 

coefficients are affected by the regression approach and the height and stability conditions for which 

the observations were made. They highlight the need for a more consistent and documented 

approach in future, and suggest using a regression approach that accounts for uncertainties in (zm-

zd)/LOb and giving lower weight to unreliable data points. Kooijmans and Hartogensis (2016), hereafter 

KH16, combine measurements from eleven different datasets to define robust similarity functions for 

CT
2, Cq

2 and ϵ over a wide range of stability. Following rigorous processing and quality control, error-

weighted similarity functions are fitted. This minimises the influence of non-local effects and, in 

particular, the divergence as T* becomes small. Functions are fitted to all data together and for the 

individual datasets. Different functions emerge from the individual datasets, especially those spanning 

a small stability range, leading to the conclusion that MOST functions cannot be adequately 

determined from a single dataset. Thus, together, these two key studies provide explanations for the 

variation in the literature. As a result of their rigorous analysis, KH16 are able to provide a new set of 

coefficients (following the Wyngaard et al. (1971) functional form) and reduce the uncertainty in QH 

from about 10-20% to 6% (Figure 4). Compared to An88 and DB93, the KH16 CT
2 function has a larger 

neutral limit, which will act to reduce the often observed overestimation of QH under these conditions. 

Because this is the most complete and thorough derivation of these similarity functions to date, it is 

recommended that the KH16 functions and uncertainty estimates are used in future. As the KH16 

datasets were all collected between 2-4 m over vegetated surfaces, and Braam et al. (2014a) showed 

similarity functions depend on measurement height, systematic investigation should be continued at 

greater measurement height and over urban surfaces. 

Within the roughness sublayer standard forms of similarity functions are not expected to apply. 

Instead, alternative scaling relations using locally-derived coefficients can be used (Rotach, 1993; 

Roth, 1993), see dashed lines in Figure 4. To calculate fluxes from SLSs in the roughness sublayer, 

Kanda et al. (2002) and Roth et al. (2006) both derived ‘urban forms’ of the similarity functions from 

EC data (denoted Ka02 and Ro06 respectively). Ka02 is reasonably similar to An88 and DB93, whilst 

Ro06 deviates towards neutral conditions, approaching a much larger constant value, similar to TG92 

(Figure 4). The limitation of this approach is that the local scaling relation cannot be generalised, so 

relations derived for one site are not necessarily appropriate for another. Reassuringly, measurements 

at the COSMO field site revealed that within the roughness sublayer the similarity scaling is similar to 

the Ro06 ‘canyon’ functions whereas above the roughness sublayer the scaling is similar to the TG92 

‘rural’ reference (Sugawara et al., 2016). 
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Figure 4: Monin-Obukhov similarity functions according to: An88 (Andreas, 1988); DB93 (De Bruin et al., 1993); Hi92 (Hill et 
al., 1992); Li12 (Li et al., 2012) and KH16 (Kooijmans and Hartogensis, 2016) for temperature (T) and humidity (q); TG92 
(Thiermann and Grassl, 1992); HD05 (Hartogensis and De Bruin, 2005); Ka02 (Kanda et al., 2002); Ro06 (Roth et al., 2006) for 
rooftop (r) and canyon (c); ZZ15 (Zhang and Zhang, 2015) for urban (u) and suburban (s); Wa15 (Ward et al., 2015a). Shading 
indicates the uncertainty range given in KH16.  

4.1.2 Temperature-humidity correlation 
Correlation between scalars is often used as a measure of MOST applicability. If MOST applies, 

perfect correlation or anti-correlation (rTq = ±1) is expected and T and q have identical similarity 

functions (Hill, 1989). However, studies measuring rTq over a variety of surfaces tend to find positive 

values close to but less than +1 under unstable conditions and smaller negative values under stable 

conditions (Table 1). Hence, even over ideal surfaces, rTq measurements suggest MOST is violated to 

some extent and over complex surfaces MOST does not appear to be violated as expected. Note, 

however, observations in more complex areas have tended to occur in more recent years, with better 

instrumentation, data logging capabilities and processing. Ideally, control experiments at 

homogeneous sites should be performed using the same apparatus and processing. 

A few studies have observed clear diurnal cycles of rTq (Andreas et al., 1998; Beyrich et al., 2005), 

including shorter day length in winter months (Ward et al., 2015b). Analysis of temperature-humidity 

co-spectra can be useful for gaining further insight into the scales and processes affecting the 

transport of these scalars (e.g. Li et al., 2012). Andreas et al. (1998) investigated the effect of metre-

scale heterogeneity in vegetation (on variances) and found that whilst sources of moisture are patchy 

and q-scaling deviates from MOST, sources of heat appear to be homogeneous and T scales according 

to MOST. Similarly, Katul et al. (1995) found that heat sources seem to be more uniform than moisture 

sources at three different sites, and hypothesise that this results from fairly uniform solar irradiance 

which is the primary driver of surface heating. Their data suggest the impact of heterogeneity varies 

with stability, being greater in near-neutral conditions.  

Use of the bichromatic correlation technique to obtain rTq from scintillometry has been shown to 

give comparable results to fast-response (EC) sensors (Beyrich et al., 2005; Lüdi et al., 2005; Ward et 

al., 2015b). Values typically between 0.7 and 0.9 were obtained during daytime although experimental 

uncertainties lead to some non-physical values of |rTq| > 1 (Lüdi et al., 2005; Ward et al., 2015b). 

Despite the uncertainties, path-averaged rTq from the bichromatic method can help inform about the 

relative sign of the heat fluxes and whether CT
2 scaling can be assumed to apply to Cq

2. In theory, 

accurate rTq improves structure parameters (and hence fluxes), although due to the high variability of 

bichromatic rTq, the two-wavelength method has been used to derive fluxes (Meijninger et al., 2006; 
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Ward et al., 2015a). For the two-wavelength method, assuming rTq ≈ ±0.8 will usually be more 

appropriate than ±1.0. 

Reference Location Site description rTq Comments 

Kohsiek (1982) Table Mountain, 
Colorado 

Flat homogeneous 
grassland 

0.75 average.  

Hill et al. (1988) Flatville, Illinois Flat homogeneous 
agriculture 

-0.99 to 0.98.  

De Bruin et al. 
(1993) 

La Crau, France Flat homogeneous 
grassland 

0.0 to 1.0 (unstable), 
typical values 0.7 to 0.8. 

rTq ‘significantly smaller than 1’. 

Roth (1993) Vancouver, 
Canada 

Suburban 
residential 

0.2 to 0.8 (unstable). No variation with stability. 

Katul et al. (1995) Maine; California; 
North Carolina 

Mixed forest; 
uniform bare soil; 
grass field 

-0.6 to 0.9. rTq smaller than 1 and more 
variable in neutral conditions. 

Andreas et al. 
(1998) 

Sevilleta, New 
Mexico 

Sandy soil with 
patchy vegetation; 
metre-scale 
heterogeneity 

-0.9 to 0.9; typical 
magnitude 0.76. 

Diurnal cycle with negative 
values at night and positive 
during the day. 

De Bruin et al. 
(1999) 

Wageningen, The 
Netherlands 

Flat, short grass 0.7 to 0.9 during 
daytime, -0.5 to -0.9 
during evening. 

Example day showing positive 
values during the day and 
negative in the evening. 

Meijninger et al. 
(2002a) 

Flevoland, The 
Netherlands 

Flat 
heterogeneous 
agriculture 

0.70 to 0.95 (unstable).  

Beyrich et al. 
(2005); Lüdi et al. 
(2005) 

LITFASS region, 
Germany 

Heterogeneous 
agriculture 

Typically 0.7 to 0.9 during 
daytime and -0.8 at night.  
Bichromatic method 
gives 0.8 for large β. 

Uncertainties in bichromatic 
method give some values larger 
than 1. 
Diurnal cycle with negative 
values at night and positive 
during the day. 

De Bruin et al. 
(2005) 

Idaho Irrigated 
agricultural fields 
surrounded by 
desert 

Ranges between -1 and 
+1. 

Negative values for advection 
conditions (QH < 0 W m-2). 

Lamaud and Irvine 
(2006) 

Landes forest, 
France 

Above and within 
pine forest canopy 

Mostly 0.50 to 0.95 
(median 0.75) above 
canopy, mostly 0.40 to 
0.80 (median 0.70) below 
canopy; many low values. 

No variation with stability 
(unstable conditions). Varies 
with β. 

Li et al. (2012) Lake Geneva, 
Switzerland; 
Pleine Morte 
glacier, 
Switzerland 

Homogeneous 
lake; 
homogeneous 
glacier 

Magnitude close to 1.0 in 
stable and neutral 
conditions; close to 0.9 in 
unstable conditions; 
smaller values for weakly 
unstable conditions. 

rTq reduces under weakly 
unstable conditions. 

Ward et al. 
(2015b) 

Swindon, UK Suburban 
residential 

Typical values: 0.6 to 0.9 
(unstable); -0.5 to -0.3 
(stable).  

Uncertainties in bichromatic 
method give some values larger 
than 1. Diurnal cycle with 
negative values at night and 
positive during the day. Width 
of diurnal cycle varies with 
season. 

Table 1: Observed temperature-humidity correlation for various sites. 

4.1.3 Advection 
As scintillometers are sensitive to T (or q) fluctuations (whether or not the fluctuations are 

correlated with vertical wind speed), they are not thought to distinguish between surface and 

advective fluxes and therefore the ‘surface’ fluxes derived may be overestimated if the advection 

contribution is significant. However, this has not been experimentally demonstrated. Hoedjes et al. 

(2002) investigated scintillometry in advective conditions by deploying a LAS over an irrigated wheat 
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field in a semi-arid region. EC measurements showed large QE (often exceeding 500 W m-2), whilst QH 

was small (often below 75 W m-2) and became negative in the afternoons (-20 to -60 W m-2) as energy 

from warm air was used in evapotranspiration. For stable and unstable conditions, scaling relations 

for CT
2 were generally followed, although data points were above the theoretical curve for both 

irrigated and dry unstable conditions. Agreement between EC heat fluxes and scintillometer heat 

fluxes was very good, with most scatter for QH in stable conditions. However, the Bowen ratio closure 

method (Twine et al., 2000) was used to adjust EC fluxes, so it is not obvious how to interpret these 

results. The observed overestimation in CT
2 scaling may be due to underestimation in T* (which was 

not corrected for energy closure); entrainment of dry desert air that advected over the shallow humid 

internal boundary layer over the irrigated field; and surface heterogeneity in the surrounding fields. 

Sensible heat fluxes from a LAS deployed along a beach were found to exhibit large changes 

throughout the day, as the circulation pattern changed from seaward (scintillometer footprint located 

over land) to landward (footprint over sea) and cold or warm air was advected across the alternate 

surface (Lee, 2015). The major change in footprint composition, and lack of comparison dataset, 

means it is difficult to infer details about the effect of advection from this study, and how it might 

impact the fluxes. A more controlled study of micro-scale advection, such as at the boundary of 

irrigated urban parks (Spronken-Smith et al., 2000), may offer interesting insights into the capabilities 

and limitations of scintillometry. 

4.2 Scintillometer footprints 
Footprint calculations have enabled substantial advances in evaluation of scintillometer 

performance over heterogeneous terrain (Section 3.1), as well as ensuring comparisons with remote 

sensing data or model output are representative of compatible areas. Note that since scintillometers 

measure structure parameters, source area calculations based on fluxes may not be the correct 

approach. The error is likely to be small compared to other uncertainties involved in footprint 

estimation (such as their use in heterogeneous conditions), but understanding more about the 

behaviour of structure parameters in relation to footprints is an important task. 

Scintillometer source areas can extend over several square kilometres. They are largest for winds 

perpendicular to the path but for winds parallel to the path the footprint is much smaller (Meijninger 

et al., 2002b). In contrast to EC, a change in wind direction alone can therefore produce a substantial 

change in the size of the scintillometer source area and thus affect the statistical nature of the results. 

It is generally advisable to install scintillometers so that the path is not aligned with the prevailing 

wind. Footprint modelling can be used to inform path selection and check measurements will be 

representative of the desired study area. 

4.3 Obtaining accurate input information 

4.3.1 Effective measurement height 
When the height of the scintillometer beam is not constant along the path (slanted paths and/or 

when the underlying topography varies along the path) an effective height, zef, should be used 

(Hartogensis et al., 2003). zef is a single path-weighted value that represents the height of the Cn
2 

measurement. It is calculated from the beam height at position x along the path, zm(x), obtained from 

topographic maps (e.g., De Bruin et al., 1995; Evans et al., 2012) or digital terrain models (e.g., Ward 

et al., 2014). The displacement height is usually incorporated in the effective height calculation, so zef 

replaces (zm – zd) in Eq 7.  

Several approximations for zef are given in Hartogensis et al. (2003), but slightly better results were 

obtained when the full stability-dependent estimation is used. LAS fluxes for a horizontal path (of 
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length 1100 m) agreed better with EC than for a slanted path (of length 3200 m), although absorption 

and saturation are thought to have affected data for the longer path making a clear conclusion 

difficult. A short comparison of SLSs on a horizontal path and a slanted path with five sonic 

anemometers at the same height suggested there is no significant deterioration in u* and QH obtained 

from slanted paths compared to level paths (Rotach et al., 2004; Rotach et al., 2008). This study, 

among others (Wood et al., 2013a; Lee et al., 2015), highlights the importance of accurate zef. The 

impact of inaccuracies in zef can be reduced by maximising beam height. 

For a two-wavelength scintillometer system, the situation is more complex because of the different 

path-weighting functions of the LAS and MWS. Cn
2 from the MWS must first be scaled to the height of 

the LAS measurement using the ratio of the effective heights of the respective instruments (Evans and 

De Bruin, 2011). Structure parameters obtained subsequently are then representative of the LAS 

effective height. 

4.3.2 Roughness length and displacement height 
To calculate fluxes from long-path scintillometry an estimate of the roughness length is required 

to relate measured wind speed to friction velocity (Eq 6). Note, z0 is not required to calculate structure 

parameters, if the free convection approximation is used, if an alternative measurement of u* 

representative of the scintillometer footprint is used (e.g., from a suitably located EC station), or to 

calculate the heat flux from SLSs (as u* is obtained from the scintillometer).  

Sensitivity analyses show that z0 can have a major impact on the fluxes, particularly for rough 

surfaces and near-neutral conditions (Hartogensis et al., 2003; Beyrich et al., 2012). In urban areas z0 

is typically large and difficult to quantify, such that uncertainties are substantial. In Swindon, changing 

z0 by ±0.2 m changes the scintillometer fluxes by ±7% (Ward et al., 2015a). In Marseille, a large range 

of z0 (0.7-1.5 m) based on typical values for similar urban areas translates to an uncertainty in the 

fluxes of between -6.0 and 9.2% (-4.2 and 6.3%) for a wind speed measurement height of 37.9 m (43.9 

m) (Lagouarde et al., 2006). Hence the impact of uncertainties in z0 can be reduced by using a higher 

wind speed measurement. This also helps to reduce the impact of individual obstacles on the 

measured U. Obtaining u* representative of the scintillometer path is challenging in complex 

environments. In Helsinki, Wood et al. (2013a) use LOb and u* from a nearby sonic, thus removing the 

need to calculate z0 for their urban paths, whereas Zieliński et al. (2013) opt for the iterative procedure 

to derive u* for their path as surface characteristics differ between their two EC stations (z0 = 1.1 and 

1.6 m) and scintillometer path (z0 = 1.7 m). 

The displacement height enters the calculations alongside the beam height (Eq 7) and is usually 

incorporated with zef. Therefore, uncertainties in zd impact the results in the same way as uncertainties 

in the measurement height. If uncertainties in zd are small compared to the measurement height, their 

impact will be small. However, for dense urban areas or forests, zd and the uncertainty in zd may be 

considerable and significantly impact the results (Lagouarde et al., 2006; Nakaya et al., 2006; Wood et 

al., 2013a). 

In rural areas, vegetation surveys may be used to determine crop height from which z0 and zd are 

estimated using published formulae (e.g., Ezzahar et al., 2007a). Alternatively, typical values from the 

literature (Evans et al., 2012) or from measurements on site (Kohsiek et al., 2006; Guyot et al., 2009) 

may be used. Aerodynamic parameters should be representative of the whole scintillometer footprint, 

rather than simply the area below the beam (Timmermans et al., 2009; Geli et al., 2012). For footprints 

comprising two or more patches with different aerodynamic properties, various aggregation schemes 

exist to combine z0 and zd (Timmermans et al., 2009). Geli et al. (2012) examined the impact on 

scintillometer fluxes of using surface parameters calculated according to traditional methods 
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(vegetation surveys) or using lidar data. The accurate lidar data improved results, however it should 

be noted that a single lidar dataset would not capture changes in time due to vegetation growth (De 

Bruin et al., 1995; Hoedjes et al., 2002) or building development.  

Calculating z0 and zd for urban areas remains a major challenge (Grimmond and Oke, 1999). The 

simple rules-of-thumb developed for vegetated canopies are often applied as a first-order estimate of 

z0 = 0.1zH and zd = 0.7zH, where zH is mean obstacle height (Garratt, 1992), but both parameters 

depend on the layout, orientation and type of obstacle (porous or bluff) and many different 

formulations can be found in the urban literature which attempt to account for these factors, 

incorporating additional information such as the frontal area index (Macdonald et al., 1998) or 

maximum and standard deviation of building height (Kanda et al., 2013). Lidar data or digital surface 

models are indispensable for these calculations as they provide detailed information about the size, 

shape and layout of buildings and vegetation which impact the aerodynamic parameters. To some 

extent, the larger size of LAS footprints helps to average out some of the variation at the 

neighbourhood-scale that can be seen in changing source area characteristics of EC measurements 

with wind direction (Nordbo et al., 2013; Kotthaus and Grimmond, 2014). Nevertheless, there will be 

substantial uncertainty associated with the estimated value, not due to the quality of input data but 

rather the absence of agreement as to the correct value. Kanda et al. (2002) calculate zd from SLS 

measurements at two heights in a dense residential area of Tokyo (zH = 8.5 m). The scintillometer-

derived zd is 6.6 m on average, similar to the range of values obtained from morphometric methods 

(5.71-7.26 m), but the spread of values highlights the lack of a definitive approach. At the simpler 

COSMO test site, much closer agreement was found between techniques to estimate zd (Sugawara et 

al., 2016). In Helsinki, Wood et al. (2013a) use a value of zd calculated using the morphometric method 

of Macdonald et al. (1998). In China, Zhang and Zhang (2015) compute zd using the temperature 

variance method (Rotach, 1994) and z0 following Chen et al. (1993). A practical approach is to estimate 

z0 and zd, then consider the impact on the heat fluxes introduced by the uncertainty in z0 and zd 

(Lagouarde et al., 2006; Zieliński et al., 2013; Ward et al., 2014; Lee et al., 2015). These studies suggest 

that differences between the methods are large enough not to warrant excessively detailed 

computation of aerodynamic parameters using one particular method, as there is so much uncertainty 

as to the ‘true’ value. 

Further complications arise when considering temporal changes. As leaf area affects the porosity 

of trees, z0 in vegetated urban areas can be 10-20% smaller in winter than summer (Grimmond et al., 

1998), although this is rarely accounted for in scintillometer studies. Nakaya et al. (2006) used a 

constant value of zd to process SLS data over a mixed deciduous forest but demonstrates clear 

differences in u* and QH between leaf-on and leaf-off periods. There is also evidence to suggest 

variations with stability (Zilitinkevich et al., 2008). Hoedjes et al. (2007) use a dynamic zd when 

calculating fluxes from LAS data in an olive orchard to account for the decrease in zd at high solar 

angles as radiation can penetrate deeper into the vegetation canopy. Compared to using a fixed value 

of zd, the underestimation (overestimation) at high (low) QH was reduced.  

To summarise, z0, zef (and zd) are important input parameters that can significantly impact 

scintillometer fluxes but can be very difficult to determine in complex environments. Accurate 

elevation information should be used to determine beam height, but for z0 and zd it is recommended 

to make an informed estimate and consider the uncertainties. Increasing beam height reduces the 

impact of the uncertainties on the fluxes, however the scintillometer should still be located within the 

surface layer so that measurements can be related to surface fluxes (Braam et al., 2012). In urban 

areas, it can be a challenge ensuring measurements are high enough to be above the roughness 

sublayer, yet low enough that interference from fog, cloud or boundary-layer processes is minimised. 
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4.3.3 Representative meteorological data 
Although basic meteorological variables (T, RH, p and U) are required to obtain structure 

parameters and fluxes, results are fairly insensitive to their values (Hartogensis et al., 2003; Savage, 

2009). Errors in U are generally small but can be important in neutral conditions. Therefore, using 

meteorological data from a single (albeit suitably sited) station should be sufficient to obtain 

reasonable fluxes, even in complex environments (Ward et al., 2014; Crawford et al., 2017).  

4.4 Surface energy balance considerations 
To calculate QH from a single-wavelength scintillometer the Bowen ratio may be used to account 

for the influence of humidity fluctuations on Cn
2 (Eq 5) and to correct the Obukhov length for buoyancy 

(Eq 8). In homogeneous environments, this can be achieved by incorporating measurements of net 

all-wave radiation Q* and the ground heat flux QG into the iteration (e.g., Green and Hayashi, 1998). 

The residual of the energy balance (QE = Q* - QG - QH_sc) is used to obtain QE from a single-wavelength 

system. 

For more complex sites, the same procedures can be used if representative values of Q* and QG 

are available, usually obtained by aggregating measurements from several stations within the 

scintillometer footprint (Meijninger et al., 2002b; Evans et al., 2012). But at a hilly and highly 

heterogeneous vegetated site in Sri Lanka, only one radiometer was installed, which limited the 

accuracy of QE since the source area was very small and shaded in the late afternoon by a nearby hill 

(Hemakumara et al., 2003). 

In urban areas, the energy balance is far more complex (Oke, 1987): 

SEHF QQQQQ * .        (11) 

The net storage heat flux ΔQS is much larger than in most natural environments and very difficult to 

measure (Offerle et al., 2005; Roberts et al., 2006). The anthropogenic heat flux QF is highly variable 

in space and time, also very difficult to observe directly and can be substantial, particularly for dense 

urban areas during winter (Sailor, 2011). Fortunately β is often large enough in the urban environment 

that the correction term in Eq 5 is small enough to be safely neglected (Roth et al., 2006; Ward et al., 

2014), as for several non-urban studies with large β (Chehbouni et al., 2000). Lagouarde et al. (2006) 

used observed Q* and an estimate of ΔQS but concluded that errors in ΔQS had little impact because 

the dry summertime conditions in Marseille resulted in large β anyway. Wood et al. (2013a) and 

Zieliński et al. (2013) use data from two EC towers in their respective study cities (Helsinki and Łódź) 

to apply the β correction. The buoyancy correction to LOb is frequently neglected (e.g., Meijninger et 

al., 2002b; Wood et al., 2013a; Zieliński et al., 2013). 

The complexity of the energy balance means estimation of QE as the residual is generally not 

feasible in urban areas. (In Rotterdam, however, Jacobs et al. (2015) did calculate QE as the energy 

balance residual during daytime, approximating the storage heat flux as 0.3Q* and neglecting QF.) 

Crawford et al. (2017) estimate monthly QE in central London by comparing QH_sc for wet and dry 

conditions as a function of vegetation cover. In future, it is possible that improved capability to model 

QF and ΔQS could enable more accurate estimates of these terms to be used in scintillometry 

calculations. This would certainly be useful if these fluxes could be modelled at the same scale as the 

scintillometer footprint. 
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4.5 Instrument sensitivity 
Infrared scintillometers, primarily sensitive to temperature fluctuations, are less reliable when β is 

very small as the influence of water vapour fluctuations dominates. On the other hand, microwave 

scintillometers are not useful for β ≈ 2-3 (Leijnse et al., 2007a; Ward et al., 2013) as the CTq term 

cancels the CT
2 and Cq

2 terms (Eq 4), resulting in very small Cn
2 and reduced system performance as 

the magnitude of the scintillation signal is comparable to the instrument noise floor. These issues are 

not confined to complex environments, however a microwave system in a sparsely vegetated 

unirrigated urban area may be of limited use if β is large. 

4.6 Saturation 
Saturation occurs when turbulence is strong enough that the weak scattering assumption no longer 

applies and intensity fluctuations are no longer proportional to Cn
2 (e.g., Kohsiek et al., 2006; Kleissl 

et al., 2010). As the degree of saturation increases, measured fluctuations in beam intensity increase 

less and less with QH so that measured Cn
2 increasingly underestimates true Cn

2. Whilst instrument 

specifications may give an upper limit to the operating range of around 5000 m, the tendency for large 

QH in urban areas (as a result of little vegetation cover and/or the additional energy supplied by 

anthropogenic activities) may mean the beam saturates short of this distance. Wood et al. (2013a) 

identified saturation for a 4.2 km path over Helsinki, for example. The risk of saturation can be reduced 

by using a shorter path, a higher path, or a larger aperture. To some extent, saturation can be 

corrected for using look-up-tables generated from theory (Clifford et al., 1974; Kleissl et al., 2010) but 

the uncertainty increases with increasing saturation. Of course, saturation may also be problematic in 

non-complex environments with high QH. 

4.7 Variable wind field 
Complex environments are often associated with spatially varying wind fields. Accurate structure 

parameter measurements should still be possible under these conditions (Ward et al., 2011), but 

methods to retrieve crosswind speed (the wind speed perpendicular to the beam) are generally 

adversely affected. Several methods have been developed to enable crosswind speed to be derived 

from scintillometry (Lawrence et al., 1972; Wang et al., 1981; Poggio et al., 2000; van Dinther et al., 

2013). In the European Alps, Poggio et al. (2000) assessed various crosswind retrieval methods using 

five scintillometer paths and Furger et al. (2001) used scintillometers to measure vertical and 

horizontal crosswind components of foehn winds. Both studies found that significant spatial variability 

in the wind field has a detrimental impact on the crosswind retrieval. van Dinther et al. (2015b) were 

able to modify their look-up-table approach (van Dinther and Hartogensis, 2014) to adapt to variable 

wind conditions based on analysis with lidar data over the city of Helsinki.  

In central London, Wood et al. (2013b) showed channelled airflow along the River Thames using 

crosswind from scintillometry and lidar. Such mechanisms for pollutant dispersion have important 

implications for air quality, particularly in cities, but are difficult to quantify with point measurements. 

Scintillometry has also been used to monitor crosswind speeds and detect wake vortices at airports 

(van Dinther et al., 2013; van Dinther et al., 2015a). Besides these applications, knowledge of the 

crosswind may be important for the quality of scintillometer data itself. Use of a dynamic bandpass 

filter has been suggested to account for the shift in frequency spectrum with crosswind (Solignac et 

al., 2012; Van Kesteren et al., 2015), as an inappropriate bandpass can artificially reduce Cn
2. Whether 

related to the footprint, atmospheric conditions or basic principles of scintillometer measurement, it 

has been suggested that low and/or high crosswind speed has an impact on the accuracy of structure 

parameters and fluxes, particularly for two-wavelength systems (Evans, 2009; Ward et al., 2015b). 

Continued investigation of performance as a function of crosswind is expected to reveal 

improvements that should be implemented when processing scintillometer data. 
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4.8 Attenuation of the scintillometer beam 
Unobstructed line-of-sight is required for successful scintillometry application. Periods of 

interruption or attenuation of the beam by rain, fog, insects or poor air quality are usually removed 

during quality control. Yet it is also possible to relate signal intensity to visibility (Beyrich et al., 2002a; 

van Dinther et al., 2015a) and attenuation of microwave (Leijnse et al., 2007b) or infrared (Uijlenhoet 

et al., 2011) scintillometer beams can be converted to rainfall intensity, offering precipitation 

measurements at a valuable scale between that of point gauge sensors and radar. In urban areas, 

where precipitation can be very spatially variable, installing a scintillometer is far more practical than 

a dense network of rain gauges (Upton et al., 2005). Further development is required to reduce 

uncertainties (Leijnse et al., 2008), which would enable scintillometers to provide large-area 

observations of rainfall and fluxes together, particularly useful for hydro-meteorological monitoring. 

Although fluxes cannot be derived during rainfall, Ward et al. (2015a) presents high evaporation rates 

of intercepted water following rainfall using two-wavelength scintillometry. Further research including 

comparison with closed-path EC would be beneficial in understanding the capabilities and limitations 

of this method. 

Absorption of the beam is associated with the imaginary part of the refractive index fluctuations 

(Nieveen et al., 1998), which must be excluded from the flux derivation usually by high-pass filtering 

(e.g., Lüdi et al., 2005) or using a dual-beam system (e.g., van Dinther et al., 2013). However, the 

imaginary part potentially contains useful information about turbulence (such as the outer length 

scale) and absorption and scattering by aerosols or trace gases. Yuan et al. (2015) used a LAS 

(λ = 0.62 μm) to investigate fluctuations in aerosol concentration at a university campus surrounded 

by busy roads in the city of Hefei, China, and subsequently extended the method to estimate aerosol 

mass flux using similarity theory (Yuan et al., 2016), although no direct evaluation was presented. 

Although several practical and theoretical uncertainties still require quantification, more routine 

analysis of the imaginary part of Cn
2 has potential. 

Area-averaged fluxes of carbon dioxide have also been obtained from scintillometry by combining 

with point measurements of scalars (Van Kesteren et al., 2012; Van Kesteren et al., 2013). SLSs were 

used to obtain u* and LOb, which were combined with EC measurements of scalar turbulence statistics 

to yield field-scale latent heat and carbon dioxide fluxes at short timescales (1 min). These high 

temporal resolution data enabled investigation of non-stationary conditions and the response of 

vegetation to changes in light availability. Application of this new technique over more complex 

environments will be required to assess the importance of homogeneous conditions. 

5 Summary and outlook 
Over the last 20 years research has shown scintillometry to be a valuable technique for observing 

structure parameters and fluxes in complex (including urban) environments. Scintillometry offers 

several advantages, both practical and theory-based, compared to EC but importantly it should be 

seen as a complementary technique. Combining measurement techniques and being aware of their 

capabilities and limitations leads to a deeper understanding of observations and boundary-layer 

processes.  

Scintillometer studies over heterogeneous surfaces provide surprisingly little evidence that MOST-

related issues are more problematic than for homogeneous surfaces (Section 3). At ideal as well as 

complex sites, the applicability of MOST is limited when conditions are not favourable, which can 

happen for a number of reasons. Atmospheric conditions, instrumental setup, data processing and 

evaluation criteria (particularly choice of similarity function and variable of interest) can all affect the 

extent to which MOST is judged to apply or not apply. Even when scintillometers are installed in 
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heterogeneous environments below the blending height, the general consensus is that reasonable 

fluxes are obtained, at least for unstable conditions. Further investigation is required particularly for 

near-neutral and stable conditions, and for humidity. But this requirement extends beyond 

scintillometry and applies to ideal surfaces as well. 

So although careful consideration must be given to measurements in complex environments, 

contrary to expectations these areas do not seem to present overwhelming difficulties for 

scintillometry. Various tools have been developed to handle the added complexity and improve data 

quality and interpretation (Section 4). Footprint modelling is an extremely valuable tool for relating 

measurements to surface characteristics and, despite the uncertainties involved, has substantially 

advanced understanding of results and confidence in the technique. Footprints enable other datasets 

(from EC, remote sensing or modelling) to be made spatially compatible with the scintillometer, 

allowing dynamic aggregation of fluxes over heterogeneous areas and, in some cases, detailed 

explanation for differences between datasets through links to surface properties. Improvements to 

footprint models, particularly in complex environments, would be of great use to the flux community. 

Specifically regarding scintillometry, source area calculations for structure parameters, as opposed to 

fluxes, should be investigated.  

Knowledge of the measurement footprint also enables better correspondence with source area 

characteristics. Accurately calculating the effective height is important, but even when highly detailed 

information about the surface geometry can be obtained, for complex surfaces the challenge remains 

as to how to translate this information into required aerodynamic parameters. Again, this topic has 

implications beyond scintillometry, but uncertainties in roughness length often contribute a sizeable 

uncertainty to scintillometer fluxes. In this respect, SLSs offer a distinct advantage in that they 

determine path-averaged friction velocity without z0. It has been suggested that u* and l0 could be 

obtainable from LASs with a modified instrument design (Churnside et al., 1988; Moene et al., 2009). 

Providing measurements are above the roughness sublayer and within the surface layer, MOST 

appears to be sufficiently applicable to permit use of similarity functions. The variety of functions 

available and lack of consensus – even for the homogeneous surface layer – has added substantial 

uncertainties and represents a major limitation of the technique. Thanks to two recent studies (Braam 

et al., 2014a; Kooijmans and Hartogensis, 2016), which took the much needed approach of 

systematically analysing large quantities of data to re-evaluate similarity functions, this situation may 

be markedly improved. They conclude that the variation between existing functions can be explained 

by the limited range of data and various data processing and analysis techniques. Using rigorous and 

well-documented procedures, new similarity functions are provided with reduced uncertainty 

estimates. 

The fact that scintillometers measure structure parameters, rather than fluxes, does create a 

specific issue for scintillometer measurements over heterogeneous terrain, unrelated to MOST. The 

non-linearity between structure parameters and fluxes means scintillometers will tend to 

overestimate fluxes by a few percent (more so for QE than QH) over patchy surfaces. 

Although surface fluxes are often the desired quantity because they describe surface-atmosphere 

exchange, structure parameters are measured directly by the scintillometer and therefore avoid the 

uncertainties of similarity functions, roughness length and non-linear averaging. The usefulness of 

structure parameters should not be overlooked. Their analysis enables a more direct evaluation of 

scintillometer performance. Assimilation of CT
2 or even Cn

2 into numerical models may be a promising 

route by which scintillometer networks could be used to improve weather prediction. 
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Creating new links between scintillometry and models, satellite data and airborne campaigns 

should be a priority. Although these methods have their own limitations, they offer fresh perspective 

(and a different set of problems aside from the familiar EC limitations). Furthermore, scintillometers 

show great potential for helping to develop these other techniques, particularly for evaluating model 

output and satellite products (examples in Table 2). Further testing of two-wavelength systems to 

derive QE would be highly beneficial for hydrological monitoring and agricultural applications, and for 

learning more about the similarity of temperature and humidity. 

Besides fluxes and structure parameters, scintillometers can also yield crosswind, rainfall and 

visibility, and have been used to estimate fluxes of other species. These new developments offer 

exciting opportunities to extract a wealth of information from the basic scintillometer setup. It is also 

crucial to continue with fundamental research to ensure improvements in accuracy, reliability and 

interpretation. Future studies should focus on improved understanding of scintillometer observations 

for both ideal and non-ideal landscapes. Carefully designed field campaigns to understand 

scintillometer performance under various conditions significantly advance the field, leading to more 

informed quality control, a more robust approach to similarity functions, insight into temperature-

humidity similarity and additional tools or corrections to improve the accuracy and reliability of 

scintillometer measurements. Development of a standardised processing tool for scintillometer data 

(similar to those available for EC flux processing) would allow for greater consistency between studies 

and ensure recent developments in measurement theory are applied by the community. Considering 

the current rate of progress in sensor technology and data handling capabilities, the next 20 years 

offers great potential for further advances in scintillometry over a range of landscapes.
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Appendix 
Reference Location Site description Study period Instrument L [m] zef [m] Comments 

Fluxes (short-path, urban) 

Kanda et al. (1997) Tokyo, Japan Dense commercial (shopping district) Summer 1996 SLS 130  First urban application of SLS. 
In Japanese (English abstract). 

Kanda et al. (2002) Tokyo, Japan Dense residential (‘upper’) 09-10 Oct 1998 SLS 250 25.4 Method to determine zd from SLSs at two 
heights. 
Similarity functions fitted. 
Upper beam above roughness sublayer. 

Dense residential (‘lower’) 09-10 Oct 1998 SLS 250 9.4  

Roth et al. (2006); 
Salmond et al. (2012) 

Basel, 
Switzerland 

Dense residential (‘canyon’) 26 Jun-12 Jul 2002 SLS 116 3.4 BUBBLE campaign. 
Similarity functions fitted. 
QH related to airflow over warm/cool urban 
surfaces. 

Dense residential (‘rooftop’) 26 Jun-12 Jul 2002 SLS 171 4.3 

Nadeau et al. (2009) Lausanne, 
Switzerland 

University campus Oct 2006-Apr 2007 SLS 148  LUCE campaign. 
SLS used to provide ‘adequate’ QH for 
evaluation of QH from a network of surface 
temperature measurements. 

Sugawara et al. (2016) COSMO site, 
Japan 

Regular array of 1.5 m x 1.5 m x 1.5 
m concrete cubes ('canyon') 

Feb-Apr 2006; 
Apr 2007 

SLS 48 0.35; 0.73; 
1.10; 1.85 

Experimental site (scale model). 
Similarity functions assessed; scaling 
approached rural reference above roughness 
sublayer. 
CT

2, ϵ, QH and u* from SLS and EC compared at 
multiple heights. 

Regular array of 1.5 m x 1.5 m x 1.5 
m concrete cubes (‘rooftop’) 

Feb-Apr 2006; 
Apr 2007 

SLS 48 0.54; 0.73; 
1.10; 1.85 

Fluxes (short-path, non-urban) 

Weiss (2002) Kerzers, 
Switzerland 

Meadow (homogeneous), flat  SLS 50-90 1.00-1.45 Similar performance found for horizontal and 
slanted paths. 
 

 Meadow + stubble (heterogeneous), 
flat 

 SLS   

 San Vittore, 
Switzerland 

Grassland (homogeneous), flat 13-16 Jul 1999 SLS 60 1.8 

 Grassland (homogeneous), flat 
(horizontal path) 

13-15 Jul 1999 SLS 60 1.75 

 Grassland (homogeneous), flat (slant 
path) 

15-16 Jul 1999 SLS 60 1.75 

Göckede et al. (2005) Falkenberg, 
Germany 

Mixed agricultural land cover 
(ploughed field, grass, cereal) 

5-10 Jul 2002 SLS 140  QH differences between paths used to 
evaluate footprint models.  5-10 Jul 2002 SLS 86  

Nakaya et al. (2006) Karuizawa, 
Japan 

Mixed deciduous forest, gently 
sloping 

Jun-Nov 2002 SLS 86 10 (above 
canopy) 

Use of constant zd responsible for clear 
differences in agreement with EC fluxes for 
leaf-on/leaf-off periods. 
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Reference Location Site description Study period Instrument L [m] zef [m] Comments 
Nakaya et al. (2007) Karuizawa, 

Japan 
Mixed deciduous forest, gently 
sloping 

Jun-Nov 2002; Jun-
Nov 2003 

SLS 86 10 (above 
canopy) 

SLS provides data that are more spatially 
averaged than EC over mixed forest. 

Weiss et al. (2001); 
Rotach et al. (2008) 

Riviera Valley, 
Switzerland 

Mixed agriculture, valley floor Aug-Oct 1999 SLS 50-200  MAP-Riviera project. 
Scintillometers can be used to investigate 
surface energy balance in complex terrain.  

Mixed agriculture, foot of slope 
(gently sloping) 

Aug-Oct 1999 SLS 50-200  

Cammalleri et al. 
(2010) 

Sicily, Italy Irrigated olive grove 19 Jun-22 Sep 2007 SLS 95 5.8 agl QE as energy balance residual used to evaluate 
coupled energy/hydrologic model. 

Fluxes (long-path, urban) 

Lagouarde et al. (2006) Marseille, 
France 

Dense urban city centre (reasonably 
homogeneous) ('PN') 

17 Jun-10 Jul 2001 LAS 1785 34.1-34.2 First urban application of LAS. 
QH_sc has smoother diurnal cycle than QH_EC. 
Uncertainties can be reduced with greater 
measurement height. 

Dense urban city centre (reasonably 
homogeneous) ('PT') 

17 Jun-03 Jul 2001 LAS 1878 27.4-27.7 

Dense urban city centre (reasonably 
homogeneous) ('NT') 

04 -10 Jul 2001 LAS 2308 22.2-22.7 

Masson et al. (2008) Toulouse, 
France 

Old city centre (‘relatively 
homogeneous’) 

Mar 2004-Feb 2005 LAS 1833 15-20 
above roof 

level 

Overview of CAPITOUL experiment. 
No scintillometer results shown. 

Zieliński et al. (2013) Łódź, Poland Dense urban city centre (reasonably 
homogeneous) 

Sep 2009-May 2012 LAS 3142 ≈22 Monthly diurnal cycles of QH from LAS 
compared with two EC stations. 
Fluxes calculated during night-time and 
winter. 

Wood et al. (2013a) Helsinki, 
Finland 

Urban, heterogeneous ('city-scale') Jul 2011-Jun 2012 LAS 4200 33.6 Analysis of CT
2 and QH. 

City-scale path affected by saturation. Dense urban, relatively 
homogeneous ('downtown') 

Mar 2012-Jun 2012 LAS 1840 48.3 

Ward et al. (2014) Swindon, UK Suburban residential 12 Jan 2011-31 Dec 
2012 

LAS 5492 45.0 Long path affected by saturation. 
Seasonality and inter-annual variability in QH.  

22 Jun 2011-31 Dec 
2012 

LAS 2761 35.9 

Ward et al. (2015a); 
Ward et al. (2015b) 

Swindon, UK Suburban residential Jul-Dec 2011; 
May-Dec 2012 

LAS + MWS 
(94 GHz) 

5492 45.0 First urban application of LAS-MWS. 
Long-term trial of two-wavelength and 
bichromatic method. 
QH, QE, CT

2, Cq
2, rTq analysed. 

Similarity functions assessed. 
Jacobs et al. (2015) Rotterdam, 

The 
Netherlands 

Dense urban city centre Jan-Dec 2012 LAS 3451 60 QE approximated as energy balance residual in 
urban area (but not evaluated). 

Lee et al. (2015) Gongju, South 
Korea 

Highly heterogeneous residential; 
path crosses river 

11-12 Nov 2013 LAS 2100 25.1-27.2 WRF simulations at 200 m averaged and 
compared to QH. Simulations with and without 
river show impact on night-time fluxes.  
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Reference Location Site description Study period Instrument L [m] zef [m] Comments 
Zhang and Zhang 
(2015); Zhang et al. 
(2016) 

Changzhou, 
China 

Urban 10-20 Jun 2012 LAS 440 33.0 Similarity functions fitted. 
Wavelet analysis used to investigate large-
scale contributions to LAS and EC datasets. Lishui, China Suburban 02-12 Aug 2011 LAS 223 6.7 

Crawford et al. (2017) London, UK Urban (‘P1’) 01 Dec 2014-30 Nov 
2015 

LAS 2358 111.6 Spatial variation in QH using triangulated 
paths. 
Impact of anthropogenic activities evident in 
differences with wind direction and between 
weekdays/weekends. 

Urban (‘P2’) 01 Dec 2014-30 Nov 
2015 

LAS 3197 140.7 

Urban (‘P3’) 01 Dec 2014-30 Nov 
2015 

LAS 1097 98.7 

Fluxes (long-path, non-urban) 

Chehbouni et al. 
(1999) 

Upper San 
Pedro Basin, 

Mexico 

Two-surface composite (25% grass + 
75% mixed mesquite and grass) 

7 days in Jun, Jul, 
Aug, Nov 1997 

LAS ≈900 10.5 1997 SALSA campaign. 
Reasonable results in heterogeneous 
environment. 

Chehbouni et al. 
(2000) 

Upper San 
Pedro Basin, 

Mexico 

Two-surface composite (45% grass + 
55% mesquite) 

22 Sep-04 Oct 1998 LAS 1829 12.46 1998 SALSA campaign. 
QH_EC and QH_sc compared for two patches 
and aggregated values compared with 
scintillometer spanning both patches. 

Mesquite 22 Sep-01 Oct 1998 LAS 1000 10.73 

Grass 01 Oct-04 Oct 1998 LAS 826 6.14 

Meijninger and De 
Bruin (2000) 

Gediz Basin, 
Turkey 

Mixed agriculture (grapes, cotton, 
fruit trees), heterogeneous terrain 

Apr-Oct 1998 LAS 2700 18 Little discussion of heterogeneity. 

Lagouarde et al. (2002) La Paillade, 
France 

Two-surface composite (67.6% 
wheat + 32.4% bare soil) 

04-12 Jun 1997 LAS 667 2.05 Heterogeneity in crop height and land cover. 
Simulations demonstrate non-linear averaging 
effect in heterogeneous areas. 
Possible influence of advection. 

LAS 667 4.54 

Hoedjes et al. (2002) Yaqui Valley, 
Mexico 

Irrigated wheat field; semi-arid 
surroundings 

07 Jan-26 Apr 2000 LAS 758 3.4 Regional advection occurs: QH < 0 W m-2 in 
afternoon. 
Similarity scaling assessed, some deviation in 
near-neutral regime. 

Meijninger et al. 
(2002a); Meijninger et 
al. (2002b) 

Flevoland, The 
Netherlands 

Mixed agriculture (sugar beet, 
wheat, potatoes, onions), flat 

18 Jul-20 Aug 1998 LAS + MWS 
(27 GHz) 

2200 11.6 (LAS); 
10.9 

(MWS) 

Detailed discussion of blending height. 
Scintillometer footprint introduced. 
Two-wavelength method used to obtain QH 
and QE. 
Good agreement between aggregated EC and 
scintillometer fluxes, even below zb. 

18 Jul-20 Aug 1998 LAS 2200 20.4 

Hemakumara et al. 
(2003) 

Horana, Sri 
Lanka 

Mixed vegetation (crops: coconut, 
rubber; paddy; grasses; trees) 

23 Aug-28 Feb 2000 LAS 1940 83 QE from energy balance residual compared 
with SEBAL. 
Q* measurements compromise accuracy. 
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Reference Location Site description Study period Instrument L [m] zef [m] Comments 
Min et al. (2004) Lezhi County, 

China 
Mixed agriculture and forest, hilly 16 Apr 2000-31 Oct 

2001 
LAS 2190 59.2 LAS used to derive aerodynamic surface 

temperature for comparison with satellite 
data. 

Kohsiek et al. (2006) Cabauw, The 
Netherlands 

Grassland (+ 7% built-up area), flat 2002-2003 XLAS 9800 43 Good agreement between QH_sc and QH_EC agg 
after substantial saturation correction.  

LITFASS 
Region, 

Germany 

Forest and patchy agricultural areas, 
hilly 

21 May-18 Jun 2003 XLAS 10200 69.7 

Schüttemeyer et al. 
(2006); Schüttemeyer 
et al. (2007); Marx et 
al. (2008) 

Ejura, Ghana Dense mixed vegetation (cashew 
trees, grass, maize, shrubs, swamp), 
hilly 

09 Nov 2002-28 Jan 
2003 

LAS 2030 30.1 Analysis restricted to daytime (poor 
agreement with EC at night). 
Higher random errors at the more complex 
site (Ejura), also linked to footprint overlap 
and scale of heterogeneity. 
Comparison of QH and QE from remote 
sensing. 

Tamale, 
Ghana 

Grassland with scattered trees, 
slightly hilly 

03 Nov-15 Dec 2002 LAS 2420 19.5 

Navrongo, 
Ghana 

Mixed (grass, baobab trees and 
agricultural crops in wet season/bare 
soil in dry season), nearly flat 

excluded from 
analysis 

LAS 1040 12.8 

Asanuma and Iemoto 
(2007) 

Kherlenbayan-
Ulaan, 

Mongolia 

Grass + sparse agricultural land, non-
uniform terrain 

15 days Jul-Oct 2003 LAS 1100; 
1500; 
3000; 
4600 

2.5-2.7 Receiver position moved every day to capture 
different surfaces. 

Ezzahar et al. (2007a); 
Ezzahar et al. (2007b); 
Hoedjes et al. (2007) 

Agdal, 
Morocco 

Irrigated olive grove, north 29 Sep-28 Nov 2002 LAS 1070 14.5 Irrigation introduces soil moisture 
heterogeneity. Footprint analysis and thermal 
imagery used to explain differences between 
LAS and EC data. 
Similarity scaling assessed. 

Irrigated olive grove, south 29 Sep 2002-27 Sep 
2004 

LAS 1050 14.0 

Ezzahar et al. (2009b) Wankama 
catchment, 

Niger 

Mixed vegetation (shrubs, millet, 
fallow) 

23 Jul-13 Aug 2006 LAS 3200  Catchment-scale QE derived using LAS and 
aggregated available energy scheme. 

Ezzahar et al. (2009a) Tensift Al 
Haouz, 

Morocco 

Irrigated olive yard (‘Agdal’), 
heterogeneous during irrigation 
events 

31 Jul-31 Aug 2003 LAS 1050 14.0 Large scatter between QH_sc and QH_EC during 
irrigation events (heterogeneous conditions); 
good agreement between events 
(homogeneous conditions). 
 

Irrigated wheat field (‘R3’), 
heterogeneous during irrigation 
events 

14 Mar-23 May 
2003 

LAS 690 4.5 

Irrigated orange orchard (‘Sâada’), 
heterogeneous 

18 May-22 Jun 2004 LAS 500 9.2 
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Reference Location Site description Study period Instrument L [m] zef [m] Comments 
Guyot et al. (2009); 
Uijlenhoet et al. (2011) 

Donga 
catchment, 

Benin 

Mixed vegetation (shrubs, woodland, 
crops/bare soil), variable topography 

Feb-Apr 2006 LAS 2400 18.35-
19.00 

zef varies with wind direction due to vegetation 
height. 
QE estimated as energy balance residual 
assessed relative to energy and water budget. 
Rainfall estimated from LAS. 

Kleissl et al. (2009) New Mexico Various 2005-2009 LAS 606-
3388 

17.6-62.9 Network of 7 LASs to support remote sensing 
and model evaluation. 

Timmermans et al. 
(2009) 

Barrax, Spain Partly irrigated agriculture (various 
crops/bare soil), flat 

12-21 Jul 2004 LAS 784 4.85 Assessment of area-averaged input 
parameters for scintillometer footprint. 

Bai et al. (2009); Jia et 
al. (2012); Liu et al. 
(2013) 

Hai River 
Basin, China 

Mixed (orchard, crops, residential), 
mountain valley (‘Miyun’) 

Jan-Jul 2008 / Jan 
2007-Dec 2012 

LAS 2420 35.9 Similarity scaling assessed, greater deviation 
identified at complex site (Miyun). 

Mixed agriculture (maize/winter 
wheat, cotton) (‘Guantao’) 

Jan-Jul 2008 / Jan 
2008-Dec 2009 

LAS 2760 15.6 

Suburban farmland (maize/winter 
wheat, vegetables) (‘Daxing’) 

Jun 2006-Dec 2012 LAS 2480 27.0 

Liu et al. (2011) Heihe River 
Basin, China 

Alpine meadow (grass), relatively flat 11 Mar-31 Oct 
2008; 01 Jan 2009-

30 Jun 2009 

LAS 2390 9.5 Similarity scaling assessed. 
Heterogeneity quantified using remote 
sensing data. 

Brunsell et al. (2011) Konza prairie, 
Kansas 

Upland (dense vegetation) and 
lowland (less dense vegetation) tall-
grass prairie 

17 Jul-07 Sep 2007 LAS 990 ≈8 Comparison of QH_sc and QH_EC. 
LAS used to validate MODIS-derived QH. 
 
 

Samain et al. (2011); 
Samain et al. (2012a); 
Samain et al. (2012b) 

Bellebeek 
catchment, 

Belgium 

Mixed land use (agriculture, pasture, 
urban, forest, water), variable 
topography 

21 Feb 2008-28 Aug 
2009 

XLAS 9500 68 QH validated against calibrated energy balance 
model (TOPLATS).  
QE estimated using energy balance and 
compared with remote sensing algorithm 
ETLook. 
Consideration of stable conditions and 
algorithms for detecting the change in sign of 
QH.  

Braam et al. (2012) Cabauw, The 
Netherlands 

Grassland with scattered rows of 
trees, flat 

04 May-11 May 
2008 

XLAS 9800 59.9 Measurement often outside surface layer and 
cannot be related to surface flux. 

Evans et al. (2012) Sheepdrove, 
UK 

Mixed agriculture (cereals, grass), 
undulating terrain 

29 Jul-16 Aug 2004 LAS 2430 32 Excellent agreement between QH_sc and 
QH_EC_agg for maturing crops.  
Reasonable agreement for QE derived as 
energy balance residual. 

Geli et al. (2012) Southern 
California 

Varying vegetation height (tamarisk, 
arrowweed, cottonwood, mesquite, 
bare soil) and topography 

Summer 2008 LAS 1832; 
1052; 
1621 

 Lidar data used to assess impact of 
uncertainties in elevation and vegetation 
height. 
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Reference Location Site description Study period Instrument L [m] zef [m] Comments 
Lothon et al. (2014) Lannemezan, 

France 
Heterogeneous vegetation 
(grassland, meadow, crops, forest), 
plateau 

14 Jun-08 Jul 2011 LAS 3000  Overview of BLLAST campaign. 

14 Jun-08 Jul 2011 LAS 4000  

Lee (2015) Muchangpo, 
South Korea 

Coastal (path along beach) 22-23 Nov 2013 LAS 1000 18.5 Tides generate ±2 m change in zef. 

Beyrich et al. (2002b); 
Lüdi et al. (2005); 
Beyrich et al. (2006); 
Meijninger et al. 
(2006); Beyrich et al. 
(2012); Braam et al. 
(2016) 

LITFASS 
Region, 

Germany 

Heterogeneous vegetation (crops, 
grassland, forest, water), moderate 
topography 

Campaigns in 1998, 
2003, 2009; 

long-term LAS 
operation > 10 years 

LAS + MWS 
(94 GHz) 

4900 43 LITFASS campaigns. 
Comparisons between LASs, SLSs, EC, 
unmanned aerial vehicle, large-eddy 
simulations and mesoscale models.  
Detailed analysis of QH, QE, CT

2, Cq
2. 

First demonstration of bichromatic method to 
derive rTq.  

Rotach et al. (2016) Inn Valley, 
Austria 

U-shaped alpine valley, mixed 
agriculture and villages  

Example days: 30 
Aug and 11 Sep 

2013 

LAS 1850 ≈60 LAS path across mountain valley.  
QH_sc compared with QH_EC at three heights to 
investigate structure of surface layer.  

Crosswind speed 

Poggio et al. (2000) Mesolcina 
Valley, 

Switzerland 

Mountain valley; paths across and 
parallel to valley 

Summer 1996 5 x LAS 900-
2700 

≈60-600 
agl 

Heights represent distance to ground near 
path centre. 
Comparison of six methods to derive 
crosswind.  
Impact of variable crosswind analysed. 

Furger et al. (2001) Rhine Valley, 
Switzerland 

Mountain valley; paths across valley 20-24 Oct 1999 LAS 6500 ≈500 agl Heights represent distance to ground near 
path centre. 
Horizontal and vertical wind derived during 
foehn. 

20-24 Oct 1999 LAS 6200 ≈500 agl 

Wood et al. (2013b) London, UK Dense urban; path crosses river 18 Feb-17 May 2011 LAS 808 ≈40-50 agl Comparison of sonic, lidar and scintillometer 
wind measurements.  
Channelling over River Thames. Lidar provides 
profile, whereas scintillometer is path-
averaged value. 

van Dinther et al. 
(2015b) 

Helsinki, 
Finland 

Urban 1-15 Oct 2013 LAS 4190 33.6 Lidar used to evaluate scintillometer 
crosswind retrieval.  
Updates to look-up-table method to improve 
performance when crosswind variable.  

van Dinther et al. 
(2015a) 

Schiphol 
airport, The 
Netherlands 

Airport; path 150 m from runway 26 Jul-29 Aug 2013 LAS 1060 3.2 Scintillometer used to estimate crosswind, 
visibility and detect wake vortices from 
aircraft wings. 
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Reference Location Site description Study period Instrument L [m] zef [m] Comments 

Rainfall 

Leijnse et al. (2007b) Wageningen, 
The 

Netherlands 

Mixed land cover; slightly sloping 28 May-23 Jul 1999 MWS (27 
GHz) 

4890  Comparison with seven tipping bucket gauges 
along path. 
QE retrieval not possible due to trees 
reflecting the beam. 

Uijlenhoet et al. (2011) See Guyot et al. (2009) 5-min scintillometer rain estimates within 20% 
of gauge values. 

Visibility and pollution 

Yuan et al. (2015); 
Yuan et al. (2016) 

Hefei, China Urban, heavy traffic 15-16 Jan 2014; 
20-29 Dec 2014 

LAS (0.62 
μm) 

960 18.0 Imaginary part of refractive index fluctuations 
related to visibility and aerosol mass flux. 
No direct evaluation. 

Table 2: Summary of scintillometer studies relevant to urban and complex environments. Unless otherwise stated, the ‘zef’ column contains the effective height or (zm-zd) depending on the 
information provided in the reference. Where multiple publications use the same dataset, the study period may differ for the individual publications. For a list of studies including non-
complex environments, see Table 1.2 of Meijninger (2003) for long-path and Table 1 of Odhiambo and Savage (2009) for short-path studies.   
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