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ABSTRACT

ReFOLD is a novel hybrid refinement server with in-
tegrated high performance global and local Accuracy
Self Estimates (ASEs). The server attempts to iden-
tify and to fix likely errors in user supplied 3D models
of proteins via successive rounds of refinement. The
server is unique in providing output for multiple al-
ternative refined models in a way that allows users
to quickly visualize the key residue locations, which
are likely to have been improved. This is important,
as global refinement of a full chain model may not
always be possible, whereas local regions, or indi-
vidual domains, can often be much improved. Thus,
users may easily compare the specific regions of the
alternative refined models in which they are most
interested e.g. key interaction sites or domains. Re-
FOLD was used to generate hundreds of alternative
refined models for the CASP12 experiment, boosting
our group’s performance in the main tertiary struc-
ture prediction category. Our successful refinement
of initial server models combined with our built-in
ASEs were instrumental to our second place rank-
ing on Template Based Modeling (TBM) and Free
Modeling (FM)/TBM targets. The ReFOLD server is
freely available at: http://www.reading.ac.uk/bioinf/
ReFOLD/.

INTRODUCTION

The refinement of 3D models of proteins can be thought of
as the ‘end game’ of protein structure prediction (1). Sub-
tle improvements in predictive models are often required
to move them the ‘last mile’, beyond the template or frag-
ments upon which they are based, so they more accurately
reflect the time averaged observed structures. Comparative
protein modelling is now routinely used across the life sci-
ences. However, many biological applications of 3D models
are critically dependent on high model accuracy, particu-
larly in key regions, such as binding sites for drug discovery

(2). Improving the accuracy of comparative models, beyond
the information derived from the template, therefore contin-
ues to be one of the pressing problems in structural bioin-
formatics. However, it has proved difficult to develop reli-
able and practically useful refinement methods, highlighted
by the relatively slow progress seen in CASP (Critical As-
sessment of Techniques for Protein Structure Prediction).
Indeed, the CASP assessors have stated that ‘the endgame
problem is going to be at least several orders of magnitude
harder than the TBM (Template Based Modeling) problem’
(1).

Refinement was introduced as a new category in CASP7
to encourage development. While quality assessment (QA)
methods, such as ModFOLD (3), can accurately identify
the magnitude of errors in models and locate where those
errors are, refinement methods aim to fix the errors in mod-
els. Once an atomic model has been obtained, it may be
tweaked to idealize bond geometry and to remove unfa-
vorable contacts that may have been introduced by the ini-
tial modelling process. Ironically, in the early years of re-
finement, often most methods made models worse, rather
than improving upon them. In recent years, the situation
has been improved, however, it is hard to quantify if im-
provements between CASPs are being made in refinement,
as maintaining the level of ‘target difficulty’ is problematic
(1).

Refinement methods can be loosely categorized into the
automated server-based programs and non-server-based
highly CPU intensive programs, referred to as the ‘human’
refinement groups in the CASP experiments as they allow
a large degree of manual intervention in their pipelines.
The freely available automated server GalaxyRefine, focuses
on rebuilding and repacking of the side chains, before per-
forming overall structure relaxation via molecular dynamic
simulation (MDS) (4). Additionally, the KoBaMIN server,
relies on minimization of a knowledge-based potential of
mean force (5). Another successful fully automated method
is the 3Drefine method (6,7), which works in a two-step pro-
cess involving optimization of the hydrogen bonding net-
work and composite physics and knowledge-based force
fields to give atomic-level energy minimization using the
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MESHI molecular modelling framework (8). The advan-
tage of such automated approaches is that they are easily
distributed, accessible and user-friendly. However, successes
in improving protein models via automated approaches re-
mains relatively low, with the most successful servers mak-
ing relatively conservative changes. In contrast, the less
well automated approaches, which often make more bold
changes to models, have arguably achieved better results.

The human refinement methods commonly use physics
based approaches that select structures from Molecular Dy-
namics (MD)-based ensembles followed by structural av-
eraging, which has led to a high-level of refinement suc-
cess (9,10).The most successful human refinement group
in both CASP10 and CASP11 was the Feig group (1,11).
Despite the relatively high performance of such strategies,
using highly intensive MDS approaches for refinement has
some drawbacks. The refinement procedure used by the Feig
group consumed 75,000 core hours (12 days on 265 cores)
on the multicore Intel Xenon CPU machines of the day, just
to refine a single 3D model for a single protein target (12).
Given that each protein structure prediction method will of-
ten produce hundreds or thousands of alternative models
for each target, using similarly intensive MDS refinement
procedures would quickly become problematic to manage
in terms of CPU/GPU loads, if it were to be performed on
multiple targets and models. This means that MDS refine-
ment protocols, such as those developed by the Feig group,
would be less practical to be used routinely for large scale
fully automated structure prediction pipelines. Thus, faster,
more practical and, ideally, as accurate and consistent, fully
automated refinement servers are required. While many au-
tomated servers exists, few servers make use of the power of
MDS and few adequately evaluate the models and present
users with accurate reports of the likely improvement in er-
rors. User feedback on when and, more specifically, where a
3D model has been improved is important to get right and
it is often neglected.

We have a good track record in building 3D models (13–
15) and estimating the likely errors they may have, recently
termed Accuracy Self Estimates or (ASE) (16–18). We have
had some success at using quality assessment guided mul-
tiple template based modelling to improve upon errors in
single template models (19), but this approach requires
sequence-structure alignments and template data. The Re-
FOLD server is our first successful attempt at developing a
method for directly fixing likely errors in any user supplied
3D models, using global quality assessment guided refine-
ment. The ReFOLD server also equips users with the ability
to identify specific domains or regions in a protein that are
likely to be correctly refined, via its accurate per-residue er-
ror estimates.

MATERIALS AND METHODS

ReFOLD is the server implementation of the refinement
method we initially developed for the CASP12 experi-
ment. The ReFOLD method works using a unique hy-
brid approach consisting of rapid iterative refinement with
i3Drefine (7) and molecular dynamics simulations with
NAMD (20), combined with the latest version of our
leading model quality estimation method, ModFOLD (3)

(http://www.reading.ac.uk/bioinf/ModFOLD/, manuscript
for version 6 in preparation). Input models were refined and
evaluated over a number of successive stages. This iterative
filtering process led to the generation of hundreds of alter-
native refined models, which were then ranked by quality.

The ReFOLD pipeline consisted of three protocols out-
lined in the flowchart shown in Supplementary Figure S1.
The first protocol simply used a rapid iterative strategy
for refinement of starting models, with 20 refinement cy-
cles (iterations) of i3Drefine (7). Although the authors rec-
ommend not to run i3Drefine for more than 10 iterations,
an optimal number of iterations is not specified, and often
models will improve further beyond 10 iterations. Simply,
all i3Drefine requires is a starting model, in PDB format,
and a given number iterations as input parameters.

The second protocol employed a more complex and
CPU/GPU intensive molecular dynamic simulation strat-
egy, using NAMD (20) to refine each starting model. The
NAMD protocol that we implemented was inspired by that
of Feig and Mirjalili (10), utilizing all atom MD sampling
in explicit solvent. Simulations were conducted at 298k un-
der neutralized pH conditions with 1 bar of atmospheric
pressure to resemble normal cellular conditions. Weak har-
monic restraints with a spring constant of 0.05 kcal/mol/A2

on all C-alpha atoms were added to conserve aspects of the
starting model. The CHARMM22/27 (21) force field (for
protein systems, the two are equivalent) was used as the pa-
rameter file with default TIP3P water model (22). As some
proteins are sensitive to ionic conditions in the solvent and
PME (Particle Mesh Ewald) (23) was being used, the sys-
tem was neutralized by adding either Na+ or Cl- ions. Only
non-bonded interactions were calculated with bonded in-
teractions excluded; the exclusion parameter was set to ex-
clude up to four pairs of bonded atoms. Electrostatic and
van der Waal interactions for these atom pairs were instead
calculated using the parameter file (CHARMM27). A 12
Å cut-off for calculating non-bonded interactions (mostly
van der Waal’s) was applied, as this is the official standard
for CHARMM force fields, with the smoothing function
switching distance of 10 Å to avoid discontinuity in en-
ergy and forces. The pairlistdist function was set to a dis-
tance of 14 Å between atom pairs for inclusion in pair lists.
All hydrogen bonding was rigidified, using the rigidBonds
functions, allowing the time step to be increased to 2 fs.
PME was used to calculate full electrostatics and the tem-
perature in the system was controlled through Langevin dy-
namics (24), which balances random noise with friction to
push atoms to the target temperature (298 K). The langevin-
Damping function was set to 1/ps to give some temperature
control without dampening the system to the extent that ef-
fects were not seen. Periodic boundary conditions were used
to achieve maintenance of conditions such as pressure, den-
sity and water box and also enable the use of PME, making
the simulation more biologically realistic. The first stage of
the MD simulation was 1000 steps of minimization, to lower
the potential energy of the system reducing bad initial con-
tacts, high force and temperature regions. This process ze-
ros velocity, so that the reinitvels function returns the sys-
tem to the desired temperature (298 K). For CASP12, the
second protocol was run using multiple short trajectories in
place of a single long trajectory; four parallel simulations

http://www.reading.ac.uk/bioinf/ModFOLD/
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were run for 2 ns, giving a cumulative simulation time of 8
ns per target.

The 164 refined models generated from the second pro-
tocol were assessed and ranked using ModFOLD6 rank
method. The third protocol was a combination of the first
two approaches, where the top ranked model from the sec-
ond protocol was further refined using 20 iterations of
i3Drefine. Subsequently, all of the refined models gener-
ated by each of these protocols and the starting model were
pooled and re-ranked again using ModFOLD6 rank and
the final top models were identified. Finally, each refined
model was evaluated and compared with the original start-
ing model in terms of local and global model quality scores.
Static and dynamic graphical outputs were generated using
the raw QA scores in order to display the top refined models
and estimated improvements in a user friendly manner.

RESULTS AND DISCUSSION

Server inputs and outputs

The only required inputs to the ReFOLD server are the
amino acid sequence for the target protein and a single 3D
model (in PDB format) for refinement. Users may option-
ally provide a name for their protein sequence and their
email address. The ReFOLD server results page provides
users with an accurate estimate of the likely percentage im-
provement in their global quality score based on the top re-
fined model (Figure 1A). In addition, the server is unique
in providing output for multiple alternative refined mod-
els in a way that allows users to quickly visualize the key
residue locations, which are likely to have been improved
upon compared to their original model. The results page
provides users with a series of per-residue error plots, which
demonstrate the reduction in local errors in the refined mod-
els compared with the uploaded original (Figure 1B). This is
important, as global refinement of a full chain model may
not always occur, whereas local regions, or individual do-
mains, may often be much improved. Presenting results to
users in this way also gives them the choice to easily com-
pare alternative refined models, allowing them to focus their
attention to key interacting residues or specific domains.
Users can also click through the images in the table in or-
der to compare the refined and original 3D models interac-
tively in using the JSmol/HTML5 framework (Figure 1C).
No plugins are required and, conveniently, interactive re-
sults may also be viewed on mobile devices.

Independent benchmarking

Our ReFOLD refinement approach was independently
tested by the assessor team in the recent CASP12 experi-
ment, and it was a key factor contributing to our success.
During the CASP12 prediction season (May–August 2016),
we used ReFOLD to build hundreds of alternative refined
models, for both the main tertiary structure prediction and
refinement categories. ReFOLD gave us a significant per-
formance boost in the main tertiary structure prediction
category, where it enabled us to further improve the qual-
ity of some of the very best initial server models. As a re-
sult of our high performance, we were invited to speak at
the meeting in Gaeta about our template based modelling

(TBM) strategy. Our group ranked in 2nd position over-
all on both the TBM and TBM/FM (Free Modelling) tar-
gets according to the assessors’ formula (Supplementary
Tables S1 and S2), and we ranked 11th overall on FM tar-
gets. Our group also improved the global and local qual-
ity scores for many of the starting models provided in the
refinement category itself, where we ranked 14th overall
(http://predictioncenter.org/casp12/).

The results in Table 1 summarize our CASP12 results
for regular targets, where the top server models, selected
by ModFOLD rank, were then further refined with Re-
FOLD. Arguably, this benchmark represents a more real-
istic user test case, where each of the starting models have
been selected in a fully automated manner and have been
generated for full length protein chains. The results in Ta-
ble 1 show that the majority of models were either im-
proved upon or unchanged according to the GDT TS (25)
and MolProbity (26) scores. There is an average overall im-
provement in scores (

∑
�GDT TS = 8.15,

∑
�MolProbity

= –10.16), which are greater than the standard errors, and
there is a strong correlation between the ModFOLD6 rank
global scores and GDT TS scores (Pearson’s r = 0.8094).
The GDT TS score measures the global positioning of the
backbone C-alpha atoms based on multiple superpositions
of the predicted and experimental structure. It is promis-
ing to see that ReFOLD improves backbone quality, but
these changes are relatively small, so significant improve-
ments in GDT TS are hard to detect on the CASP data set.
While it is encouraging that the improvement in cumula-
tive GDT TS scores is greater than the error, the pairwise
t-test on the data in Table 1 does not provide evidence that
the improvement in the backbone is statistically significant
(P = 0.1196). However, the improvement in the MolProbity
full atom scores is statistically significant at the 95% con-
fidence level, according to the pairwise t-test on the data
in Table 1 (P = 0.0301). Whereas the GDT TS score fo-
cuses only on the C-alpha atoms, the MolProbity score is
an all-atom composite score, which means that it also mea-
sures the finer detail of differences in the local errors of the
side chains. The MolProbity score denotes the expected res-
olution with respect to experimental structures, therefore
models with lower MolProbity scores are more physically
realistic. Figure 2 shows examples where ReFOLD has suc-
cessfully refined starting models of varying target difficulty
(FM, TBM, TBM/FM targets and a refinement target),
with improved GDT TS scores for each.

It is clear that the success of refinement is related to
the quality of the starting model, when targets are sub-
divided into domains (Supplementary Tables S3–S5). Di-
viding targets into domains allows us to pinpoint where
the method performance is strongest. The results indicate
that the method works better overall on harder FM targets,
which have on average lower initial GDT TS scores. The
method is less successful on the assessor selected and edited
refinement targets and the TBM domain models (where
starting models have, on average, much higher GDT TS
scores) than either the full chain models or FM domain
models. Clearly, it is harder to refine models where there
is less room for improvement, and likewise it is harder to
detect a smaller �GDT TS. In addition, for many of the
starting server models, the developers also attempted refine-

http://predictioncenter.org/casp12/
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Figure 1. ReFOLD server results for CASP12 refinement target TR594. In CASP12 ,the McGuffin group used ReFOLD to improve the GDT TS score
from 55.34 → 58.43 (A) Main results page with a summary of the scores for the top refined model with the highest predicted improvement in model quality.
The full table of scores for every alternative refined model is displayed below the top hit (truncated here to fit page). Clicking on the images on the main
results page allows results to be visualized in more detail and downloaded. (B) Histogram of the local or per-residue ModFOLD6 errors for the top refined
model (green bars) compared with the original model. Plots for each alternative refined model may be downloaded. (C) Interactive views of the refined
model compared with the original model, which can be manipulated in 3D using the JSmol/HTML5 framework and/or downloaded for local viewing.

ment, which clearly produces a problem of diminishing re-
turns for further refinement. Nevertheless, considering full
chain models across regular targets, on average the auto-
matically selected initial models are successfully improved
upon by the ReFOLD pipeline.

The time taken to refine a model is dependent on the se-
quence length. The average time per CASP12 target was
∼10 h for each NAMD run using a quad core desktop (In-
tel Xeon E5-2407v2) with a standard graphics card (Nvidia
GeForce GTX 970). Smaller models were quicker to refine
(e.g. 310 min for a 60 residue model) and larger models took
longer (e.g. 909 min for a 257 residue model). The other
components of the method, including the quality assess-
ment, are run in parallel and will usually take no more than
a few extra hours. The ReFOLD pipeline is presently run-

ning on a dedicated 56 thread server (Intel Xeon E5-2695
v3) with an Nvidia Tesla K40M GPU card, so most users
should expect their results well within 24 h, once they are
running.

CONCLUSIONS

The ReFOLD server allows users to attempt to fix errors in
their 3D models of proteins and identify improvements with
built-in Accuracy Self Estimates. The user friendly, dynamic
results pages let users visualise potential improvements for
over 200 alternative refined models, at both a global and
local level. Providing users with visual comparisons of es-
timated local improvement allows them to quickly identify
those models, which are likely to have been improved upon
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Figure 2. Four examples of CASP12 targets where using ReFOLD allowed us to fix errors in the top selected server model. Left panels, refined model
with ModFOLD6 accuracy self assessment (ASE) displayed using the temperature colour scheme. Middle panels, superposition of the top selected server
model (cyan), refined model (magenta) and native structure (green). Right panels, GDT plots comparing top selected server models (cyan) with the Re-
FOLD refined models (magenta). (A) FM target T0918 domain 1: QUARK TS1 versus McGuffin TS1, a GDT TS improvement from 45.6 to 48.38. (B)
FM/TBM target T0912 domain 2: GOAL TS1 versus McGuffin TS1, GDT TS from 62.95 to 65.36. (C) TBM target T0872 domain 1: IntFOLD4 TS1
versus McGuffin TS1, GDT TS from 66.76 to 67.9 (D) TR945: starting model versus McGuffin TS1, GDT TS from 59.27 to 61.20. Models are rendered
using PyMOL (http://www.pymol.org). GDT plots are from http://www.predictioncenter.org/casp12/.

http://www.pymol.org
http://www.predictioncenter.org/casp12/
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Table 1. Summary of ReFOLD performance on CASP12 targets for full chains

CASP model ID ModFOLD6 rank GDT-TS MolProbity

Target ID Starting model Refined model
Starting
model

Refined
model

Starting
model

Refined
model Diff.

Starting
model

Refined
model Diff.

T0859 T0859TS479 1-D1 T0859TS017 1-D1 0.4059 0.4189 24.78 27.66 2.88 2.88 2.7 –0.18
T0862 T0862TS183 3-D1 T0862TS017 1-D1 0.3809 0.3809 58.6 58.6 0 2.66 2.66 0
T0863 T0863TS005 1 T0863TS017 1 0.2994 0.3024 9.62 9.54 –0.08 0.93 1.61 0.68
T0864 T0864TS479 4-D1 T0864TS017 1-D1 0.3514 0.3658 20.22 19.92 –0.3 3.17 1.85 –1.32
T0866 T0866TS479 5-D1 T0866TS017 1-D1 0.4049 0.425 44.71 45.91 1.2 3.44 2.45 –0.99
T0868 T0868TS479 3-D1 T0868TS017 1-D1 0.4338 0.4438 57.97 60.99 3.02 2.83 0.65 –2.18
T0869 T0869TS479 3-D1 T0869TS017 1-D1 0.4288 0.432 32.21 31.97 –0.24 3.17 3.79 0.62
T0870 T0870TS183 4-D1 T0870TS017 1-D1 0.4733 0.4804 33.94 32.32 –1.62 2.86 1.07 –1.79
T0872 T0872TS405 1-D1 T0872TS017 1-D1 0.6467 0.6539 66.76 67.9 1.14 2.63 3.12 0.49
T0874 T0874TS005 2-D1 T0874TS017 1-D1 0.512 0.5148 46.17 46.17 0 0.92 2.1 1.18
T0875 T0875TS005 2-D1 T0875TS017 1-D1 0.5254 0.53 43.1 43.1 0 1.19 1.19 0
T0876 T0876TS220 1-D1 T0876TS017 1-D1 0.4563 0.4684 48.54 49.38 0.84 1.9 2.41 0.51
T0878 T0878TS220 2-D1 T0878TS017 1-D1 0.3544 0.364 13.01 12.5 –0.51 2.66 2.09 –0.57
T0880 T0880TS405 1 T0880TS017 1 0.3885 0.4201 10.75 11.27 0.52 3.07 2.15 –0.92
T0882 T0882TS357 4-D1 T0882TS017 1-D1 0.6089 0.6161 79.43 81.33 1.9 1.73 1.36 –0.37
T0886 T0886TS479 1 T0886TS017 1 0.3569 0.3758 26.96 28.27 1.31 3.19 2.91 –0.28
T0887 T0887TS220 2-D1 T0887TS017 1-D1 0.4649 0.4756 40.22 38.51 –1.71 1.79 1.44 –0.35
T0888 T0888TS183 4-D1 T0888TS017 1-D1 0.3677 0.3778 19.84 19.21 –0.63 3 3.93 0.93
T0890 T0890TS220 2 T0890TS017 1 0.458 0.4653 25.53 24.73 –0.8 2.27 1.17 –1.1
T0892 T0892TS479 3 T0892TS017 1 0.4193 0.4295 37.18 38.34 1.16 3.03 2.01 –1.02
T0894 T0894TS183 1 T0894TS017 1 0.3434 0.3469 50.52 51.05 0.53 3.57 3.81 0.24
T0895 T0895TS250 5-D1 T0895TS017 1-D1 0.584 0.584 71.67 71.67 0 2.32 2.32 0
T0896 T0896TS220 2 T0896TS017 1 0.3193 0.3252 19.63 20.75 1.12 1.94 1.93 –0.01
T0897 T0897TS005 2 T0897TS017 1 0.3141 0.3179 10.02 9.64 –0.38 1.03 1.79 0.76
T0898 T0898TS405 1 T0898TS017 1 0.39 0.4062 28.42 28.11 -0.31 3.47 3.63 0.16
T0899 T0899TS183 2 T0899TS017 1 0.3994 0.4062 27.88 28.1 0.22 3.69 3.02 –0.67
T0900 T0900TS479 1-D1 T0900TS017 1-D1 0.4995 0.5129 42.65 44.85 2.2 3.13 1.05 –2.08
T0901 T0901TS479 2 T0901TS017 1 0.4908 0.4952 37.37 37.2 –0.17 3.37 3.82 0.45
T0904 T0904TS479 1-D1 T0904TS017 1-D1 0.4628 0.4656 38.74 38.55 –0.19 3.2 2.63 –0.57
T0905 T0905TS479 2 T0905TS017 1 0.5289 0.531 35.06 34.98 –0.08 3.23 2.87 –0.36
T0907 T0907TS479 1 T0907TS017 1 0.3736 0.391 21.32 20.55 –0.77 3.41 2.82 –0.59
T0909 T0909TS251 5-D1 T0909TS017 1-D1 0.44 0.4485 41.07 41.07 0 3.32 2.59 –0.73
T0911 T0911TS405 2-D1 T0911TS017 1-D1 0.6009 0.6053 52.02 52.63 0.61 3.37 3.4 0.03
T0912 T0912TS220 1 T0912TS017 1 0.4187 0.4237 47.66 47.16 -0.5 2.36 1.87 –0.49
T0913 T0913TS479 5-D1 T0913TS017 1-D1 0.5734 0.5762 61.98 62.06 0.08 3.06 3.75 0.69
T0914 T0914TS183 1 T0914TS017 1 0.349 0.349 16.33 16.33 0 3.71 3.71 0
T0915 T0915TS220 1-D1 T0915TS017 1-D1 0.4873 0.4988 48.86 47.4 –1.46 1.85 1.94 0.09
T0918 T0918TS183 1 T0918TS017 1 0.3226 0.3315 14.83 15.54 0.71 3.25 2.11 –1.14
T0923 T0923TS220 2-D1 T0923TS017 1-D1 0.3305 0.3334 18.18 18.18 0 1.92 1.24 –0.68
T0941 T0941TS183 5-D1 T0941TS017 1-D1 0.3366 0.3465 8.94 9.16 0.22 3.01 3.73 0.72
T0942 T0942TS183 1 T0942TS017 1 0.4443 0.4497 45.54 45.22 -0.32 2.78 3.4 0.62
T0944 T0944TS220 5-D1 T0944TS017 1-D1 0.6205 0.6246 72.92 73.22 0.3 1.87 1.67 –0.2
T0945 T0945TS183 1-D1 T0945TS017 1-D1 0.4438 0.4536 53.8 53.8 0 3.73 3.73 0
T0946 T0946TS479 1 T0946TS017 1 0.4508 0.4572 45.12 44.86 –0.26 3.73 3.84 0.11
T0947 T0947TS220 1-D1 T0947TS017 1-D1 0.5149 0.5277 64.43 63.29 –1.14 2.01 2.76 0.75
T0948 T0948TS479 1-D1 T0948TS017 1-D1 0.6367 0.6368 71.98 71.64 –0.34 2.69 2.09 –0.6

Total 1786.48 1794.63 8.15 124.34 114.18 –10.16
Std. Err. 2.822 2.845 – 0.1152 0.1367 –

Mean GDT TS of starting model = 38.84.
∑

�GDT TS = 8.15 (higher scores are better). Mean MolProbity of starting model = 2.70.
∑

�MolProbity = –10.16 (lower scores
are better). Data are from http://www.predictioncenter.org/casp12/.

in a specific region of interest. In addition, the server pro-
vides users with a compressed archive all of the generated
refined models, which they may rank using their own alter-
native quality assessment protocols. In the recent CASP12
experiment, the ReFOLD pipeline gave our group a perfor-
mance boost increasing our cumulative GDT TS scores and
thereby contributing to our high overall rankings.
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