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Abstract
Multistability is a ubiquitous feature in systems of geophysical relevance 
and provides key challenges for our ability to predict a system’s response to 
perturbations. Near critical transitions small causes can lead to large effects 
and—for all practical purposes—irreversible changes in the properties of the 
system. As is well known, the Earth climate is multistable: present astronomical 
and astrophysical conditions support two stable regimes, the warm climate we 
live in, and a snowball climate characterized by global glaciation. We first provide 
an overview of methods and ideas relevant for studying the climate response to 
forcings and focus on the properties of critical transitions in the context of both 
stochastic and deterministic dynamics, and assess strengths and weaknesses of 
simplified approaches to the problem. Following an idea developed by Eckhardt 
and collaborators for the investigation of multistable turbulent fluid dynamical 
systems, we study the global instability giving rise to the snowball/warm 
multistability in the climate system by identifying the climatic edge state, a 
saddle embedded in the boundary between the two basins of attraction of the 
stable climates. The edge state attracts initial conditions belonging to such a 
boundary and, while being defined by the deterministic dynamics, is the gate 
facilitating noise-induced transitions between competing attractors. We use a 
simplified yet Earth-like intermediate complexity climate model constructed by 
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coupling a primitive equations model of the atmosphere with a simple diffusive 
ocean. We refer to the climatic edge states as Melancholia states and provide an 
extensive analysis of their features. We study their dynamics, their symmetry 
properties, and we follow a complex set of bifurcations. We find situations 
where the Melancholia state has chaotic dynamics. In these cases, we have that 
the basin boundary between the two basins of attraction is a strange geometric 
set with a nearly zero codimension, and relate this feature to the time scale 
separation between instabilities occurring on weather and climatic time scales. 
We also discover a new stable climatic state that is similar to a Melancholia state 
and is characterized by non-trivial symmetry properties.

Keywords: edge state, climate response, critical transitions, climate science, 
bifurcations, symmetry breaking, multistability
Mathematics Subject Classification numbers: 34C28, 37C70, 37D45, 37G35, 
76U05, 76E20, 86A10

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introductory remarks

Providing a comprehensive framework for climate dynamics is one of the grand challenges 
of contemporary science [1–4]. While classical approaches to the definition of climate sensi-
tivity are based on concepts borrowed from the analysis of systems at or near equilibrium, a 
more general point of view is indeed needed [5, 6]. The issue has relevance both for the under-
standing of (a) the history of our planet, the relationship between climatic conditions and the 
development of terrestrial life across the geological epochs, and the pressing issue of anthropo-
genic climate change; and (b) for the possibility of having an encompassing view of planetary 
circulations, a much coveted goal in view of the extraordinary achievements of contemporary 
planetary science. Many planets are being discovered by the day, and the quest for finding 
atmospheres able to support life (as we know it) is ongoing; see the NASA exoplanet archive  
(http://exoplanetarchive.ipac.caltech.edu) for some useful information in this regard.

The climate is a complex system featuring variability of a vast range of spatial and temporal 
scales, resulting from instabilities fundamentally fuelled by the inhomogeneous absorption of 
solar radiation, and from the corresponding fluxes of mass, chemical species, and energy that, 
acting as negative feedbacks, allow for the establishment of steady state conditions. Interestingly, 
one can interpret the presence of organized motions of the geophysical fluids as the result of 
mechanical work, transforming available potential energy into kinetic energy, which is eventu-
ally dissipated by friction [7, 8]. Altogether, the climate can be seen as a thermal engine able to 
transform heat into mechanical energy with a given efficiency, and featuring many different irre-
versible processes that make it non-ideal [3, 9, 10]. An overarching theory of climate dynamics, 
able to encompass instabilities, re-equilibrating feedbacks, and large scale dynamical structures 
is still far from having been achieved, despite a lot of progress in the last decades.

Nonequilibrium systems like the climate can be essentially characterized as being in con-
tact with at least two thermostats with different temperatures (or, e.g., chemical potentials) 
[11]. Nonequilibrium systems exhibit an extremely complex phenomenology: while a lot is 
known for (near-)equilibrium systems, our understanding of nonequilibrium systems is com-
paratively poor and limited, in spite of the wealth of phenomena occurring out of equilibrium.
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Obviously, much of the interest on the understanding of the response of the climate system 
to forcings comes from the evidence of the complex interplay between climate conditions and 
life. Since the early 1990s the Intergovernmental Panel on Climate Change (IPCC) has started 
collecting and analyzing in a systematic way the scientific literature on the topic of climate 
dynamics, looking at the distant and near paleoclimatological conditions, but with a special 
focus on global warming and on the socio-economic impacts of anthropogenic climate change 
[12–14]. An enormous scientific effort is aimed at improving our understanding of climate 
change, and climate-related investigations account for some of the most extensive data collec-
tion campaigns and computational exercises across all disciplines.

The response of the climate system to perturbations can be qualitatively divided into two 
different yet coexisting forms. In some cases, such a response is smooth with respect to 
the perturbation parameters. In other cases, the smoothness is lost and abrupt changes can 
result from small perturbations. In some previous works, we have studied using a statisti-
cal mechanical approach the regime of smooth response [3, 4, 15, 16] and the conditions 
under which such smoothness is lost [17]. In other previous works, we have, instead, used 
thermodynamical concepts to better understand under which conditions small perturbations 
can lead to qualitative changes in the properties of the climate system [18–20]. In this work 
we wish to further advance the understanding of the global instabilities of the climate system 
by taking advantage of some powerful concepts and methods borrowed from the theory of 
dynamical systems.

In section 2 we review the two scenarios of smooth versus nonsmooth climatic response to 
perturbations, in order to provide a meaningful context for the results contained in this paper 
and for the motivations behind our work. We introduce the concept of critical transitions  
(tipping points) in geosciences [21, 22], and provide basic concepts and models for under-
standing the multistability of the Earth climate coming from the coexistence of the so-called 
snowball and warm climate states in a wide range of boundary conditions [23–28].

In section 3 we present an overview of some methods discussed in the literature for inves-
tigating the critical transitions. We briefly summarize the rationale behind using stochastic 
models for studying climate dynamics [27, 29, 30] and discuss how large deviations theory 
[31] can be relevant, within the Freidlin–Wentzell framework [32] for explaining the trans-
itions of the system between coexisting regimes [33, 34]. Following the work of Eckhardt 
and collaborators in the context of the fluid dynamics of turbulent flows, and sticking to the 
paradigm of deterministic dynamics, we introduce the concept of edge state, the unstable sad-
dle separating different regimes of motions and discuss how it is possible to find it using the 
edge tracking algorithm [35–37]. We also briefly discuss the application we have previously 
presented [38] on a simple geophysical model [25].

In section 4 we introduce PUMA-GS, a new simple yet potentially relevant climate model 
constructed by coupling a modified version of the model introduced in [25] with PUMA [39], 
a simple open-source primitive equations model of the atmospheric circulation. We then clar-
ify how using a suitably adapted version of the edge tracking algorithm it is possible to iden-
tify the edge states of the system, i.e. unstable climatic states living on the boundary between 
the basins of attraction of the snowball and warm climate states4.

In section  5 we study the geometrical properties of the boundary between competing 
basins of attraction, along the lines of [37, 40–43], the properties of the climatic edge states, 

4 We have decided to use for the edge states of the climate system the name of Melancholia states, as a homage to 
the 2011 movie Melancholia directed by Lars von Trier, where a masterful and accurate portrait of the challenges of  
prediction in the vicinity of critical transitions is given. The movie itself has provided a fundamental inspiration for 
this investigation. See www.melancholiathemovie.com.
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investigating whether they correspond to fixed points, periodic points or chaotic saddles fea-
turing a limited horizon of predictability, and the bifurcations between such regimes, including 
a process of symmetry breaking. We also show how the methodology proposed here allows for 
identifying a new stable climate regime that would hardly be discoverable through standard 
direct numerical integration.

In section 6 we summarize the main ideas presented in this paper and present our conclu-
sions and perspectives for future work.

2. Response of the climate system to perturbations

2.1. Response theory and climate change

In (near-)equilibrium systems, we have formidable tools for relating forced and free fluctua-
tions of a system. Kubo [44, 45] constructed a mathematically nonrigorous but physically 
extremely powerful theory able to predict how a system whose statistics is described by the 
canonical ensemble responds to external perturbations. Kubo’s response theory also includes 
the fluctuation-dissipation theorem, which basically shows that the linear response of a system 
to forcings can be derived from its natural fluctuation through suitably defined linear opera-
tors. This result has been extremely influential in many areas of the physical and chemical sci-
ences. See a comprehensive review in [46] and a recent extension to the nonlinear case in [47].

The lack of mathematical rigour of the response theory was later addressed by Ruelle 
[48–50], who showed that if one considers Axiom A dynamical systems, and limits oneself 
to considering sufficiently smooth observables, it is possible to prove the differentiability of 
the invariant measure of the system with respect to small parameters describing the change 
in the dynamics, and to provide explicit formulas for computing the change in the measure. 
Axiom A systems are chaotic and uniformly hyperbolic on the attractor, where the asymptotic 
dynamics takes place.

Moreover, modern methods of spectral theory have provided different and elegant proofs 
of Ruelle’s results. The response theory can be developed by comparing the Perron-Frobenius 
transfer operator [51] of the unperturbed and of the perturbed system. The spectrum of the 
transfer operator describes, among other things, how an initial probability distribution conv-
erges to—in the case of mixing systems—a unique invariant measure. In this way, one can 
study directly the change in the invariant measure resulting from the applied perturbation 
[52]. Such a point of view has also allowed the extension of Ruelle’s results to the study of 
the response for smooth observables in more general dynamical systems [53, 54] or of non-
smooth observables in Axiom A systems [55].

Axiom A systems are indeed far from being typical dynamical systems, but, according to 
the chaotic hypothesis of Gallavotti and Cohen [56], they can be taken as effective models for 
chaotic physical systems with many degrees of freedom. Specifically, this means that when 
looking at macroscopic observables in sufficiently chaotic (to be intended in a qualitative 
sense) high-dimensional systems, it is extremely hard to distinguish their properties from 
those of an Axiom A system, including some degree of structural stability. One can interpret 
the chaotic hypothesis as the possibility of constructing robust physical properties for the sys-
tem under investigation. Therefore, providing results for Axiom A systems can be thought of 
as being of rather general physical relevance.

Axiom A systems corresponding to equilibrium physical systems possess an invariant 
measure that is absolutely continuous with respect to Lebesgue because the phase space does 
not contract nor expand, as the flow is nondivergent. Indeed, in this case the fluctuation-
dissipation theorem applies.

Nonlinearity 30 (2017) R32
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Axiom A systems corresponding to nonequilibrium conditions feature a phase space that 
contracts on the average, so that the asymptotic dynamics takes place on a strange attractor 
with dimension smaller than the dimension of the phase space. As a result of the singularity 
of the invariant measure, the usual form of the fluctuation-dissipation theorem does not hold. 
Ruelle [48–50] provides a mathematical explanation of this property, while a physical inter-
pretation is given in e.g. [57–59]. This implies that for nonequilibrium systems there is no 
obvious relationship between free and forced fluctuations of the system, as already suggested 
by Lorenz [60].

Various proposals have been put forward to avoid the problem of the lack of smoothness 
of the invariant measure in nonequilibrium statistical mechanical systems. Some authors 
consider adding some stochastic forcing on top of the deterministic dynamics, in order to 
take into account the effect of unresolved scales [61], having in mind the Mori-Zwanzig 
theory [62, 63].

Interestingly, while on one side there have been positive examples of applications of the 
fluctuation-dissipation theorem for studying the climate, it is clear that the quality of the  
obtained response operator depends substantially on the chosen observable [64–66].  
The difficulties in constructing ab initio the response operator using Ruelle’s explicit formulas 
come from the extremely different mathematical properties of the contributions coming from 
the unstable and stable manifold [61] plus from the possible presence, in the case of high-
dimensional chaos, of rather diverse time scales. Algorithms based on adjoint methods seem 
to partially ease these issues [67, 68]. A possible way to sort out the problem of estimating the 
response operator relies on projecting the perturbation flow on the covariant Lyapunov vec-
tors, which allow for constructing a covariant base spanning the stable and unstable manifolds 
[69], or exploiting the reconstruction of the invariant measure obtained using unstable peri-
odic orbits [70, 71]. In fact, through a combined use of the formalism of covariant Lyapunov 
vectors and of unstable periodic orbits, it has been recently possible to elucidate interesting 
mathematical and physical aspects behind the violation of the fluctuation-dissipation theorem 
in a simple atmospheric model [16].

Convincingly good results in terms of climate prediction performed using the linear response 
theory have instead been obtained by bypassing the problem of constructing the response oper-
ator and using, instead, the formal properties of the Green’s function [3, 15, 59]. Note that the 
response theory is able to predict not only the response of globally averaged quantities to an 
increase in the CO2 concentration, but also the spatial patterns of climate change [4].

2.2. Where the response theory fails: critical transitions of the climate system

The response theory is based on a perturbative expansion of the invariant measure, so its 
intrinsic limitation comes from the fact that the radius within which the expansion is valid 
could be extremely small. Of course, one might think of covering an extended range of para-
metric changes by repeating the expansion in neighbouring intervals. However, the procedure 
will fail in the vicinity of critical transitions, where one can find a qualitative change in the 
dynamics of the system resulting from a crisis of the attractor.

Bifurcations involving non-chaotic attractors have been very accurately studied, usually 
taking the point of view of analysing how the existence and the stability properties of invariant 
sets of the considered system change when one parameter is changed [72]. The resulting bifur-
cations can be classified according to universal classes [73], which has proved of immense 
relevance for studying a large variety of physical systems, and indeed successfully in the 
context of climate dynamics [1, 74].

Nonlinearity 30 (2017) R32
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We remark that Ashwin et al [75] have recently emphasized the need for widening the 
usual treatment of bifurcations in dynamical systems in order to accommodate for more gen-
eral scenarios of critical transitions. In addition to the usual bifurcation scenario described 
above (B-tipping), they have studied the transitions between competing basins of attraction 
depending on the presence of a finite rate of change of one or more parameters of the sys-
tem (R-tipping), or on the presence of stochastic forcing of finite amplitude (N-tipping). 
See in [76, 77] an earlier discussion of the role of time-dependent forcings in the context of 
another geophysically relevant critical transition, i.e. the collapse of the large scale oceanic 
 circulation [78].

The situation is much more complex in the case of chaotic (and possibly high-dimen-
sional) attractors, where critical transitions are associated to a large variety of mathematical 
mech anisms, including boundary crises, where an attractor is destroyed by contact with its 
basin boundary; interior crises, where the shape of the attractor undergoes a sudden change; 
synchronization and symmetry breaking (and restoring) processes, whereby different sub-
systems exhibit (or lose) special temporal and/or spatial correlations; and many others; see 
comprehensive treatments of these fascinating issues in, e.g. [79], and a survey of recent 
advances on synchronization phenomena (which have been initially studied in the simpler 
context of non-chaotic attractors) in [80].

For reasons that will be clear in section 3, in the rest of the paper our main (but not exclu-
sive) focus will be on boundary crises, which result into the disappearance of an attractor. The 
vicinity of such critical transitions is accompanied, on the one hand, by a rough dependence 
of the system’s properties on the parameter to be tuned, as a result of the Ruelle–Pollicott 
resonances, and, on the other hand, by the presence of a slow decay of correlations (critical 
slowing-down) of the system’s observables, with the decorrelation times diverging when the 
control parameter reaches its critical value [17, 81, 82]. Looking at the Ruelle response form-
ulas, it is clear that the presence of a slow decay of correlations leads to a lack of convergence 
in the estimate of the Green’s function, even though the relationship between the presence of 
sufficiently fast decay of correlations and the validity of response theory can be clarified more 
easily using spectral theory [52].

The climate system is characterized by such critical transitions, which in the geophysical 
literature are usually dubbed as tipping points. Relevant examples of tipping points include the 
dieback of the Amazon forest, the shut-down of the thermohaline circulation of the Atlantic 
ocean, the methane release resulting from the melting of the permafrost, and the collapse of 
the atmospheric circulation regime associated to the Indian monsoon; see [21, 22] for a useful 
perspective. Obviously, not all tipping points are equally critical, both in terms of global cli-
matic impacts, and, more technically, in the sense that the lack of smoothness in the response 
might be practically detectable only when looking at specific observables. As an example, one 
can expect that non-smoothness in the response associated to the dieback of the Amazon forest 
is easier to detect when looking at climatic fields in South America rather than in Siberia or 
Australia. Understanding the qualitative and quantitative properties of climatic tipping points 
is another great challenge of climate science.

2.3. Snowball and warm climate states

Probably the most impressive example of critical transition in the Earth system can be found 
when considering that the current astronomical and astrophysical conditions support at least 
two possible steady climate states, one being the one we are experiencing, and the other 
one characterized by much lower temperatures, almost total absence of water vapour in the 

Nonlinearity 30 (2017) R32
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atmosphere, and global ice-cover, referred to as snowball Earth. Models of different levels of 
complexity support such a statement, and, more importantly, geological evidence suggests 
that during the Neoproterozoic (the period spanning from about 1000 million to about 540 
million years ago), the Earth suffered two of its most severe periods of glaciation [26, 83] and 
entered into snowball climate states.

Figure 1. Multistability of the climate system corresponding to the coexistence of warm 
and snowball conditions. (a) Bifurcation diagram obtained from the 0D EBM as given in 
equation (1). The y-axis represents the temperature T, the control parameter in the abscissa 
is S∗/S∗

0 , where S* is the solar constant and S∗
0 ≈ 1360 Wm−2 is its present-day value.  

(b) Bifurcation diagram obtained using a 1D EBM as described in equation (2), where 
γ controls the strength of the diffusion operator. The y-axis shows the ice-line latitude 
ϕi, the control parameter in the abscissa is S∗/S∗

0 . Adapted from [27], Copyright (2001), 
with permission from Elsevier.

Nonlinearity 30 (2017) R32
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The onset and decay of snowball conditions are associated to changes in the value of the 
solar constant and in the composition of the atmosphere, with the ensuing variation of the  
greenhouse effect. For a fixed atmospheric composition one finds a range of values of  
the solar constant S* where the system features multistability: the warm climate can exist for 
all values of S∗ > S∗

W→SB and the snowball state can exist for all values of S∗ < S∗
SB→W, with 

S∗
W→SB < S∗

SB→W. The critical value S∗ = S∗
W→SB (S∗ = S∗

SB→W) is such that if we are in the warm 
(snowball) state and slowly reduce (increase) the value of S*, for S∗ = S∗

W→SB (S∗ = S∗
SB→W) the 

stability of the warm (snowball) climate is lost and the system tips to the snowball (warm) state.
The critical transitions associated with the boundary crisis happen in conditions where the 

stabilising negative feedbacks, to be described later, are overcome by the positive ice-albedo 
feedback. The positive feedback works as follows: colder (warmer) temperatures lead to an 
increase (a decrease) in the ice cover, which, by increasing (decreasing) the albedo (the frac-
tion of incoming solar radiation elastically scattered back to space), leads in turn to reduced 
(enhanced) heat absorption [27]. When the ice-albedo feedback dominates, the temper ature 
decreases (increases) substantially until a new balance sets in, corresponding to the cold 
(warm) stable state realised after the critical transition.

We wish to remark that some theoretical investigations and observational evidence point at 
the possible existence of a third possible stable climate state, which is characterized by cold 
conditions (yet not as extreme as in the snowball), where the equatorial belt is ice-free and 
characterized by vigorous oceanic and atmospheric circulations and a non-trivial hydrological 
cycle. Two main variants of the third climate state have been proposed, the so-called slushball 
Earth [84] and the Jormungand state [85]. In the rest of the paper, we will only comment 
briefly on this—indeed relevant—geophysical problem.

A simple mathematical formulation of the physical processes responsible for the snowball-
warm multistability of the Earth system can be given by energy balance models (EBMs), 
which provide a simplified yet relevant representation of the energy exchanges in the climate 
system [27, 86]. Reducing the Earth to a 0-dimensional (0D) system (in physical space) where 
the only relevant quantity is the global temperature indicator T (which can be heuristically 
interpreted as a globally averaged effective temperature), one can construct a 0D EBM by 
modelling the energy budget as follows [27]:

C
d
dt

T(t) = I(1 − α(T))− O(T) → d
dt

T(t) = − d
dT

V(T), (1)

Figure 2. Scalar double-well potential function V(T ); the warm and the snowball 
states correspond to the two attractors of the system, separated by the saddle point. The 
Gaussian white noise triggers the transition from one basin of attraction to the other 
with a mean exit time described by equation (7).

Nonlinearity 30 (2017) R32
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where t is time, C is an effective average heat capacity per unit area, I  =  S*/4 is the average 
incoming solar radiation per unit area, S* is the solar constant (the factor 4 emerges looking at the 
geometry of the Earth–Sun system; see [27]), α is the albedo, which is parameterised as a non-
increasing function of T, and O is the outgoing radiation per unit area. O(T ) is a monotonically 
increasing function of T, i.e. an increasing surface temperature leads to an increase in the outgo-
ing radiation, which is the basic mechanism behind the Boltzmann (negative) radiative feedback.

By suitable (and reasonable) choices of α and O, one indeed finds bistability as a function 
of S*; see the discussion in [27] and figure 1(a), where the two stable (warm and snowball) 
solutions are separated by the unstable solution II.

Note that the time derivative of the temperature in equation (1) can be written as minus 
the derivative of a potential V(T ), and in the case of bistability the two local minima of V 
correspond to the stable solutions, and the local maximum of V corresponds to the unstable 
solution; see figure 2 for a qualitative description.

EBMs can be extended in such a way as to include a latitudinal dependence of the Earth’s 
temperature, as in the case of the celebrated models by Budyko [23], Sellers [24], and Ghil 
[25]. The time evolution of the temperature for one-dimensional EBMs (1D-EBMs) can be 
written in terms of the following partial differential equation:

C(φ)∂tT(t,φ) = I(φ)(1 − α(φ, T))− O(T)− D[T ,φ], (2)

where, as opposed to equation  (1), the heat capacity C, the incoming radiation I, and the 
albedo α are explicitly dependent on the latitude φ, and we have to include in the energy 
budget the divergence of energy transport performed by the geophysical fluids, represented as 
the diffusion operator D[T ,φ]. It is important to note that the diffusion operator describes in 
a very simple yet efficient way the action of the negative feedbacks associated to the meridi-
onal temper ature gradient, which acts through the meridional heat transport facilitated by 
atmospheric and oceanic motions. On weather time scales (few days), the feedback is powered 
by the baroclinic instability: the stronger the large scale meridional temperature gradient, the 
higher the intensity of the midlatitude atmospheric eddies and of their related counter-gradient 
heat transport [8, 87]. On climatic time scales (several years) the ocean acts in a similar way 
(though by different specific physical mechanisms), by dampening the large scale temperature 
differences through the transport of heat from warm to cold regions [28].

With a suitable choice for the parameters controlling the terms responsible for the energy 
budget in equation  (2), we obtain a range of values of S* where bistability is found; see  
figure 1(b), where the unstable solution sits in between the two stable solutions5.

The existence of multistability for the Earth’s climatic conditions is a robust feature across a 
modelling hierarchy, ranging from the simple EBMs described above to global climate models: see 
a detailed analysis of acting feedbacks as well as glaciation/deglaciation scenarios and mechanisms 
in [28]. Global climate models feature a range of bistability [S∗

W→SB, S∗
SB→W] that includes the 

present value of the solar constant S∗
0; see figure 3(a) for an example. While in simple EBMs the sta-

ble solutions correspond to fixed points in the phase space, in global climate models the attracting 
solutions correspond to states featuring, in general, chaotic behaviour, where the invariant measure 
is supported on a strange attractor [3, 18]. The temper ature profiles of the stable climates obtained 
with the 1D-EBM given in equation (2) with a suitable choice of the value of the parameters are in 
broad agreement with what is obtained with complex general circulation models; see [38].

5 It is historically remarkable to note that, after the Budyko and Sellers models were introduced, it became apparent 
that a Nuclear Winter, by reducing the incoming solar radiation as a result of increased albedo due to dramatic in-
creases in the particulate matter in the atmosphere, could potentially trigger an even greater disaster for life on Earth 
than the nuclear war itself. This was indeed influential in supporting the reduction of the size of the nuclear arsenals 
at the end of the Cold War. It is comforting to note that, somewhat ironically, the two contributions came almost 
simultaneously from scientists belonging to the two opposing geopolitical blocks.
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For a given value of S* within the range of bistability, the warm climate is characterized by 
a very active atmosphere whose variability is sustained by the presence of a large meridional 
temperature gradient, which supports the existence of eddies as a result of the baroclinic con-
version between potential and kinetic energy, whereas the snowball climate has a much lower 
level of atmospheric variability, with a correspondingly low meridional temperature gradient. 
Figure 3(b) shows that the intensity of the Lorenz energy cycle C(P, K ), given by the average 
rate of conversion of potential into kinetic energy, which, at steady state, is also equal to the 
average rate of dissipation of kinetic energy due to friction [7, 8, 10], is substantially higher 
in the warm than in the snowball state. See [28] for a comprehensive discussion of the atmos-
pheric circulation in the two regimes.

Thermodynamics provides additional insight to the critical transitions. One can define 
a Carnot-like climate efficiency η = (Θ+ −Θ−)/Θ+ in terms of the average temperatures 
inside the system where heating (Θ+) and cooling (Θ−) processes take place on average, 
respectively [10]. The efficiency is higher when there is stronger correlation between temper-
ature fluctuations and heating rates. The tipping point is accompanied by a sudden decrease in 
the efficiency η, which can be interpreted as a result of the system getting closer to thermody-
namic equilibrium; see figure 3(c) and the discussion in [3, 18–20]6.

a) b)

c)

Figure 3. Multistability of the climate system corresponding to the coexistence of warm 
and snowball conditions. (a) Globally averaged surface temperature TS. (b) Average 
intensity of the Lorenz energy cycle C(P, K ). (c) Efficiency η of the climate system. 
W-SB (SB-W) indicates the occurrence of transitions from warm to snowball conditions 
(from snowball to warm conditions). These results are obtained using the open source 
climate model PlaSim [88]. Adapted from [18] John Wiley & Sons. Copyright © 2010 
Royal Meteorological Society.

6 A larger (smaller) concentration of greenhouse gases leads to a shift of the range of multistability towards lower 
(higher) values of S*. The presence of a gigantic concentration of CO2 is deemed responsible for the exit of the Earth 
from the snowball state experienced in the Neoproterozoic [28]. Note also that the range of multistability is altered when 
one considers variations in the length of the day, with multistability being eventually lost and a unique climate emerging 
when the day and the year have similar length, and in particular in the 1:1 phase tidal locked condition [19, 20].
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3. Critical transitions and edge states

3.1. Energy landscapes, large deviations, and transitions

We note that, far from the critical transitions indicated in figure 3, it is possible to jump from 
the warm attractor to the snowball attractor and vice versa by perturbing the system through 
suitably defined time-dependent deterministic and/or stochastic forcing. The transition from 
one basin of attraction to another one is most easily obtained through a Dirac’s δ-like per-
turbation applied to the orbit (this might correspond, in physical terms, to the impact of an 
asteroid on our planet).

Nonetheless, arguably the most interesting scenario of forcing is given by the presence of 
stochastic perturbations. Climate science has indeed been one of the first areas of natural sci-
ences where the paradigm of stochastically perturbed dynamical systems has been extensively 
used, following the Hasselmann programme [29]; see also later discussions in [27, 30, 89]. The 
basic idea is the following: if one considers separately slow and fast modes of variability of the 
climate system, in the limit of infinite time scale separation, the impact of the fast modes on 
the slow modes can be treated, to a first approximation, as a stochastic correction to the deter-
ministic dynamics of the slow modes. This point of view is closely related to the mathematical 
theory of the averaging method for performing the coarse-graining of the dynamics of multi-
scale dynamical systems [90, 91]. We further comment on this point of view below in the text.

The Freidlin–Wentzell theory [32] provides a comprehensive framework in multistable 
systems for studying the probability of transitions outside one of the basins of attraction trig-
gered by stochastic forcing. The Freidlin–Wentzell theory is most easily understood in the 
case of a system whose dynamics takes place in an energy landscape (plus additive white 
noise), such that:

dy = −∇yV(y)dt + εdW, (3)

where y ∈ Rn, V : Rn → R is sufficiently smooth, and dW  is a vector of n independent incre-
ments of normalised Brownian motions (the Itô or Stratonovich conventions are equivalent, in 
this case), and ε determines the strength of the noise. As is well known, one can associate to 
the stochastic differential equation given by equation (3) a Fokker–Planck equation describ-
ing the evolution of the probability density function (pdf ) p(y,t) of an ensemble of trajectories 
obeying the stochastic differential equation as follows:

∂p(y, t)
∂t

= ∇y · (∇yV(y)p(y, t)) +
ε2

2
∆p(y, t), (4)

where, under suitable conditions of integrability and in the weak noise limit ε → 0, the sta-
tionary solution corresponding to the invariant measure is given by limt→∞ p(y, t) = p(y), 
where at leading order p(y) ∝ exp[−2V(y)/ε2]. The local minima of the potential V (fixed-
point attractors in the case of deterministic dynamics with ε = 0) correspond to the local 
maxima of p, so that, e.g. a double-well potential corresponds to a bimodal pdf. In the limit 
of weak noise, trajectories starting near a local minimum of V typically wait a long time 
before moving to the neighborhood of a different local minimum of V, and the transitions 
take place most likely through the lowest energy saddle linking the initial basin of attraction 
to any other basin.

A comprehensive treatment of the critical transitions accounting for the effect of noise can 
be found in [92]. Let us now consider the simple case of y ∈ R and focus again on the problem 
of the transitions between the snowball and warm climates. If one includes stochastic forcing 
in the form of additive Gaussian white noise on the right hand side of equation (1), we have
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dT(t) = − d
dT

V(T)dt + εdW (5)

where dW  is the increment of a Brownian motion and ε > 0. In the limit of weak noise, the 
stationary distribution can be expressed at leading order as

p(T) ∝ exp[−2V(T)/ε2]. (6)

Using large deviations theory [31], one can derive that, at leading order, the mean exit time for 
the transition from the basin of attraction of the stable solution A to the basin of attraction of 
the stable solution B through the unstable saddle U can be written as:

τA→B ∝ exp [2(V(U)− V(A))/ε2], (7)

while the factor before the exponential function in equation (7) is specified by the celebrated 
Kramer’s escape rate formula [93, 94]. See figure 2, where the states A and B can be though of 
as corresponding to the warm and snowball state, and the saddle U coincides with the boundary 
of the two basins of attraction.

In the geophysical literature tipping points are mostly studied by using equation  (6) to 
construct an equivalent one-dimensional pseudo-potential from the pdf derived starting from 
the time series of a selected climate observable. Subsequently, Kramer’s theory is used to 
estimate the probability of transition from one basin of attraction to another one within a given 
time frame [21, 22]. Nonetheless, inconsistencies in this method emerge from the fact that the 
operation of projecting the dynamics onto only one observable is very likely to cause errors in 
the evaluation of the time scales of the dynamics, thus breaking the simple and powerful rela-
tions existing between invariant density and escape probability from a local minimum of the 
effective potential; see the discussion in [95]. A different and promising point of view on the 
detection of tipping points based on extreme value theory has been recently proposed in [97].

When considering dynamical systems featuring multiple attractors and undergoing 
Gaussian stochastic forcing, large deviations theory [31] provides methods for constructing 
the so-called instantons, which are the most likely noise-driven trajectories leading to the 
trans itions from one basin of attraction to the other one. An instanton is constructed as a 
minimizer of the related Freidlin–Wentzell action and can be interpreted as the most efficient 
way to exit a local potential minimum. See [96] for an introduction in the context of fluid 
dynamics.

Some geophysical fluid dynamical systems feature extremely rare transitions between dif-
ferent regimes of motions. These are rare excursions between regions of the attractor of the 
system that take place only on ultralong time scales, so that, performing an operation of coarse 
graining to the dynamics, one can describe them as noise-induced transitions between separate 
attracting sets for the deterministic part of the dynamics [33, 34].

The instanton method allows for treating more general cases than those of systems whose 
dynamics is governed by an energy landscape. What we find a bit unsatisfactory in this other-
wise extremely powerful framework of noise-driven transitions is the fact that one is left with 
the question of what is the mathematical nature and the physical justification of the noise. 
Note that, given the lack of time-scale separation in the climate variability [8], it is a bit of a 
stretch to use standard arguments to justify the presence of white noise as resulting from fast 
atmospheric motions. In other terms, despite the huge insight of the Hasselmann program 
mentioned above, climate dynamics is in fact not the best setting for using the averaging 
method. As discussed in [98, 99] in the spirit of [62, 63] and confirmed in the mathematically 
more rigorous treatment in [100, 101], when no scale separation is present between the scales 
of motions we want to resolve and those we want to parameterise, the effect of the latter on the 
former entails the consideration of time-correlated noise and non-markovian effects.
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As a final note we wish to remark that even in the context of systems of the form given in 
equation (3), if one assumes that the noise possesses slow decay of correlations, such as in the 
case of Lévy processes, the standard Freidlin–Wentzell picture is dramatically altered, with 
an entirely different dynamical scenario to be considered. While in the case of white noise the 
transition from one basin of attraction to the other occurs in the very unlikely case that many 
subsequent stochastic perturbations conjure to push the orbit across the saddle, in the case of 
Lévy noise one or few large kicks do the job [102, 103], so that the expression for the mean 
exit time is rather different from that reported in equation (7). This scenario seems to be rel-
evant also in the context of climate dynamics [104–106].

3.2. Edge states

Following a classical point of view within statistical mechanics, we would like to be able to 
understand how noise-induced transitions between separate climatic attractors may take place 
by gaining insight into the underlying purely deterministic evolution laws. In this regard, we 
take advantage of the edge tracking method recently developed by Eckhardt and collaborators 
for studying fluid dynamical systems possessing multiple (quasi-)steady states [35, 36, 107].

The plane Couette flow or the pipe flow, in the case of sufficiently high Reynolds num-
bers, feature the coexistence of a (quasi-)attractor corresponding to the turbulent state and 
of an attracting fixed point corresponding to laminar flow. We remark that the turbulent state 
cannot be properly described as corresponding to a separate attractor, because turbulence is 
transient—even if with exceedingly long life time, which grows superexponentially fast with 
the Reynolds number [107–110]. But, using arguments of time-scale separation, we can say 
that the scenario is (almost) indistinguishable from that of two separate attractors, where the 
turbulent state is steady, so we will use an abuse of terminology in describing these results, 
and refer to the turbulent state as corresponding to a proper attractor, possessing its own basin 
of attraction.

The basic goal is to understand what lies in-between the two attractors in order to (a) have 
a global view on the properties of the phase space of the system, beyond the paradigm of 
looking at steady states; and (b) understanding which combinations of external forcings and 
internal processes might more easily lead to transitions between the steady states.

Clearly, in the case of a bistable system, there must be a separatrix, a repelling set which 
acts as boundary between the two basins of attraction. The natural question one might ask is: 
what is the evolution of an orbit starting nearby or on such a separatrix? In the case of an energy 
landscape, such a basin boundary is the mountain crest separating the two basins of attraction, 
and the evolution law would lead an orbit starting from a point on the boundary to the nearby 
local minimum restricted to the subset of the phase space corresponding to the basin boundary, 
where the evolution would stop. Clearly, the end point is in fact a saddle, because there is an 
(additional) unstable direction. Orbits departing near the basin boundary but not exactly on it, 
would end up in the attracting set corresponding to the basin they start from.

Eckhardt and collaborators showed that trajectories initialised on the boundary between the 
two basins of attraction converge, basically as a result of the contraction of the phase space, 
to a unstable saddle, which is a relative attractor with respect to the basin boundary (but obvi-
ously a repelling set when viewed globally). The scenario has been confirmed in the case of 
truly separate attractors in a toy model discussed in [37].

Such an unstable saddle, the so-called edge state, has been found to be either a fixed point, 
or a periodic orbit, or, in some cases, a chaotic solution taking place on a strange geometrical 
set. The relevance of the edge state lies in the fact that it is crucial for understanding the global 
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properties of the system and that it provides the gate between the two attractors: trajectories 
resulting from (weak) Gaussian white random external forcings that are successful in achiev-
ing the critical transition have to pass nearby the edge state.

Of course, given its instability, one cannot find the edge state by direct forward numerical 
integration; instead, one can find it by a suitable algorithmic procedure named edge tracking. 
The basic idea is to find by bisections (and long forward integrations) two nearby points in the 
phase space that are on the two sides of the separatrix, follow their forward evolution for a given 
time (typically short), and then repeat the bisection in order to reduce the divergence between the 
two trajectories due to the global instability connected with the bistability of the system.

The bisection is obtained by interpolation to the midpoint (more general constructions of 
convex combinations are possible) between the initial conditions belonging to the two sides 

Figure 4. Edge state in the pipe flow. (a) Time evolution of the energy of the turbulent 
flow for two trajectories starting near the edge state but belonging to two different 
basins of attraction: one trajectory collapses to zero (laminar state), and another one 
increases its turbulent kinetic energy until the quasi-steady turbulent state is reached. 
(b) Turbulent kinetic energy of the steady turbulent state (square dots) and of the edge 
state (triangles) for various values of the Reynolds number. The turbulent energy of 
the other steady state, the laminar state, is zero by definition. Note that we are using an 
abuse of language in defining the turbulent state as corresponding to a true attractor (it 
is, instead, a very long transient; see text). Adapted from [36] with permission of The 
Royal Society of Chemistry.
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of the basin boundary, checking, using a long run, whether the new initial condition leads to 
one or to the other attracting set, and repeating until two nearby (according to a prescribed 
criterion) initial conditions leading to different asymptotic dynamics are obtained. One retains 
short segments of the pair of control trajectories belonging to these most tightly bracketing 
initial conditions. The length of these segments are limited by a requirement on the maximal 
separation of the control trajectories. After a transient, any of the segments obtained iterating 
this procedure can be taken to represent the edge state, approximated by many discontinuous 
segments of the trajectory.

A key mathematical fact to be considered here is that the basins of attraction are invariant 
sets, which ensures that the procedure is well-defined. It is a crucial—in terms of robustness 
and efficiency—aspect of the procedure to choose a useful observable able to tell us unambig-
uously and soon enough whether the trajectory is ending up on one or on the other attractor;  
see figure 4(a). An efficient observable has a relatively small variability in the transient runs 
compared with the actual difference between the expectation values computed on the two 
separate attractors.

Additionally, it seems quite natural to investigate the geometrical properties of the bound-
ary separating the basins of attraction, as it is not a-priori clear whether one should expect a 
manifold of co-dimension one or a more complex geometrical object. We will come back to 
this aspect in section 5.3.

In the case of the problems studied by Eckhardt and collaborators, the natural choice is to 
use the total turbulent kinetic energy of the flow. In the limit of an infinitely small separation 
between the two bracketing trajectories, one actually obtains the transient behaviour lead-
ing to the edge state, and, then, is able to reconstruct the dynamics on the edge state. While 
this procedure is rather intuitive, one might reasonably expect lots of technical difficulties 
related to the need of controlling strong instabilities in a high-dimensional dynamical sys-
tem. Eckhardt and collaborators have convincingly shown the robustness of the edge tracking 
method [35–37].

In a previous paper [38] we have introduced in the geophysical community the edge track-
ing method to provide a fresh outlook on the properties of the Ghil-Sellers (GS) 1D-EBM 
[25], which can be written in the form of equation (2). Ghil [25] solved the appropriate bound-
ary value problem and found for a wide range of values of the solar constant three coexisting 
stationary solutions, and carried out a stability analysis able to identify the stable warm and 
snowball climates, plus an unstable state. Such a state was identified by Ghil as the saddle 
point of a suitably constructed potential, and we proved that it coincides with the edge state 
found using the tracking procedure; see figure 5. Our investigation made it apparent that the 
most efficient (but definitely not unique) observable to be used for characterizing in the edge 
tracking process whether the trajectory ends up in the snowball or warm state is the globally 
averaged surface temperature, because warming and cooling are mainly controlled by the 
anomalies in radiation emission and changes in albedo, which are both to a good extent con-
trolled by changes in the globally averaged temperature; see also equation (1). We also studied 
the physics of the three states, relating their instabilities to relevant macroscopic thermody-
namical properties such as large scale temperature gradients and entropy production, using the 
conceptual framework introduced in [18–20].

3.3. Remark

Looking at the top right projection of the three-dimensional curve portrayed in figure 5, one 
sees that the edge state is characterized by the fact that lower average temperatures correspond 
to higher values of solar constant. One can interpret this feature as representative of the fact 
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that the edge state has, effectively, a negative heat capacity, and is not thermodynamically 
stable. Making a Gedankenexperiment where the Earth system in the edge state is put in an 
isolated box with another body emitting and absorbing radiation and looking at the dynamics 
of fluctuations should clarify this point.

Interestingly, a qualitatively similar property can be found when looking at the case of tur-
bulent flows analysed by Eckhardt and co. [36] and portrayed in figure 4(b): in the edge state, 
larger values of the Reynolds number, which is representative of the applied pressure gradient, 
correspond to lower values of the turbulent kinetic energy of the flow. This can be interpreted 
as corresponding to conditions of mechanical instability, where the viscosity is negative.

3.4. Melancholia states in a climate model

In this paper we want to show how the concept of the edge state can be used for characterizing 
globally the dynamical properties of a severely simplified yet Earth-like new climate model 
featuring multistable properties in a realistic range of values of the solar constant. As men-
tioned in section 1, we propose to call the climatic edge states Melancholia states.

Figure 6 clarifies how this work relates to previous analyses we have performed on the 
thermodynamics and statistical mechanics of climate. While most of the studies we consider 
here have been performed using the open source climate model PlaSim [88], in this specific 
investigation, given the complexity of the procedure of edge tracking, we resort to using the 
simpler model PUMA-GS, later described in detail in section 4.

In summary, the climate model PUMA-GS is constructed by coupling PUMA, an open 
source three-dimensional primitive equations  spectral model of the atmosphere [39], with 
the surface described by a slightly modified version of the reaction-diffusion GS model [25], 

Figure 5. Bifurcation diagram of the Ghil-Sellers [25] model defining the constitutive 
relations between the normalised intensity of the incoming radiation (µ = S∗/S∗

0 = 1 
corresponds to the current conditions), the globally averaged temperature [T] and the 
low-to-high-latitudes temperature difference ∆T . The thick red, green, and blue lines 
correspond to the warm, edge, and snowball states, respectively. The thin blue lines 
depict heteroclinic trajectories—the instantons. Adapted from [38] (2014) © Springer-
Verlag Berlin Heidelberg 2014. With permission of Springer.
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extended symmetrically along the longitudinal direction, thus making it possible to couple it 
with the atmosphere aloft. The coupling is realised by imposing that the relaxation temper-
ature profile that provides the baroclinic forcing to the atmospheric component is enslaved, 
through a simple representation of radiative convective adjustment, to the surface temperature 
field of the GS model, which basically plays the role of the ocean. This provides a natural 
and coherent separation between fast variables (atmosphere) and slow variables (ocean). The 
ocean exchanges energy with the atmosphere aloft as well as featuring absorption of short-
wave radiation and emission of longwave radiation. This newly introduced model sits, in 
terms of complexity, between PUMA [39] and PlaSim [88].

PlaSim is comparatively simple with respect to the state-of-the-art climate models con-
sidered in the compilation of the latest IPCC report [14], but nonetheless includes a (sim-
plified) treatment via parameterisations of important physical processes such as convection, 
sea ice formation, cloud formation, precipitation in liquid and solid forms, boundary layer 
processes, which are entirely absent in PUMA-GS, plus a much more advanced treatment of 
radiative processes. Additionally, PlaSim allows for a flexible configuration of the land sur-
face mask and of the orography, with an ensuing large variety of configurations for the ocean. 
Nonetheless, the ocean component of the model, similarly to PUMA-GS, has merely the role 
of horizontally transporting heat via diffusion, while not featuring any description of actual 
ocean currents.

The challenge we address is threefold:

 • We want to show that the edge tracking algorithm works also in the context of a system 
characterized by multiscale dynamics, a variety of positive and negative feedbacks, inho-
mogeneous physical and mathematical properties, and featuring intense fluxes across its 
subdomains. These features potentially result in a time-dependent edge state, possibly 
characterized by nontrivial dynamics and nontrivial geometrical properties, and that cannot 
be found as a solution to a boundary value problem. This suggests an increased potential 
and scope for the methodology originally proposed by Eckhardt and collaborators.

 • We want to specifically use the edge tracking algorithm for identifying the edge states 
of the climate system separating the warm climate states from the snowball states. We 
want to study what lies in-between the two curves corresponding to the stable climates, 
portrayed in, e.g. figure  3(a), and derive the long term statistics of the climatic edge 
states, mirroring what has been shown in the case of edge states in turbulent flows in, e.g. 
figure 4.

 • As we observe that edge states are relative (in the reduced space of the basin boundary) 
attractors, we want to complement the characterization of their climatology with the 
investigation of their dynamical properties, and in particular understand whether they 
feature trivial, quasi-periodic, or chaotic dynamics, in order to classify the properties of 
the weather of such special states. Note that in this way we separate the slow global cli-
matic instability (driven by the ice-albedo feedback) leading to the presence of multiple 
steady states, from the fast baroclinic instability [87] responsible for the variability of the 
weather and acting as negative feedback.

4. The climate model PUMA-GS: formulation and edge-tracking

4.1. Model formulation

The atmospheric component of the PUMA-GS model is provided by PUMA [39]: the dry 
hydrostatic primitive equations  on the sphere (mapped horizontally by the latitude φ and 
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longitude λ) are solved by a spectral transform method (only linear terms are evaluated in 
the spectral domain, nonlinear terms are evaluated in grid point space). The equations for the 
prognostic state variables—the vertical component (with respect to the local surface) of the 
absolute vorticity ζ = ξ + 2νΩE (where ξ is the vertical component of the relative vorticity, 
ν = sinφ, and ΩE = 2π /day is the angular frequency of the Earth rotation), the (horizontal) 
divergence D, the (atmospheric) temperature Ta = T̄a + T ′

a (separated into a time-independent 
arbitrary reference part T̄a and anomalies T ′

a) and the logarithmic pressure (normalised by the 
surface pressure ps) σ = ln p/ps—read as follows:

∂tζ = s2∂λFv − ∂νFu − τ−1
f ξ − K∇8ξ, (8)

∂tD = s2∂λFu + ∂νFv −∇2[s2(U2 + V2)/2 +Φ+ Ta ln ps] 

(9)− τ−1
f D − K∇8D,

∂tT ′
a = s2∂λ(UT ′

a)− ∂ν(VT ′
a) + DT ′

a − σ̇∂σTa
 

(10)+ κTaω/p + τ−1
c (TR(Ts)− Ta)− K∇8T ′

a,

∂t ln ps = −s2∂λ ln ps − V∂ν ln ps − D − ∂σσ̇,
 

(11)

∂lnσΦ = −Ta, (12)

Figure 6. In [18–20, 111] we studied the macroscopic thermodynamic properties of the 
climate system in the W state and SB state. In [4, 15] we studied the differentiability 
of the invariant measure in the W state around the present climate conditions (purple 
shading, see DIFF). In [17] we studied the loss of differentiability of the invariant 
measure near the W → SB tipping point (orange shading, see NonDIFF). All of these 
analyses have been performed using the climate model PlaSim [88]. The goal of this 
paper is to charactacterize what is in-between the W and SB states, i.e. constructing 
and studying the edge states (green shading, see EDGE STATE). For technical reasons, 
we use a simplified yet Earth-like climate model, PUMA-GS. The 3D surface plot is 
adapted from [19] John Wiley & Sons. Copyright © 2013 WILEY-VCH Verlag GmbH 
& Co. KGaA, Weinheim.

Nonlinearity 30 (2017) R32



R50

Invited Article

where s2 = 1/(1 − ν2), Fu = Vζ − σ̇∂σU − T ′
a∂λ ln ps, Fv = −Uζ − σ̇∂σV − T ′

as−2∂ν ln ps  
σ̇ is the vertical velocity U = u cosφ, V = v cosφ, u, v are the horizontal wind velocity comp-
onents, κ = R/Cp (where R is the gas constant and Cp the specific heat capacity at constant  
pressure for dry air), and Φ is the geopotential height. Equations (8), (9) describe the budget of 
momentum in the horizontal direction, equation (10) describes the budget of internal energy, equa-
tion (11) expresses the conservation of mass, and equation (12) expresses the equation of state.

A number of simple parametrizations are adopted in order to improve the realism and the 
stability of the model. Firstly, the hyperdiffusion operator K∇8 is added to the equations of 
vorticity, divergence and temperature, to represent subgrid-scale eddies. Secondly, large-
scale dissipation of vorticity and divergence is facilitated by Rayleigh friction of time scale 
τf . Thirdly, the physics of diabatic heating due to radiative heat transport is parametrized by 
Newtonian cooling: the temperature field is relaxed (with a time scale τc) towards a reference 
or restoration temperature field TR, which can be considered a radiative-convective equilib-
rium solution. We adopt the following simple expression for the restoration temperature [39]:

TR = (TR)tp +
√
[L(ztp − z(σ))/2]2 + S2 + L(ztp − z(σ))/2, (13)

(TR)tp = [Ts]− L̄ztp, (14)

L(λ,φ) = ∂zTR = (Ts(λ,φ)− (TR)tp)/ztp, (15)

where (TR)tp and ztp are the temperature and height of the tropopause, respectively, L ( L̄) is the 
(average) lapse rate, [Ts] is the globally averaged surface temperature, and z(σ) is determined 
by an iterative procedure [39]. The above expressions indicate that the restoration temperature 
profile is anchored to the surface temperature Ts. However, as equation (14) indicates, TR at 
any one point on the sphere is determined by not only the local (dynamical) surface temper-
ature, but also the global average [Ts].

The surface temperature is taken to be governed by the 2D version of the GS EBM [25], which 
is in the form of equation (2), while the precise expression can be found in [38]. Since land masses 
are absent in this configuration, we are in fact dealing with an aquaplanet climate model. Two 
changes are introduced to the GS EBM evolution equations with respect to our previous study [38]:

 • We introduce a longitudinal component in the model (even if diffusion takes places only 
along the meridional direction); adding a second dimension is important because we 
introduce the following atmosphere-to-surface coupling term on the right-hand-side of the 
equation for the field of the surface temperature: k3(Ta(σ = 1)− Ts), where Ta(σ = 1) 
depends on latitude, longitude, and time.

 • We change the value of the original meridional diffusion coefficient, in order to make 
sure it represents the transport of the ocean only: in the original model the diffusion 
mimics the effects of both atmospheric and oceanic heat transports, but in PUMA-GS we 
have now a dynamical model for the atmosphere. We choose to reduce the value of the 
diffusion coefficient by a factor of 4 in order to make sure that in conditions resembling 
the present-day climate the ocean heat transport is few times weaker than the atmospheric 
one, in agreeement with observations and model outputs [3, 8, 112].

We note that Ta(σ = 1) is obtained by linear extrapolation, according to 
Ta(σ = 1) ≈ Ta(σ = 0.9) + η(Ts − TR(σ = 0.9)), 0 < η < 1. With η = 1 the coupling term 
is k3(Ta(σ = 1)− Ts) ≈ k3(Ta(σ = 0.9)− TR(σ = 0.9)). Generally Ta(σ = 1)− Ts �= 0 
(laterally inhomogeneous heating), but [Ta(σ = 1)] = [Ts], where the overbar denotes averag-
ing with respect to time.
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For our setup we choose: K−1  =  0.25 d, τc = 30 d, τf = 1 d, L̄ = 0.0065 K m−1, ztp = 12 000 m.  
We also adopt a coarse resolution of T21 (i.e. the series of spherical harmonics are triangular-
truncated at total wave number 21). As a result, the optimal number of Gaussian grid points is 
given by Nlon = 2Nlat = 64; furthermore, we choose as a number of vertical levels Nlev = 10. 
No orography is defined, i.e. we have a zonally-symmetric configuration, and the empirical 
functions of the GS EBM, like C(φ), depend on the latitude only. The equations are integrated 
numerically using a ∆t = 1 h time step size.

With such a setup we find bistability in a range of the relative solar 
strength µ = S∗/S∗

0: the warm-to-cold (cold-to-warm) tipping point is found at 
µW→SB = S∗

W→SB/S0
0 ≈ 0.97 (µSB→W = S∗

SB→W/S0
0 ≈ 1.055). We take 18 equally spaced 

(∆µ = 0.005) sample values for  μ  in order to study how the properties of the system change 
when μ is varied.

4.2. Algorithm for tracking the Melancholia states

We adapt the edge tracking algorithm so that in the initialising phase of the procedure the 
basin boundary between the warm and snowball states is closely bracketed by two initial 
conditions. See figure 7 for a cartoon representing the procedure. The initial (  j  =  0) bracket-
ing can be obtained as follows. One starts with two arbitrary points in phase space, xW,i,j and 
xSB,i,j, i  =  0, j  =  0 (small black disks in the schematics), belonging to the two different basins 
of attraction. These points need not to belong to the attractors themselves, which are marked 
by W and SB in figure 7 (the red and the blue object, respectively). By iterative bisecting the 
basin boundary (thick green line—a simple geometrical object for convenience of visualisa-
tion) is bracketed by points a distance ε1 apart along a straight line in the phase space. After 
each bisection, a control simulation (thick black line) reveals on which side of the boundary 
the midpoint (indicated by the horizontal arrows) is situated. This is realised by checking 
the vicinity of which attractor (dashed black circles) the trajectory enters starting from the 
midpoint, possibly after a long waiting time. It is easier to consider a suitably defined scalar 
indicator quantity, to measure ε1 in this single dimension, and to find scalar threshold values 
(indicated by horizontal dashed lines) that unmistakably indicate the outcome.

The best indicator to be used for all phases of the edge tracking algorithm is the globally 
averaged surface temperature [Ts], similarly to what was discussed in [38]. The basic reason 
for such a choice is simply the fact that at 0th order the dynamics of the system can be approxi-
mated, as discussed above, by equation (1), where the energy landscape is shown in figure 2. 
In the case of such a simple model, for initial conditions near the saddle, the ice-albedo feed-
back pushes the system towards the W (SB) attractor through a monotonic increase (decrease) 
of temperature. In the case of the more complex model, monotonicity does not strictly hold, 
but its violation is restricted to small temperature scales: compare figure 9(a) to (b), and fig-
ure 9(c) to (d), respectively.

After the initialisation, we run the actual edge tracking algorithm; a cartoon is presented in 
figure 8. We launch the two simulations with initial conditions portrayed in figure 7 and stop 
them when the value of their globally averaged surface temperature is apart more than a given 
value ε2. We then repeat the bisection procedure outlined in figure 7 and define two nearby 
initial conditions whose globally averaged surface temperature differs by less than ε1. The 
two orbits originating from those two initial conditions end up in two different climates. But, 
since they are both initialised very close to the basin boundary, they remain near it for quite 
some time, as quantified by the Lyapunov exponent corresponding to the dominating unstable 
dimension leading to the bistability. In the limit of ε1, ε2 → 0, we construct the dashed line 
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representing a trajectory on the basin boundary. We repeat the procedure until a statistically 
steady state is realised, corresponding to having reached the edge state indicated with E in 
figure 7. The procedure is then continued in order to be able to construct a trajectory long 
enough for reconstructing accurately enough the statistical properties of the edge state, and in 
particular for computing the maximum Lyapunov exponent (MLE) [79].

5. Results

5.1. Practical implementation of the edge tracking algorithm

Let us delve into the details of how edge tracking works in two selected cases. Results are 
presented in figure 9, where we plot the time series of the globally averaged surface temper-
ature [Ts] for the bracketing and control trajectories. The reason why atmospheric variables 
are not included in the choice of the observable has to do with the fact that they have much 
larger fluctuations than the surface temperature, because of the smaller heat capacity of the 
atmosphere with respect to the surface. As discussed above, in order to construct an efficient 
algorithm along the lines of what is depicted in figure 8, we want the short-term natural fluc-
tuations of the observable to be much smaller than the difference of their climatological values 
in the two attractors.

After some testing we have chosen ε1 = 0.1 K and, additionally, we have selected ε2 = 2ε1, 
which implies that a single bisection is taken per edge tracking j−cycle, as done in [38]. Such 
a bracket size is much larger than the fast variability of [Ts], so that we have little risk of being 
influenced by spurious trends. The control trajectories are continued up to a threshold value 
chosen to be close to the mean value for the stable warm or cold climates.

In figure  9(a) we show how the procedure works for µ = 1.03, with figure  9(b) provid-
ing a zoom: we are able to conclude that the procedure converges already in the j  =  1 cycle 
almost completely (bracketing trajectories shown in red), an edge state having [Ts] ≈ 241.8 K 

Figure 7. Scheme of the initialisation of the edge tracking procedure. By subsequent 
bisections we define two initial conditions near the basin boundary and near to each 
other such that they belong to the two different basins of attraction. The bisection is 
guided by testing whether our guessed initial conditions get close enough to either 
attractor. The snowball attractor SB, the warm attractor W and the edge state E are 
depicted. Details are in the text.
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is identified, and we observe a (closely quasi-) monotonic (in fact, approximately exponential) 
change of [Ts] as trajectories diverge from the edge state, pulled apart by the ice-albedo feedback.

Somewhat more interesting results are shown in figure  9(c) and its zoomed-in version 
figure 9(d), where the edge tracking procedure is applied for µ = 0.98. Figure 9(d) clarifies 
that the time series of [Ts] of trajectories going to different attractors can, in fact, cross, so that 
in general no trivial monotonic increase/decrease of the chosen indicator should be expected 
when a complex model is considered. In other terms, the cartoon provided in figure 8 (and, a 
fortiori, ultra-simplified points of view as expressed by equation (1) and figure 2) should be 
taken with a grain of salt.

In the supplementary material, we include a movie showing the evolution of three orbits 
initialised near the Melancholia state realised for µ = 1.0 towards the W state, the SB state, 
plus one trajectory held on the edge state through the edge tracking algorithm described here. 
See movie 1 (stacks.iop.org/Non/30/R32/mmedia) and movie 2 (also available on YouTube)7 
for the evolution of the atmospheric and surface temperature fields, respectively.

5.2. A plethora of states beyond the stable climates

In what follows we will show how much additional information one can draw from the cli-
mate model studied here beyond the usual bifurcation diagrams of the form shown in figure 3. 
We will be able to construct the Melancholia states, characterize their properties in terms of 
symmetry, variability, and degree of chaoticity, and prove that, near each tipping point, their 
properties converge to those of the stable climate that is in the process of losing stability.

Figure 10 provides a first comprehensive summary of our results and should be compared 
with figure 5 discussed in [38] and with figure 4(b) published in [36]. We portray the bifurca-
tion diagram of our model, where [Ts] for all the detected states is plotted versus the value of 
the control parameter μ. A similar bifurcation diagram can be obtained by considering the 
globally averaged temperature of the lowest atmospheric layer [Ta(σ = 0.9)]. The markers #1 
and #2 indicated in the figure correspond to the W and SB attractors, and closely correspond 
to what is shown in figure 3. The marker #3 corresponds to the Melancholia state sitting 

Figure 8. Scheme of the tracking method used to construct the edge state in the climate 
model. We let the two initial conditions defined in figure 7 evolve until the two globally 
averaged surface temperatures differ by ε2. We then repeat the bisection as in figure 7 
until a steady state is obtained. See details in the text.

7 Movie 1 is available at https://youtu.be/mLYZiyzO8c4. Movie 2 is available at https://youtu.be/OOYqUuG_VUE.
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in-between the W and SB attractor and features decreasing values of [Ts] with increasing val-
ues of μ, similarly to what is shown in figure 5 for the simple model studied in [38].

Figure 11 shows that the state corresponding to the warm attractor—#1— features a posi-
tive MLE, i.e. it has a limited horizon of predictability, while the cold state—#2—is a fixed 
point. What we obtain in terms of qualitative properties of the snowball state is partially unsat-
isfactory. Previous studies performed using comprehensive atmospheric models feature much 
weaker (yet non-vanishing) atmospheric variability in the snowball state than in the warm 
state; see e.g. [18]. In our case the atmosphere is too quiet, as a result of the very weak atmos-
pheric meridional temperature gradient which is below (even if close to) the critical value 
needed for having sufficient baroclinicity supporting unstable motions. The main culprits for 
this behaviour we can indicate are the fact that (a) the PUMA-GS has no continents and no 
orography, which makes it impossible to have geographically limited regions where higher 
baroclinicity can be present, thus leading to the generation of cyclones (as preferentially hap-
pens in our planet in the westward portions of the Atlantic and Pacific storm tracks [87]); 
and (b) the simple ocean model we use is slightly too effective in transporting heat from the 
equator to the polar regions, thus reducing too much the meridional temperature gradient. 
Such—in our opinion, minor—limitation of our investigation could be overcome by repeating 
the analysis using the full PlaSim model with a setup as in [18].

Most interestingly, we are able to identify chaoticity in the Melancholia state (state #3): 
we are here describing the properties of the dynamics restricted to the basin boundary between 
the W and SB attractors, so that the global instability due to the ice-albedo feedback is fil-
tered out, and weather-related processes are instead retained. In other terms, we have that the 
Melancholia state features a dynamics of weather qualitatively analogous to what is found in 
the W state, including full life-cycles for mid-latitude disturbances and a non-trivial active 
Lorenz energy cycle. We present additional evidences of this in the movie included in the sup-
plementary material. See the evolution of the atmospheric temperature field in the edge state 
belonging to μ  =  1.0 in Movie 1 (middle panel).

One finds—compare with figure 12—that, broadly speaking (one cannot expect a one-to-
one correspondence), the value of the MLE of states #1, #2, and #3 is controlled by the 
intensity of the large scale meridional temperature gradient at surface, as suggested by the 
basics of baroclinic instability theory [87]. We note that regions of strong meridional temper-
ature gradient for the surface temperature correspond by and large to where the variability 
of the atmospheric temperature near surface is more pronounced, as a result of baroclinic 
disturbances (not shown).

Let us go back to figure 10. As μ is increased between 1.010 and 1.015, a rather interesting 
phenomenon appears. The Melancholia state shown with marker #3 goes through a sym-
metry breaking according to the following pattern. After an extremely long transient of the  
order of 100 years or more (marker #4), a large longitudinal modulation of the atmospheric 
and surface fields suddenly appears. Movie 3 and Movie 4, available in the supplementary 
material and on YouTube8 show the evolution of the atmospheric and surface temperature 
fields, respectively, for µ = 1.025. About two-thirds of the planet warms up (marker #7 
shows the meridional average at the warmest longitude, following the revolution of the field) 
and is in conditions relatively similar to those of the co-existing W state, while the rest of the 
planet cools down and reaches conditions relatively similar to those of the co-existing SB state 
(marker #9 shows the meridional average at the coldest longitude). The longitudinal modula-
tion impacts all latitudes and rotates with a constant and extremely low angular velocity, and 
one can define the average properties of the Melancholia state (marker #5) without the need 

8 Movie 3 is available at https://www.youtube.com/watch?v=u4--tRnBBS8. Movie 4 is available at https://youtu.
be/Q4YAbU9O15U.
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for considering ultralong time scales (order of 103 years). In order to define the properties of 
the system in the states #7 and #9 one needs to compute averages in a reference frame co-
rotating with the temperature wave. Note that even the direction of rotation is not the same for 
all values of μ.

In the supplementary material (see Movie 3) one can also see that the warm portion of 
the domain features a large temperature gradient and supports the growth of baroclinic 
disturbances, which tend to decay as they reach the cold region, where the low temperature 
gradient does not provide sufficient baroclinic forcing. In a loose sense, the Melancholia 
states realised as symmetry breaking of the transient state #4  resemble some sort of chi-
mera states [113], yet unstable ones.

An additional aspect of our results should be highlighted. For µ = 1.045 we have a funda-
mentally different phase portrait for our model, which seems to be specific to a small neigh-
borhood of this value of μ. We find that the system features three stable climates, which 
include, apart from the W and SB climate described elsewhere, the result of the bifurcation 
of the Melancholia state described by the markers #5, #7, and #9 into a stable state (see 

Figure 9. How the edge tracking procedure works: bracketing and control trajectories 
in colour and black, respectively. We plot the time series of the globally averaged 
surface temperature [Ts]. (a) µ = 1.03; (b) Zoomed-in version of panel (a); (c) µ = 0.98;  
(d) Zoomed-in version of panel (c). Details are in the text.
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markers #6, #8, and #10, respectively), which displays similar features in terms of the pres-
ence of a semi-stationary pattern of strong longitudinal gradients of temperature. We are una-
ware of any other study reporting the existence of such an exotic climate state.

One is naturally bound to expect the presence of additional Melancholia states sitting in-
between the three stable climates found for this value of µ = 1.045. We do not pursue this 
investigation, because it would lead us to what we see at this stage as unnecessary complica-
tion. It is important to note that it would have been extremely unlikely to find such an addi-
tional attracting climatic steady state, had we not used the edge tracking algorithm, because 
the width of parametric window where it exists is small, and rather limited is also the size of 
its basin of attraction.

The presence of a large time scale separation between the rotation and all the other dynami-
cal processes allows for constructing the statistics embodied in the markers #7 and #9, which 
are computed following the slow rotating wave, in order to guarantee homogeneity in the 
results.

Additionally, for µ ≈ µW→SB, the properties of the Melancholia state get very close to 
those of the W state, in agreement with the fact that at the tipping point the edge state and the 
W attractor touch, thus leading to the disappearance of one attractor. For µ ≈ µSB→W, we have 
that the properties of the Melancholia state (marker #5), transient Melancholia state (marker 
#4), and SB state tend all to converge, as the tipping point is reached.

By considering the argument of time scale separation, it is also possible to construct a 
(pseudo-)MLE for state #4; we cannot obviously take an infinite time horizon to compute 
it, because of the symmetry breaking process in action. It is also possible to compute the 
MLE for state #5. As shown in figure 11, one finds that the values of the (pseudo-)MLE 
obtained for state #4 follow closely those of the actual Melancholia state #3 (and obeys 

Figure 10. Bifurcation diagram for the surface temperature. The markers in the legend 
are number-coded and correspond to qualitatively different states in the diagram. The 
markers #1–#6 refer to the globally averaged surface temperature [Ts]. For markers  
#7–#10 a different averaging for the temperature field is performed. See text for 
details.
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the previously discussed relationship between the value of the MLE and the strength of the 
meridional temper ature gradient), while the MLE values obtained for state #5 are much larger 
(even larger than those realised in state #1), despite the presence of a weaker average meridi-
onal temperature gradient; see figure 12. This can be explained by considering that in state 
#5, in addition to the presence of a meridional temperature gradient, the system experiences 
also a large longitudinal temperature gradient between the warm and cold portions of the 
planet (states #7 and #9, respectively). Baroclinic conversion is very powerful in this region 
of large temperature gradients. The strongly nonlinear dynamics of cyclones when transiting 
from the relatively cold to the relatively warm regions (see Movie 3 in the supplementary 
material) is a manifestation of this effect.

A further characterization of the dynamics of the model can be obtained by looking at the 
power spectrum of an atmospheric variable, keeping in mind that a broadband spectrum is a 
signature of chaotic dynamics. The power spectra for Ta(σ = 0.9) in a grid point situated at 
30◦ N are presented in figure 13. We have that, in agreement with what is reported in figure 11, 
the states corresponding to the W attractor feature a broadband spectrum for all values of μ, 
while no variability is present for the SB states (not shown).

As for states #3 and #4, we have that for increasing μ the total intensity S and the breadth 
of the spectrum decreases as well as featuring an overall shift to lower frequencies, as a result 
of the decrease of the meridional temperature gradient (see figure 12), and, by thermal wind 
relation [87], of the intensity of the jet, which defines the time scales of the mid-latitude. For 
very large values of μ, the system reaches a quasi-periodic behaviour, where one or few fre-
quencies are present in the spectrum.

When constructing the power spectra of states #7–#10 (note that no information on these 
states could be obtained by looking at the MLE), we make sure to discard the effect of the 
longitudinally slowly-moving temperature wave. The power spectra of the cold regions of the 
longitudinally-modulated climate, corresponding to states #9 and #10, are extremely weak, 

Figure 11. Bifurcation diagram of the maximum Lyapunov exponents (MLE). When 
the MLE is larger than zero we have a limited horizon of predictability due to chaotic 
dynamics. Note that while the MLE can be rigorously defined for the states #1, #3, 
and #5, a word of caution must be used in the case of states #4. Same number coding 
as in figure 10. Details in the text.
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corresponding to the fact that the variability is only inherited from the active dynamics taking 
place in the warm regions corresponding to the states #7 and #8. The variability is intense 
with broad spectrum for states #7 when µ < 1.04, in agreement with the fact that a large 
horizontal temperature gradient is found across the mid-latitudes.

5.3. The geometry of the basin boundary

A very nontrivial aspect of the problem we are studying is the characterization of the geo-
metrical properties of the boundary between the basins of attraction of the stable climates. 
The cartoons shown in figures 7–8 suggest that the two basins of attraction are separated by 
a simple manifold of co-dimension one. Clearly, the existence of two separate true attractors 
(as opposed to the case of transient turbulence studied by Eckhardt and collaborators) implies 
that the co-dimension of the boundary can be at most one, because otherwise one would auto-
matically have holes allowing for transitions between the two basins of attraction, in contrast 
with their property of being invariant. Nonetheless, nothing prevents in principle the boundary 
from being a more complex geometrical object of co-dimension smaller than one, such that 
the intersection between such a boundary and a line connecting the two competing attractors 
has a non-trivial Cantor-like structure.

This issue has been studied in simple mathematical models in, e.g. [37, 40–43], and has 
practical relevance as the presence of a fractal boundary makes the prediction of the final 
state given the knowledge of the initial conditions of the system (with finite precision) a very 
non-trivial task. In other terms, it controls what Lorenz called the predictability of the second 
kind [7, 8].

As discussed in, e.g. [114], the presence of a chaotic edge state is a necessary (but not suffi-
cient) condition for the existence of a geometrically complex basin boundary. In fact, the geo-
metrical complexity of the boundary requires that that the MLE characterizing the separation 

Figure 12. Bifurcation diagram for a large scale meridional surface temperature 
gradient defined as the difference between low-latitude and high-latitude ‘boxes’, as 
done in [38]. Same number coding as in figure 10. Details in the text.
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of trajectories inside the basin boundary is larger than the Lyapunov exponent describing the 
separation of trajectories in the unstable direction (and leading to orbits ending up in either 
attractor) [37, 40].

Following a suggestion by A Pikovsky during a public presentation of some preliminary 
results then included in the present paper, we have decided to investigate the geometrical prop-
erties of the basin boundary in which the Melancholia states are embedded. We considered 
the case µ = 0.98, for which we have already found a chaotic Melancholia state, and have 
considered two nearby initial conditions belonging, respectively, to the basin of attraction of 
the warm and of the snowball state. These two initial conditions are represented by the first 
bracket seen in figure 9(d). The two initial conditions are very similar in terms of dynamical 
and thermodynamical properties and differ by only 0.5 K in terms of the globally averaged 
surface temperature. We have then considered additional 1022 initial conditions obtained by 
equispaced convex linear interpolations of the two original initial conditions, which results 
in the fact that their corresponding globally averaged surface temperatures are ordered and 
equispaced, so that the globally averaged surface temperature of two neighbouring initial con-
ditions differ by about 5 × 10−4 K. We then integrated forward each of these initial conditions 
and have labelled by 1 the orbits ending in the warm state and by 0 the orbits ending in the 
snowball state. The results are shown in figure 14(a). Against intuition, one finds an extremely 
complex geometric structure across the boundary. Very often, nearby initial conditions belong 

Figure 13. Power spectra of Ta(σ = 0.9) for grid points situated at  ≈30◦ N latitude.The 
panels describe the properties of states coded by numbered markers in figure 10; (a): 
state #1; (b): states #3, and #4; (c): states #7 and #8 (black line); (d): states #9 and 
#10 (black line). Note the different ranges of the total power S measured on the vertical 
axis. Details in the text.
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to different basins of attraction. Similar results are obtained by repeating the investigation in 
another region of the phase space: see figure 14(b), where we follow the procedure detailed 
above starting from the fifth bracket in figure  9(d). Clearly, at finite precision one cannot 
in principle exclude the possibility that the basin boundary is a regular—yet very tightly 
folded—manifold, rather than being a strange geometrical object. Further analysis is shown 
in figure 15, where we have computed the fractal dimension of the intersection set between 
the segment including the 1024 initial conditions above and the basin boundary using the 
data shown in figure 14(a). Entirely compatible results are obtained using, instead, the data in 
figure 14(b). We find a fractal dimension of about 0.98, which indicates that—at least within 
a certain region—the boundary has almost full dimension.

Figure 14. (a) Outcome of the forward integration of 1024 very similar initial 
conditions, populating a straight line in phase space that traverses the basin boundary. 
The difference between the globally averaged surface temperature of the 1st and of the 
1024th is 0.5 K. Outcome 1 indicates that the trajectory ends in the warm state, and 
outcome 0 indicates that the trajectory ends in the snowball state. (b) Same as (a), but 
for a different set of initial conditions. Details in the text.

Figure 15. Computation of the fractal dimension along the transversal direction of the 
basin boundary. The slope of the straight line is about 0.98.
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As a result, our ability to predict the final state of the system (warm or snowball) given ini-
tial conditions near the basin boundary is extremely low. Such an uncertainty can be measured 
using the uncertainty exponent [79]. Going back to the mathematical conditions discussed in 
[37, 40], we must have that the instability inside the basin boundary is (much) stronger than 
the instability in the unstable direction. And here physical intuition comes to our help: the 
instability occurring inside the basin boundary is associated to weather processes, and corre-
sponds to the baroclinic processes (having characteristic time scales of tens of days) responsi-
ble for the generation of eddies in the Melancholia state; see figure 11. Instead, the instability 
in the transversal direction results from the ice-albedo feedback, and acts on time scales of 
years [25, 38]. In conclusion, the strangeness of the basin boundary comes from the large time 
scale separation between weather and climatic unstable processes.

A natural question one may ask is why, despite such a geometrical complexity, the edge track-
ing algorithm still works well. The reason is that the bisection algorithm removes the motions in the 
unstable direction associated to the ice-albedo feedback. Therefore, the constructed pseudo-trajec-
tory along the basin boundary is constrained to explore the saddle set with no regard to its geometry 
and to be eventually attracted to the edge state, as a result of the fact that the phase space contracts.

6. Summary and conclusions

In this paper we have attempted to provide a review of some ideas concerning the study of 
critical transitions in the context of climate science. We have first briefly recapitulated under 
which conditions one can expect a regular response of the climate system to forcings, and have 
clarified that the response theory introduced by Ruelle gives the mathematical framework for 
addressing comprehensively the problem of predicting how the statistical properties of the 
climate system change as a result of (possibly time-dependent) perturbations to its dynamics. 
We have then clarified that the lack of regularity in the response of the system to perturbations, 
associated to a slowing-down in the rate at which the system decorrelates, flags being near 
to conditions where critical transitions take place. VL (in collaboration with Alexis Tantet) is 
currently exploring this problem using the formalism of transfer operator.

In order to have a more complete picture of climate dynamics, one needs to take a global 
point of view in the study of the phase space of the climate system and consider the possibility 
of the existence of multiple steady states. We have briefly discussed the literature concerning 
the existence of multistability in the Earth system, with a special focus on the key scientific 
issue regarding the co-existence of snowball and warm climate conditions given the current 
astrophysical and astronomical conditions. In this regard, we have presented a hierarchy of 
conceptual to more realistic mathematical models commonly used for studying multistabil-
ity in a geophysical context and have underlined virtues and limitations of using a stochastic 
dynamical point of view.

While typically one wants to study the properties of the co-existing climate states and of the 
probability of noise-induced jumping from one to the other, the question we find most interest-
ing and indeed novel regarding the specific climatic problem we focus on is to define what—
dynamically—lies in-between the multiple (say, two) co-existing steady states of the climate 
system. In other terms: is there a special dynamical configuration that generalises the saddle 
point in an energy landscape and acts as gate facilitating the noise-induced transitions between  
the two attractors?

The edge state introduced by Eckhardt and collaborators for studying turbulent fluid sys-
tems has proven rather useful for our study. The edge state is the attracting set embedded in 
and relative to the boundary between the two basins of attraction of the co-existing attractors. 
The edge state attracts, in fact, almost all the initial conditions belonging to the boundary of 
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the basins of attraction. The edge state cannot be found by direct numerical integration, but 
can be constructed through a control algorithm—the edge tracking algorithm—that proceeds 
by bracketing the basin boundary by nearby trajectories evolving on either side.

In recent years we have followed a scientific programme aiming at a comprehensive view 
on climate response that has led us in the last years to study—using the same climate model— 
(a) the macroscopic thermodynamical properties of the climate system associated to the criti-
cal transitions responsible for the snowball/warm bistability; (b) the smooth climate response 
to perturbations using the Ruelle response theory; and (c) the breakdown of the smooth 
response near the critical transitions due to slow decay of correlations using a transfer opera-
tor method in a reduced space.

In this paper we have aimed at completing the puzzle by taking a global point of view with 
the analysis of dynamical regimes that do not correspond to attracting steady states of the 
climate, but rather constitute the edge states sitting in-between co-existing climate states. We 
refer to these states as Melancholia states. We have decided to stick to the point of view of sta-
tistical mechanics that proposes to investigate complex systems using a purely deterministic 
dynamics, with the hope of being able to understand more deeply the effect of adding noise.

By adapting the edge tracking algorithm to a climate model that is somewhat simpler than 
what was used in previous investigations (yet Earth-like), we have been able to identify a 
plethora of climate states and study the properties of the Melancholia states existing in the 
region of bistability where snowball and warm climate attractors coexist.

Our control parameter is μ, the ratio between the considered and the present-day solar con-
stant. The tipping points are in fact reached when one of the climate attractors collides with 
the Melancholia state. We provide ample diagnostics for characterizing such states, including 
some movies that are available as supplementary material. The Melancholia states are obvi-
ously unstable with respect to the ice-albedo feedback, and, once such an instability is kept 
under control, they exhibit in some parametric range the kind of variability usually associ-
ated to regular climate conditions. The Melancholia states feature, e.g., mid-latitude cyclones 
growing as a result of baroclinic instability fuelled by the meridional temperature gradient, 
and have a chaotic behaviour associated to a limited horizon of predictability.

As μ is increased from the value corresponding to the tipping point from the warm to the 
snowball state, one finds that the Melancholia states undergo a symmetry breaking bifurca-
tion, after which they are characterized by strongly zonally non-symmetric conditions, in 
the form of a slowly rotating temperature anomaly wave. This regime is a sort of mix of the 
co-existing warm and snowball attractors, and feature a complex dynamics at the interface 
between the cold and warm regions. In a small window of values of μ, one finds three stable 
climate attractors, but this regime is not further explored in this paper. After such a window, 
the asymmetric Melancholia state is recovered and converges to the cold attractor at the tip-
ping point associated to the transition from the snowball to the warm state.

The Melancholia states discussed in this paper correspond to climatic regimes that cannot 
be realised in nature nor can be obtained by a forward integration of a numerical model. We 
would like to suggest two arguments supporting the idea that the Melancholia states have, 
nonetheless, great physical relevance.

First, they can be used to flag potentially dangerous forcings acting on systems originally 
living in one of the coexisting attractors. Obviously, forced transitions between the two basins 
of attraction can take place also bypassing the Melancholia state, but, surely, if the forced 
system resembles more and more a Melancholia state, the risk of catastrophic changes tak-
ing place if the forcing is not stopped is very real. Clearly, the risk is much higher when the 
unperturbed system lives in an attractor close to the Melancholia state—so in a parametric 
range near the critical transition.
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Second, as we have discussed in the latter part of our paper, Melancholia states might 
morph into actual stable yet very nontrivial stable climate states for small changes in the value 
of the parameters. These exotic climate states might be extremely hard to discover through 
direct numerical integration, given the limited size of their basin of attraction and the small 
parametric window where they actually exist.

The results presented provide a first example of a successful reconstruction of the global 
properties of a climate model possessing multiple steady states and complex regimes of 
motion, and hope to provide a positive stimulation in the direction of having a more thorough 
understanding of the properties of the climate system. It seems then relevant to extend the 
study of Melancholia state for the Earth and for other planets, as they may be key to under-
standing the evolution and the statistics of observed planetary atmospheres.

Additionally, we have shown that the boundary between the basins of attraction has 
a complex geometrical structure, as a result of the very different time scales associated 
to weather-like (baroclinic processes) and climatic instabilities (ice-albedo feedback). 
Obtaining a rather detailed geometrical description in such a high-dimensional system as 
the one analysed here seems quite an achievement. The presence of a thick basin boundary 
with a complex geometry makes the prediction of the final state given a finite precision 
knowledge of the initial conditions extremely challenging, thus indicating a reduced pre-
dictability of the second kind.

As a future investigation, we aim at relating the dynamical properties of the edge state 
to the statistics of noise-induced transitions between competing attractors, starting from 
simple up to more complex multistable models. As the edge state is the gate controlling the 
noise-induced transitions between the two co-existing attractors, its dynamical properties are 
crucial in assessing how likely a random forcing might lead to a catastrophic transition to 
another basin of attraction. Therefore, one could hope to derive estimates or semi-quantitative 
statements relating the properties of the edge state to the escape rates one can study via the 
Freidlin–Wentzell theory. Additionally, we wish to analyse in detail the geometry of the basin 
boundary and investigate the relationship between the escape rate and Lyapunov exponent 
along the unstable direction, along the lines indicated in [114].

Additionally, we remark that the existence of more than two stable states leads to the exist-
ence of a potentially more complex partition of the phase space in different basins of attrac-
tion, and of an ensuing more complex population of edge states sitting in-between different 
pairs of attractors.

In terms of specific geophysical relevance, it seems relevant to go deeper in the properties 
of the Melancholia states found in this study and analyse in greater detail (a) more specific 
physical reasons behind the presence of such a complex basin boundary (e.g. the role of local-
ised instabilities in the physical space); (b) the physical mechanisms behind the symmetry 
break found in the upper range of bistability, and, (c) indeed, the apparent change of stability 
that morphs a Melancholia state into a new stable climate state and vice versa for small modu-
lations of the solar constant.

The properties and relevance of the newly found stable climate state characterized by the 
break-up of the zonal symmetry and by intense horizonal temperature gradients seem indeed 
worth investigating. As far as we are aware, no previous studies found any qualitatively analo-
gous stable state.

A minor pitfall of the model used in this study is that it features a stable atmospheric circu-
lation with no fluctuations in the snowball states. Instead, the snowball states obtained using 
more comprehensive models have weak yet non-vanishing atmospheric variability, as baro-
clinic instability is active in the atmosphere, despite the low meridional temperature gradient. 
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Hence, repeating our analysis with a climate model like the one used in [18] seems a useful 
future exercise.

As discussed earlier in the paper, a more sophisticated analysis of the mechanisms behind 
the multistability of the Earth climate using models able to resolve accurately the oceanic time 
scales suggests the possibility of an additional climate state co-existing with the warm and the 
snowball state. A complete analysis of the Melancholia states situated in-between the possible 
climate states would definitely provide a more complete picture of the global dynamical prop-
erties of the Earth system and possibly lead to identifying additional, nontrivial stable climates 
of relevance for paleoclimate and for the study of exoplanetary systems.
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