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The role of mechanosensitive (MS) Ca2�-permeable ion chan-
nels in platelets is unclear, despite the importance of shear stress
in platelet function and life-threatening thrombus formation.
We therefore sought to investigate the expression and func-
tional relevance of MS channels in human platelets. The effect of
shear stress on Ca2� entry in human platelets and Meg-01 mega-
karyocytic cells loaded with Fluo-3 was examined by confocal
microscopy. Cells were attached to glass coverslips within flow
chambers that allowed applications of physiological and patho-
logical shear stress. Arterial shear (1002.6 s�1) induced a sus-
tained increase in [Ca2�]i in Meg-01 cells and enhanced the fre-
quency of repetitive Ca2� transients by 80% in platelets.
These Ca2� increases were abrogated by the MS channel inhib-
itor Grammostola spatulata mechanotoxin 4 (GsMTx-4) or by
chelation of extracellular Ca2�. Thrombus formation was stud-
ied on collagen-coated surfaces using DiOC6-stained platelets.
In addition, [Ca2�]i and functional responses of washed platelet
suspensions were studied with Fura-2 and light transmission
aggregometry, respectively. Thrombus size was reduced 50% by
GsMTx-4, independently of P2X1 receptors. In contrast,
GsMTx-4 had no effect on collagen-induced aggregation or on
Ca2� influx via TRPC6 or Orai1 channels and caused only a
minor inhibition of P2X1-dependent Ca2� entry. The Piezo1
agonist, Yoda1, potentiated shear-dependent platelet Ca2�

transients by 170%. Piezo1 mRNA transcripts and protein were
detected with quantitative RT-PCR and Western blotting,
respectively, in both platelets and Meg-01 cells. We conclude
that platelets and Meg-01 cells express the MS cation channel
Piezo1, which may contribute to Ca2� entry and thrombus for-
mation under arterial shear.

Platelet activation plays a crucial role in the physiological
process of hemostasis but is also the key precipitating event

leading to arterial thrombosis and thus potentially life threat-
ening pathological events such as myocardial infarction or
stroke. In the circulation, shear stress exerted by laminar flow of
blood is regarded as a vital environmental factor during platelet
activation in both normal and pathological situations. For
example, shear stress is required at the early stages of the hemo-
static machinery where it unfolds von Willebrand factor to
reveal the binding domains to glycoprotein Ib and thus allow
attachment to collagen exposed at an injury site (1).

Ion channels have important roles in regulating physiological
responses of all cells by controlling transmembrane ionic
fluxes. In particular, an increase in [Ca2�]i is a pivotal signaling
event that is essential for most major functional responses dur-
ing platelet activation, including cytoskeletal rearrangements
and integrin inside-out signaling (2, 3). Well studied examples
of platelet Ca2�-permeable ion channels include Orai1 store-
operated channels and ATP-gated P2X1 channels (4), which
both contribute to arterial thrombosis. In a recent screen of the
platelet channelome using quantitative PCR, transcripts for the
MS cation channel Piezo1 encoded by the FAM38A gene were
detected (5). Platelet proteomic and transcriptomic studies also
indicate Piezo1 expression in human platelets (6, 7). Piezo1
channels are activated by tension within the lipid bilayer of the
membrane itself rather than via a link to the cytoskeleton (8, 9)
and have key roles in a range of cellular activities, including
erythrocyte volume regulation (10), lineage determination in
neural stem cells (11), and vascular development (12). Elucida-
tion of these MS roles for Piezo1 channels have, in part, relied
upon pharmacological reagents such as the inhibitor Gram-
mostola spatulata mechanotoxin-4, GsMTx-43 from tarantula
venom (8, 13, 14), and the recently developed agonist Yoda1
(15, 16).

In the present study, we provide evidence that human plate-
lets and a megakaryocytic cell line express MS Piezo1 ion chan-
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nels. A novel in vitro approach was developed, using PECAM-1
antibodies, to adhere platelets to glass slides without inducing
spontaneous activation and thereby permit the study of shear-
induced Ca2� responses. Arterial shear stress stimulated
GsMTx-4-sensitive Ca2� entry in platelets and Meg-01 cells,
providing evidence that they exhibit MS cation channel activity.
GsMTx-4 also inhibited thrombus formation under flow, dem-
onstrating a potential role for MS ion channels in platelet func-
tion. The stimulation of Ca2� responses by Yoda1 in both
Meg-01 cells and platelets together with mRNA and protein
expression studies provide evidence that the MS cation channel
Piezo1 contributes to the shear-dependent events observed.

Results

Intracellular Ca2� responses in Meg-01 cells under shear stress

Meg-01 cells express several platelet lineage surface markers
and have been used as a model for studies of signaling in mega-
karyocytes and platelets (4, 17). We therefore investigated the
effect of applied shear stress on [Ca2�]i in this megakaryoblastic
cell line as a first step to address our hypothesis that MS cation
channels contribute to platelet responses. When Ca2�-con-
taining saline was applied at increasing arterial shear rates to
Meg-01 cells attached to a glass coverslip, increases in the

Fluo-3 signal were observed of a magnitude that correlated
with the size of the shear force applied (Fig. 1, A and B, top
panels): F/F0 increased from 1.0 � 0.1 at no shear (0.0 s�1) to
1.1 � 0.2, 1.2 � 0.3, and 1.4 � 0.4 at normal arterial (1002.6
s�1), stenotic (low) (2282.7 s�1), and stenotic (high) (3989.3
s�1) shear rates, respectively (Fig. 1C). In the absence of extra-
cellular Ca2� (0 Ca2�, 1 mM EGTA saline) shear-dependent
increases in the Fluo-3 signal were abolished except for a small,
residual response (F/F0 � 1.2 � 0.2) at the highest flow rate (Fig.
1, A and B, middle panels, and D). Pretreating the attached
Meg-01 cells with 2.5 �M GsMTx-4 abolished all increases in
Fluo-3 signal in response to applied shear stress (Fig. 1, A and B,
bottom panels, and D). We also compared the effect of shear
flow in parallel-plate flow chambers on [Ca2�]i in human
umbilical vein endothelial cells, which are known to express
functional Piezo1 channels (14). Application of arterial shear
induced elevations in [Ca2�]i that were abolished by GsMTx-4
as observed in Meg-01 cells.4 Increases in [Ca2�]i were also
observed when the blunt tip of a glass pipette was used to
depress the Meg-01 cell surface, as an alternative mechanical
stimulus to shear stress (see Fig. 9). Such glass pipette-induced

4 Z. Ilkan, unpublished observations.

Figure 1. Fluid shear stress-dependent Ca2� influx in Meg-01 cells is inhibited by GsMTx-4 and chelation of extracellular Ca2�. A and B, representative
images (A) and F/F0 fluorescence recordings (B) of single Meg-01 cells exposed to arterial and two levels of stenotic shear in HBSS with Ca2�, without Ca2�

(EGTA), and with GsMTx-4 in the presence of Ca2�. C, mean peak F/F0 increases (n � 53 cells) in response to different shear levels in the presence of extracellular
Ca2�. D, mean peak F/F0 increases under no flow conditions (n � 113 cells) and at the high stenotic shear rate with (n � 85 cells) and without extracellular Ca2�

(n � 35 cells) and with GsMTx-4 in the presence of Ca2� (n � 37 cells). ****, p � 0.0001; *, p � 0.05; **, p � 0.01. All cells were from cell culture passages 1–11.
B.F., bright field.
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force has been widely used in the study of Piezo1 channels in
HEK 293T cells (9, 15) and a mouse neuroblastoma cell line
(18). In the present study, we focused on the use of shear forces
applied by fluid flow as a more physiological mechanical stim-
ulus for blood cells.

Ca2� transients in platelets under shear stress

The shear-induced Ca2� entry observed in Meg-01 cells led
us to develop a method to examine whether a similar pathway
exists in human platelets. Previous measurements of Ca2�

responses under arterial shear in single platelets have used glass
coverslips coated with adhesive receptor ligands such as fibrin-
ogen and collagen or synthetic peptides mimicking their bind-
ing domains (19 –21); however, this approach will generate
activation signals including Ca2� mobilization independently
of the mechanical stimulus. We therefore used an antibody
against the receptor PECAM-1, which is inhibitory to platelet
function, to immobilize these cells on glass slides. PECAM-1
normally plays a role in homophilic interactions between Ig
domains 1 and 2 of the molecules on nearby platelets (22).
PECAM-1 antibody used in this assay (clone WM59) binds to Ig
domains 1 and 2, hence inhibiting homophilic binding between
platelets. It therefore provides a coat onto which platelets can
attach and become immobilized without being activated by the
glass surface (23, 24) (Fig. 2A). Exposure of attached unstimu-
lated platelets to normal arterial shear stress (1002.6 s�1)
resulted in multiple transient increases in cytosolic Ca2� after a
delay of 1–2 min (Fig. 2, B and C). Subsequent arrest of flow
led to a reduction but not complete inhibition of this Ca2�

response, although a second application of arterial shear caused
a further increase in the number of Ca2� transients (Fig. 2C,
panel i). The Ca2� responses were quantified using the F/F0
integral for a total of 4 min (F/F0�4 min, in arbitrary units). Prior
to the application of flow, when only occasional Ca2� transients
were observed, this value was 0.4 � 0.6; during normal arterial
shear it increased significantly to 1.9 � 1.9 (Fig. 2D). In every
platelet sample, a proportion of attached platelets did not show
increased Ca2� transients in response to arterial shear. How-
ever, in the platelets that did respond, the F/F0 integrals during
a first and second exposure to either arterial or stenotic shear
were not significantly different (Fig. 2, E and G). This allowed
the effects of GsMTx-4 and removal of Ca2� to be assessed
during the second cycle of shear. The shear-induced Ca2� tran-
sients were significantly reduced by either the addition of 2.5
�M GsMTx-4 (F/F0�4 min value of 0.6 � 0.6, which is 31.8% of
control, i.e. 1.9 � 1.9) or removal of extracellular Ca2� (F/F0�4
min value of 0.7 � 0.6, which is 38.5% of control) (Fig. 2, C,
panels ii and iii, and D). A higher arterial shear (3989.3 s�1),
equivalent to the situation when stenosis or narrowing occurs
in the arteries, induced a larger and more significant increase
(F/F0�4 min value of 2.1 � 2.1, n � 38, p � 0.0001) above pre-
stimulus (no flow) levels when compared with normal arterial
shear (Fig. 2F) and was also inhibited by GsMTx-4 (F/F0�4 min
value of 0.6 � 0.4, which is 28.6% of control, i.e. 2.1 � 2.1, n �
13, p � 0.05). Together, these results suggest that platelets, like
Meg-01 cells, possess a MS Ca2� influx pathway induced by
physiological levels of shear. The major difference between the
response in these two cell types was the longer delay between

stimulus application and the [Ca2�]i increase in platelets com-
pared with Meg-01 cells. This may result from the greater rigid-
ity of platelet surface membranes, a consequence of the exten-
sive cortical cytoskeleton that will resist deformation and thus
activation of MS ion channels (25, 26).

Effect of GsMTx-4 on thrombus formation and collagen-
induced platelet aggregation

Pretreating whole blood with GsMTx-4 for 30 s consistently
resulted in a marked reduction in thrombus formation under
arterial flow on a collagen surface (Fig. 3A). All three aspects of
thrombus dimension analyzed (height, volume, and surface
coverage) were reduced compared with control conditions;
mean thrombus height to 52% of control (1.2 � 0.5 to 0.6 � 0.4
�m), mean thrombus volume to 52% of control (48,133 �
18,957 to 25,126 � 15,759 �m3), and mean surface coverage to
62% of control (26.4 � 10.2 to 16.3 � 8.6%) (Fig. 3B). In con-
trast, GsMTx-4 had no effect on the aggregation response of
platelets to 1 �g/ml collagen measured in stirred suspensions,
which induce minimal levels of shear (Fig. 3C). This response
depends upon activation of the �IIb�3 integrin (27), as demon-
strated by the effect of the inhibitor integrilin (Fig. 3C).
Together, these data suggest that the underlying GsMTx-4-
sensitive pathway is crucially dependent upon application of
shear stress for its activation.

Effect of GsMTx-4 on previously identified Ca2� entry
pathways of human platelets

GsMTx-4 is widely used as an inhibitor of MS ion channels;
however, its effects on well established platelet Ca2� entry
pathways are unknown. Store-operated Ca2� entry through
Orai1 channels is a major Ca2� entry pathway evoked by mul-
tiple agonists and can be selectively activated by depletion of
intracellular Ca2� stores with the SERCA inhibitor thapsi-
gargin (3, 4). GsMTx-4 had no significant effect on store-oper-
ated Ca2� entry assessed from the peak increase in Ca2� after
addition of 1.26 mM Ca2� to platelets pretreated with 1 �M

thapsigargin for 15 min in nominally Ca2�-free saline (Fig. 4A,
panels i and ii). Furthermore, GsMTx-4 caused no inhibition of
Ca2� entry through transient receptor potential cation channel
subfamily C member 6 (TRPC6) ion channels directly activated
using the diacylglycerol analogue 1-oleoyl-2-acetyl-glycerol
(OAG) (60 �M) (28) (Fig. 4B, panels i and ii). A third Ca2�-
permeable pathway in platelets is the ATP-gated P2X1 channel,
which can be selectively activated by �,�-meATP (29). Interest-
ingly, a 30-s pretreatment with GsMTx-4 led to a reduction in
the peak Ca2� response (to 60% of control) to a supramaximal
concentration of �,�-meATP (10 �M; a decrease from 296.1 �
21.1 to 162.4 � 35.9 nM) (Fig. 4C, panels i and ii). Loss of P2X1
receptor activity did not contribute to the inhibition of platelet
shear-dependent Ca2� responses by GsMTx-4 (Fig. 2) because
these experiments were carried out in the absence of apyrase,
which leads to complete desensitization of these ATP-gated
cation channels (29) (see Fig. 8A). However, P2X1 receptors will
be functional in the thrombus formation experiments using
whole blood because of the ectonucleotidase activity of plasma
and leukocytes (30, 31). We therefore compared the effect of
GsMTx-4 and specific inhibition of P2X1 using 1 �M NF449 on
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thrombus formation. This concentration of NF449, which abol-
ishes P2X1 activity (Fig. 5A), caused a reduction in thrombus
volume to 63% of control (Fig. 5B, panel i), consistent with
previous reports (32). Importantly, the combined addition of
GsMTx-4 and NF449 caused a more significant inhibition of
thrombus formation compared with NF449 alone (Fig. 5B).
Using NF449 alone, mean thrombus volume was reduced from
99,856 � 30,184 �m3 to 62,678 � 28,802 �m3(63% of control),

whereas using GsMTx-4 alone and GsMTx-4 and NF449 com-
bined, there were reductions to 31% (to 31,290 � 7986 �m3)
and 25% (to 24,889 � 6251 �m3) of control in thrombus vol-
ume, respectively (Fig. 5B, panel i). Similarly, mean percentage
surface coverage was reduced from 46.9 � 7.6 to 36.1 � 11.6%
using NF449 and to 24.6 � 4.5 and 18.4 � 3.7% using GsMTx-4
and both GsMTx-4 and NF449, respectively (Fig. 5B, panel ii).
Mean thrombus height decreased from 2.4 � 0.7 to 1.5 � 0.7

Figure 2. Fluid shear stress induces Ca2� transients in single platelets that are inhibited by GsMTx-4 and chelation of extracellular Ca2�. A, a cartoon
representation of single platelet attachment to PECAM-1 antibody-coated biochip surface via the Ig domains 1 and 2 of the platelet PECAM-1. B, representative
Fluo-3 fluorescence and bright field (B.F.) images of individual Fluo-3-loaded attached platelets before and during exposure to arterial shear. Scale bars, 20 �m.
The magnified rectangular sections have been enlarged 3-fold. C, representative F/F0 Fluo-3 recordings in single platelets during no applied shear stress (white
regions) and normal arterial shear (gray regions). Two successive cycles of 4 min without shear followed by 4 min of arterial shear were applied, in which the
second cycle was used to compare the control conditions (i.e. HBSS � Ca2� only) (panel i), with the effect of GsMTx-4 (panel ii), or removal of extracellular Ca2�

(panel iii). D–G, average Ca2� increases, calculated as the 4-min F/F0 integral of all [Ca2�]i transients. D, responses in the absence of shear and during arterial
shear, in the presence of extracellular Ca2� with and without GsMTx-4 and in the absence of extracellular Ca2� (n � 46, 46, 23, and 14 cells in no shear, HBSS,
GsMTx-4, and EGTA, respectively). *, p � 0.05, compared with HBSS-only control under shear. E, comparison of Ca2� responses during cycles 1 and 2 of normal
arterial flow with Ca2�-containing HBSS only (n � 46 and 13 cells, respectively). No significant difference was found between F/F0 integrals of the calcium
transients from cycles 1 and 2. F, Ca2� responses in Ca2�-containing HBSS in the absence of shear (no applied flow) and during arterial stenotic shear with and
without GsMTx-4 (n � 36, 36, 38, 13, and 13 cells in no applied flow, HBSS normal arterial, HBSS stenotic arterial, GsMTx-4 normal arterial, and GsMTx-4 stenotic
arterial flow conditions, respectively). *, p � 0.05, compared with HBSS-only control under stenotic shear. G, no significant difference was found between F/F0
integrals of the calcium transients from cycles 1 and 2 of stenotic arterial flow, using Ca2�-containing HBSS only (n � 38 and 20 cells, respectively). ****, p �
0.0001; ***, p � 0.001; **, p � 0.01. ns, not significant.
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�m using NF449 and to 0.8 � 0.2 and 0.6 � 0.2 �m using
GsMTx-4 and both GsMTx-4 and NF449, respectively (Fig. 5B,
panel iii). Together, these results indicate that a pathway other
than P2X1 receptors is the main target for GsMTx-4 during
inhibition of thrombus formation.

MS cation channel expression in platelets

Within a transcriptomic screen of human platelets for all
known ion channels, Piezo1 and TRPC6 were the only MS cat-
ion channels detected (5). Piezo1 (FAM38A) was detected at

trace levels in this recent study; thus we repeated the qPCR
assay using a larger sample volume. Parallel qPCR runs with
primers for GYPA and CD45 were used as described previously
(5) to ensure that platelet samples were free from contamina-
tion by erythrocytes and leukocytes. In these purified platelet
samples, we detected quantifiable levels of FAM38A but not the
related family member FAM38B, encoding Piezo2 (Fig. 6A).
Meg-01 cells were found to express higher levels of FAM38A
transcripts compared with platelets and to also express
FAM38B (Fig. 6A). In contrast, TRPC6 mRNA was not detected

Figure 3. Collagen-induced thrombus formation but not platelet aggregation is inhibited by GsMTx-4. A, representative images of surface coverage and
3D Z-stacks for thrombi formed by DiOC6-stained platelets on a collagen surface under control and GsMTx-4-pretreated conditions. Scale bars, 20 �m. B.F.,
bright field. B, average values (n � 6) for thrombus height, thrombus volume, and surface coverage under control and GsMTx-4-treated conditions. C,
collagen-evoked aggregation under control and GsMTx-4-treated conditions. Integrilin treatment was performed as a control to demonstrate that aggrega-
tion is abolished by inhibition of the �IIb�3 integrin. Representative light transmission traces are shown in the left panel, and average maximal light transmission
responses expressed as percentages of aggregation are shown in the right panel (n � 3). **, p � 0.01. ns, not significant.
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in Meg-01 cells, although it was present in platelets as reported
previously (28). Piezo1 protein was also detected using Western
blotting in both cell types (Fig. 6B), and this further suggested a
lower level of expression in platelets compared with Meg-01.
Piezo1 protein in humans is known to be an N-linked glycopro-
tein (33, 34), and the diffuse nature of the band obtained for
Piezo1 may result from heterogeneity in glycosylation as
reported in the immunoblots of other glycoproteins (35). The
opposite order of expression was observed for P2X1 protein in
the two cell types, which was included as a positive control ion
channel target in platelet lysates. Lack of P2X1 expression in
Meg-01 cells was also confirmed by ratiometric [Ca2�]i mea-
surements where no Ca2� responses were obtained following
treatment with a supramaximal concentration of the P2X1 ago-
nist, �,�-meATP, in the presence of apyrase (Fig. 8B). Although

three alternatively spliced forms of Piezo2 protein were
detected in Meg-01 cells, they were all absent in platelets,4 in
agreement with the lack of Piezo2 mRNA (Fig. 6A). Piezo1
channels have been previously studied in various tissues includ-
ing erythrocytes with the aid of the blocker GsMTx-4 (5, 28, 36)
and thus could represent the GsMTx-4-sensitive shear-in-
duced Ca2� entry we observe in Meg-01 cells and platelets.

The Piezo1 agonist Yoda1 induces Ca2� influx in platelets

To further assess the contribution of Piezo1 channels to
platelet signaling and functional events, we used the recently
characterized Piezo1 activator, Yoda1 (15). In Fura-2 ratiomet-
ric measurements from stirred suspensions, Yoda1 caused a
substantial, immediate, and sustained elevation of [Ca2�]i in
both platelets and Meg-01 cells when Ca2� was present in the

Figure 4. Effect of GsMTx-4 on Ca2� entry via TRPC6, P2X1, and store-operated channels in platelets. A–C, representative [Ca2�]i recordings (left panels)
and average peak [Ca2�]i responses (right panels) for store-operated (n � 4) (A), TRPC6 (n � 4) (B), and P2X1 cation channels (n � 3) (C) in suspensions of
platelets in the presence and absence of GsMTx-4. Store-operated Ca2� entry was assessed by addition of 1.26 mM CaCl2 15 min after treatment with the SERCA
inhibitor thapsigargin. TRPC6 was activated using the diacylglycerol analogue OAG. P2X1 was activated with the non-hydrolyzable ATP analogue �,�-meATP
(10 �M). **, p � 0.01; ns, not significant.
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extracellular milieu (Fig. 7A). Most or all of this response was
lost in Ca2�-free external saline (decrease to 37% of control,
from 99.4 � 19.3 to 37.0 � 11.1 nM in platelets; and to 1% of

control, from 481.3 � 19.6 to 5.2 � 0.9 nM in Meg-01), as
expected if the predominant location of Piezo1 channels is on
the surface membrane (Fig. 7, B and C). The residual response

Figure 5. GsMTx-4 inhibits thrombus formation independently of P2X1 receptors. A, P2X1-dependent Ca2� entry (�,�-meATP, 10 �M) in platelet suspen-
sions is completely inhibited by 1 �M NF449. B, effect of 2.5 �M GsMTx-4 and 1 �M NF449, individually and combined, on thrombi formed on a collagen surface.
The average values are shown (n � 7) for thrombus volume (panel i), surface coverage (panel ii), and thrombus height (panel iii). *, p � 0.05. ns, not significant.

Figure 6. Mechanosensitive ion channel expression in human platelets and the Meg-01 cell line. A, relative expression of mRNA transcripts for three MS
cation channels (Piezo1, Piezo2, and TRPC6) in human platelets and the Meg-01 cell line, relative to GAPDH. n.d., not detected. The values are shown only for
detectable levels of expression. B, Western blots for Piezo1 (233 kDa) and P2X1 receptors (55 kDa) in Meg-01 and human platelet lysates, compared with
�-tubulin housekeeping control (60 kDa). The sizes (in kDa) and positions of protein standards are indicated with arrowheads. Meg-01 samples were from three
different culture passages (lanes P:2, P:4, and P:6), and platelet samples were from three different donors (lanes 1, 2, and 3). The blank lane lacked protein lysate.
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to Yoda1 in platelets in Ca2�-free medium can be explained by
the suggested presence of Piezo1 channels on membranes of
the intracellular stores (15). These experiments were con-
ducted in apyrase-free medium to abolish P2X1 receptor activ-
ity, which was confirmed by the absence of responses to �,�-
meATP (Fig. 8A). Yoda1 also enhanced intracellular Ca2�

transients in platelets attached to slides via PECAM-1 (Fig. 7, D
and E). Yoda1 increased the occurrence of Ca2� transients both
in the absence of flow and upon application of shear (compare
Fig. 7D with Fig. 2C, panel i). Under static conditions, the F/F0
integral increased more than 3-fold from a F/F0�4 min value of
0.3 � 0.3 to 1.2 � 0.9. Under normal arterial flow, in the absence
of Yoda1 the F/F0�4 min value was 1.2 � 0.6, which showed a
1.7-fold increase to 2.1 � 1.1 in the presence of the Piezo1
agonist (Fig. 7E).

Discussion

Since their identification in 2010 by the Patapoutian group
(18), the MS Piezo ion channels have received considerable
attention and been shown to contribute to functional responses
across a range of cell types (10, 12, 14). Furthermore, disease
conditions have been reported that result from both gain-of-

function and loss-of-function mutations of these cation-per-
meable channels (16, 36, 37). Of relevance to the present work,
Piezo1 channels play crucial mechanotransduction roles in the
cardiovascular system, particularly in red blood cells and endo-
thelial cells where they regulate cell volume homeostasis (10)
and vascular development (12), respectively. In the circulation,
the mechanical forces of shear have a well established influence
on platelet activation (38). For example, the ability of von Wil-
lebrand factor to engage its receptors on the platelet surface is
enhanced by increased shear (39). In addition, platelet mem-
brane morphological events respond to physical influences in a
PI3K-dependent manner (40). However, mechanisms for more
direct mechanical activation of platelet signaling events have
not been identified (38).

Several pieces of evidence support the conclusion that plate-
lets possess MS Ca2� influx mechanisms that are activated by
flow, and thus shear forces, and that the underlying pathway is
Piezo1. First, expression of mRNA transcripts and protein for
Piezo1 was detected in both platelets and Meg-01 cells (5) (Fig.
6), but the Piezo2 protein product was not detected in plate-
lets,4 in agreement with previous proteomic studies (7). Second,
individual platelets and Meg-01 cells that were attached to a

Figure 7. The Piezo1 agonist Yoda1 induced increases in [Ca2�]i in platelets and Meg-01 cells. A–C, [Ca2�]i responses to Yoda1 (25 �M) assessed in stirred
Fura-2-loaded washed suspensions of platelets (top panels) and Meg-01 cells (bottom panels). A and B show representative recordings, and C shows the average
peak [Ca2�]i increases (n � 4) for Yoda1 in the presence of extracellular Ca2� compared with its vehicle control (DMSO) and following removal of external Ca2�

(EGTA). D, representative intracellular Ca2� recording (Fluo-3 F/F0 fluorescence) from a single platelet attached to a PECAM-1-coated glass coverslip in the
presence of Yoda1 and exposed to two cycles of no flow (white regions) and arterial shear (gray regions). See Fig. 2C, (panel i) for the control trace. E, average Ca2�

increases above baseline (F/F0�4 min) in the presence and absence of Yoda1 under conditions of no flow and normal arterial shear (n � 20, 35, 20, and 35 cells
in HBSS no flow, Yoda1 no flow, HBSS normal arterial, and Yoda1 normal arterial conditions, respectively). **, p � 0.01; †, p � 0.01 compared with no flow, in the
presence of HBSS; ‡, p � 0.001 compared with no flow in presence of Yoda1. Apyrase was omitted from the extracellular buffer to avoid P2X1 receptor
responses (see Fig. 8).
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surface without causing activation, displayed [Ca2�]i responses
upon exposure to arterial levels of shear that were inhibited by
the MS channel blocker GsMTx-4 or removal of external Ca2�.
Third, Yoda1, a recently described chemical agonist of Piezo1
that does not activate Piezo2 (10, 15), directly stimulated Ca2�

entry into both platelets and Meg-01 cells in the absence of
shear and also potentiated shear-dependent Ca2� transients in
platelets. In agreement with these data, Patapoutian and co-
workers (15) demonstrated that Yoda1 can induce Piezo1
activation in the absence of mechanical stimulation and also
increase its sensitivity to mechanical activation. Although
GsMTx-4 is a general MS ion channel blocker, it has been the
main inhibitor used in the study of Piezo1 function (11, 13). The
toxin acts through insertion into the lipid bilayer and modifica-
tion of the lipid:channel interface (41) and hence may influence
a number of ion channels. However, GsMTx-4 did not block
TRPC6 or Orai1 store-operated Ca2� entry in platelets (Fig. 4).
Although P2X1 receptors were partially inhibited by GsMTx-
4, these ATP-gated Ca2�-permeable channels will have been
desensitized in the ectonucleotidase (i.e. apyrase)-free condi-
tions used to record shear-induced Ca2� transients in our study
(29). Furthermore, in the thrombus formation assay using
whole blood, which retains significant ectonucleotidase activity
and thus also P2X1 receptor activity (30 –32), the GsMTx-4
block of thrombus formation was still observed after abrogation
of P2X1 receptor responses with NF449. It is worth noting that
intravital imaging studies have recently suggested that blood
rheology is the primary factor driving thrombus formation in
vivo, with less significant roles for classical diffusible platelet
agonists (42, 43). Ca2� influx through Piezo1 channels certainly
represents a candidate for transduction events directly influ-
enced by rheological forces in the arterial circulation.

Although no previous report has identified a molecular
mechanism for MS Ca2� influx in platelets, the presence of
such a pathway has been suggested in earlier studies (44, 45).
Using an approach to monitor [Ca2�]i within a cone-and-plate
viscometer, Kroll and co-workers (45) demonstrated a trans-
membrane Ca2� influx in response to arterial or higher levels of
shear. In addition, Simon and co-workers (44) report a link
between transmembrane Ca2� flux and hemodynamic shear
stress from studies of hypertensive patients. Piezo1 could
account for these previously reported shear-dependent Ca2�

influx pathways, yet we recognize the need for further work to
address this possibility. The level of expression of Piezo1 in
platelets was low; however, it was detectable both at the mRNA
transcript and protein levels. By comparison, the lowest density
ion channel observed within patch clamp recordings from
human platelets (KCa3.1) (4, 46) was below the detectable level
within a qPCR screen (5). Considering the large surface-area-
to-volume ratio of the mammalian platelet, it is also worth not-
ing that a Ca2�-permeable ion channel need only be present at
a low copy number or exhibit a low open probability to signifi-
cantly influence the intracellular Ca2� concentration.

Piezo1 channels were also clearly expressed and functional in
the Meg-01 human megakaryoblastic cell line, which has been
used as an alternative system for studies of platelet signaling
events (4, 17). This finding also raises the possibility that Piezo1
may contribute to megakaryocyte function, although further
experimental evidence is needed to address this possibility. For
example, shear forces are important during thrombopoiesis by
promoting platelet release from proplatelet extensions within
the venous sinusoids (47, 48). In addition, megakaryocytes have
been postulated as active participants in the mechanosensitiv-
ity of the marrow environment that regulates the bone mass,

Figure 8. Assessment of P2X1 activity in Fura-2-loaded platelet and Meg-01 cell suspensions in the presence and absence of extracellular apyrase. A,
selective activation of platelet P2X1 channels using �,�-meATP in the presence and absence of 0.32 unit/ml apyrase. B, representative [Ca2�]i recordings
(panels i and ii) and average Ca2� increases (panel iii) demonstrating that �,�-meATP does not induce [Ca2�]i elevations in Meg-01 cells similar to vehicle
control, indicating no P2X1 activity in these cells. As a positive control, the addition of a supramaximal concentration of ADP is shown to cause sharp [Ca2�]i
elevations indicating intact P2Y responses. ****, p � 0.0001. ns, not significant.
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likely through interactions with osteoblasts (49). A noticeable
difference between the shear-dependent Ca2� responses of
Meg-01 cells and platelets was the more immediate nature of
the cell line response compared with the delayed increase in
platelets (Figs. 1B and 2C). A likely explanation is the very dif-
ferent cytoskeletal arrangement of platelets, which consists of a
cortical cytoskeleton that is responsible for its discoid resting
shape and also results in a less flexible plasma membrane com-
pared with other cell types, including its precursor and related
cell lines (25, 26). Because Piezo1 is gated by tensions within the
lipid bilayer of the membrane itself rather than via a link to the
cytoskeleton (8, 9, 18), platelets may need to undergo a greater
deformation by the fluid shear compared with Meg-01 cells
before channel activation. Although Piezo1 channels are gated
by bilayer tension in cytoskeleton-free artificially generated
blebs, Cox et al. (9) have emphasized that cytoskeletal proteins
or links to the extracellular matrix components can modify the
tension experienced by the bilayer in intact cells. This cytoskel-
etal “mechanoprotection” effect is known to curb the activity of
endogenous Piezo channels (50, 51). Manipulating the cyto-
skeletal properties of cells has also been linked to changes in
latency of channel activation and channel gating in general (9,
52). In our studies, a second application of increased shear stim-
ulated Ca2� transients with reduced delay, similar to effects on
stretch-activated K� channels in Lymnaea neurons, where it
has been suggested that application of repeated pressure causes
cytoskeleton-dependent adaptation (53).

In conclusion, we show that human platelets express a MS
Ca2� entry pathway that is activated by arterial shear stress in
vitro. Piezo1 is the main candidate for the underlying MS chan-
nel mediating this effect. Pharmacological inhibition of MS
channels indicates that they contribute to thrombus formation
under arterial flow. However, future work should develop an
animal model lacking Piezo1 specifically in platelets and mega-
karyocytes to further support these conclusions and to extend
to in vivo studies. MS cation channels, at the pathologically high
levels of shear stress that are generally experienced at the
regions of vessel narrowing resulting from stenosis or athero-
sclerosis, could potentially enhance Ca2� influx, which can
increase the risk of life-threatening thrombus formation.

Experimental procedures

Materials

The MS ion channel inhibitor GsMTx-4 peptide (STG-100)
was from Alomone Labs (Jerusalem, Israel), and the agonist of
Piezo1, Yoda1 (5586), was from Tocris Bioscience (Bristol, UK).
Fura-2 AM and Fluo-3 AM were from Invitrogen. PECAM-1
antibody (WM59) (MCA1738T) for platelet attachment was
purchased from AbD Serotec (Kidlington, UK). Type I colla-
gen (Horm, from equine tendon) was from Takeda (Linz,
Austria). Unless otherwise stated, all other materials were
from Sigma-Aldrich.

Platelet and Meg-01 sample preparation

Blood was collected by venepuncture from informed, con-
senting healthy volunteers, in accordance with the Declaration
of Helsinki. This study was approved by the University of
Leicester Research Ethics Committee for Human Biology (non-

National Health Service). In experiments where human plate-
lets were used, the data were obtained from three to seven
donors. Whole blood for thrombus formation was collected
into 40 �M Phe-Pro-Arg-chloromethylketone (Haematologic
Technologies Inc., Essex Junction, VT) as anticoagulant. For all
other studies, blood was taken into acid-citrate-dextrose (ACD)
solution (85 mM trisodium citrate, 78 mM citric acid, 111 mM

glucose) at a ratio of 6:1 (blood:ACD). For extraction of mRNA,
1.5 ml of platelet inhibitor mixture containing 0.1 �M prosta-
glandin E1, 2 mM EDTA, and 0.3 mM acetylsalicylic acid in ACD
was added per 10 ml of whole blood or Meg-01 cell suspension.
Platelet-rich plasma (PRP) was prepared by centrifugation at
150 � g for 20 min for mRNA extraction, 100 � g for 20 min for
aggregometry, or 700 � g for 5 min for other experiments. For
preparation of washed platelets (WP) for aggregometry, ACD
was added to PRP in 1:80 (ACD:PRP) ratio and 1 �M prostaglan-
din E1 and then centrifuged at 700 � g for 10 min, and the
platelets were resuspended in Tyrode’s HEPES buffer (134 mM

NaCl, 2.9 mM KCl, 0.34 mM Na2HPO4, 12 mM NaHCO3, 20 mM

HEPES, 0.84 mM MgCl2, 10 mM glucose), after which they were
centrifuged at 700 � g for 10 min. WP were resuspended in a
volume of Tyrode’s HEPES buffer equivalent to that of the orig-
inal PRP. For intracellular Ca2� measurements, the PRP was
incubated at room temperature for 15 min with 100 �M acetyl-
salicyclic acid and 0.32 unit/ml apyrase (type VII; Sigma) and
then incubated with either 2 �M Fura-2 AM (45 min, 37 °C) or 5
�M Fluo-3 AM (45 min, room temperature). The PRP was then
centrifuged at 350 � g for 20 min, and the platelets were resus-
pended in an equal volume of nominally Ca2�-free saline (145
mM NaCl, 5 mM KCl, 1 mM MgCl2, 10 mM HEPES, 10 mM glu-
cose, pH 7.35) that also contained 0.32 unit/ml apyrase for
experiments when P2X1 receptor responses were being stud-
ied. Immediately prior to Fura-2 measurements in cuvettes or
before introducing Fluo-3-loaded platelets to biochips for
attachment, the platelet suspension was diluted 1:1 with Ca2�-
free saline. For platelet lysate preparation for Western blotting,
the protocol for Fura-2-loaded platelet preparation was fol-
lowed without the dye addition step, and the washed platelet
suspension as lysed with radioimmunoprecipitation assay
buffer (150 mM NaCl, 50 mM Trizma hydrochloride, 0.5%
sodium deoxycholate, 0.1% SDS, 1% Triton X-100) with EDTA-
free protease inhibitor mixture (cOmplete mini; Roche) on ice
for 1 h.

Meg-01 cells were obtained from the European Collection of
Authenticated Cell Cultures and grown in RPMI 1640 supple-
mented with 10% FBS and 100 units/ml penicillin-streptomy-
cin. Sterilized glass coverslips were coated with 0.1 mg/ml poly-
D-lysine hydrobromide (molecular weight � 300,000) for 15
min. The slides were then rinsed with sterile water and dried for
2 h. Meg-01 cells in medium were added to the coated slides and
incubated at 37 °C for 15 min to promote attachment. Attached
cells were then treated with 2 �M Fluo-3 AM at room temper-
ature for 45 min. After washing in Hanks’ balanced salt solution
(HBSS; 5.33 mM KCl, 0.44 mM KH2PO4, 137.93 mM NaCl, 4.17
mM NaHCO3, 0.34 mM Na2HPO4, 5.56 mM D-glucose, 5.00 mM

HEPES, 0.49 mM MgCl2, 0.41 mM MgSO4, and 1.26 mM

CaCl2), slides were immediately inserted in a parallel-plate flow
chamber for experimentation. Meg-01 cell lysates were pre-
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pared by washing with PBS and lysed as described for platelets.
The lysates were centrifuged at 20,000 � g at 4 °C for 10 min,
and the supernatant was stored at �80 °C. Meg-01 cells used in
all experiments were from passage numbers 1–14.

Fluorescence imaging

Imaging of thrombus formation and [Ca2�]i recordings from
single platelets or Meg-01 cells was carried out on an Olympus
IX81 inverted confocal microscope with a FV1000 laser scan-
ning module (Olympus, UK) using a 60�, 1.35 NA oil immer-
sion lens (UPLSAPO). The confocal aperture was set for opti-
mal optical slicing (1 Airy unit, slice thickness 	1.25 �m).
Fluo-3 fluorescence images were captured at a rate of 1.74 Hz
for platelets and 0.37 Hz for Meg-01 cells (Figs. 1, 2, 7, and 9).

Thrombus formation under flow

The glass coverslips were coated with collagen (100 �g/ml)
overnight in a humidified chamber at 4 °C. Whole blood was
stained with 1 �M DiOC6 on a rotor at room temperature for 30
min before use. A programmable AL-1000 syringe pump
(World Precision Instruments, Sarasota, FL) attached to a par-
allel-plate flow chamber was used to initially introduce HEPES-
buffered saline solution (150 mM NaCl, 5 mM KCl, 1 mM

MgSO4, 10 mM HEPES) to remove air bubbles. 1 ml of whole
blood was then introduced into the system for a period of 5 min
at the required shear level before perfusing HEPES-buffered
saline to clear the components unbound to the collagen surface.
The blood was applied at a flow rate of 0.235 ml/min, which
equals to a normal arterial shear rate of 1002.6 s�1, calculated
according to Equation 1,

Q �
wh2t

6�
(Eq. 1)

where Q � flow rate (ml/s), w � microslide lumen width in cm
(0.15), h � microslide lumen height in cm (0.0125), t � shear
stress (Pa), and � � viscosity of whole blood (0.001002 Pa/s). To
calculate shear rate (s�1), t was divided by �.

Time-series scans were performed during thrombus forma-
tion, and subsequent Z-stack analyses of stable thrombi were
carried out within 15 min of their formation using step changes
(
Z) of 0.69 �m. The data represent averages of at least four
randomly chosen fields per experiment. Analysis and 3D recon-
struction of Z-stacks were performed with ImageJ 1.49 Volume
Viewer 2.0 plugin (National Institutes of Health). Surface cov-
erage and thrombus volume were calculated according to the
Cavalieri principle as previously described (54, 55). The heights
of the thrombi were calculated by dividing the total thrombus
volume by the area of the field.

Ca2� imaging in Meg-01 cells and human platelets under flow

Fluo-3-loaded Meg-01 cells attached to slides were treated
with 2.5 �M GsMTx-4 for 1 min or vehicle (HBSS) as necessary
before inserting the slides into the parallel-plate flow chamber.
To apply fluid shear stress, the reservoir was filled with either
HBSS, Ca2�-free HBSS containing 1 mM EGTA or HBSS con-
taining 2.5 �M GsMTx-4 as appropriate, and the AL-1000
syringe pump (World Precision Instruments) was set to draw
fluid through the system at the shear rates of 1002.6, 2282.67,
and 3989.248 s�1, which represent shear conditions in normal
arteries, moderately stenotic arteries, and severely stenotic
arteries, respectively (56). The fluorescent signals were back-
ground-corrected, and fluorescence levels (F) were normalized
against prestimulus fluorescence level (F0) to yield F/F0 values.

Imaging of Ca2� transients in single platelets

Platelets were loaded with Fluo-3 (5 �M Fluo-3-AM for 45
min, at room temperature) and attached onto glass-bottomed
Vena8 GCS biochips (Cellix Ltd., Dublin, Ireland) that were
coated with monoclonal mouse anti-human PECAM-1 (CD31)
antibody by incubation at 37 °C for 1 h. Excess antibody was
removed, and nonspecific sites were blocked with 2% BSA at
37 °C for 1 h to prevent glass-induced platelet activation. Imme-
diately prior to each experiment, Fluo-3-loaded platelets were
introduced into the biochip channel and incubated at 37 °C for
10 min with occasional gentle shaking. The biochip was then
mounted on the microscope stage, and HBSS was introduced
into the channel under gravity. Pharmacological reagents (2.5
�M GsMTx-4 or 25 �M Yoda1) were introduced at a very low
shear rate (410.16 s�1) prior to the experimental recording.
Captured time-series images were analyzed on ImageJ, version

Figure 9. Mechanical stimulation of Meg-01 cells with a glass pipette tip
results in [Ca2�]i elevations. A, representative images of a Fluo-3-loaded
Meg-01 cell at specified time points before and during [Ca2�]i elevations
stimulated by depression of the plasma membrane with a blunt-ended glass
micropipette. The extracellular saline (HBSS) contained 1.26 mM Ca2�. The red
arrowheads indicate the positions and the directions in which the glass probe
was applied. Similar responses were obtained from 14 Meg-01 cells from
three different cultures. B.F., bright field. B, the F/F0 fluorescence recording of
the Meg-01 cell shown in A. The downward arrows indicate when a push was
applied onto the cell, and upward arrows indicate release of push. The regions
enclosed with dashed lines represent the duration of a mechanical push by
the glass probe.
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1.47 (57) using the Time Series Analyzer V2.0 plugin to obtain
the Ca2� traces. The F/F0 values were calculated after back-
ground and F0 correction, and values were transferred to
GraphPad Prism 6 software for quantification of the F/F0 inte-
gral over 4 min (F/F0�4 min, in arbitrary units). The baseline was
set manually, and peaks more than 1 point above baseline were
included within the calculation of a Ca2� increase.

Light transmission aggregometry

Platelet aggregometry was performed in a Chronolog 400
lumi-aggregometer (Chrono-Log Corporation, Havertown,
PA), at 37 °C. Platelets were resuspended in nominally Ca2�-
free saline, to which 2 mM CaCl2 and 100 �g/ml fibrinogen were
added at the start of each experiment. WP were incubated with
2.5 �M GsMTx-4 or vehicle for 30 s, respectively, before the
addition of collagen to stimulate aggregation. Where necessary,
aggregation was inhibited by the inclusion of 9 �M integrilin 3
min before stimulation with collagen. The percentage of light
transmission was converted to the percentage of aggregation by
normalizing the vehicle light transmission response to 100%
aggregation.

Fura-2 ratiometric Ca2� measurements

Fura-2 ratiometric Ca2� measurements were performed in
stirred suspensions using a Cairn spectrofluorimeter system
(Cairn Research Ltd., Faversham, UK) at 37 °C as described
elsewhere (29). After loading with Fura-2, the cells were resus-
pended in nominally Ca2�-free saline, and where necessary, 2
mM CaCl2 was added to individual cuvettes 30s before experi-
mental treatments. Fura-2 fluorescence was converted to
[Ca2�]i (nM) using an extracellular calibration after digitonin
permeabilization (29). Peak [Ca2�]i responses (i.e. 
[Ca2�]i val-
ues) represent the increases in [Ca2�]i above the prestimulus
concentration. The materials used to study Ca2� influx were
as follows: 0.2 mM EGTA, 1 �M thapsigargin to induce store
depletion (58); 60 �M OAG, a cell-permeable diacylglycerol
derivative and TRPC6 channel agonist (59, 60); and 10 �M

�,�-methylene ATP (�,�-meATP), to selectively activate
P2X1 receptors.

mRNA extraction and quantitative real-time polymerase chain
reaction

mRNA extraction from platelets and Meg-01 cells, and quan-
titative PCR analysis were performed using QuantiTect Primer
assays (Qiagen), as previously described (5). The reaction end
products were run on a 1.5% agarose gel to confirm specificity
of the primers.4 mRNA expression values relative to GAPDH
were calculated as previously described (61).

Western blot analysis

Western blotting was performed as described previously
(62). Briefly, 20 �g of protein sample was loaded in each well
and run in a 7% acrylamide gel, and visualization of bands was
achieved using Amersham Biosciences ECL Prime detection
kit (GE Healthcare). The antibody concentrations used were:
FAM38A (Piezo1) rabbit anti-human polyclonal antibody
(15939-1-AP; ProteinTech, Manchester, UK), 1:2000; P2X1
rabbit anti-human polyclonal antibody (APR-001; Alomone

Labs, Israel), 1:1000; and FAM38B (Piezo2) rabbit anti-human
polyclonal antibody (G-20 Santa Cruz Biotechnology, Heidel-
berg, Germany), 1:200. The specificity of the antibodies for
their intended target in Western blots (Fig. 6) has been previ-
ously validated using knockdown of endogenous expression,
heterologous expression, or tissue from receptor-deficient
mice (63– 68). The widely used �-tubulin mouse anti-human
monoclonal antibody (CP06; Calbiochem), 1:1000 was used as a
control.

Data analysis

All statistical analyses were performed using GraphPad
Prism 6.0 software or Origin 2015 Sr2 for Windows (La Jolla,
CA). One-way analysis of variance followed by Tukey’s post hoc
multiple comparison analyses or paired two-tailed Student’s t
tests were performed as appropriate. All results are shown as
the means � S.D. The p values �0.05 were considered statisti-
cally significant.
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