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ABSTRACT

Tropical cyclones (TCs) are identified and tracked in six recent reanalysis datasets and compared with those

from the IBTrACSbest-track archive. Results indicate that nearly every cyclone present in IBTrACSover the

period 1979–2012 can be found in all six reanalyses using a tracking and matching approach. However, TC

intensities are significantly underrepresented in the reanalyses compared to the observations. Applying a

typical objective TC identification scheme, it is found that the largest uncertainties in TC identification occur

for the weaker storms; this is exacerbated by uncertainties in the observations for weak storms and lack of

consistency in operational procedures. For example, certain types of storms, such as tropical depressions,

subtropical cyclones, and monsoon depressions, are not included in the best-track data for all reporting

agencies. There are definite improvements in how well TCs are represented in more recent, higher-resolution

reanalyses; in particular MERRA-2 is comparable with the NCEP-CFSR and JRA-55 reanalyses, which

perform significantly better than the older MERRA reanalysis.

1. Introduction

Tropical cyclones (TCs) are one of the most dam-

aging weather-related natural hazards on the planet,

causing 42% of the United States catastrophe-insured

losses in the period 1992–2011 (King 2013). Individual

intense events can result in severe losses. For example,

Hurricane Katrina resulted in an estimated death toll

of 1833 people and financial losses of over $125 billion

(Adeola and Picou 2014). Weaker storms such as

tropical depressions can also have an impact in terms of

loss of life and disruption in vulnerable societies

(ECLAC 2009). It is therefore important to utilize the

available data and new analysis techniques to better

understand their properties and behavior, with the aim

of mitigating their societal, economic, and environ-

mental impacts.

Because of the relatively short observational record of

TCs, and problems with sampling within the record,

there is considerable uncertainty in the variability of

TCs in terms of frequency over climate time scales of the

last 100 yr (Landsea 2007; Landsea et al. 2009), resulting

in uncertainty in the interannual variability and trend

detection. The use of reanalyses to detect TCs provides

an opportunity to reduce this uncertainty (Truchelut

et al. 2013), by allowing the creation of a larger data

sample that, when used in conjunction with the historic

observational data, can help to provide more confidence

in TC numbers than the observations alone. Reanalyses

combine observations with a short forecast from a general

circulation model (GCM) to produce gridded datasets,

constrained by observations, with regular output intervals,

and can act as a bridge between the observations of TCs

and simulated tempestology. However, there can be

problems in using reanalyses related to the changing ob-

serving system, in particular the introduction of spuriousCorresponding author: Kevin Hodges, k.i.hodges@reading.ac.uk
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trends (Bengtsson et al. 2004a) and the fact that different

reanalyses use different GCMs with different parameter-

izations and different data assimilation methods, all of

which can contribute to differences between them. The

study of Schenkel and Hart (2012) previously considered

the representation of TCs in the Northern Hemisphere in

several reanalyses, including several of those used in this

study, by manually tracking the best-track TCs in the re-

analyses, and found considerable variation in the prop-

erties of TCs between the reanalyses, for location, and a

consistently large underestimate of intensity (10-m winds

and mean sea level pressure) for all the reanalyses. This

uncertainty in the representation of TC properties in re-

analyses can introduce uncertainty into their automated

detection in these data, so that the objective detection

criteria are often tailored to the particular reanalysis of

interest (Murakami 2014).

Another motivation for a careful study of the prop-

erties of TCs as represented by reanalyses is that they

are often used as a means of calibrating TC detection

and tracking schemes before applying them to climate

models (Bengtsson et al. 2007a). This is done by first

applying the detection to the reanalyses or operational

analyses and adjusting the detection criteria to give

similar numbers of TCs to those found in the observa-

tions provided by the TC warning centers’ best-track

data. This may be problematic if there are large differ-

ences between how reanalyses represent TCs in terms of

their properties, such as structure and intensities, or if

there are biases in the best-track data.

The reanalysis model dynamical core, parameteriza-

tions, and resolution all play a critical role in de-

termining the output of extreme events in reanalysis

data. These vary widely, with in particular newer gen-

erations of reanalyses being produced at higher resolu-

tions and with modern data assimilation systems.

For climate models, the IPCC Fifth Assessment Re-

port (IPCC 2013) stated that there is medium evidence

and high agreement that year-to-year count variability

of Atlantic hurricanes can be well simulated by modest

resolution (100kmor finer) atmosphericGCMs (AGCMs)

forced by observed sea surface temperatures (SSTs). Both

Strachan et al. (2013) and Roberts et al. (2015) show that

60km is adequate for simulating interannual variability,

although not intensity.

Recent work by Murakami (2014) showed that, when

considering five reanalyses (also included in this study),

the highest-resolution reanalysis is not always the best in

terms of simulating the TC climatology and properties,

nor do the higher-resolution reanalyses produce signif-

icantly more intense storms than those with lower res-

olutions, suggesting that the simulation of TCs in the

reanalyses is highly dependent on model formulation

(Schenkel and Hart 2012) and/or data assimilation

strategy. However, if we can understand the un-

certainties of TCs in the reanalyses, they may provide a

useful means of extending the observations—for ex-

ample, by extending the identified TC life cycles to in-

clude the extratropical transition (Jones et al. 2003) and

beyond, which is useful for TC-related extratropical risk

analysis and GCM assessment (Haarsma et al. 2013).

The use of reanalysis could also assist in the identifi-

cation of subtropical and hybrid tropical storms (Roth

2002; Guishard et al. 2009), which are also associated

with severe weather, providing a more complete set of

tropical storm data for use in GCM assessment than is

perhaps currently present in best-track data; the in-

clusion of these types of storms in the best-track datasets

is highly variable between the operational centers.

The main aim of this paper is to quantify the un-

certainties in how well TCs are represented in a number

of recent reanalyses, and how this affects the objective

identification of TCs in reanalyses. This is achieved by

exploring the following:

1) how well reanalyses represent the observed TCs in

the best-track data using direct track matching, and

2) howwell an objective identification scheme identifies

the best-track TCs in the reanalyses and what might

be the cause of differences.

2. Data and methods

Data from six recent reanalyses are used in this study

and described below. Also used are best-track data

produced by the tropical warning centers as postseason

analyses of the TC tracks. These have been combined

into the International Best Track Archive for Climate

Stewardship (IBTrACS) dataset (Knapp et al. 2010) and

are used in this study for verifying the TCs identified in

the reanalyses. The IBTrACS-ALL, which includes data

from all agencies, is used in this study. The common

period of 1979–2012 is used throughout for all datasets,

except for one reanalysis where the period is 1980–2012.

Throughout the rest of the paper the following no-

menclature is used; the term ‘‘tropical cyclone’’ (TC) is

used for warm core storms generally and, where ap-

propriate, the term ‘‘tropical storm’’ (TS) is used for TCs

with wind speeds greater than 17m s21.

a. Best-track dataset

For full details of the IBTrACS-ALL dataset, see

Knapp et al. (2010). The original wind speed data in

knots is converted to wind speed in meters per second.

The World Meteorological Organization (WMO) stan-

dard for reported tropical cyclonewind speed ismaximum
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10-min sustained winds at 10-m height over a smooth

surface; however, this is rarely observed, so some dis-

crepancy between agencies is apparent.Different agencies

apply different wind-averaging periods, with the eastern

Pacific, North Atlantic [Regional Specialized Meteoro-

logical Center (RSMC) Miami], and central Pacific

(RSMC Honolulu) using 1-min averaging periods; the

north Indian Ocean (RSMC New Delhi) using a 3-min

period; and the other agencies using 10-min averaging

periods (Schreck et al. 2014). The 10-min wind speeds are

converted to 1-min wind speeds using a factor of 1.13,

which has traditionally been used (Harper et al. 2010), and

the data from RSMC Miami and New Delhi are used in

their original form. However, there are uncertainties in

the accuracy and fidelity of this conversion, with different

conversion factors for at-sea, off-sea, off-land, and in-land

parts of the storm suggested (Harper et al. 2010). Other

uncertainties also exist in the best-track data, which have

been discussed is several studies; a summary of these un-

certainties can be found in the appendix of Hodges and

Emerton (2015). They include issues relating to location

and intensity uncertainties and operational differences

between agencies. This is further discussed in the discus-

sion section (section 4).

For the analysis of the identified TCs in different

ocean basins the IBTrACS basin boundaries (Knapp

et al. 2010) have been used, with TCs assigned to a

particular ocean basin, based on where the storm rea-

ches maximum 10-m wind speed intensity.

b. Reanalysis datasets

Meteorological centers around the world produce

reanalysis datasets as an ongoing enterprise. The re-

analyses are essentially based on frozen operational

numerical weather prediction (NWP) systems. New

reanalyses are often released following significant im-

provements in themodels and data assimilation schemes.

The reanalyses differ in terms of the models and data

assimilation methods used to produce them, so differ-

ences in their output are to be expected. Six recent global

atmospheric reanalysis datasets have been analyzed for

TCs in this study and are summarized in Table 1. They

include theEuropeanCentre forMedium-RangeWeather

Forecasts (ECMWF) interim reanalysis (ERA-Interim,

hereinafter ERAI; Dee et al. 2011); the Japanese

25-year Reanalysis (JRA-25) (Onogi et al. 2007) and

55-year Reanalysis (JRA-55) (Kobayashi et al. 2015); the

National Aeronautics and SpaceAdministration (NASA)

Modern-Era Retrospective Analysis for Research and

Applications (MERRA; Rienecker et al. 2011) and the

following version 2 (MERRA-2; Bosilovich et al. 2015;

Molod et al. 2015); and the National Centers for Envi-

ronmental Prediction (NCEP) Climate Forecast System

Reanalysis (CFSR; Saha et al. 2010). The NCEP-CFSR is

the only coupled atmosphere–ocean–land surface–sea

ice reanalysis. NCEP-CFSR,MERRA, andMERRA-2

all use different versions of the 3D variational data

assimilation (3D-Var) scheme: the Grid-point Statis-

tical Interpolation (GSI) scheme (Shao et al. 2016). For

MERRA and MERRA-2 the Incremental Analysis

Update (IAU; Bloom et al. 1996; Rienecker et al. 2011)

system is also used. The data period used for all the

reanalyses is 1979–2012, except for MERRA-2, which

starts in 1980.

A key difference between the Japan Meteorological

Agency (JMA) reanalyses and the reanalyses produced by

the other agencies is the assimilation of tropical wind re-

trievals (TWR). Wind profile data over and around trop-

ical cyclone centers are retrieved from historical data and

processed and assimilated as if they were dropsonde ob-

servations (Hatsushika et al. 2006).With the integration of

this additional wind data, the intensity of the storms in the

JMA reanalyses is found to be improved (Hatsushika et al.

2006). Another difference between the reanalyses is that

the NCEP-CFSR uses a technique to improve the repre-

sentation of TCs by adjusting the location of the tropical

vortex to its observed location before the assimilation of

storm circulation observations (Saha et al. 2010). The

MERRA-2 reanalysis also uses this method.

All the reanalyses in this study make use of quality

control processes and bias correction for the diverse

range of observations that are assimilated, such as the

variational bias correction of satellite radiances (Dee

and Uppala 2009).

TABLE 1. Summary of the reanalysis datasets used in this study. Abbreviations: 4D-Var, 4D variational data assimilation; 3D-Var, 3D

variational data assimilation; TL255L60, triangular truncation 255, with linear grid, 60 vertical levels (approximate horizontal grid spacing

in parentheses); GSI, Grid-point Statistical Interpolation; IAU, Incremental Analysis Update.

ERAI JRA-25 JRA-55 NCEP-CFSR MERRA MERRA-2

Assimilation 4D-Var 3D-Var 4D-Var 3D-Var 3D-VAR 3D-Var

GSI GSI1IAU GSI1IAU

Model resolution TL255L60 T106L40 TL319L60 T382L64 1/28 3 2/38 L72 Cubed sphere

(80 km) (120 km) (55 km) (38 km) (55 km) (50 km)

Data grid 512 3 256 288 3 145 288 3 145 720 3 361 540 3 361 576 3 361
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c. Tropical cyclone detection method

The analysis of TCs in this study relies on identifying

and tracking them. The first step is to track all tropical

disturbances, in both hemispheres, before applying two

different identification methods to separate the TCs

from other tropical systems. This is different from some

other schemes where the identification is performed

during the tracking and hence only identifies the TC

stage of the life cycle. Though not crucial to this study,

the approach taken here identifies much more of the life

cycle, including the precursor and post-extratropical

transition stages (Jones et al. 2003).

For the first step, where all systems in the domain are

tracked, the tracking methodology is based on Hodges

(1994, 1995, 1999). The domain extends to 608N in the

NH and 608S in the SH. The tracking method uses the

6-hourly relative vorticity at the levels 850, 700, and

600 hPa, vertically averaged. The data are spectrally

filtered using triangular truncation to retain total

wavenumbers 6–63. The spectral coefficients are also

tapered to further smooth the data using the filter de-

scribed in Sardeshmukh and Hoskins (1984). The

spectral filtering acts to remove the noise associated

with the smallest spatial scales in the vorticity, which

produces more reliable tracking in data of this type,

and to remove the large-scale background, which is

also found to be beneficial. The tracking proceeds by

identifying the off-grid vorticity maxima, by applying a

maximization scheme (Hodges 1995), if they exceed a

value of 5 3 1026 s21 in each time frame (SH scaled

by 21). These are initially linked together using a

nearest-neighbor approach and then refined by mini-

mizing a cost function for track smoothness, subject to

adaptive constraints on displacement distance and

track smoothness (Hodges 1999). The use of the ver-

tically averaged vorticity is different from some pre-

vious studies using this tracking algorithm, where

the single level of 850-hPa vorticity reduced to T42

resolution was used (Strachan et al. 2013; Roberts

et al. 2015; Bell et al. 2013; Bengtsson et al. 2007b;

Manganello et al. 2012). The use of the vertically av-

eraged vorticity is found to improve the temporal co-

herence when a vorticity maximum shifts between

levels (Serra et al. 2010; Fine et al. 2016) and results in

more of the systems life cycle being detected. A simple

vertical average is found to be sufficient, even though

the levels are not evenly spaced, since, once spectrally

filtered, there is little difference from using the mass

weighted vertical average. Only tracks that last at least

2 days (eight time steps) are retained for further anal-

ysis. While observed TCs can have lifetimes shorter

than 2 days, this only covers the period when they are

determined to be TCs, whereas the tracking scheme

used here aims to identify the precursor and post-TC

stages resulting in much longer lifetimes (see Figs. 1c,d)

so that using the 2-day threshold is not detrimental to

detecting nearly all the observed TCs in the reanalyses,

as shown below in the results section (section 3).

Previous methods used to detect TCs in reanalysis or

GCM data rely on applying particular criteria, repre-

sentative of the properties of TCs, such as thresholds on

intensity [e.g., mean sea level pressure (MSLP) minima,

low-level wind intensities, or vorticity extrema] and a

threshold on the warm core structure either determined

directly as a temperature anomaly or inferred from the

presence of decreasing winds or vorticity between the

lower and upper troposphere [e.g., Bengtsson et al.

(1995) and related methods]. These are often applied as

part of the tracking scheme itself, which is different from

the approach used here. Aminimum period of one day is

typically imposed, for which these criteria are satisfied

contiguously, and that they are satisfied only over the

ocean by imposing the land–seamask. The criteria based

on intensity and structure can be strongly dependent on

the model resolution and how processes important to

TC development, such as convection, microphysics, and

surface drag, are represented in the model. This has

resulted in some studies using resolution-dependent

identification criteria (Walsh et al. 2007; Manganello

et al. 2012) or tuning the identification criteria to max-

imize the detected TCs, for example in reanalyses

compared with observations (Murakami 2014), and

some studies have used basin-dependent criteria

(Camargo et al. 2005). The study of Horn et al. (2014)

has shown that the subjective choice of different iden-

tification criteria is the main reason for differences be-

tween the numbers of TCs identified by different

identification schemes.

In this study a dual approach is taken to isolate the

TCs from all the tracked systems. Taking the tracks

identified in the first stage, where all systems are

tracked, the first approach used to isolate the TCs aims

to evaluate which of the observed TCs in the IBTrACS

dataset can be found in the reanalyses, without ap-

plying any criteria dependent on intensity or structure.

This approach makes use of spatiotemporal matching:

a track in the reanalyses matches with a track in

IBTrACS if the mean separation distance between

them, computed over the time period that they over-

lap, is less than 48 (geodesic) and is the least mean

separation distance if more than one track satisfies this

criterion, where any amount of temporal overlap is

allowed. This will be termed the ‘‘direct matching’’

method. A similar approach has previously been used

for extratropical cyclones (Hodges et al. 2003). The
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relaxed criterion on the temporal overlap is cho-

sen because, in general, the TCs in IBTrACS have

much shorter lifetimes compared to the tracks in the

reanalyses produced by the tracking scheme. Several

diagnostics are produced from the matched tracks, such

as the mean separation distance distribution, lifetime

distribution, and intensity distribution based on low-

level winds, at 10m and 925hPa, and MSLP.

The second approach used to isolate the TCs from all

the tracked systems is to objectively identify them

using a typical set of identification criteria based on in-

tensity and structure; this will be termed the ‘‘objective

detection’’ method. The criteria used are similar to those

used previously with this tracking algorithm (Bengtsson

et al. 2007a,b; Strachan et al. 2013). This requires adding

additional fields to the tracks, namely the T63 vorticity

at levels 850 and 700–200 hPa to provide intensity and

warm core criteria. This is done by recursively searching

for a vorticity maximum at the different levels using

the maximum at the previous level as a starting point

for a steepest ascent maximization applied to the

B-spline interpolated field. A search radius of 58 (geo-
desic) is used centered on the location at the previ-

ous level. The same approach is used in the Southern

Hemisphere by multiplying fields by21. Also added are

the mean sea level pressure minimum and maximum

winds at 10m and 925hPa as alternative measures of

TC intensity. For MSLP a steepest descent method is

used with the B-spline interpolation and a search radius

of 58 (geodesic) centered on the tracked vorticity center

to find the closest pressure minimum, while for the

winds a direct search for themaximumwinds within 68 of
the tracked center is used. The criteria for identification

are the following:

1) the T63 relative vorticity at 850 hPa must attain a

threshold of at least 6 3 1025 s21;

2) the difference in vorticity between 850 and 200hPa

(at T63 resolution) must be greater than 63 1025 s21

to provide evidence of a warm core;

3) the T63 vorticity center must exist at each level

between 850 and 200 hPa for a coherent vertical

structure;

4) criteria 1 to 3 must be jointly attained for a minimum

of four consecutive time steps (one day) and only

apply over the oceans; and

5) tracks must start within 308S–308N.

The approach used here means that the tracking and

identification is performed at a common resolution for

all the reanalyses, making the tracking and identification

as resolution independent as possible, although the ac-

tual model resolution will still have some impact on the

identification.

The TCs identified by the objective detection method

are alsomatched against the observed tracks in IBTrACS,

using the same criteria as in the direct matching

method, to determine the hit and miss rates of the

identification scheme.

The tracking is applied to each full year, January–

December, for the Northern Hemisphere (NH) and July

to June the following year in the Southern Hemisphere

(SH), resulting in 34 years in the NH and 33 in the SH

(33 and 32 respectively for MERRA-2).

3. Results

In this section the ability of the different reanalyses to

simulate different aspects of TC behavior is assessed and

compared to the observed TC activity, as represented by

the IBTrACS database described in the best-track

dataset subsection.

a. Direct matching results

The numbers of TCs in IBTrACS that match with a

storm in the reanalyses for each reanalysis using the

direct matching method are summarized in Table 2 for

both NH and SH. This shows that ;95% of the TCs in

IBTrACS are identified in the reanalyses in the NH

and ;92% in the SH. The different reanalyses are re-

markably similar in this respect. In general the TCs not

found in the reanalyses tend to be the weakest and/or

shortest-lived TCs in IBTrACS in both hemispheres.

Some of the missing TCs fail to pass the 2-day lifetime

threshold imposed on the reanalysis tracks. There is

also some evidence that the number of missing TCs in

the reanalyses, according to the matching criteria, is

reduced in the later period, after 2000: compared to

the earlier period, the number of matches increases to

;98% in both NH and SH. This improvement may be

associated with the assimilation of improved observa-

tions, in particular the availability of surface scatter-

ometer winds from the QuikSCAT satellite data from

mid-1999 until the end of 2009 and continuing with

similar data from other remote sensing platforms

since then.

To see how the TCs identified in the reanalyses by the

direct matching method compare with those in IBTrACS

several sets of statistics are produced.

1) LOCATION

Figures 1a and 1b show distributions for the mean

separation distance (geodesic distance) between the

identical reanalysis tracks and those of IBTrACS, ob-

tained using the direct matching method, in the NH and

SH respectively. In the NH (Fig. 1a) the majority of TCs

identified in the reanalyses have a mean separation from

15 JULY 2017 HODGES ET AL . 5247



those in IBTrACS of less than 28 (220km), with the peak

of the distribution for each reanalysis typically at less than

18 (110km). The smallest mean separation distances oc-

cur for JRA-55, with the distribution peak at 0.58 (56km)

and the largest forMERRA, with the distribution peak at

18 and the other reanalysis somewhere in between. The

JRA-55 separation distances are comparable with those

from the much higher-resolution (T1279; 16km) opera-

tional analyses of ECMWF (Hodges and Emerton 2015;

see the appendix therein), which may be a consequence

of the assimilation of the TWR observations in JRA-55.

This conjecture is strengthened by the fact that JRA-25,

which also assimilates TWR data, is comparable in

terms of the mean separation distances to the much

higher resolution NCEP-CFSR. It is also apparent that

MERRA-2 has improved over MERRA with respect

to the separation distances. In general, the mean sep-

aration results for the NH (Fig. 1a) are consistent with

those found by Schenkel and Hart (2012) for the

identical reanalyses considered. In the SH (Fig. 1b) a

rather similar picture is seen, with each of the re-

analyses occurring in the same order as in the NH of

best to worse. While the separation distances appear

slightly larger for some reanalyses in the SH (i.e.,

ERAI and MERRA), the others are comparable with

the results in the NH, highlighting the improvement in

the SH in the more recent reanalyses compared with

older reanalyses.

2) LIFETIME

Figures 1c and 1d show the lifetime distributions in the

NH and SH respectively. In the NH it is apparent that

the TCs identified in the reanalyses have much longer

lifetimes than the TCs in the observations. This is a

consequence of not imposing any TC identification cri-

teria during the tracking. Imposing the TC detection

criteria during the tracking would truncate the tracks to

the TC stage alone and introduce a dependency of the

lifetime on the chosen criteria and how well TCs are

represented in the reanalyses in terms of intensity and

structure. The extended life cycles include pre-TC stages

such as easterly waves and the stage after extratropical

transition. Some of the reanalysis TCs can exist for

longer than one month, in which time a precursor dis-

turbance can travel across an ocean basin, develop

into a TC, and recurve to high latitudes undergoing

extratropical transition, whereas none of the observed

TC tracks lasts this long. The distributions for the dif-

ferent reanalyses are quite close together, showing that

rather similar lifetimes are obtained for all the re-

analyses. A similar set of results is obtained in the SH,

although the distributions for the reanalyses are a little

noisier, due to the smaller number of observed TCs in

this hemisphere.

3) LATITUDE OF MAXIMUM INTENSITY

The latitude at which the maximum intensity is

attained in terms of the 10-m winds is shown for the NH

and SH in Figs. 1e and 1f, respectively. In the NH the

distributions show that, whilemost TCs in the reanalyses

attain their maximum intensity at similar latitudes to

those in the observations, there are some TCs that attain

their maximum intensity at much higher latitudes. A

possible cause for this behavior is that, because of the

longer life cycles that are identified in the reanalyses,

some storms only attain their maximum intensity as they

recurve to higher latitudes and become larger and better

represented at synoptic scales. While this could be ad-

dressed by restricting the reanalysis tracks to just the TC

stage, this would mean either truncating the tracks

where they overlap with the best-track data (Hodges

and Emerton 2015) or using the detection criteria based

on intensity and structure discussed above to define the

TC part of the life cycle. Either of these approaches

introduces a degree of subjectivity: the first as it depends

on the different operational practices of the operational

agencies, and the second because it depends on howwell

TCs are represented in the different reanalyses. Also,

for this part of the study, we want to see what exactly is

in the reanalyses in terms of TC life cycle and restricting

the life cycles defeats this objective. This is also impor-

tant for future work, such as studies of extratropical

TABLE 2. The POD for the NH and SH for the direct matching method applied to the reanalysis tracks (cf. section 3a) and the POD and

FAR for the NH and SH based on the objective detection method [cf. section 3b(2)].

ERAI JRA-25 JRA-55 NCEP-CFSR MERRA MERRA-2

POD

NH direct match 0.95 0.95 0.95 0.95 0.95 0.95

NH objective 0.60 0.76 0.80 0.70 0.51 0.67

SH direct match 0.93 0.93 0.94 0.93 0.90 0.93

SH objective 0.76 0.84 0.87 0.83 0.61 0.79

FAR

NH objective 0.28 0.16 0.29 0.36 0.21 0.36

SH objective 0.60 0.43 0.58 0.58 0.54 0.63
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transition and risk associated with TCs and their later

life cycle stages in extratropical regions. A similar situ-

ation may also occur for the TC stage itself, where the

relatively low resolution of the reanalyses means that

TCs are not well represented at the small spatial scales

of TCs in the tropics, but become better represented as

they move to higher latitudes. A similar picture is seen

for the SH (Fig. 1f). This type of behavior is often seen

for TCs identified in relatively low-resolution climate

model simulations (Manganello et al. 2012).

4) INTENSITY

Also examined are the maximum intensity distribu-

tions of the TCs for three intensity measures: minimum

FIG. 1. (a),(b) Distribution of mean separation distances (geodesic degrees, 18 ’ 111 km) between the re-

analysis tracks and those of IBTrACS for tracks that match using the direct matching method (cf. section 3a);

(c),(d) distribution of lifetimes (days) for thematched tracks, and (e),(f) the distribution of latitudes at which the

matched tracks attain the peak intensity based on the 10-m winds, for the (left) NH and (right) SH.
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MSLP and maximum 10-m and 925-hPa wind speeds,

which are shown in Fig. 2 for both NH and SH TCs. For

bothMSLP (Figs. 2a,b) and 10-mwind speeds (Figs. 2c,d)

in the NH and SH it is clear that all the reanalyses

underestimate the intensity of TCs compared to the

observations and that the intensities are model de-

pendent. This is not surprising considering the relatively

low spatial resolutions of the reanalyses where the

assimilation of observations cannot correct for this.

Previous studies with dynamical downscaling of indi-

vidual historical TCs, such as Katrina, have shown that

resolutions of approximately 1–5 km with a non-

hydrostatic model are necessary to simulate TC inner-

core processes correctly in order to enable the right

magnitude of wind intensities (Davis et al. 2008) to be

simulated. However, some studies using hydrostatic

models with parameterized convection at resolutions

of ;10 km can certainly produce TCs with depths as

FIG. 2. As in Fig. 1, but for the peak attained intensities based on the (a),(b) MSLP, (c),(d) 10-m winds, and

(e),(f) 925-hPa winds.
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large if not larger than observed, though winds can

still be too weak (Manganello et al. 2012). Coupling to

the ocean has also been found to be important in cor-

rectly simulating TC intensity (Kilic and Raible 2013),

although only the NCEP-CFSR applies any such cou-

pling and Previous studies with dynamical downscaling.

The results for intensity based on theMSLP (Figs. 2a,b)

show that in general the more recent reanalyses,

NCEP-CFSR, JRA-55, and MERRA-2, have deeper

TCs; this is more evident in the SH, although in both

hemispheres few TCs reach minimum pressures below

940hPa. The more recent reanalyses may be performing

slightly better with respect to this intensity measure,

possibly due to better use of the available observations

and improved models, and not necessarily due to reso-

lution. For 10-m wind speeds (Figs. 2c,d), much larger

differences are seen between the different reanalyses,

although, as already mentioned, none of them can sim-

ulate the strongest intensities seen in the observations.

NCEP-CFSR has the most intense TCs in terms of 10-m

wind speeds, with some TCs almost attaining intensities

of 50ms21 (category 3 TS) but with no category 4 or 5

(Saffir–Simpson scale) TSs. The weakest maximum 10-m

wind speed intensities are produced by the MERRA

reanalysis with no TCs surpassing 30ms21, which barely

reaches category 1 TS. However, the more recent

MERRA-2 reanalysis shows a significant improvement

being comparable with JRA-55 in having TCs that can

almost attain 10-m wind speeds of 40m s21 (category 1

TS), although this is less than those seen for the NCEP-

CFSR. The results for the reanalyses’ TC 10-m wind

speeds show similar behavior in both hemispheres. The

results for both 10-m wind and MSLP maximum in-

tensities are generally consistent with those of Schenkel

and Hart (2012) for the NH.

One problem with using the 10-m winds from the

reanalyses is that they are not a direct model prognostic

field but rather are computed as a diagnostic, although

not necessarily in the sameway for each reanalysis. They

are generally computed as an extrapolation from the

lowest model level to the surface using profile functions

and corrected when over land for terrain roughness to

conform to the WMO standard for SYNOP observa-

tions (see, e.g., ECMWF 2015). However, for some re-

analyses this is not done for the actual analyses: for

example, in MERRA, it is performed during the IAU

cycle and so does not experience the full analysis in-

crement, and is an average over four model time steps

(M. Bosilovich, NASA, 2016, personal communication).

To evaluate the uncertainty further, the maximum wind

speeds at the 925-hPa pressure level associated with the

TCs are also considered (pressure level winds are ob-

tained by interpolation between model levels); the TC

925-hPa winds are shown in Figs. 2e and 2f for the NH

and SH, respectively. The downside to using the 925-hPa

winds is that there are no available observations with

which to compare, although this is not critical here,

where we just want to see if the same differences be-

tween the reanalyses, as seen for 10-m winds, occur at

this level. The results for the wind speed intensity at

925 hPa show a rather different perspective from those

at 10m, with both NCEP-CFSR and MERRA-2 having

comparable values in the tail of the distribution with

values as high as 60ms21. The MERRA reanalysis is

now comparable with the other reanalyses of JRA-55,

JRA-25, and ERAI.

5) WIND SPEED–PRESSURE RELATIONSHIP

The wind speed–pressure relationship is often used by

the operational centers to estimate winds from pressure

measurements and surface pressure from wind mea-

surements, for which various quadratic empirical re-

lationships have been developed based on cyclostrophic

balance (Knaff and Zehr 2007). Hence, the wind–

pressure relationship of TCs is often considered in

studies of TCs in models and reanalyses (Roberts et al.

2015) to compare with the observed relationship, al-

though it should be noted that the observations may

themselves be estimated from one of the empirical re-

lationships, which can differ between agencies (Knaff

and Zehr 2007).

Figure 3a shows the wind–pressure relationship for

the observations and the TCs identified in the different

reanalyses using the direct matching method in the NH.

The wind–pressure relationship is determined using the

10-m wind speeds and MSLP values, by determining

the maximum attained 10-m wind speed and taking the

MSLP value at the same time. The results show that all

the reanalyses reflect the underestimate of both the

10-m wind speeds and MSLP depths of the TCs, this

being most prominent for MERRA. This can be related

to the radius of maximum wind (RMW), computed for

the reanalyses at the time of maximum 10-m wind in-

tensity, and shown for the NH in Fig. 3c. The RMW is

not available for all the agencies that contribute to

IBTrACS but we estimate it at the time of maximum

wind intensity, based on the simple Rankine model de-

scribed by Knaff and Zehr (2007). This gives RMW

values for the observations predominately below

;100 km (18) and a peak around ;50km (0.58). This is
consistent with the findings of Kimball and Mulekar

(2004) for North Atlantic TSs who made use of an ex-

tended ‘‘best track’’ dataset.

For all the reanalyses the RMW are seen to be too

large (Fig. 3c). Assuming gradient wind balance for the

TCs, and the fact that RMWs are too large and wind
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intensities are too low for the reanalyses, implies that the

pressure difference between the storm centers and the

environment is also too low, consistent with the wind

speed–pressure relationship in Fig. 3a. The fact that the

NCEP-CFSR has the strongest wind intensities and one

of the smallest RMWs is also consistent with the result in

Fig. 3a that NCEP-CFSR is closest to the observed wind

speed–pressure relationship, whereas MERRA, which

has the weakest maximumwind speeds and large RMWs,

is the worst of the reanalyses in this respect. MERRA-2

shows a significant improvement over MERRA in terms

of the wind speed–pressure relationship, which can be

understood in terms of the improved maximum wind

speeds and lower RMWs. In fact, MERRA-2 has the

lowest RMWs, although is not as strong in intensity (10-m

wind speed) as NCEP-CFSR.

The fact that NCEP-CFSR appears to perform the

best in terms of the wind speed–pressure relationship

may be the result of the vortex relocation scheme used

by the NCEP-CFSR assimilation system, which, as

pointed out by Schenkel and Hart (2012), will result in

improved vortex location, which in turn may lead to im-

proved TC intensities as a result of the TC being in the

correct environment. Allied to this, Schenkel and Hart

(2012) also pointed out that observations within the TC

vicinity are less likely to be rejected by the assimilation

scheme, due to smaller differences with the first-guess

field. However, the situation is likely more complex than

this, asMERRA-2 also uses the vortex relocationmethod

and has the lowest RMWs but is not the most intense in

terms of wind speed. JRA-55, on the other hand, with a

similar resolution toMERRA-2, has the smallest location

errors (Figs. 1a,b), and does not use vortex relocation,

but it does assimilate best-track data as synthetic

dropsondes (Hatsushika et al. 2006) and has compa-

rable intensities to MERRA-2 and a wind speed–

pressure relationship, also very similar to MERRA-2.

Hence, it appears that there are complex trade-offs

occurring within the assimilation systems.

In the SH the wind speed pressure relationship

(Fig. 3b) andRMWs (Fig. 3d) appear to be very similar to

those in the NH: in particular the wind speed–pressure

FIG. 3.Wind–pressure relationships for IBTrACS and each reanalysis, and distributions for the radius of maximum

winds for the reanalyses, based on the direct matchingmethod (cf. section 3a): (a),(b) NH and SH 10-mwind speed vs

MSLP, and (c),(d) NH and SH radius of maximum winds, respectively.
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relationship appears to be closely associated with the

ordering of the 10-mwind speeds of the reanalyses shown

in Fig. 2b.

b. Objective identification

Following the assessment of how well TCs are rep-

resented in the chosen reanalyses it is of interest to see

how existing objective TC identification schemes per-

form in order to try and understand the impacts of the

differences between reanalyses on objective TC iden-

tification. This is important, as objective schemes are

the only way to identify TCs in climate model simu-

lations and they are often contrasted with reanalyses

as a means of verification at comparable resolutions.

As Murakami (2014) has shown, detection schemes

have to be tuned to particular reanalyses to optimally

detect TC–TS frequencies. This is also what tends to

happens in operational settings, where detection

schemes are often tuned to a particular operational

setup, so that applying them to data from a different

operational center can give very different numbers

of detected TCs from the in-house method [cf. Fig. 22 of

Kobayashi et al. (2015)]. Some schemes also adjust

identification criteria by ocean basin (Camargo and

Zebiak 2002) to account for model biases. However,

these are not appealing approaches in the climate model

context, where a fixed set of criteria, applied in

a common resolution framework, will provide a better

comparison between different model simulations or

different climate scenarios (Shaevitz et al. 2014).

To assess how one such scheme performs, the objec-

tive detection method described in the methodology

section, based on the vorticity at multiple levels between

850 and 200 hPa, is applied to the vorticity tracks ob-

tained from the tracking of all vorticity centers.

1) ANNUAL COUNTS

The annual average TC counts are determined for each

ocean basin (Fig. 4) and are shown in Fig. 5. In the NH,

the annual number is in reasonably good agreement with

the observations of IBTrACS apart from MERRA,

which has ;30 fewer identified TCs, while the other re-

analyses are slightly over or under in number, a result also

previously noted by Murakami (2014) using the same

criteria. However, in the SH the identification has re-

sulted in a much higher number than in the observations,

which occurs for all the ocean basins. The overestimation

is particularly large in the South Pacific (SP) region; the

South Atlantic (SA) region also has more identified sys-

tems than are in the observations. These differences will

be discussed further in the discussion section (section 4).

2) MATCHING AGAINST IBTRACS

To further analyze the objectively identified TCs, they

are matched against the observed TCs of IBTrACS,

using the same matching method as used for the direct

matching method, to identify the common storms be-

tween the two and the false positive and negative de-

tections. The results of this track matching are shown in

Table 2 in terms of the probability of detection (POD)

and false alarm rate (FAR). The POD is defined here as

the number of matched storms for each reanalysis di-

vided by the total number of storms in the observations,

and the FAR by the number of nonmatched storms in

each reanalyses divided by the total number of storms in

the same reanalysis. Also shown in Table 2, for com-

parison, are the POD for the direct matching results,

before applying the objective criteria, discussed in the

‘‘Direct matching results’’ subsection (section 3a), which

shows an almost uniform detection rate of 0.95 across all

FIG. 4. The seven basins used in this study, based on the IBTrACS definition—NI: north

Indian Ocean, WP: western Pacific, EP: eastern Pacific, NA: North Atlantic, SI: south Indian

Ocean, SP: South Pacific, and SA: South Atlantic.
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the reanalyses in both hemispheres, although this is

lower in the SH than the NH. The reason why the POD

for the SH is lower for the precriteria matching is likely

related to differences in the observations that are as-

similated in the reanalyses between the two hemi-

spheres, as there is no dependence on structure or

intensity for detection for these results.

For the POD based on using the objective detection

method the values are much lower, with the best de-

tection for JRA-55 and the worst for MERRA in both

hemispheres, although POD is higher in the SH than the

NH, possibly due to differences in sample sizes. The

FAR (Table 2) shows values ranging from 0.16 for JRA-

25 to 0.36 for NCEP-CFSR in the NH. The fact that

JRA-25 has the lowest FAR may be related to this re-

analysis having the lowest resolution and hence detect-

ing fewer small-scale and possibly weaker storms; this

could be investigated using GCMs of varying resolution.

In the SH, FAR is much higher, as might be expected

from the previous discussion, due mostly to the higher

number of TCs detected compared with the observa-

tions. From these values of POD and FAR it is apparent

that, although similar numbers of TCs are detected in

the NH using the objective detection method, they need

not be identical to the ones in the observations.

To explore the POD and FAR values in more detail

the storms that are in the observations and that match

and do not match with those identified in the reanalyses,

using both identification methods, preobjective direct

matching and postobjective matching, are further ana-

lyzed relative to their attained category in the observa-

tions according to the Saffir–Simpson scale determined

from the 1-min observed winds. Hence, the IBTrACS

storms are partitioned into the categories according to

the 1-min winds before matching them against the re-

analysis tracks, as previously described. Since different

agencies use different wind intensity scales, this ap-

proach provides a more consistent classification across

the different ocean basins. Since some weak storms in

IBTrACS have no wind information, they are excluded

from this analysis; Murakami (2014) excluded tropical

depressions from their study, although it is unclear how

this is achieved for the reanalyses, apart from applying

the agency wind thresholds.

The results of this analysis by category are shown in

Tables 3 and 4 for the NH and SH, respectively. In the

FIG. 5. The average number of TCs per year for each of the seven basins (defined in Fig. 4) for IBTrACS and identified in the reanalyses

based on the objective detection method (cf. section 3b). Vertical lines at the tops of the bars indicate the standard deviation.
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NH, Table 3 shows that for the objectively identified

TCs it is the weakest categories that have the poorest

level of matches between the reanalyses and IBTrACS,

in particular for the tropical depressions, although

many tropical depressions in IBTrACS are excluded

due to lack of wind information. However, for the TS

category (between tropical depression and category 1)

the best-performing reanalyses at this level, JRA-25

and JRA-55, match with 78.5% of IBTrACS storms,

while for the worst-performing (MERRA) only 41.6%

of IBTrACS storms match. For the higher TS wind

speed categories the percentage of matches with

IBTrACS steadily increases with category on progres-

sively smaller sample sizes: 92%, 98%, 99.5%, and 100%

for from category 1 to category 5 (CAT1–CAT5), re-

spectively, for the best-performing JRA-25 and JRA-55

and considerably worse for MERRA (63.5%, 75%, 83%,

82.5%, and 92%) with NCEP-CFSR and MERRA-2

comparable with JRA-25 and JRA-55. Recalculating

the POD for just CAT1–CAT5 TS (Table 5) the best-

performing reanalyses, JRA-25 and JRA-55, now have

values 0.95.

In the SH, Table 4 shows that a fairly similar situation

occurs as in the NH for the objectively identified TCs,

except that it is apparent there are virtually no tropical

depressions available to compare with in the observa-

tions, either because very few of this category of storms

have any wind values or, more likely, that they are not

generally included in the best-track datasets in this

hemisphere; this is discussed further in section 4. The

best degree of matches again occurs for the JRA-25 and

JRA-55, ranging from 84% to 89% for the weakest TSs

(TS category) to 95% for CAT5.

The POD, for CAT1–CAT5 objectively identified TS

only, shown in Table 5, shows that for this intensity

range the values are comparable in both hemispheres

TABLE 3. Storms that match and do not match with IBTrACS in the NH by storm category, for each reanalysis, storms identified by the

objective detection method applied to the reanalysis tracks and, in parentheses, the direct matching method, performed in section 3a.

Values are number per year.

Category ERAI JRA-25 JRA-55 NCEP-CFSR MERRA MERRA-2

TD Match 2.91 (7.94) 3.26 (7.94) 5.24 (8.03) 3.50 (8.00) 2.29 (7.85) 3.48 (7.67)

No match 5.56 (0.53) 5.21 (0.53) 3.24 (0.44) 4.97 (0.47) 6.18 (0.62) 4.91 (0.73)

TS Match 11.85 (22.38) 18.62 (22.53) 18.32 (22.53) 14.76 (22.32) 9.85 (22.44) 14.24 (22.45)

No match 11.85 (1.32) 5.09 (1.18) 5.38 (1.18) 8.94 (1.38) 13.85 (1.26) 9.73 (1.52)

CAT1 Match 8.74 (12.23) 11.18 (12.23) 11.17 (12.24) 10.09 (12.12) 7.74 (12.21) 9.76 (12.33)

No match 3.44 (0.00) 1.00 (0.00) 1.00 (0.00) 2.09 (0.06) 4.44 (0.00) 2.55 (0.00)

CAT2 Match 5.29 (6.35) 6.15 (6.38) 6.00 (6.35) 5.82 (6.38) 4.76 (6.35) 5.64 (6.39)

No match 1.06 (0.00) 0.21 (0.00) 0.35 (0.00) 0.53 (0.00) 1.59 (0.00) 0.73 (0.00)

CAT3 Match 6.15 (7.00) 6.91 (7.06) 6.82 (7.03) 6.71 (7.06) 5.82 (7.03) 6.42 (7.06)

No match 0.88 (0.03) 0.12 (0.00) 0.21 (0.00) 0.32 (0.00) 1.21 (0.00) 0.64 (0.00)

CAT4 Match 5.97 (6.79) 6.76 (6.79) 6.71 (6.74) 6.47 (6.79) 5.76 (6.76) 6.48 (6.76)

No match 0.82 (0.00) 0.03 (0.00) 0.09 (0.06) 0.32 (0.00) 1.03 (0.03) 0.33 (0.06)

CAT5 Match 1.09 (1.12) 1.12 (1.12) 1.12 (1.12) 1.12 (1.12) 1.03 (1.12) 1.09 (1.09)

No match 0.03 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.09 (0.00) 0.00 (0.00)

TABLE 4. As in Table 3, but for the SH.

Category ERAI JRA-25 JRA-55 NCEP-CFSR MERRA MERRA-2

TD Match 0.42 (0.58) 0.48 (0.61) 0.52 (0.58) 0.48 (0.61) 0.21 (0.49) 0.44 (0.48)

No match 0.18 (0.03) 0.12 (0.00) 0.09 (0.03) 0.12 (0.00) 0.39 (0.12) 0.13 (0.06)

TS Match 7.15 (9.09) 8.03 (9.06) 8.55 (9.09) 7.76 (9.18) 5.67 (9.00) 7.59 (8.91)

No match 2.42 (0.48) 1.55 (0.51) 1.03 (0.48) 1.82 (0.39) 3.91 (0.58) 2.00 (0.39)

CAT1 Match 4.55 (5.36) 5.09 (5.36) 5.12 (5.39) 4.94 (5.39) 3.79 (5.33) 4.75 (5.21)

No match 0.88 (0.06) 0.33 (0.06) 0.30 (0.03) 0.48 (0.03) 1.64 (0.09) 0.69 (0.06)

CAT2 Match 2.21 (2.64) 2.58 (2.61) 2.55 (2.64) 2.52 (2.64) 2.03 (2.61) 2.38 (2.61)

No match 0.61 (0.18) 0.24 (0.21) 0.27 (0.18) 0.30 (0.18) 0.79 (0.21) 0.53 (0.21)

CAT3 Match 2.55 (2.73) 2.61 (2.70) 2.70 (2.73) 2.64 (2.70) 2.12 (2.70) 2.63 (2.73)

No match 0.18 (0.00) 0.12 (0.03) 0.03 (0.00) 0.09 (0.03) 0.61 (0.03) 0.19 (0.00)

CAT4 Match 2.69 (2.76) 2.73 (2.73) 2.64 (2.76) 2.76 (2.76) 2.33 (2.76) 2.78 (2.76)

No match 0.06 (0.00) 0.03 (0.03) 0.12 (0.00) 0.00 (0.00) 0.42 (0.00) 0.06 (0.00)

CAT5 Match 0.58 (0.58) 0.51 (0.52) 0.55 (0.58) 0.55 (0.55) 0.55 (0.58) 0.59 (0.58)

No match 0.00 (0.00) 0.06 (0.06) 0.03 (0.00) 0.03 (0.03) 0.03 (0.00) 0.00 (0.00)
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and comparable with the results in the study of

Murakami (2014), who restricted their study to this in-

tensity range, although they used different skill metrics

compared to here and in the study here there is no

special tuning of the objective detection parameters for

each reanalysis, as in Murakami (2014).

For the TCs identified using the direct matching

method (preobjective), previously discussed in section

3a, the matching by observation category (not shown)

indicates consistently high POD values as reported in

section 3a for all categories and reanalyses.

To understand the nature of the TCs, identified by the

objective detectionmethod, in the reanalyses that do not

match with the IBTrACS TCs, in particular in the SH,

those that do not match are binned according to the

latitude of their genesis. For the SH this is shown in

Fig. 6a. This shows essentially two groups of storms:

those with genesis within 08–208S and those with gen-

esis occurring south of 208S. The genesis for all TCs in

IBTrACS is almost entirely within 08–208S (not shown).

Examining these two groups of nonmatching objec-

tively identified TCs separately, a scan of the tropical

storm advisories (discussed later) indicates that some

of the identified storms in the first group can be found

in the advisories but not IBTrACS; this is discussed

further in section 4. Figure 6b shows examples of two

tracks identified in ERAI that do not match with IBTrACS:

the track labeled ‘‘Storm 1’’ occurs in January 2011

and is a storm that possibly occurs in the RMSC

Nadi advisories, named 02F, but is not in IBTrACS,

probably because it did not develop further into a true

TS. Even so, it seems a substantial storm with 10-m

winds in ERAI over 20m s21 while near Australia.

Figure 6c shows the infrared satellite image, which

presents an asymmetric structure, unlike a true TS,

with this storm more likely to be a hybrid warm core

TC. The second storm shown in Fig. 6b originates

south of 208S, where very few IBTrACS storms have

their genesis. This particular storm seems to have

formed in the vicinity of the South Pacific convergence

zone (SPCZ) and travels south eastward with rela-

tively weak 10-m winds in ERAI ;15m s21 through

a region of very little habitable land. It has no refer-

ence in any tropical storm advisories, yet its structure

in the satellite imagery (Fig. 6d) shows some similari-

ties with Storm 1 (Fig. 6c) and it may also be

a hybrid TC. As shown by Yanase et al. (2014) (Fig. 1)

using the Hart phase space classification of cyclones

(Hart 2003), applied to reanalysis data, storms found

between 208 and 408S in the SH summer tend to be

hybrid storms. There are also storms in IBTrACS that

do not match with an analysis track, but these tend to

be the weakest storms below category 1 as shown in

Tables 3 and 4. These issues are further discussed in

section 4.

4. Discussion

There are several possibilities for the poorer perfor-

mance of the objective detection method in the SH

comparedwith theNH in terms of the detection, relative

to the observed TCs in IBTrACS. As shown above, the

discrepancy in numbers is closely associated with the

weakest storms, tropical depressions and tropical storms

(below category 1). The first possibility for the differ-

ences between the NH and SH objective detection may

be due to different biases in the best-track data in the SH

compared with the NH; the second is due to different

biases in the representation of TCs in the reanalyses

between the NH and SH; and the third is due to the

selection criteria used by the objective detectionmethod

to identify TCs in the reanalyses being not selective

enough, or being mainly tuned to the NH. These will be

addressed in turn.

In terms of possible biases in the IBTrACS observa-

tions, it is possible that the SH is observed differently

than in the NH. The SH is sparsely inhabited in partic-

ular regions, such as the SP and SA, so that less emphasis

may be placed on detection except for the most intense

systems likely to make landfall (Kucas et al. 2014). Re-

lated to this is the application of different storm de-

tection procedures in the different warning centers that

produce the best-track data (Velden et al. 2006b; Kueh

2012). Storm classification is primarily based on the in-

terpretation of satellite observations using empirical

relationships such as the Dvorak scheme (Velden et al.

2006a); there is little aircraft reconnaissance apart for

the North Atlantic with some other limited coverage

associated with field campaigns and in specific re-

gions, such as Taiwan (DOTSTAR; Wu et al. 2005).

The uncertainties of applying operational detection

and classification schemes when storms are relatively

TABLE 5. The POD for the NH and SH for the TC obtained from the reanalyses by the objective detection method that match with the

observed CAT1–CAT5 TS only.

ERAI JRA-25 JRA-55 NCEP-CFSR MERRA MERRA-2

NH objective 0.81 0.96 0.95 0.90 0.75 0.87

SH objective 0.88 0.91 0.95 0.94 0.75 0.92
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weak and show a poor organization (Torn and Snyder

2012) may make deciding between whether a tropical

disturbance should be classified as a tropical depression

and counted in best track, or is some other tropical storm

such as a subtropical or hybrid cyclone, difficult and

dependent on subjective forecaster interpretation.

Gyakum (2011) states that ‘‘there is presently no single

set of objective criteria that, if applied operationally,

FIG. 6. (a) Latitude at which genesis occurs in the SH for the objectively identified TCs in the reanalyses that do

not match with IBTrACS (number per year). (b) Examples of two tracks identified in the ERAI with no

matching track in IBTrACS [colored dots indicate 10-m wind speeds (m s21)]. (c) MTSAT infrared satellite

image of Storm 1 in (b) on 1800 UTC 1 Jan 2011. (d) GOES West infrared satellite image of Storm 2 in (b) on

1200 UTC 24 Dec 2011.
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would irrefutably support a forecaster’s analysis of cy-

clone type (subtropical, hybrid or tropical)’’ (p. 1.6.23).

It is also unclear whether all agencies report weaker

storms such as tropical depressions consistently in their

best-track analyses, and hence whether they make their

way into IBTrACS. For example, HURDAT, which is

produced by the National Hurricane Center (NHC) and

forms part of IBTrACS and covers the North Atlantic

and northeastern Pacific, includes subtropical cyclones

(Landsea and Franklin 2013), whereas the Joint Ty-

phoon Warning Center (JTWC), which covers the

western North Pacific, South Pacific, and southern and

northern areas of the Indian Ocean, do not routinely

include subtropical cyclones (Kucas et al. 2014; Gyakum

2011) unless they undergo tropical transition (TT)

(Bentley et al. 2016; McTaggart-Cowan et al. 2013).

Even within a single ocean basin where multiple

agencies are operational, considerable uncertainties

exist between different best-track datasets. For exam-

ple, Ren et al. (2011) and Barcikowska et al. (2012)

highlight significant differences between JTWC and

JMA best-track data in the western North Pacific

(WNP) in terms of frequency and intensity of TCs, with

better agreement for frequencies for category 2 TS and

above; this is exactly where the objective detection

scheme performs best in both hemispheres.

Therefore, uncertainties in the interpretation of the

observations for the weaker tropical storms, and dif-

ferent agency operational procedures, may result in

their exclusion from the best-track archive. Several

reassessments of best-track data, in particular in the SH,

have resulted in the inclusion of some additional storms

but also the removal of some others (Diamond et al.

2012), so that actual numbers are not significantly

changed.

However, evidence that the SHmay be being treated

differently for tropical storms in the observations than

in the NH, in particular with respect to the weaker

subtropical and hybrid storms, can be seen by consid-

ering the tropical storm advisories. Information on

weak tropical disturbances, together with TCs, is

available in text-based reports from the warning

agencies, such as the JTWC ‘‘significant tropical cy-

clone advisories.’’ However, not all this information is

included in the best-track postseason analysis and

hence IBTrACS. For example, in the South Pacific,

IBTrACS reports five storms in the 2011/12 season

(July–June) but scanning the advisories (from RSMC

Nadi) results in a much larger number of tropical dis-

turbances, ;20.

A more quantitative comparison can be made using

the combined advisories from each warning center, for

each year, in each hemisphere (July–June in the SH).

This information has been collated by Padgett and

Young (2016) from 1998 onward for both hemispheres,

although some very weak systems are not included.

Comparing the numbers in the advisories with those in

IBTrACS over the period 1998–2012, which overlaps

with our study period, in the NH, IBTrACS has on av-

erage 69 storms per year and the advisories 72, hence the

advisories have ;4% more storms; in contrast, for the

SH, IBTrACS has on average 28 storms per year and

the advisories 39, hence the advisories have;40%more

storms. Hence in the NH it appears that a much larger

proportion of the storms in the advisories make their

way into the best-track data than in the SH. This can

partially explain the difference in numbers between

IBTrACS and the TCs identified by the objective de-

tection method in the reanalyses in the SH. It was dis-

cussed in the ‘‘Matching against IBTrACS’’ subsection

[section 3b(2)] that some of the storms identified in the

reanalyses appeared to be in the advisories but not

IBTrACS.

Tropical disturbances and subtropical cyclones occur

in all the ocean basins, and it seems that whether or not

they contribute to the best-track data may vary between

the NH and SH and be dependent on the warning center

procedures. The SPCZ and South Atlantic convergence

zone (SACZ) are known to be associated with weak

tropical depressions and subtropical cyclones in the SH,

as well as more intense tropical cyclones in the South

Pacific (Vincent et al. 2011). A similar situation occurs in

the North Pacific associated with the mei-yu front (Lee

et al. 2006). The South Atlantic is not known as a very

active TC region, due to relatively cool sea surface

temperatures and relatively high vertical wind shear.

However, several studies have highlighted this region as

susceptible to the formation of subtropical cyclones

(Evans and Braun 2012; Gozzo et al. 2014), often in

association with the SACZ. This is also seen in simula-

tions produced with high-resolution GCMs, where they

are often identified as TCs (Roberts et al. 2015). The

study of Gozzo et al. (2014), based on reanalysis data,

found on average seven subtropical cyclones per year

with genesis between 208 and 308S, a number that is re-

markably similar to the number of systems objectively

detected in the reanalyses in this study in the SA region.

The majority of the subtropical cyclones identified by

Gozzo et al. (2014) do not seem to have made it into the

advisories or best-track data, either because they are too

weak, even for the advisories, or possibly because in

general they are moving away from land and therefore

not a threat (Kucas et al. 2014). Another possibility is

that SA subtropical cyclones are more asymmetric than

those found in the North Atlantic (Evans and Braun

2012) and hence do not satisfy the criteria for inclusion
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in the TC best tracks. A similar situation may also occur

in the South Pacific. If these additional uncertainties in

the best-track data are considered together with the

numbers in the advisory data, then the actual numbers of

TCs occurring in the SH may not be too far away from

the numbers objectively identified here in the reanalyses.

The results from section 3b(2) suggest that some of the

differences between numbers in the SH between the ob-

jective identification used in this study and IBTrACSmay

be related to the identification of hybrid or subtropical

cyclones by the objective identification scheme.

Other regions where subtropical or hybrid stormsmay

need to be considered are the cool seasons in the eastern

North Pacific, where they are called Kona storms

(Kodama and Businger 1998). Monsoon depressions

may also be confused with weak tropical cyclones in the

reanalyses as these also have a warm core aloft structure

and occur in the north and south Indian Ocean, the

western Pacific, and the Australian region (Hurley and

Boos 2015). They represent an additional uncertainty in

the best-track archive, as they are occasionally included

in the best-track data in the western Pacific via the

JTWC (Hurley and Boos 2015); however, as with sub-

tropical cyclones, this is not done consistently for all

agencies. These may also contribute to uncertainties in

the best-track data in the north and south Indian Ocean

and South Pacific.

The second possibility for the differences in the numbers

of TCs detected by the objective detection method in the

reanalyses and IBTrACS in the NH and SH concerns the

quality of the reanalyses in the two hemispheres, which

may affect how TCs are represented and hence contribute

to the uncertainties in their detection in the reanalyses.

The primary observations assimilated in the SHcome from

satellite observing platforms, which generally provide data

with relatively coarse vertical resolutions, whereas in the

NH the surface-based observing system provides a more

diverse range of observations, including from sondes and

aircraft. The use of direct satellite radiance assimilation,

variational bias correction, and modern assimilation

methods has resulted in much better extraction of the in-

formation content in the observations, including for older

observations (Rienecker et al. 2012).

Discriminating between weak TSs, subtropical cy-

clones, and other systems in the reanalyses is a problem

in both hemispheres for the objective detection method,

but could be more of a problem in the SH if the TCs are

not as well simulated and storms, including subtropical

or hybrid storms, do not have the correct structure. This

could be exacerbated if there are more of the weaker

type of storms in the SH associated with the conver-

gence zones as discussed above, which, allied to the

difficulty in separating these storms from other systems,

may be a factor in the differences between the number

of storms in IBTrACS and the number detected by the

objective detection method in the reanalyses in the SH.

The only way to test this is by using observing system

experiments, where the NH observing system is de-

graded to that of the SH and the data assimilation is

rerun. These types of experiments have been performed

in the past and have shown the relative importance of

the different types of observations used in the reanalyses

and how changes to the observing system may affect the

reanalysis (Bengtsson et al. 2004b;Whitaker et al. 2009).

However, it is very time consuming and expensive to

rerun modern data assimilation systems, even if we had

access to the same systems used to produce the reanalyses

used here. Hence this is beyond the scope of this paper.

However, studies using the same detection criteria as

used here, applied to relatively high-resolution climate

model simulations for the current climate (Gleixner et al.

2013; Strachan et al. 2013; Roberts et al. 2015),

have found similar results to those found here for the

reanalyses, in that similar TC numbers to observations

are found in the NH, albeit with some model-dependent

basin by basin biases, and a larger number of TCs than in

the observations are identified in the SH. This may in-

dicate that the difference in the number of SH storms

from the observations is not necessarily related to dif-

ferences in the quality of the reanalyses in the two

hemispheres but rather may depend more on possible

biases in the best-track data and possibly the detection

criteria used in our objective scheme, discussed next.

The larger bias in the number of TCs identified by the

objective detection method in the SH compared with

the NH relative to observations may also be related to

the detection criteria used here, and whether they are

selective enough for the data used, so that more tropical

depressions, subtropical cyclones, and hybrid cyclones

are identified as TCs, possibly related to the quality of

the reanalyses as discussed above. TC detection

schemes, applied to model or reanalysis data, are cer-

tainly sensitive to the detection criteria and tracking

methodology employed (Horn et al. 2014), especially for

weaker storms, as shown in this paper, and are most

often tuned for the NH. An alternative approach would

be to apply more selective criteria to remove subtropical

and hybrid cyclones from the detection, based on pre-

vious studies focused on studying subtropical cyclones,

for example the Hart phase space parameters (Guishard

et al. 2009; Evans and Braun 2012; Yanase et al. 2014).

Another idea in the literature suggests using TC de-

velopment pathways (McTaggart-Cowan et al. 2013),

whereby tropical cyclogenesis is categorized according

to dynamical metrics, although this would necessar-

ily introduce added complexity and possibly more
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parameters to choose subjectively. It would also remove

these types of storms in the NH, so that, while the

numbers detected in the SH may compare better with

the observations, the numbers may compare less favor-

ably in the NH. However, it might allow a better focus

on the different storm types.

It is likely that all three of the issues discussed above

can lead to TC detection biases in the reanalyses relative

to the best-track data.

No TC tracking and/or identification scheme will be

perfect and, although TC identification schemes can be

retuned against the observations separately for the NH

and SH or for individual ocean basins if necessary

(Camargo and Zebiak 2002) to take account of possible

deficiencies in the detection and the observational bia-

ses, this does not seem like a good idea if TC detection is

to be applied to model simulations where methodolog-

ical consistency is important.

5. Summary and conclusions

The study of TCs in six recent reanalyses has shown

that all the reanalyses are capable of representing nearly

all the TCs present in the best-track archive of

IBTrACS, with a detection rate of ;98% in the period

since 2000 and slightly lower before this. However, how

well the TCs are represented in the reanalyses, in terms

of their properties, is less encouraging, with wind in-

tensities significantly lower than in the observations and

pressures too high in value. Although significant

amounts of observations are assimilated by the data

assimilation systems used in the reanalyses, in particular

from satellites, this is unable to correct these deficiencies

in the TC properties, due to the still too low model

resolution and dependence on parameterized processes

used in the reanalyses. Additional methods of assimi-

lating observations in the vicinity of the TCs and vortex

relocation can help improve this situation, but not to the

extent where intensities get anywhere near those ob-

served at current reanalysis resolutions. However, it is

apparent that there have been some improvements in

the representation of TCs in the more recent reanalyses

of NCEP-CFSR, JRA-55, and MERRA-2; in particular

MERRA-2 shows a significant improvement over the

older MERRA reanalysis in terms of wind and MSLP

intensities. Separation distances between TCs identified

in the reanalyses and the observations have also im-

proved for the more recent reanalyses.

The improvements in the intensities and location are

most likely due to the increases in model horizontal

resolutions and the use of improved data assimilation

and bias correction systems, which are capable of extract-

ing more information content from the older observations,

as well as resulting in less observation rejection and the

introduction of new and better calibrated observing sys-

tems in recent years. This progress is likely to continue as

new reanalyses are produced with ever higher resolutions,

such as the new ECMWF ERA5 reanalysis. Further im-

provements in data assimilation are also expected as well

as the introduction of new and more accurate observing

systems, although the downside to this may be the in-

troduction of spurious trends in TC properties.

The other aspect explored in this study is how well

objective TC detection schemes are capable of detecting

the same TCs that are in the observations using a widely

used identification scheme. This is important in order to

have confidence in these schemes when applied to cli-

mate model simulations and for comparisons made be-

tween models or experiment scenarios. This part of

the study highlighted the problem of detecting TCs at

the low intensity end of the TC intensity range: in par-

ticular, tropical depressions and up to category 1 (Saffir–

Simpson), with gradual improvements in the detection

rate with increasing TS category. This raises several

issues: Are the current detection schemes used at op-

erational centers and for climate studies of TCs, which

all have a rather similar methodology of user chosen

thresholds on intensity and/or structure, selective

enough? Are TCs represented well enough in the re-

analyses? Are there problems with observational biases

in the best-track data for weak storms? The answer to

these questions is probably that all three play a role in

differences found between the objective identification of

TCs in reanalyses and the observed best-track data. It is

clear that the intensities, and probably structure, are not

well enough simulated in the reanalyses, which will

cause problems when trying to discriminate between

weak TSs and other tropical systems.

In terms of more selective criteria, other approaches

could certainly be introduced, such as the phase space ap-

proach, but this will also depend on how well TCs are

represented in the reanalyses and the introduction of sub-

jective thresholds on the phase space parameters (Yanase

et al. 2014).However, itmaybeuseful in removing the need

for artificial boundaries in the TC identification such as the

latitude band for genesis used in this study.

The problemof observational bias is also an important

aspect, in particular for the weaker storms, since fore-

caster interpretation and subjectivity will play a role in

whether a particular storm is included in the best-track

data, as not all storms fall neatly into particular classi-

fications. Allied to this are the different operational

criteria employed by the different RSMC, which con-

tribute data to the best-track archives, such as whether

to include tropical depressions or subtropical cyclones.

This is likely the primary cause of the differences
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between the number of TCs identified in the reanalyses

and IBTrACS, in particular in the SH. This makes the

observations less than ideal for calibrating TC identifi-

cation and tracking schemes, or indeed in their use in

global climatological studies of TC frequencies and

variability. It could be concluded that, given the un-

certainties in the best-track datasets, they should not be

considered climate-quality datasets and should be used

with some caution for climate studies of TCs and for

validating TCs identified in climate model simulations.

Better coordination between the RSMCs would help

this situation going forward, although this is not neces-

sarily part of their remit and their operational pro-

cedures are tailored to their region of responsibility.

The problems of objectively classifying TCs opera-

tionally has been recognized by the Seventh In-

ternational Workshop on Tropical Cyclones, with a

suggestion that ‘‘a substantial contribution to the oper-

ational TC forecasting community could be made by

recommending a universal cyclone classification meth-

odology based on the latest research, operational fore-

casting capabilities, and real-time data availability’’

(Gyakum 2011, p. 1.6.23).

A re-evaluation of the observational record over the

satellite period using a combination of the satellite data

and reanalyses, using consistent identification methods for

all basins, could perhaps resolve the observational bias

problem over historical periods covered by the satellites

and provide a more complete record of tropical storms for

use in risk assessment and validating climate models.

There has been some discussion that tropical depressions

and subtropical cyclones should be included in the best-

track data for consistency (McAdie et al. 2009), since,

before satellite observations became available, some sub-

tropical systems were probably classified as TCs. Tropical

depressions and subtropical cyclones are also associated

with severe weather with TS-like properties of strong

winds and precipitation (Guishard et al. 2009; Gyakum

2011), so their inclusion can be justified in terms of their

impact and for a more complete record of TC activity.

While there are deficiencies in the representation of

TCs in the reanalyses, and 10-m winds in particular

should be used with caution, they can be complementary

to the observations and provide added value information

on TCs such as the pre- and post-TC stages of the life

cycle. For example, the tracking method used here

identifies these earlier and later life cycle stages, which

can then be used to study the early development of TCs

and their environment as well as the extratropical tran-

sition (Studholme et al. 2015) and how storms behave

after this. The extratropical transition and its aftermath

are becoming increasingly important for risk analysis at

high latitudes following cases such as Hurricanes Sandy

and Gonzalo and recent studies such as Haarsma et al.

(2013); this is a known contributor to forecast uncertainty

in the extratropics (Anwender et al. 2008).
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