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ABSTRACT: The self-assembly process of amphiphilic dendritic copolymers (ADPs) 

with a hydrophilic core and hydrophobic shell was investigated via laser light 

scattering. The self-assembly occurs via a fast step and a slow step with different 

relaxation times. At the critical micelle concentration (CMC), the fusion of small 

micelles results in the rapid increase of the micelle size in the fast step. The slow step 

is associated with equilibrium through the fission and fusion of the micelles. The 

micelle size increases with the unimer concentration, which leads to a lower micelle 

concentration. The lower micelle concentration and larger micelle size make the 

relaxation time of the fast step increase with increasing unimer concentration. The 

fusion of the larger micelles at higher concentration is more efficient for the increase 

of the micelle size, which contributes to the decrease of relaxation time in the slow 

step. Moreover, the fusion of small micelles with large micelles at higher 

concentration accelerates the approaching equilibrium of the micelle except for the 

fission and fusion of micelles. With the increasing degree of amidation (DA), the 

relaxation time in the fast step increases and in the slow step it decreases.  

1. INTRODUCTION 

Following the linear, branched, crosslinking polymers, dendritic polymers including 

hyperbranched polymers and dendrimers are the fourth-generation of polymer 

architectures.1,2 Hyperbranched polymers consisting of dendritic, linear, and terminal 

units have irregular structure compared with dendrimers. Dendritic polymers are 

highly branched with a three-dimensional architecture and have low viscosity and 

better solubility than the linear analogues. Great efforts have been devoted to 
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understand and control the self-assembly of amphiphilic dendritic polymers. Multiple 

morphologies of self-assembled dendritic polymers, such as micelles, vesicles, 

macroscopic tubes and fibers have been reported3-6 and the self-assembly has been 

exploited in areas of drug delivery, sensors and cell imaging, etc.7-9 

The self-assembled morphology of polymers is influenced by their topology, the 

solvent quality and the solvophilic/solvophobic ratio. For the amphiphilic polymers 

containing a hyperbranched core, they can self-assemble into spherical micelles, 

wormlike micelles and vesicles with an increase in the degree of branching of the 

core.10 The self-assembled structure of a gradient copolymer was observed to change 

from spherical micelles to cylindrical micelles and then to vesicles with the worsening 

solvent quality.11 The size of the spherical micelles formed from amphiphilic 

hyperbranched polymers in aqueous solution decreases with increaseing hydrophilic 

volume fraction.12,13 In 2005, Yan suggested a multimicelle aggregate mechanism 

(MMA), which included two steps, the dendritic polymers first self-assembled into 

small micelles and then the small micelles aggregated to form large micelles.12 In 

2007, Yan and Haag observed small spherical building units inside the micelles by 

TEM and cro-TEM,3,14 which proved the MMA mechanism. Based on dissipative 

particle dynamics simulations, the dynamic self-assembly processes and the detailed 

self-assembly mechanism were analyzed, which demonstrated the unimolecular 

micelle aggregate mechanism and the small micelle aggregate mechanism. In the 

former mechanism, the unimolecular micelles directly aggregate to form large 

micelles without microphase separation. In the small micelle aggregate mechanism, 
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the amphiphilic dendritic polymers first rearrange the hydrophilic and hydrophobic 

parts to form microphase-separated small micelles. Then the small micelles assemble 

into large multimolecular micelles. Also the increase of the radius of gyration (Rg) 

with time reflects the dynamic process.15 However, except for computer simulations, 

the dynamic self-assembly process of dendritic polymers is rarely reported. The 

fusion process of polymer vesicles was observed by optical microscopy.16,17 But the 

formation process of the vesicles before the size is large enough for the observation 

by optical microscopy is unclear.  

The micellization kinetics of surfactants and block copolymers have been studied 

both theoretically and experimently.18-22 The Aniansson and Wall theory provides a 

widely accepted kinetic description of the self-assembly process of small surfactant 

molecules, which divides the micellization process into a fast and a slow step.18,21 In 

the fast step, the aggregation number (Nagg) of each micelle increases with no change 

in the total number of micelles. In the slow step, the self-assembly process approaches 

equilibrium accompanied with the formation and deformation of the micelles with a 

variation in the number of micelles. The micellization process of block polymers is 

similar to that of surfactants. The unimers quickly associate to form quasi-equilibrium 

micelles and the increasing micelle number dominates over the growth of the micelles 

in the first process. In the second process the micellization process approaches 

equilibrium with an increase in micelle size combined with a decrease in the number 

of micelles. 22 The self-assembly kinetics of the dendritic polymers is expected to be 

similar. 
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To date, the study of the self-assembly of dendritic polymers mainly focused on the 

final equilibrium structure which was observed by TEM.3-6 During the sample 

preparation, the solvent evaporation leads to shrinkage, collapse, and even 

deformation of the micelles.23 The increasing concentration resulting from the solvent 

evaporation may induce the fusion of micelles, which creates artefacts in TEM images. 

In contrast, it is possible to measure Rg and hydrodynamic radius (Rh) in situ using 

laser light scattering. Furthermore, the time dependence of scattering intensity, Rg and 

Rh provide information on the dynamic processes of self-assembly.  

In this paper, first, the critical self-assembly condition of the dendritic polymers 

was explored. Second, the dynamic self-assembly process was studied. Then the 

influence of concentration and solvophilic/solvophobic ratio on the self-assembly 

kinetic process was discussed. We believe that this represents the first time the 

self-assembly kinetics of dendritic polymers by using laser light scattering method. 

2. EXPERIMENTAL SECTION 

2.1 Materials. Hyperbranched polyethylenimine (HPEI, Mn = 104 g mol-1, Mn/Mw = 

2.5) was purchased from Aldrich. 2,2-Bis(hydroxymethyl)propionic acid (BHP, 99%) 

was purchased from Beijing Ouhe Technology Company. Palmitic acid (A.R.) was 

purchased from Tianjin University Kewei Chemical Company. The amphiphilic 

dendritic copolymers with a HPEI core and a dendritic palmitate tail shell were 

synthesized according to the reported approach.24 Detailed information on molar mass 

and Rh of the studied amphiphilic dendritic polymers (ADPs)25, as well as CMC and 

critical solvent volume fraction (CSV) values are listed in Tables 1. The structure of 
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the dendritic polymers was shown in Figure S1. Chloroform and methanol used in the 

self-assembly experiment were purchased from the Beijing chemical works (Beijing, 

China). Chloroform was refluxed with calcium hydride before distillation. 

2.2 Measurements. The light scattering experiments were performed on ALV 

CGS-3 light scattering spectrometer equipped with an ALV-5000 multi-tau digital 

time correlator and a He–Ne laser (λ = 632nm) as light source. The Rg values of the 

micelles was calculated from the angular dependence of the natural logarithm of the 

scattered intensity according to the Guinier plot.26 The decay rate distribution (G(Γ)) 

was obtained from the CONTIN Laplace inversion of the intensity–intensity time 

correlation function g2(q,τ). The relation between the decay rate and the apparent 

diffusion coefficient is Γ = q2D, where the scattering vector q = (4πn/λ)sin(θ/2), n is 

the refractive index of the solvent, λ is the wavelength of the light in vacuum, and θ is 

the scattering angle.27,28 From the Stokes–Einstein equation Rh = kBT/6πηD, the 

average hydrodynamic radius was calculated, where kB, T and η are the Boltzmann 

constant, the absolute temperature and the solvent viscosity, respectively. The 

dependence of the laser light scattering intensity on the angle was performed in the 

range of 30° to 90°, every 10°. All the solutions were filtered through 0.45 μm 

Millipore polytetrafluoroethylene filters before measurements. 

Table 1: Structure parameters and the critical self-assembly condition for the ADPs 

Polymer DA Mn/104 Rh/nm CSV CMC/(mg*ml-1) 

P-1 38% 6.2 5.2 49% 0.57 

P-2 41% 6.7 5.5 47% 0.42 

P-3 51% 8.0 6.1 44% 0.26 

P-4 60% 9.3 7.3 44% 0.20 
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3. RESULTS AND DISCUSSION 

3.1 The critical self-assembly condition for the ADPs. ADPs were first dissolved 

in the common solvent (chloroform) and then the non-solvent (methanol) for the 

non-polar shell was added dropwise to change the solvent quality gradually. The 

values of CSV that the ADPs started to self-assemble were obtained from the 

scattering intensity of the solution. The final concentration of the ADPs was 0.5mg/ml 

and before measurement the solutions was kept at 25 °C for 12h. As shown in Figure 

1, at the CSV, the scattering intensity increases sharply upon the formation of micelles. 

The solvophilic/solvophobic ratio increases with DA, which leads to decreasing 

polarity of the ADPs. The CSV decreases slightly with the DA (Table1). In terms of 

the CSV of P-1, P-2, P-3 and P-4, the solvent containing 50% methanol is a relatively 

poor solvent and the ADPs self-assemble in solvent mixtures containing this fraction 

of methanol.  

The CMC for the four ADPs was measured in solutions that contained 50% 

methanol. At the CMC, the scattering intensity of the solution increases due to the 

formation of micelles. In Figure 2, the scattering intensity of P-1 increases at a 

concentration of 0.57 mg/ml, suggesting that the CMC for P-1 is 0.57 mg/ml. As 

shown in Table 1, the CMC for the ADPs decreases with increasing DA, because of 

the increase of the solvophobic/solvophilic ratio with DA. 



8 
 

 

Figure 1. Scattering intensity vs methanol volume fraction for polymer P-1.  

 

Figure 2. Scattering intensity vs concentration for polymer P-1(C is the concentration). 
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Figure 3. (a) The time-dependence of scattering intensity. (b) The time-dependence of the 

hydrodynamic radius. 

3.2 The self-assembly kinetics of ADPs. To date, to our knowledge, there are no 

reported experimental studies on the self-assembly kinetics of ADPs. In this work, the 

real-time self-assembly process was monitored and discussed. The time dependence 

of the scattering intensity and Rh were measured. The increasing trend of the 

scattering intensity (Figure 3a) and Rh (Figure 3b) are almost the same, with a rapid 

initial increase followed by a slower increase. Figure 4a represents the scattering 

vector dependent decay rate and scattering intensity. Based on the Stocks-Einstein 

equation and the Guinier plot, Rh and Rg values were calculated. For spherical 

micelles, Rh is independent of scattering angle.29 The ratio of Rg and Rh reflects the 
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morphology of the aggregates, being 1.5 for a random coil, 1 for a vesicle and 0.77 for 

a micelle.30,31 Figure 4b shows that the ratio of Rg and Rh for P-1, P-2, P-3, P-4 at the 

CMC is around 0.75, indicating that the self-assembled structure is micelles. The 

micelle size observed by TEM for P-1 and P-2 at CMC are larger than that measured 

by laser light scattering, which is caused by the fusion of micelles during the sample 

preparation. The TEM images of P-3 and P-4 agree well with the laser light scattering. 

(Figure S2)  

 

 

Figure 4. (a) Scattering vector dependence of the average decay rate (□) and scattering intensity 

(○) for P-1. (b) The time related ratio of Rg and Rh for P-1, P-2, P-3and P-4. 

According to the self-assembly of surfactants and block copolymers,18,20 the 

kinetics of the dendritic copolymers was analyzed based on the time dependence of 
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the scattering intensity, which was best fitted using the double exponential function 

(eq. 1). 

))/exp(1()/exp(1(y 210  tbtay            (1) 

Here, τ1 and τ2 are relaxation times for the two processes, y0, a and b are adjustable 

parameters related to the self-assembly condition. The term y0 represents the initial 

scattering intensity. a and b represent the contribution of the two steps to the 

self-assembly process. The correlation coefficients for all the fitting results are above 

0.99, which indicates the high quality of the fitting and the precision of the kinetic 

parameters. As shown in Table 2, the two relaxation times correspond to the two 

different self-assembly steps. The high DA of the dendritic polymers leads to great 

steric hindrance,25 which hinders the microphase separation of the unimer in the 

self-assembly. Because of the compact structure and the great steric hindrance, the 

self-assembly is assumed to follow the unimolecular micelle aggregate mechanism.15 

Based on eq. 3, the Nagg of the micelle was estimated. Vmicelle and Vunimer are the 

volume of the micelle and the unimer, which are obtained from eq. 2. The rapid 

increase of Nagg corresponds to the first step and the slow increase of Nagg occurs in 

the second step of the self-assembly (Figure 5). The necessary condition for the 

self-assembly is that the chemical potential of the unimers in the micelles is smaller 

than that in the solution and when the chemical potential of the unimers in the micelle 

holds a minimum value, the process reaches equilibrium.32  

 

3πR
3

4
V                              (2) 
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Figure 5. Variation of the Nagg with time. 

 

Figure 6. The distribution functions of the apparent hydrodynamic radius of P-1, P-2, P-3, P-4 at 

CMC. 

The kinetics of self-assembly are reflected by the increase of Rh. After addition of 

methanol, the ADPs self-assemble into small micelles and with time the small 

micelles grow into larger ones. The distribution of Rh at the CMC is shown in Figure 6. 

Unfortunately, because of the fast association of unimers, only for P-1 and P-2 can the 
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self-assembly process of the unimer to micelle transition be monitored owing to the 

the relatively small solvophobic/solvophilic ratio. Due to the lack of data on the 

unimer to micelle transition, we mainly focus on the fusion and fission of the micelles. 

There are two ways for the increase of micelle size. One is the fusion of the small 

micelles. The other is the fission and fusion occurred among the micelles. In order to 

illustrate the self-assembly kinetics more obviously, the increased hydrodynamic 

radius (Rh I) was calculated based on eq.4,  

     Ii1i VVV                          (4) 

where V is the volume of the micelles. Vi and Vi+1 are the volumes of the micelles at 

the times i and i+1. VI is the increased volume. Through the values of VI, the value of 

Rh I was calculated. The evolution of Rh I and the smallest hydrodynamic radius of the 

micelles in the distribution (Rh min) are shown in Figure 7. The dotted line in Figure 7 

is the cut-off line between the first and the second step. In the second step, the value 

of Rh I is smaller than Rh min and this suggests that the micelles formed in the first step 

fission and fuse with each other, which cause the slow increase of the micelle size. 

Before 80 minutes (min) the polydispersity index (PDI) obtained from the ratio of μ2/

Γ2 (μ2 is the second cumulant) decreases with the time and increases after 80min 

(Figure. 8). From the evolution of Rh, Rh I and the change of PDI, the self-assembly 

process of the ADPs at the CMC is summarized. In the first step, the unimers 

aggregate quickly to form small micelles and then the small micelles fuse into 

relatively larger and monodisperse micelles. In the second step, through the fission 

and fusion of the micelles the distribution becomes broader and the self-assembly 
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approaches equilibrium.  

 

Figure 7. The increase of the hydrodynamic radius of the smallest micelles in the distribution and 

the increased hydrodynamic radius of P-1 with time at CMC. 

 

Figure 8. Time dependence of the polydispersity index. 

3.3 Influence of concentration on the self-assembly. The phase diagram of the 

block polymers is influenced by the concentration33,34 and the size of the nanoparticles 

formed from the self-assembly of the hyperbranched polymers is larger at higher 

concentration35. As shown in Figure 9, the scattering intensity and hydrodynamic 

radius increase with concentration. The relaxation time of the self-assembly at 

different concentration is shown in Table 2. With increasing concentration, τ1 

increases and τ2 decreases. Honda et al. reported that the relaxation time τ1 of block 
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copolymer in the first process decreased with increasing concentration and τ2 was 

almost independent of the concentration.22 However, the relaxation times of block 

copolymers in the rod to vesicle transition increase with increasing concentration.20 

 

Figure 9. Time-dependent related scattering intensity (a) and hydrodynamic radius (b) with fixed 

concentration for polymer P-4. 

Table 2. Kinetic results for the ADPs at different concentration 

DA C/mg*ml-1 y0/kHz a/kHz τ1/min b/kHz τ2/min 

61% 0.2 71.6 59.5 53.9 241.9 1143.9 

0.26 129.5 86.9 52.0 987.9 856.5 

0.42 283.7 647.7 110.3 1140.3 602.6 

0.57 504.3 3441.1 129.8 2367.6 636.6 

51% 0.26 105.4 247.7 77.6 1193.7 2067.1 

0.42 133.6 635.3 69.2 2151.9 1033 

0.57 288.6 2378.4 125.1 2826.4 751.1 

41% 0.42 84.3 403.4 59.8 1625.1 1891.2 

0.57 195.3 647.7 91.1 1201.8 846.1 
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38% 0.57 34.9 621.6 95.5 1725.5 2619.1 

 

The first step of the micellization of surfactant and block copolymer is mainly the 

quick association of the unimers and the relaxation time is on the time scale of 

seconds.18,22 Whereas, in this study, the first step of ADPs is influenced by the fusion 

of the small micelles and the relaxation time is on the time scale of hours. The energy 

barrier for the fusion of micelle is larger than that for the aggregation of unimers, 

which suggests that different mechanisms lead to the difference in the time scale. The 

fusion of micelles is concentration dependent and at higher micelle concentration the 

collision opportunity increases.36-38 The increase of hydrodynamic radius with 

concentration may result in the decrease of the small micelle concentration in the first 

step. The self-assembly rate will slow down for the decrease of small micelle 

concentration. The concentration ratio of two solutions is expressed as high 

concentration to low concentration. For the two solutions of a given ADP with 

different concentrations, if the Nagg ratio is larger than the corresponding unimer 

concentration ratio, then the micelle concentration of the solution with a higher 

unimer concentration must be lower, and vice versa. As shown in Figure 10a, the Nagg 

ratio is larger than the ratio of the concentration, indicating the decrease of the micelle 

concentration with increasing unimer concentration. Also, the fusion energy barrier 

increases with the micelle size, which suggests that the fusion of the large micelles is 

unfavourable.39 The increasing value of τ1 with concentration in the first step results 

from the decreasing micelle concentration and the rising fusion energy barrier of the 

large micelles. The derivative of the change of scattering intensity with time is shown 
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in Figure 10b. The Y-axis value of the derivative reflects the increasing rate of the 

scattering intensity. The increasing rate in the first step is larger than in the second 

step. Though at higher concentration the relaxation time increases, the increasing rate 

of the micelle size in the first step increases. The larger micelle size at higher 

concentration leads to more efficient fusion.  

The polydispersity index and Rh I increase with the concentration (Figure S3). For 

P-4 with a concentration of 0.57mg/ml, the distribution of the hydrodynamic radius 

even shows a bimodal distribution after 100min (Figure S4). With increasing 

concentration, the self-assembly kinetics in the second step becomes complex. In the 

second step, the increased hydrodynamic radius is larger than the minimum 

hydrodynamic radius in the distribution (Figure 11). Except for the fission and fusion 

of the micelles, the self-assembly in the second step includes the fusion of the small 

micelles with the large micelles. The size of the small micelles increases at higher 

concentration (Figure S5). The larger increasing rate of scattering intensity at higher 

concentration means that the micelles formed in the first step are closer to the 

equilibrium size and so the micelles in the second step quickly approach the 

equilibrium size. This contributes to the decrease of τ2 with increasing concentration. 
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Figure 10. (a) The comparison of the concentration ratio and the Nagg ratio at different 

concentrations for polymer P-4. (C2/C1 represents (0.26mg/ml)/(0.2mg/ml). C3/C1 represents 

(0.42mg/ml)/(0.2mg/ml). C4/C1 represents (0.57mg/ml)/(0.2mg/ml). Nagg2/Nagg1 represents the Nagg 

ratio of the micelle in the solution with a concentration of 0.26mg/ml and 0.2mg/ml. Nagg3/Nagg1 

represents the Nagg ratio of the micelle in the solution with a concentration of 0.42mg/ml and 

0.2mg/ml. Nagg4/Nagg1 represents the Nagg ratio of the micelle in the solution with a concentration of 

0.57mg/ml and 0.2mg/ml.) (b) The derivative of the change of scattering intensity with time at 

different concentration. 
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Figure 11. The increase of the smallest micelle hydrodynamic radius in the distribution and the 

increased hydrodynamic radius of P-4 with the time. 

3.4 Influence of the DA on the self-assembly. Liu et al.40 reported that the size 

and Nagg of the spherical micelles increased with the solvophobic chain length of 

linear block copolymer. The micellization mechanism of the slow process changes 

from unimer insertion/expulsion to micelle fusion/fission, because of the decreasing 

apparent activation energy with the increasing solvophobic chain length. The micelle 

of the hyperbranched copolymer is also influenced by the solvophilic/solvophobic 

ratio and the degree of branching of the core.4,41 For the ADPs, the absence of the 

microphase separation resulting from the great steric hindrance of the non-polar shell 

is conjectured to make the micellization kinetics different. As shown in Figure12, the 

scattering intensity and the hydrodynamic radius increase with DA. The ratio of the 

radius of gyration and hydrodynamic is around 0.74 (Figure S6), indicating that the 

structure is not influenced by DA.  
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Figure 12. Time dependent scattering intensity (a) and hydrodynamic radius (b) with DA.  

A study of the aggregation kinetics of block copolymer found that the driving force 

for the micellization increased with the solvophobic chain length, giving rise to the 

decreasing relaxation time.40 Similar to such block copolymers, the self-assembly 

driving force of the ADPs is assumed to increase with the increasing DA. As shown in 

Table 2, with the increasing DA, τ1 increases and τ2 decreases at the same 

concentration. The molecular weight increases with DA, which induces the decrease 

of the unimer molar concentration. This phenomenon may cause the increase of τ1. 

However, as illustrated in the influence of concentration, with the increasing unimer 

concentration, the micelle concentration decreases and the relaxation time in the first 

step increases, which suggests that the increase of the unimer molar concentration will 

not lead to the decrease of τ1. The Nagg of the four ADPs is almost the same in the first 

step, while the Nagg of P-1 is much smaller than that of the other three ADPs in the 
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second step (Figure 13a). Despite the larger Rh of the micelle, the Nagg of P-4 is 

slightly smaller than that of the P-2 and P-3 (Figure 13a). In order to analyze the 

micelle concentration of the four ADPs in the micellization process, the comparison 

of the Nagg ratio and the unimer molar concentration ratio for different ADP solutions 

is shown in Figure 13b, c, d. If the Nagg ratio is larger than the unimer molar 

concentration ratio, the micelle concentration will be smaller at higher DA, and vice 

versa. Before the intersection point for the Nagg ratio and the molar concentration ratio 

(T1), the Nagg ratio is smaller than the unimer molar concentration, suggesting that the 

micelle concentration is larger at higher DA. After T1, the Nagg ratio is larger than the 

unimer molar concentration ratio, indicating that the micelle concentration is smaller 

at higher DA. T1 is smaller than τ1 (Table 3), which indicates that the smaller micelle 

concentration in the later period of the first step has an influence on the self-assembly 

kinetics. The increasing τ1 results from the larger micelle size and the smaller micelle 

concentration, which is similar to the influence of concentration on the kinetics.  
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Figure 13.(a) The change of Nagg with the time for P-1, P-2, P-3, P-4 at 0.57mg/ml. (b) The 

comparison of the Nagg ratio and unimer molar concentration ratio for different ADPs at 

0.57mg/ml. (The subscript number of the Nagg represents the DA. The solid line is the 

corresponding molar concentration ratio).  

Table 3. The comparsion of T1 and the relaxation time τ1 

Ratio Nagg41/Nagg38 Nagg51/Nagg38 Nagg60/Nagg38 Nagg51/Nagg41 Nagg60/Nagg41 Nagg60/Nagg51 

T1/min 100 46 46 30 30 49 

τ1/min 91.1 125.1 129.8 125.1 129.8 129.8 

The derivative of the change of the scattering intensity with time is shown in Figure 

14. The Y-axis value of the derivative increases with DA. Because the micelle size 

increases with DA, in the first step, the fusion rate of micelles slows down, while the 

rate of size increase is larger, indicating that the fusion is more efficient for the 

increase of the micelle size. Except for P-1, with increasing DA, the concentration of 

the ADPs solution is higher than the CMC, meaning that the kinetics of P-2, P-3 and 

P-4 in the second step includes the fusion of the small micelles with the large micelles. 

The size of the micelles that fuse the big micelles in the second step increases with 

increasing DA (Figure S7). Based on these two aspects, the micelle in the second step 

approaches the equilibrium size more quickly at higher DA and the relaxation time τ2 

decreases with DA. In the second step, because of the larger Nagg ratio compared with 

the unimer molar concentration ratio for P-2, P-3 and P-4 with respect to P-1 (Figure 

13b), the micelle concentration is much smaller than that of P-1, while τ2 for P-1 is 

much larger than that of P-2, P-3 and P-4 (Table 2). This phenomenon results from the 

weaker driving force for P-1 compared with ADPs with higher DA.  
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Figure 14. The derivative of the change of scattering intensity with time at 0.57mg/ml for P-1, P-2, 

P-3, P-4. 

4. Conclusion 

Adding a poor solvent for the dendritic non-polar shell induces the self-assembly of 

ADPs in solution and the self-assembly is time dependent. From the evolution of 

scattering intensity and hydrodynamic radius with time, the self-assembly process of 

the ADPs was analyzed. The kinetics is influenced by the concentration. At the CMC, 

the small micelles associate with each other to form narrowly distributed micelles in 

the first step. In the following step, Rh I is smaller than Rh min, indicating that fusion of 

micelles of comparable size does not occur, and the increase of the micelle size is 

caused by the fission and fusion of micelles when collision occurs. This phenomenon 

make the micelle distribution become broader in the second step. Through the fission 

and fusion of the large micelles, the self-assembly finally approaches dynamic 

equilibrium. Distinct to the behavior of surfactants and amphiphilic block copolymers, 

the relaxation time of the first step increases with increasing concentration. Compared 

with the unimer concentration ratio, the Nagg ratio is larger, which induces the smaller 

micelle concentration at higher unimer concentration. On the other side, the 
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increasing fusion energy barrier with increasing micelle size makes the fusion of large 

micelle slower. Due to the smaller micelle concentration and the slower fusion rate, 

the value of τ1 increases with the unimer concentration. The value of the derivative for 

the change of scattering intensity with time is larger at higher concentration, 

suggesting that in spite of the slow fusion rate of the large micelles, the increasing rate 

of the micelle size is faster at higher concentration. The efficient fusion at higher 

concentration accelerates the approaching equilibrium of the micelle in the second 

step. Except for the fission and fusion, the second step contains the fusion of small 

micelles with large micelles at higher unimer concentration. Based on the above, τ2 

decreases with increasing concentration. The self-assembly kinetics is also influenced 

by the solvophobic/solvophilic ratio. The values of Rh increase with increasing DA. 

However, the values of Nagg are almost the same with increasing DA in the first step 

and in the following step the Nagg of P-2, P-3 and P-4 is similar, but is larger than that 

of P-1. Because of the decreasing micelle concentration in the later stage and the 

larger fusion energy barriers at higher concentration, τ1 increases with increasing DA. 

The same with the influence of concentration, because of the more efficient fusion the 

micelle, τ2 decreases with the increasing DA. To the best of our knowledge, this is the 

first time that the detailed self-assembly kinetics of ADPs has been studied, and our 

results provide detailed insights into aggregation mechanisms.  
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